

TOWARDS REAL-WORLD DEBIASING: RETHINKING EVALUATION, CHALLENGE, AND SOLUTION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Spurious correlations in training data significantly hinder the generalization capa-
 012 bility of machine learning models when faced with distribution shifts, leading to the
 013 proposition of numerous debiasing methods. However, it remains to be asked: *Do*
 014 *existing benchmarks for debiasing really represent biases in the real world?* Recent
 015 works attempt to address such concerns by sampling from real-world data (instead
 016 of synthesizing) according to some predefined biased distributions to ensure the
 017 realism of individual samples. However, the realism of the biased distribution is
 018 more critical yet challenging and underexplored due to the complexity of real-world
 019 bias distributions. To tackle the problem, we propose a fine-grained framework
 020 for analyzing biased distributions, based on which we empirically and theoreti-
 021 cally identify key characteristics of biased distributions in the real world that are
 022 poorly represented by existing benchmarks. Towards applicable debiasing in the
 023 real world, we further introduce two novel real-world-inspired biases to bridge
 024 this gap and build a systematic evaluation framework for real-world debiasing,
 025 RDBench¹. Furthermore, focusing on the practical setting of debiasing w/o bias
 026 label, we find real-world biases pose a novel *Sparse bias capturing* challenge to the
 027 existing paradigm. We propose a simple yet effective approach named Debias in
 028 Destruction (DiD), to address the challenge, whose effectiveness is validated with
 029 extensive experiments on 8 datasets of various biased distributions.

1 INTRODUCTION

033 With the rapid development of machine learning, machine learning systems are increasingly deployed
 034 in high-stakes applications such as autonomous driving and medical diagnosis, where incorrect
 035 decisions may cause severe consequences. As a result, the robustness to distribution shift is crucial
 036 in building trustworthy machine learning systems. One of the major reasons why machine learning
 037 models fail to generalize to shifted distributions in the real world (Chu et al., 2023) is because
 038 the existence of spurious correlation, i.e. biases, in training data (Wiles et al., 2022). Spurious
 039 correlation refers to the phenomenon that two distinct concepts are statistically correlated in the
 040 training distribution, yet uncorrelated in the test distribution for there is no causal relationship between
 041 them (Chu & Li, 2023). For example, rock wall background may be correlated with the sport climbing
 042 in the training data, but they are not causally related and climbing can be indoors or on ice as well
 043 (Lee et al., 2021; Chu et al., 2021; 2020). Furthermore, such spurious correlations within the data tend
 044 to be captured during training (Nam et al., 2020), resulting in a biased model that fails to generalize
 045 to shifted distributions. This lead to the proposition of various debiasing methods in recent years.

046 To benchmark the effectiveness of debiasing methods, both synthetic (Reddy et al., 2021; Nam et al.,
 047 2020; Liu et al., 2021) and semi-synthetic (Lee et al., 2021; Nam et al., 2020; Lim et al., 2023)
 048 (referred to as "real-world dataset" in previous works) datasets with severe biases has been adopted as
 049 benchmarks. While the individual samples in semi-synthetic datasets are realistic as they are sampled
 050 from the real world rather than synthetic, both existing synthetic and semi-synthetic benchmarks
 051 follow some predefined biased distribution that lacks thorough consideration of *how data is truly*
 052 *biased in the real world*, as shown in Section 2.1. This raise the following question:

053 *Does existing assumption on biased distributions align with the real world?*

¹RDBench: Code to be released. Preliminary version in supplementary material for anonymized review.

This is a challenging question to answer given the complexity of biases in the real world and existing coarse-grained bias analysis measures (Section 2.2). Consequently, we first revisit the biased distribution in existing benchmarks and real-world datasets and propose a fine-grained framework for analyzing bias in datasets. Inspired by the framework proposed by Wiles et al. (2022), which assumes the data is composed of some set of attributes, we further claim that analysis of dataset bias should be conducted on the more fine-grained feature (or value) level rather than attribute level, according to our observation on real-world biases. From the claim, we further propose our fine-grained framework that disentangles dataset bias into the magnitude of bias and the prevalence of bias, where the magnitude of bias generally measures how predictive (or biased) features are on the target task and the prevalence of bias generally measures how many samples in the data contain any biased feature. Empirical analysis on 8 real-world datasets across various modalities has shown that the magnitude and prevalence of real-world biases are both low, in contrast with high magnitude and high prevalence biases assumed by existing benchmarks. In section 3, we theoretically show that two strong assumptions are implicitly held by existing high bias prevalence benchmarks, which further validates our observation that real-world biases are low in bias prevalence.

Based on the empirical and theoretical insights on real-world biases, we introduce two novel type of biases inspired by real-world applications. Due to the complexity of real-world biases, debiasing methods should be capable of handling various types of biases and other real-world challenges, such as the multi-bias setting Li et al. (2023). Thus, towards developing debiasing methods applicable in the real world, we propose a systematic evaluation framework for real-world debiasing that encompass various types of biases and settings to facilitate the debiasing field.

Furthermore, focusing on the setting of debiasing w/o bias label(Lim et al., 2023; Zhao et al., 2023), which is more practical as bias feature is expensive to annotate and sometimes even hard to notice (Li & Xu, 2021), we show that the proposed real-world biases pose a novel "*Sparse bias capturing*" challenge to the existing debiasing paradigm. Specifically, the sparse and scattered real-world biases make it difficult for existing methods to identify the unknown bias accurately, causing severe performance degradation. To tackle the challenge, we introduce a simple yet effective approach, named Debias in Destruction (DiD), that can be easily applied to existing methods. Extensive experiments on 8 datasets show that DiD significantly boosts the capability of existing methods in handling various types of biases. To sum up, this work makes the following contributions:

- **Empirical and theoretical insights on biases in the real world.** We propose a fine-grained framework for bias analysis. Based on the framework, we empirically and theoretically identified key characteristics of real-world biases, previously overlooked.
- **Systematic evaluation framework for real-world debiasing.** Based on our insights, we further propose *two novel real-world-inspired biases*. Together with the multi-bias challenge and 8 existing benchmarks, we introduce a systematic evaluation framework for real-world debiasing to facilitate the development of real-world-applicable debiasing.
- **Uncover the "*Sparse bias capturing*" challenge in real-world debiasing.** We show that the sparsity of real-world biases poses a unique challenge for debiasing w/o bias label.
- **A simple-yet-effective approach to address the challenge.** We propose an effective approach, which can be easily applied to existing debiasing methods. An extensive evaluation on 8 datasets of various distributions shows the effectiveness of the proposed approach.

2 A FINE-GRAINED EMPIRICAL ANALYSIS ON BIASED DISTRIBUTIONS

In this section, we first revisit the biased distributions in existing debiasing benchmarks and biases in the real world. Then, we propose a new framework for analyzing the biased distributions. Finally we propose our empirical findings on the consistent patterns in real-world biases.

2.1 REVISITING SPURIOUS CORRELATION IN DATASETS

Bias in existing benchmarks. In the area of spurious correlation debiasing, multiple synthetic (Reddy et al., 2021; Nam et al., 2020; Liu et al., 2021) and semi-synthetic datasets (Lee et al., 2021; Nam et al., 2020; Lim et al., 2023) have been adopted to benchmark the effectiveness of the debiasing methods. Generally, those synthetic datasets first select a target attribute as the learning objective (Liu

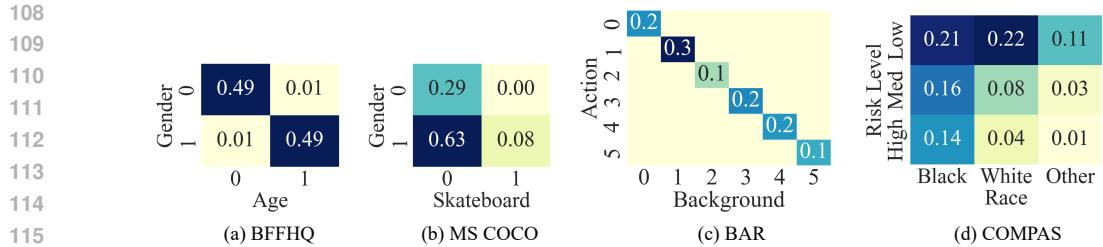


Figure 1: Visualization of the joint distribution for datasets, where the y-axis is the target attribute and the x-axis is the spurious attribute. Figure 1(a) and 1(c) visualise the distribution of existing benchmarks. Figure 1(b) and 1(d) visualize the distribution of real-world datasets. The biased distributions of existing benchmarks and real-world datasets are not alike.

et al., 2021), e.g. object, and another spurious attribute that could potentially cause the learned model to be biased, e.g. background. Then, certain sub-groups jointly defined by the target and spurious attributes, e.g. water birds with water background, are emphasized, i.e. synthesized or sampled from real-world datasets with much higher probability (usually above 95%) than the others in the biased dataset construction process, causing the corresponding spurious feature and target feature to be spuriously correlated, e.g. water background correlated with water bird (Liu et al., 2021). Specifically, one such dominating subgroup is selected for every possible value of the spurious attribute, forming a "diagonal distribution", as shown in Figure 1(a) and 1(c).

Bias in the real world. We further investigated biases from the real world. COCO (Lin et al., 2015) dataset is a large-scale dataset collected from the internet and widely used in various vision tasks. COCO has been found to contain gender bias in web corpora (Tang et al., 2021), one of which is the spurious correlation between males and skateboards. The joint distribution of gender and Skateboard in COCO is plotted in Figure 1(b). COMPAS (mat) dataset consists of the results of a commercial algorithm called COMPAS, used to assess a convicted criminal’s likelihood of reoffending. COMPAS dataset is widely known for its bias against African Americans and is widely used in the research of machine learning fairness (Guo et al., 2023). The joint distribution of Race and Risk Level in the COMPAS dataset is plotted in Figure 1(d). Note that although COMPAS is a tabular dataset, it genuinely reflects the biased distribution in the real world. It is quite obvious that the distribution of biases in existing benchmarks and real-world datasets diverges. Additionally, CelebA is another real-world image dataset. CivilComments-WILDS (CCW) and MultiNLI are also real-world datasets in the NLP domain. *More visualizations of these additional datasets are shown in Appendix A.* In the following subsection, we will further discuss how to measure their differences.

2.2 PREVIOUS MEASURES OF SPURIOUS CORRELATION

We first revisit measures of spurious correlation in previous works, then point out their insufficiency.

Background. We assume a joint distribution of attributes y^1, y^2, \dots, y^K with $y^k \in A^k$ where A^k is a finite set. One of these K attributes is the target of learning, denoted as y^t , and a spurious attribute y^s with $t \neq s$. The definition of spurious correlation or the measure of bias magnitude is rather vague or flawed in previous works. We summarize the measures in previous works into three categories.

Target attribute conditioned probability. Previous works (Wang & Russakovsky, 2023; Reddy et al., 2021) measure spurious correlation according to the probability of a biased feature a_s within the correlated class a_t : $Corr_{tcp} = P(y^s = a_s | y^t = a_t)$. A higher value indicates a strong correlation.

Spurious attribute conditioned probability. Some (Tang et al., 2021; Lee et al., 2021; Yenamandra et al., 2023; Hermann et al., 2024) measure spurious correlation according to the probability of the correlated class a_t within samples with biased feature a_s : $Corr_{scp} = P(y^t = a_t | y^s = a_s)$. A higher value of the measure indicates a strong correlation.

Spurious attribute conditioned entropy. Nam et al. (2020) defined an entropy-based measure of bias. They use conditional entropy to measure how skewed the conditioned distribution is: $Corr_{sce} = H(y^t | y^s)$, where H is entropy. Values close to 0 indicate a strong correlation. This is an attribute-level measure, yet it is based on information theory.

162 We then point out the following requirements a proper measure of spurious correlation should satisfy.
 163

164 **Spurious correlation is better measured at the feature level.** As shown in Figure 1(a) and 1(c), the
 165 predictivity of every value in the spurious attribute is similar in existing benchmarks. However, this
 166 is not the case for real-world datasets, where it is clear that the predictivity of values in the spurious
 167 attribute varies greatly, as shown in Figure 1(b) and 1(d). Therefore, to deal with real-world biases,
 168 analysis of bias should be conducted on a more fine-grained value level, i.e. feature level, rather
 169 than attribute level in previous works (Nam et al., 2020). Note that though $Corr_{tcp}$ and $Corr_{scp}$ are
 170 defined at the feature level, it is assumed by previous works (Lee et al., 2021; Reddy et al., 2021;
 171 Hermann et al., 2024) that it is consistent cross features in spurious attribute during benchmark
 172 construction, i.e. viewed as an attribute level measure.

173 **The spurious attribute rather than the target attribute is given as a condition.** It is well recognized
 174 that the spurious attribute should be easier than the target attribute for the model to learn (Hermann
 175 et al., 2024). Thus the spurious attribute should be more available to the model when learning its
 176 decision rules (Hermann et al., 2024) and given as a condition when we define spurious correlation.

177 **The marginal distribution of the target attribute should also be accounted for.** In $Corr_{tcp}$ and
 178 $Corr_{scp}$ measure of spurious correlation, the marginal distribution of the target attribute is not taken
 179 into account. This is inaccurate for even if the spurious and the target attribute are statistically
 180 independent, the value of $Corr_{tcp}$ and $Corr_{scp}$ could be high if the marginal distribution of spurious
 181 and target attribute is highly skewed, e.g. long-tail distributed (Zhang et al., 2021; 2023b).

182 **It's better to use divergence rather than predictivity.** While $Corr_{sce}$ satisfies the above requirements, it
 183 measures the entropy difference between the conditional and marginal distribution of the target at-
 184 tribute, i.e. the predictivity difference. This is still inaccurate for when the entropy of the distributions
 185 is the same, the conditional distribution could still be highly diverged from the marginal distribution,
 186 thus highly correlated with the spurious attribute. However, using divergence of the distributions
 187 accurately measures how the given condition affects the distribution shift of the target attribute.

188 2.3 THE PROPOSED ANALYSIS FRAMEWORK 189

190 Given the above requirements that need to be satisfied when measuring spurious correlations, we first
 191 propose the following feature-level measure, i.e. bias magnitude.

192 **Bias Magnitude: spurious attribute conditioned divergence.** We propose a feature-level measure
 193 of spurious correlation that measures the KL divergence between the conditional and marginal
 194 distribution of the target attribute:

$$195 \rho_a^* = Corr_{scd} = KL(P(y^t), P(y^t|y^s = a)) \quad (1)$$

196 where a is the biased feature (or value) in the spurious attribute. The proposed measure satisfies all
 197 the requirements above. The above measure only describes the bias of a given feature in the dataset,
 198 i.e. feature-level bias. To further describe the bias level of a dataset, i.e. dataset or attribute level bias,
 199 we further define the prevalence of bias.

200 **Bias Prevalence.** Consider a set of biased features whose magnitude of the bias is above a certain
 201 threshold θ , i.e. $B = \{a | \rho_a^* > \theta\}$. We define the dataset-level bias by taking not only the number but
 202 also the prevalence of the biased features:

$$203 Prv = \sum_{a \in B} P(y^s = a) \quad (2)$$

204 Here, we further claim and define the existence of Bias-Neutral (BN) samples, referring to samples
 205 that do not hold any biased feature defined in B . Bias-Neutral sample is a complement to the
 206 previous categorization of samples into Bias-Align (BA) and Bias-Conflict (BC) samples, which is
 207 only accurate when all samples in the dataset contain a certain biased feature, assumed by existing
 208 synthetic benchmarks. *We elaborate on the categorization of samples in Appendix D.*

209 *In Appendix E.8, we further show that our framework of measuring dataset biases indeed achieves
 210 much stronger correlation with the biased behaviour of models, i.e., model biases, compared to
 211 previous measures (Pearson correlation of 0.98 v.s. 0.78).*

212 2.4 OBSERVATION ON REAL-WORLD BIASES

Given the dataset assessing framework proposed above, we are now able to analyze how are dataset biases in existing benchmarks different from that in the real world.

The magnitude of biases in real-world datasets is low. As shown in Figure 2(a), the magnitude of biases in real-world datasets is significantly lower than that in existing benchmarks, consistent across various modalities. It is surprising to see how low the magnitude of biases in the real-world dataset is, yet still captured by models (Li & Liu, 2022).

The prevalence of bias in real-world datasets is low. As shown in Figure 2(b), the bias prevalence of real-world datasets is also lower than that in existing benchmarks across all thresholds. Considering the bias magnitude of real-world datasets is generally low, it seems fair to set the threshold sufficiently low when calculating the bias prevalence of existing datasets. However, even if we set the threshold to 0.1, the bias prevalence of COCO (Lin et al., 2015) and COMPAS (mat) dataset, i.e. 0.08 and 0.15 respectively, are still significantly lower than that of the existing benchmarks, i.e. 1. In section 3, we further theoretically show that the above observation is not a mere exception but a manifestation of underlying principles with broader implications.

3 THEORETICAL ANALYSIS ON BIASED DISTRIBUTIONS

In this section, we theoretically show that the high bias prevalence (HP) distribution requires two strong assumptions implicitly held by existing benchmarks. Furthermore, the invalidity of the assumptions in real-world scenarios results in low bias prevalence (LP) distributions.

Data distribution. Consider a [multi-class](#) classification task on the target attribute $y^t \sim \{a_1^t, \dots, a_n^t\}$ and a spurious attribute $y^s \sim \{a_1^s, \dots, a_m^s\}$. For any correlated target feature a_i^t and spurious feature a_j^s , we have the marginal distribution of the target and spurious feature to be $p_i^t = P(y^t = a_i^t)$ and $p_j^s = P(y^s = a_j^s)$. Then the joint distribution between y^t and y^s can be defined according to the conditional distribution of y^t given $y^s = a_j^s$, i.e. $\tau_j = P(y^t = a_i^t | y^s = a_j^s)$.

Definition 1 (Simplified Magnitude of Bias). *For the simplicity of theoretical analysis, we propose a simplified version of bias magnitude defined in section 1. Instead of using KL divergence as the measure of distance, we use total variation distance as a proxy for the sake of simplicity:*

$$\rho_j = \tau_j - p_i^t \quad (3)$$

The simplification is consistent for it satisfies all the conditions proposed in section 2.

Definition 2 (Biased Feature). *We consider a feature $y^s = a_j^s$ biased if the ratio of its bias magnitude ρ_j to its theoretical maximum $\rho_j^{\max} = 1 - p_i^t$ is above certain threshold $0 \leq \theta \leq 1$:*

$$\phi_j = \frac{\rho_j}{\rho_j^{\max}} > \theta \quad (4)$$

Definition 3 (High Bias Prevalence Distribution). *We consider distribution as a high bias prevalence distribution only if both $y^s = a_j^s$ and $y^s \neq a_j^s$ are biased, i.e. $\phi_j > \theta, \phi_{\neq j} > \theta$.*

Note that the definitions above are adjusted and different from those defined in section 2.3 for the simplicity of the analysis. We then propose the two assumptions implied by high prevalence distributions, whose *proof can be found in Appendix C*.

Proposition 1 (High bias prevalence distribution assumes matched marginal distributions). *Assume feature $y^s = a_j^s$ is biased. Then high bias prevalence distribution, i.e. feature $y^s \neq a_j^s$ is biased as well, implies that the marginal distribution of a_i^t and a_j^s is matched, i.e. $\lim_{\theta \rightarrow 1} p_j^s = p_i^t$.*

Proposition 2 (High bias prevalence distribution further assumes uniform marginal distributions even if they are matched). *Given that the marginal distribution of a_j^s and a_i^t are matched and not uniform,*

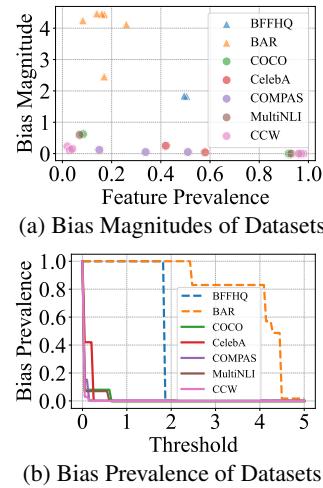


Figure 2: With our analysis framework, we can see that the bias magnitude and prevalence of real-world datasets are significantly smaller than that of existing benchmarks.

i.e. $p = p_i^s = p_j^t < 0.5$. The bias magnitude of sparse feature, i.e. ρ_j^* , is monotone decreasing at p , with $\lim_{p \rightarrow 0^+} \rho_j^* = -\log(1 - \phi_j)$. The bias magnitude of the other features, i.e. $\rho_{\neq j}^*$, is monotone increasing at p , with $\lim_{p \rightarrow 0^+} \rho_{\neq j}^* = 0$.

Remark 1. Proposition 2 reveals the fact that as the distribution of attributes becomes increasingly skewed, i.e. p approaches 0, the magnitude of bias for features diverges, the magnitude of feature a_j^s increases while the magnitude of other features $a_{\neq j}^s$ approaches 0. This results in extremely biased single feature and unbiased other features, resulting in LP distributions.

4 METHODOLOGY

In Section 4.1, we first propose a systematic evaluation framework for real-world debiasing based on our empirical (Section 2) and theoretical (Section 3) insights. Then, in Section 4.2 and 4.3, we dive into how real-world biases pose a challenge to existing methods. Finally, in Section 4.4, we propose a simple-yet-effective approach to adapt existing methods to the real-world scenarios.

4.1 SYSTEMATIC EVALUATION FRAMEWORK FOR REAL-WORLD DEBIASING

Based on our empirical and theoretical insights, we further introduce two novel types of bias inspired by real-world applications as follows. Together with high magnitude high prevalence (HMHP) distribution in existing benchmarks and other real-world challenges, we form a systematic evaluation framework for real-world debiasing. *Please refer to Appendix B for full description of the framework.*

Low Magnitude Low Prevalence (LMLP) Bias. Inspired by the distribution of the COMPAS (mat) dataset shown in Figure 2(a), bias in the real world might be low in both magnitude and prevalence. To take it even further, we should not even assume the dataset is biased at all when applying debiasing methods, because we usually lack such information in practice. Thus, unbiased data distribution can be considered as a special case of the distribution.

High Magnitude Low Prevalence (HMLP) Bias. As shown in Figure 2, the COCO (Lin et al., 2015) dataset may contain features with relatively high bias magnitude, yet low bias prevalence in the dataset due to the sparsity of the biased feature, i.e. low feature prevalence.

4.2 EXISTING PARADIGM FOR DEBIASING W/O BIAS LABEL

In recent years, research in the field of debiasing has been more focused on the practical setting of debiasing w/o bias supervision. Though different in technical details, they generally adopt a *biased auxiliary model to capture the bias*, followed by techniques to learn a debiased model with the captured bias. The bias capture process is based on the assumption that the spurious attributes are easier and learned more preferentially than the target attribute, thus bias could be captured by an auxiliary model M_b w/o bias labels. To utilize M_b for debiasing, the generally shared heuristic is that BC samples should be relatively difficult for M_b but not the debiased model M_d . One widely adopted implementation of the heuristic is the loss-based sample reweighing scheme $W(x)$ proposed by Nam et al. (2020), which we use for our analysis:

$$W(x) = \frac{CE(M_b(x), y)}{CE(M_d(x), y) + CE(M_b(x), y)} \quad (5)$$

where (x, y) are samples from the training data and $CE(\cdot, \cdot)$ is the cross entropy loss. *Please refer to Appendix F for detailed review on existing debiasing methods w/o bias label.*

4.3 THE SPARSE BIAS CAPTURING CHALLENGE IN REAL-WORLD DEBIASING

We claim that the effectiveness of the critical bias capture module in existing methods relies on the HP assumption of existing benchmarks, which does not generalize to LP biases in the real world. It is assumed that the biased model M_b predicts according to the bias within the training data Sreelatha et al. (2024); Han et al. (2024), giving high loss to BC samples and low loss to BA samples (Zhao et al., 2023; Lee et al., 2023). Existing works attribute this loss difference to the fact that spurious attributes are easier (Nam et al., 2020; Lim et al., 2023), i.e., learn more preferentially by models,

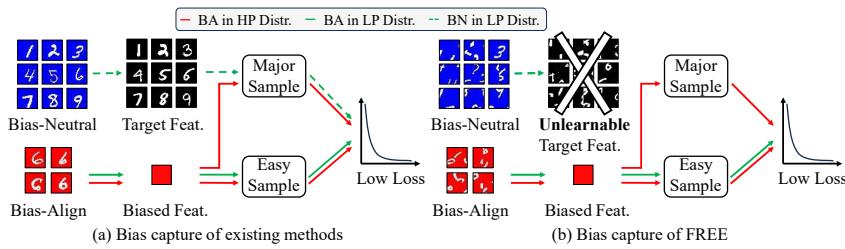
324
325
326
327
328
329
330
331

Figure 3: The bias capture process of biased models on LP and HP datasets. Assuming the red background is spuriously correlated with digit 6, and only the major learning of the biased models is illustrated with arrows. DiD eliminates the undesired learning of BN samples on the LP dataset in Figure 3(a) by destroying the target feature, as shown in Figure 3(b).

336

337 making BA the *easy sample*. While such a claim is true, the dominance of BA samples in the HP
338 datasets is another vital contributing factor to the loss difference, for *dominant/major samples* are
339 learned more frequently than others, as shown in Figure 3(a). **The existing assumption of dense
340 bias (BA samples are dominant) makes the bias capture process much less challenging.**

341
342
343
344
345
346
347
348
349

349 However, for LP biases in the real world, while BA samples are still easier to learn due to the biased
350 feature, the dominant/major samples in the training data are no longer BA samples, but rather BN
351 samples. This not only results in the loss difference between BA and BC samples decreasing but also
352 causes low loss on BN samples, as shown in Figure 3(a). According to sample weighing scheme 5,
353 such low loss on BN samples further leads to low weights for BN samples when training the debiased
354 model, which is unintended as BN samples carry an abundant amount of knowledge concerning
355 the target attribute without the interference of the spurious features. **In other words, the sparsity
356 of real-world biases makes accurate bias capturing much more challenging, leading to severe
357 degradation in the subsequent debiasing process.** We empirically prove our claim in section 5.

358

359 4.4 BIAS CAPTURE WITH FEATURE DESTRUCTION

360
361

362 Based on our analysis in section 4.3, we introduce a simple yet effective enhancement to the bias
363 capture module in the existing framework. We name the refined framework as Debias in Destruction
364 (DiD). As shown in Figure 3(b), the problem with the existing bias capture method comes from the
365 side branch learning on BN samples of the biased auxiliary model, which not only captures the bias
366 but also learns the target feature. This is undesired for this further causes the overlooking of BN
367 samples when training the debiased model, as discussed in section 4.3.

368
369
370
371
372
373

374 To prune the side branch learning of the target features, it is intuitive to destroy the target feature
375 and make them unlearnable when training the biased model, as shown in Figure 3(b). Such action is
376 practical because the target features we intend to learn are usually clear, and no information on the
377 biased feature is required. Specifically, we can achieve this by applying target feature destructive data
378 transformation when training the biased model:

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
80823
80824
80825
80826
80827
80828
80829
80830
80831
80832
80833
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855
80856
80857
80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
80872
80873
80874
80875
80876
80877
80878
80879
80880
80881
80882
80883
80884
80885
80886
80887
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900
80901
80902
80903
80904
80905
80906
80907
80908
80909
80910
80911
80912
80913
80914
80915
80916
80917
80918
80919
80920
80921
80922
80923
80924
80925
80926
80927
80928
80929
80930
80931
80932
80933
80934
80935
80936
80937
80938
80939
80940
80941
80942
80943
80944
80945
80946
80947
80948
80949
80950
80951
80952
80953
80954
80955
80956
80957
80958
80959
80960
80961
80962
80963
80964
80965
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
80979
80980
80981
80982
80983
80984
80985
80986
80987
80988
80989
80990
80991
80992
80993
80994
80995
80996
80997
80998
80999
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220

378
379

5.1 EXPERIMENTAL SETTINGS

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

Metrics. Following previous works, we adopt the accuracy of BC samples (BC), the average accuracy on the balanced test set (Avg), and the worst group accuracy (Worst Acc.). **Datasets.** We adopt 8 *datasets* in various modalities for evaluation. Specifically, we adopt the basic setting of Colored MNIST and Corrupted CIFAR10 to implement the distributions within the proposed systematic evaluation framework. We also evaluated our method on more existing synthetic benchmarks who is more complex in terms of the target and spurious feature: BAR, NICO, and WaterBirds. We also adopt 2 real-world NLP datasets MultiNLI and CivilComments-WILDS, 3 real-world tabular datasets COMPAS, Adult, German, and 1 real-world image dataset CelebA. **Baselines.** We adopt 9 *baselines*, covering classic and recently proposed methods. ERM directly applies standard training on the biased datasets. LfF (Nam et al., 2020) is a pioneer work to debias w/o bias label. DisEnt (Lee et al., 2021) disentangles bias and intrinsic features and applies feature augmentation when training the debiased model. BEL, BED (Lee et al., 2023), DPR Han et al. (2024), DeNetDM Sreelatha et al. (2024) are recently proposed methods. JTT (Liu et al., 2021) is a classic method adapted to both the image and NLP domains. Group DRO (Sagawa* et al., 2020) requires bias supervision used as an upper bound. *Detailed discription in Appendix D.*

397
398
399
400
401
402
403
404
405
406

5.2 MAIN RESULTS

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Existing bias capturing degrade on LP biases, while DiD significantly boost the performance. As shown in Table 1, while performing decently on HMHP distributed datasets, existing methods degrade on both LMLP and HMLP biases, with BC and Avg accuracy both lower than the ERM baseline. This indicates the degradation of existing bias capture module on LP biases, sacrificing utility (Avg), without improving worst group performance (BC). We further tested the effectiveness of DiD by combining DiD with existing methods. As shown in Table 1, when combined with DiD, the BC and Avg accuracy both improve on existing HMHP benchmarks. On LMLP and HMLP datasets, the superiority of DiD is even more prominent, where BC and average accuracy both improve significantly, achieving an average of +16.6 and +11.7 for LfF and DisEnt, respectively. *Results on more existing methods in Appendix E.2 further show the generality of our findings.*

Table 1: The performance of our approach is presented in *absolute accuracy increase* of existing methods. Results show that existing debiasing methods perform poorly on LP distributions, yet our method effectively boosts the performance of existing methods across all types of biases.

Algorithm	Colored MNIST						Corrupted CIFAR10					
	LMLP		HMLP		HMHP		LMLP		HMLP		HMHP	
	BC	Avg	BC	Avg	BC	Avg	BC	Avg	BC	Avg	BC	Avg
ERM	91.1	91.7	85.2	89.8	48.5	53.4	62.5	64.3	55.9	65.1	29.4	35.4
LfF	68.4	69.7	58.0	63.3	65.6	64.6	55.0	55.4	47.7	54.1	35.3	39.0
+ DiD	+22.6	+21.4	+32.6	+25.8	+1.3	+3.4	+7.0	+7.3	+7.1	+8.9	+1.8	+2.5
DisEnt	73.9	74.9	66.5	72.2	68.3	67.4	55.5	56.1	52.5	54.5	36.0	39.5
+ DiD	+17.2	+16.5	+22.0	+16.8	+0.8	+3.1	+5.4	+5.9	+2.8	+7.1	+3.0	+3.3
BEL	83.6	83.5	80.0	82.3	66.9	67.6	52.1	54.0	51.0	54.0	31.5	36.6
+ DiD	+5.7	+6.1	+9.1	+4.9	-0.5	+0.7	+1.1	+0.2	-0.8	+0.1	+1.4	+0.8
BED	81.1	81.0	77.6	80.2	67.5	68.5	56.6	57.2	49.1	56.3	34.2	38.6
+ DiD	+8.7	+9.0	+11.7	+5.5	+2.0	+2.5	+4.3	+4.2	+4.9	+5.1	+3.5	+3.2

DiD is consistently effective on complex visual features. As shown in Table 2, our approach is not merely effective under the setting of Colored MNIST and Corrupted CIFAR10, but rather consistently effective on datasets with more complex sets of target and spurious features. This shows the adaptability of DiD to more sophisticated visual data. Refer to Appendix D.2 for the metrics used.

DiD is effective on real-world datasets in various modalities. We choose JTT as the baseline for this part of the experiment for it is a classic method adopted to both the image and NLP domain. As shown in Table 7, our approach is consistently effective on real-world datasets in various modalities,

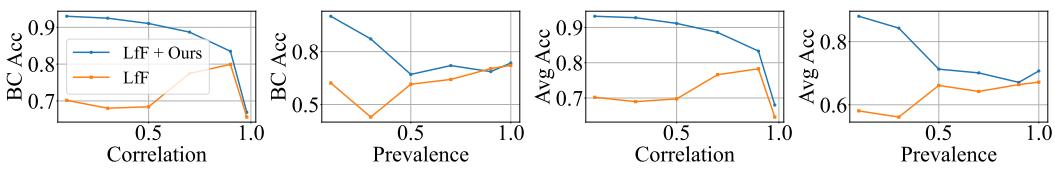


Figure 4: The performance of debiasing methods under various bias magnitudes and prevalence.

further demonstrating its generalizability. We report the results on 3 real-world tabular datasets in Appendix E.9.

Table 2: Results on 3 datasets with more complex and realistic sets of features further show the effectiveness of our approach.

Algorithm	BAR	NICO	WaterBirds
ERM	35.32 ± 0.27	42.61 ± 0.33	56.53 ± 0.27
Lff	37.73 ± 1.00	51.69 ± 3.06	50.02 ± 0.00
+ DiD	$+3.34 \pm 1.69$	$+2.80 \pm 3.10$	$+4.47 \pm 0.13$
DisEnt	59.11 ± 1.75	39.73 ± 0.58	56.75 ± 4.19
+ DiD	$+3.92 \pm 0.62$	$+16.55 \pm 1.29$	$+11.29 \pm 0.69$
BEL	38.40 ± 0.65	44.09 ± 1.95	52.98 ± 0.28
+ DiD	$+1.08 \pm 1.67$	$+8.23 \pm 1.49$	$+1.92 \pm 0.12$
BED	62.74 ± 1.23	39.58 ± 0.91	53.85 ± 2.14
+ DiD	$+0.70 \pm 1.20$	$+13.50 \pm 1.62$	$+1.99 \pm 3.65$

Table 3: We experiment with three feature destruction methods with various hyperparameters on HMLP distributed dataset with Lff.

T_{fd}	param	BC	Avg
N/A	N/A	47.70 ± 3.58	54.15 ± 3.02
pixel-shuffle	1	51.44 ± 1.01	55.43 ± 0.20
	2	51.07 ± 0.48	55.29 ± 0.27
	4	49.41 ± 0.26	55.40 ± 0.26
	8	54.81 ± 0.74	63.06 ± 0.77
patch-shuffle	16	49.74 ± 1.10	53.69 ± 0.31
	8	45.19 ± 1.41	51.61 ± 1.31
	16	47.26 ± 0.54	50.94 ± 0.59
	24	49.00 ± 0.80	52.60 ± 0.55
center-occlusion	32	52.44 ± 0.87	55.76 ± 0.16

5.3 ANALYSIS

Accuracy of bias capturing. We further examine the accuracy of bias capturing by tracking the weights of samples to see if they align with our hypothesis in Section 4. Figure 7(a) and 7(b) plots the average weights of all kinds of samples on HMLP biases, which shows that the degradation of existing methods is indeed caused by the *Sparse bias capturing* challenge in section 4.3, overlooking BN samples when training the debiased model M_d . Figure 7(c) and 7(d) track the sample weight of BN samples. As we can see, DiD significantly raise the weights of the BN sample, which demonstrates more accurate bias capturing and the effectiveness of our design.

Ablation on destruction methods. As shown in Table 3, we examine three feature destruction methods: pixel-shuffling, patch-shuffling, and center occlusion. We observed that patch-shuffle with patch-size 8 exhibits the best performance on Corrupted CIFAR10 of size 32x32.

Effect of bias magnitude and prevalence in debiasing. As shown in Figure 4, we use the correlation $Corr_{scp}$ defined in section 2 as a proxy for the bias magnitude and vary it from low to high. With the increase of the bias magnitude, the performance of Lff first increases as the data becomes biased, and then decreases as the bias magnitude becomes extremely high. As shown in 4, we vary the prevalence of bias by controlling the number of biased features. With the increase of the bias prevalence, the performance generally keeps increasing for its reliance on high prevalence as discussed in Section 4. In all cases DiD consistently improves the performance across the spectrum.

5.4 ADDITIONAL STUDIES ON REAL-WORLD DEBIASING

We explore additional questions in real-world debiasing on the systematic evaluation framework: 1. **How do debiasing methods perform on unbiased datasets?** (Appendix E.3) 2. **How effective is DiD on multi-bias scenarios?** (Appendix E.4) 3. **Is DiD effective on bias detection tasks as well?** (Appendix E.5) 4. **And more** (Appendix E.1, E.6, E.7, E.8).

486 **6 CONCLUSIONS AND DISCUSSION**

488 In this work, we revisit the task of debiasing under real-world scenarios. Through solid empirical
 489 and theoretical analysis, we found a noticeable gap between existing evaluations and real-world
 490 requirements. We further fill the gap with a systematic evaluation framework for real-world debiasing.
 491 We also uncover a novel challenge in real-world debiasing, along with a simple yet effective method
 492 to address it. In Appendix G, we further discuss the limitations and future directions of this work.

494 **REFERENCES**

496 Machine Bias. *ProPublica*.

498 Sumyeong Ahn and Se-Young Yun. Mitigating dataset bias using per-sample gradients from a biased
 499 classifier, 2022. URL <https://openreview.net/forum?id=V09OhBn8iR>.

500 Martin Arjovsky, Léon Bottou, Ishaaan Gulrajani, and David Lopez-Paz. Invariant risk minimization,
 501 2020.

503 Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996.

504 Sara Beery, Yang Liu, Dan Morris, Jim Piavis, Ashish Kapoor, Neel Joshi, Markus Meister, and
 505 Pietro Perona. Synthetic examples improve generalization for rare classes. In *Proceedings of the*
 506 *IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, March 2020.

508 Zhixuan Chu and Sheng Li. Causal effect estimation: Recent progress, challenges, and opportunities.
 509 *Machine Learning for Causal Inference*, pp. 79–100, 2023.

510 Zhixuan Chu, Stephen L Rathbun, and Sheng Li. Matching in selective and balanced representation
 511 space for treatment effects estimation. In *Proceedings of the 29th ACM International Conference*
 512 *on Information & Knowledge Management*, pp. 205–214, 2020.

514 Zhixuan Chu, Stephen L Rathbun, and Sheng Li. Graph infomax adversarial learning for treatment
 515 effect estimation with networked observational data. In *Proceedings of the 27th ACM SIGKDD*
 516 *Conference on Knowledge Discovery & Data Mining*, pp. 176–184, 2021.

517 Zhixuan Chu, Ruopeng Li, Stephen Rathbun, and Sheng Li. Continual causal inference with
 518 incremental observational data. In *2023 IEEE 39th International Conference on Data Engineering*
 519 (*ICDE*), pp. 3430–3439. IEEE, 2023.

521 Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and
 522 Wieland Brendel. ImageNet-trained CNNs are biased towards texture; increasing shape bias
 523 improves accuracy and robustness. In *International Conference on Learning Representations*,
 524 2019.

525 Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
 526 Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks. *Nature Machine Intelligence*,
 527 2(11):665–673, November 2020. ISSN 2522-5839. doi: 10.1038/s42256-020-00257-z.

529 Dongliang Guo, Zhixuan Chu, and Sheng Li. Fair attribute completion on graph with missing
 530 attributes. *arXiv preprint arXiv:2302.12977*, 2023.

531 Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
 532 Noah A. Smith. Annotation artifacts in natural language inference data. In Marilyn Walker,
 533 Heng Ji, and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North American*
 534 *Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume*
 535 *2 (Short Papers)*, pp. 107–112, New Orleans, Louisiana, June 2018. Association for Computational
 536 Linguistics. doi: 10.18653/v1/N18-2017.

538 Hyeonggeun Han, Sehwan Kim, Hyungjun Joo, Sangwoo Hong, and Jungwoo Lee. Mitigating
 539 Spurious Correlations via Disagreement Probability. *Advances in Neural Information Processing*
 Systems, 37:74363–74382, December 2024.

540 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
 541 Recognition. arXiv, December 2015.

542

543 Katherine Hermann, Hossein Mobahi, Thomas FEL, and Michael Curtis Mozer. On the foundations
 544 of shortcut learning. In *The Twelfth International Conference on Learning Representations*, 2024.

545

546 Hendrik Heuer, Christof Monz, and Arnold W. M. Smeulders. Generating captions without looking
 547 beyond objects, 2016.

548

549 Hans Hofmann. Statlog (german credit data). UCI Machine Learning Repository, 1994.

550

551 Max Hort, Jie M. Zhang, Federica Sarro, and Mark Harman. Fairea: A Model Behaviour Mutation
 552 Approach to Benchmarking Bias Mitigation Methods. In *Proceedings of the 29th ACM Joint
 553 Meeting on European Software Engineering Conference and Symposium on the Foundations of
 554 Software Engineering*, ESEC/FSE 2021, pp. 994–1006, New York, NY, USA, 2021. Association
 555 for Computing Machinery. ISBN 978-1-4503-8562-6. doi: 10.1145/3468264.3468565.

556

557 Inwoo Hwang, Sangjun Lee, Yunhyeok Kwak, Seong Joon Oh, Damien Teney, Jin-Hwa Kim, and
 558 Byoung-Tak Zhang. SelecMix: Debiased learning by contradicting-pair sampling. In Alice H. Oh,
 559 Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information
 560 Processing Systems*, 2022.

561

562 Eungyeup Kim, Jihyeon Lee, and Jaegul Choo. BiaSwap: Removing dataset bias with bias-tailored
 563 swapping augmentation. In *Proceedings of the IEEE/CVF International Conference on Computer
 564 Vision (ICCV)*, pp. 14992–15001, October 2021.

565

566 Nayeong Kim, SEHYUN HWANG, Sungsoo Ahn, Jaesik Park, and Suha Kwak. Learning debiased
 567 classifier with biased committee. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
 568 A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 18403–18415.
 569 Curran Associates, Inc., 2022.

570

571 Younghyun Kim, Sangwoo Mo, Minkyu Kim, Kyungmin Lee, Jaeho Lee, and Jinwoo Shin. Discovering
 572 and mitigating visual biases through keyword explanation. In *Proceedings of the IEEE/CVF
 573 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11082–11092, June 2024.

574

575 Donggeun Ko, Dongjun Lee, Namjun Park, Wonkyeong Shim, and Jaekwang Kim. Debiasing
 576 classifiers by amplifying bias with latent diffusion and large language models, 2024. URL
 577 <https://arxiv.org/abs/2411.16079>.

578

579 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
 580 ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
 581 David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure Leskovec,
 582 Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A
 583 benchmark of in-the-Wild distribution shifts. In Marina Meila and Tong Zhang (eds.), *Proceedings
 584 of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine
 585 Learning Research*, pp. 5637–5664. PMLR, 2021.

586

587 Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

588

589 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
 590 recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

591

592 Jonghyun Lee, Dahuin Jung, Saehyung Lee, Junsung Park, Juhyeon Shin, Uiwon Hwang, and Sungroh
 593 Yoon. Entropy is not enough for test-time adaptation: From the perspective of disentangled factors.
 594 In *The Twelfth International Conference on Learning Representations*, 2024.

595

596 Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and Jaegul Choo. Learning debiased
 597 representation via disentangled feature augmentation. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
 598 P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*,
 599 volume 34, pp. 25123–25133. Curran Associates, Inc., 2021.

594 Jungsoo Lee, Jeonghoon Park, Daeyoung Kim, Juyoung Lee, Edward Choi, and Jaegul Choo.
 595 Revisiting the Importance of Amplifying Bias for Debiasing. *Proceedings of the AAAI Conference*
 596 *on Artificial Intelligence*, 37(12):14974–14981, June 2023. ISSN 2374-3468, 2159-5399. doi:
 597 10.1609/aaai.v37i12.26748.

598

599 Peizhao Li and Hongfu Liu. Achieving Fairness at No Utility Cost via Data Reweighting with
 600 Influence. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
 601 Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*,
 602 volume 162 of *Proceedings of Machine Learning Research*, pp. 12917–12930. PMLR, July 2022.

603

604 Zhiheng Li and Chenliang Xu. Discover the unknown biased attribute of an image classifier. In
 605 *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 14970–
 606 14979, October 2021.

607

608 Zhiheng Li, Ivan Evtimov, Albert Gordo, Caner Hazirbas, Tal Hassner, Cristian Canton Ferrer,
 609 Chenliang Xu, and Mark Ibrahim. A whac-a-mole dilemma: Shortcuts come in multiples where
 610 mitigating one amplifies others. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 and *Pattern Recognition (CVPR)*, pp. 20071–20082, June 2023.

611

612 Jongin Lim, Youngdong Kim, Byungjai Kim, Chanho Ahn, Jinwoo Shin, Eunho Yang, and Seungju
 613 Han. BiasAdv: Bias-Adversarial Augmentation for Model Debiasing. In *Proceedings of the*
 614 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3832–3841, June
 2023.

615

616 Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
 617 Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft COCO: Common objects
 618 in context, 2015.

619

620 Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
 621 Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
 622 group information. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International*
 623 *Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp.
 6781–6792. PMLR, 2021.

624

625 Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaou Tang. Deep learning face attributes in the wild.
 626 In *2015 IEEE International Conference on Computer Vision (ICCV)*, pp. 3730–3738, 2015. doi:
 627 10.1109/ICCV.2015.425.

628

629 Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
 630 heuristics in natural language inference. In Anna Korhonen, David Traum, and Lluís Márquez
 631 (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*,
 632 pp. 3428–3448, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
 633 10.18653/v1/P19-1334.

634

635 Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
 636 on bias and fairness in machine learning. *Acm Computing Surveys*, 54(6), July 2021. ISSN
 0360-0300. doi: 10.1145/3457607.

637

638 Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from failure: De-
 639 biasing classifier from biased classifier. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
 640 H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 20673–20684.
 641 Curran Associates, Inc., 2020.

642

643 Jeonghoon Park, Chaeyeon Chung, Juyoung Lee, and Jaegul Choo. Enhancing intrinsic features for
 644 debiasing via investigating class-discriminating common attributes in bias-contrastive pair, 2024.

645

646 Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A. Efros, and Richard
 647 Zhang. Swapping autoencoder for deep image manipulation. In *Proceedings of the 34th Inter-*
648 national Conference on Neural Information Processing Systems, Nips '20, Red Hook, NY, USA,
 649 2020. Curran Associates Inc. ISBN 978-1-71382-954-6.

648 Charan Reddy, Deepak Sharma, Soroush Mehri, Adriana Romero Soriano, Samira Shabanian, and
 649 Sina Honari. Benchmarking Bias Mitigation Algorithms in Representation Learning through
 650 Fairness Metrics. In J. Vanschoren and S. Yeung (eds.), *Proceedings of the Neural Information*
 651 *Processing Systems Track on Datasets and Benchmarks*, volume 1, 2021.

652 Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
 653 neural networks. In *International Conference on Learning Representations*, 2020.

654 Silpa Vadakkeeveetil Sreelatha, Adarsh Kappiyath, Abhra Chaudhuri, and Anjan Dutta. DeNetDM:
 655 Debiasing by network depth modulation. In A. Globerson, L. Mackey, D. Belgrave, A. Fan,
 656 U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Information Processing Systems*,
 657 volume 37, pp. 99488–99518. Curran Associates, Inc., 2024.

658 James Stewart. *Calculus : Early Transcendentals*. Brooks/Cole, Cengage Learning, Belmont, Cal.,
 659 2012. ISBN 0-538-49790-4 978-0-538-49790-9 0-8400-5885-3 978-0-8400-5885-0 0-538-49871-4
 660 978-0-538-49871-5 0-538-49887-0 978-0-538-49887-6 0-8400-4825-4 978-0-8400-4825-7.

661 Ruixiang Tang, Mengnan Du, Yuening Li, Zirui Liu, Na Zou, and Xia Hu. Mitigating gender bias in
 662 captioning systems. In *Proceedings of the Web Conference 2021*, WWW '21, pp. 633–645, New
 663 York, NY, USA, 2021. Association for Computing Machinery. ISBN 978-1-4503-8312-7. doi:
 664 10.1145/3442381.3449950.

665 Angelina Wang and Olga Russakovsky. Overwriting pretrained bias with finetuning data. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 3957–
 666 3968, October 2023.

667 Tan Wang, Chang Zhou, Qianru Sun, and Hanwang Zhang. Causal attention for unbiased visual
 668 recognition. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 3091–3100, October 2021.

669 Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre-Alvise Rebuffi, Ira Ktena, Krishnamurthy Dj
 670 Djivjotham, and Ali Taylan Cemgil. A fine-grained analysis on distribution shift. In *International*
 671 *Conference on Learning Representations*, 2022.

672 Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
 673 sentence understanding through inference. In Marilyn Walker, Heng Ji, and Amanda Stent
 674 (eds.), *Proceedings of the 2018 Conference of the North American Chapter of the Association*
 675 *for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp.
 676 1112–1122, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi:
 677 10.18653/v1/N18-1101.

678 Sriram Yenamandra, Pratik Ramesh, Viraj Prabhu, and Judy Hoffman. FACTS: First amplify
 679 correlations and then slice to discover bias. In *Proceedings of the IEEE/CVF International*
 680 *Conference on Computer Vision (ICCV)*, pp. 4794–4804, October 2023.

681 Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and
 682 why vision-language models behave like bags-of-words, and what to do about it? In *The Eleventh*
 683 *International Conference on Learning Representations*, 2023.

684 Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond empirical
 685 risk minimization. In *International Conference on Learning Representations*, 2018.

686 Songyang Zhang, Zeming Li, Shipeng Yan, Xuming He, and Jian Sun. Distribution alignment: A
 687 unified framework for long-tail visual recognition. In *Proceedings of the IEEE/CVF Conference*
 688 *on Computer Vision and Pattern Recognition*, pp. 2361–2370, 2021.

689 Yi-Kai Zhang, Qi-Wei Wang, De-Chuan Zhan, and Han-Jia Ye. Learning Debiased Representations
 690 via Conditional Attribute Interpolation. In *Proceedings of the IEEE/CVF Conference on Computer*
 691 *Vision and Pattern Recognition (CVPR)*, pp. 7599–7608, June 2023a.

692 Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and Jiashi Feng. Deep long-tailed learning:
 693 A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2023b.

702 Zhilu Zhang and Mert R. Sabuncu. Generalized cross entropy loss for training deep neural networks
703 with noisy labels. In *Proceedings of the 32nd International Conference on Neural Information*
704 *Processing Systems*, NIPS'18, pp. 8792–8802, Red Hook, NY, USA, 2018. Curran Associates Inc.
705

706 Bowen Zhao, Chen Chen, Qian-Wei Wang, Anfeng He, and Shu-Tao Xia. Combating Unknown
707 Bias with Effective Bias-Conflicting Scoring and Gradient Alignment. *Proceedings of the AAAI*
708 *Conference on Artificial Intelligence*, 37(3):3561–3569, June 2023. doi: 10.1609/aaai.v37i3.25466.
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A MORE VISUALIZATIONS OF BIASED DISTRIBUTIONS
757758 We plot the biased distributions of more existing benchmarks as follows:
759760 **WaterBirds.** WaterBirds Liu et al. (2021) is a synthetic dataset with the task of classifying images of
761 birds as "waterbird" and "landbird", which is adopted as a benchmark for debiasing methods. The
762 label of WaterBirds is spuriously correlated with the image background, i.e. Place attribute, which is
763 either "land" or "water". The joint distribution between the Place and Bird attribute of the WaterBirds
764 dataset is plotted in Figure 5a.765 Additional visualization of the biased distribution within real-world datasets is also plotted as follows:
766767 **CelebA.** CelebA Liu et al. (2015) is a dataset for face recognition where each sample is labeled
768 with 40 attributes, which has been adopted as a benchmark for debiasing methods. Following the
769 experiment configuration suggested by Nam et al. [32], we focus on HeavyMakeup attributes that are
770 spuriously correlated with Gender attributes, i.e., most of the CelebA images with heavy makeup
771 are women. As a result, the biased model suffers from performance degradation when predicting
772 males with heavy makeup and females without heavy makeup. Therefore, we use Heavy_Makeup
773 as the target attribute and Male as a spurious attribute. The joint distribution between the Male
774 and Heavy_Makeup attribute of the CelebA dataset is plotted in Figure 5b. It is clear that the
775 biased distribution of CelebA aligns with that in other existing benchmarks, forming a "diagonal
776 distribution".
777778 **Adult.** The Adult Becker & Kohavi (1996) dataset, also known as the "Census Income" dataset,
779 is widely used for tasks such as income prediction and fairness analysis. Each sample is labeled
780 with demographic and income-related attributes. The dataset has been adopted as a benchmark for
781 debiasing methods, particularly focusing on the correlation between race and income. The joint
782 distribution between Race and Income attributes of the Adult dataset is plotted in Figure 5c. It is clear
783 that the biased distribution of Adult does not align with that of other existing benchmarks.
784785 **German.** The German Hofmann (1994) dataset, also known as the "German Credit" dataset, is
786 commonly used for credit risk analysis and fairness studies. Each sample is labeled with various
787 attributes related to creditworthiness. The dataset serves as a benchmark for debiasing methods,
788 emphasizing the correlation between age and creditworthiness. The joint distribution between Age
789 and Creditworthiness attributes of the German dataset is plotted in Figure 5d. It is clear that the
790 biased distribution of German does not align with that of other existing benchmarks.
791792 **MultiNLI.** In the NLP domain, the MultiNLI (Williams et al., 2018) dataset, used for natural
793 language inference, shows a strong bias related to negation. As plotted in Figure 5e, the presence
794 of negation words ("has negation") is spuriously correlated with the target labels. For example,
795 sentences containing negation are highly unlikely to have a "neutral" relationship (a joint probability
796 of 0.0074), creating a shortcut for models. It is clear that the biased distribution of MultiNLI does not
797 align with that of other existing benchmarks.
798799 **CivilComments-WILDS.** The CivilComments-WILDS (CCW) (Koh et al., 2021), a dataset for
800 toxicity detection, contains biases related to identity terms. Figure 5f visualizes the joint distribution
801 of comment toxicity and the mention of racial identities. The dataset is overwhelmingly composed
802 of non-toxic comments associated with "not white" identities (0.86). Furthermore, toxic comments
803 are more frequently associated with "not white" identities (0.1) than "white" identities (0.0098),
804 posing a significant challenge for building fair models. It is clear that the biased distribution of
805 CivilComments-WILDS does not align with that of other existing benchmarks.
806807 **NIH.** The NIH ChestX-ray dataset, a common benchmark for medical image analysis, also demon-
808 strates significant bias. As shown in Figure A(g), there is a powerful spurious correlation between the
809 target label (Y) and a spurious attribute (A). The vast majority of the dataset consists of samples where
Y=0 and A=0 (a joint probability of 0.91), while all other combinations are rare. This imbalance can
lead models to rely on attribute A as a shortcut for predicting Y=0, failing in real-world scenarios

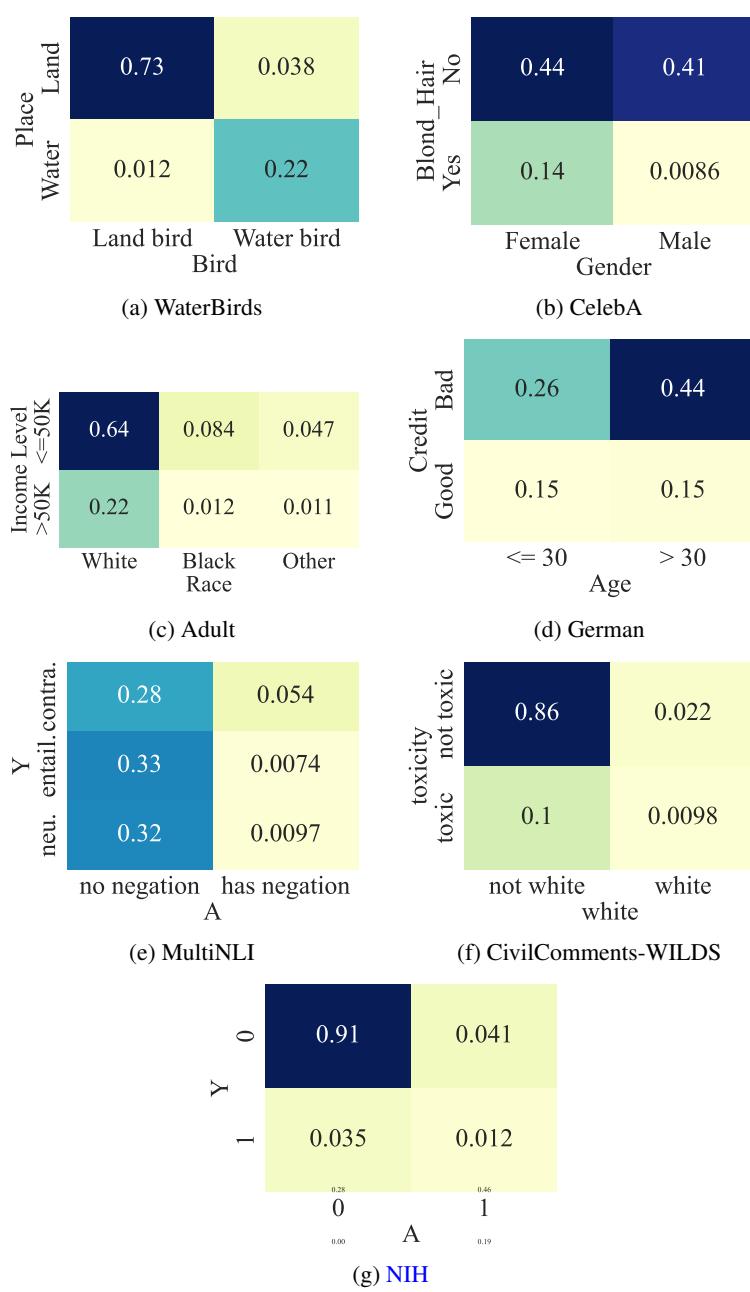


Figure 5: Visualization of the joint distribution for datasets, where the y-axis is the target attribute and the x-axis is the spurious attribute. Figure 5(a) visualize the distribution of existing benchmarks. Figure 5(b), 5(c), 5(d), 5(e), 5(f), and 5(g) visualize the distribution of real-world datasets. The biased distribution of existing benchmarks and real-world datasets is not alike.

where this correlation does not hold. It is clear that the biased distribution of NIH does not align with that of other existing benchmarks.

The description of MultiNLI and CivilComments-WILDS can be found in Appendix E.

864 Table 4: Configurations for biased distributions within the proposed evaluation framework
865

Distribution	$ y^t $	$ B $	$corr_i$
LMLP	10	10	0.5
LMLP'	10	5	0.5
HMLP	10	1	0.98
HMHP	10	10	0.98
Unbiased	10	0	0.1

874 **B FINE-GRAINED EVALUATION FRAMEWORK**
875

876 In this section, we elaborate on the proposed evaluation framework for real-world debiasing. The
877 framework is mainly composed of three parts: Evaluation on various biased distributions in the
878 real world, evaluation on multi-bias scenarios in the real world, and evaluation on other existing
879 benchmarks. **Covering all those aspects, we aim to provide a comprehensive and easy-to-use**
880 **base for future development in the debiasing field, toward debiasing methods for real-world**
881 **scenarios.** Code available at <https://github.com>

882 **B.1 EVALUATION ON VARIOUS BIASED DISTRIBUTIONS IN THE REAL WORLD**
883

884 We mathematically and visually demonstrate the biased distribution currently included in the evalua-
885 tion framework.

886 Assume a set of biased features $a_i^s \in B$ whose correlated class in the target attribute is defined by
887 a function $g : y^s \rightarrow y^t$, which is an injection from the spurious to the target attribute. The bias
888 magnitude of each biased feature is controlled by $corr_i = P(y^t = g(a_i^s) | y^s = a_i^s)$. Then, the
889 empirical distribution of the biased train distribution satisfies the following equations.

890 For samples with biased feature a_i^s within B :

$$P(y^s = a_i^s, y^t = a^t) = \begin{cases} P(y^s = a_i^s) * corr_i & \text{if } g(a_i^s) = a^t, \\ \frac{P(y^s = a_i^s) * (1 - corr_i)}{|y^t| - 1} & \text{otherwise,} \end{cases}$$

891 For samples without biased features and a set of correlated classes $C = \{g(a_i^s) : a_i^s \in B\}$:

$$P(y^s = a^s, y^t = a^t) = \frac{P(y^t = a^t) - \sum_{a_i^s \in B} P(y^s = a_i^s, y^t = a^t)}{|y^s| - |B|}$$

892 Following the above equations, we further designed LMLP, HMLP, and HMHP biased distributions
893 with the configurations in Table 4. The visualizations of the distributions when the target is a ten-class
894 attribute are in Figure 6.

895 We note that each biased distributions are not merely the description of datasets used in this work, but
896 rather serves as a general guide used to synthesize or sample biased datasets that reflect biases in the
897 real world.

900 **B.2 EVALUATION ON MULTI-BIAS SCENARIOS IN THE REAL WORLD**
901

902 The existence of multiple biases is another challenge in debiasing in the real world Li et al. (2023).
903 We further propose to combine multiple biases with different magnitudes and prevalence (e.g. HMLP
904 + LMLP) together to mimick the complexity of biases in the real world. For instance, based on
905 Corrupted CIFAR10 benchmark, containing 10 target features and 20 spurious features, we can
906 construct a biased dataset with multiple biases of various types. Please refer to Appendix E.4 for an
907 example of this setting.

914 **B.3 EVALUATION ON OTHER EXISTING BENCHMARKS**
915

916 We also ensemble other popular benchmarks in the field of debiasing in an easy-to-use fashion to
917 facilitate future research. Please refer to Appendix D.2 for details.

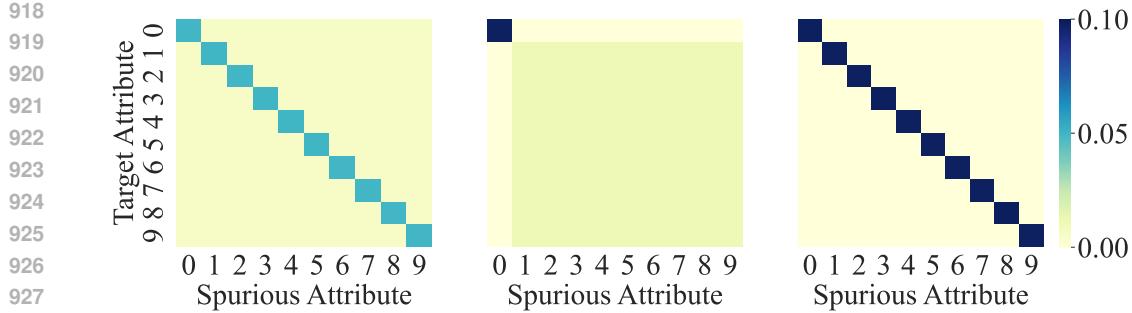


Figure 6: Visualization of biased distributions within the proposed evaluation framework under ten-class classification task. The left, middle, and right plots are visualizations for LMLP, HMLP, and HMHP distribution respectively.

C THEORETICAL PROOFS

C.1 PRELIMINARY

Consider a classification task on the target attribute $y^t \sim \{a_1^t, \dots, a_n^t\}$ and a spurious attribute $y^s \sim \{a_1^s, \dots, a_m^s\}$. For any correlated target a_i^t and spurious feature a_j^s , we have the marginal distribution of the target and spurious feature to be $p_i^t = P(y^t = a_i^t)$ and $p_j^s = P(y^s = a_j^s)$. Then the joint distribution between y^t and y^s can be defined according to the conditional distribution of y^t given $y^s = a_j^s$, i.e. $\tau_j = P(y^t = a_i^t | y^s = a_j^s)$. Specifically, we can derive the probability of each subgroup in the distribution:

$$P(y^s = a_j^s, y^t = a_i^t) = p_j^s \cdot \tau_j, \quad (6)$$

$$P(y^s = a_j^s, y^t \neq a_i^t) = p_j^s (1 - \tau_j), \quad (7)$$

$$P(y^s = a_j^s, y^t \neq a_i^t) = p_i^t - p_j^s \cdot \tau_j, \quad (8)$$

$$P(y^s \neq a_j^s, y^t \neq a_i^t) = 1 - p_i^t - p_j^s (1 - \tau_j) \quad (9)$$

Furthermore, as feature $y^s = a_j^s$ and $y^t = a_i^t$ are correlated, i.e. $\tau_j > p_i^t$, the complement case of $y^s \neq a_j^s$ and $y^t \neq a_i^t$ is also bound to be correlated, treated as complement features.

C.2 PROOF OF PROPOSITION 1

Proposition 1 shows that high bias prevalence distribution assumes matched marginal distributions.

Proposition 1. *Assume feature $y^s = a_j^s$ is biased. Then high bias prevalence distribution, i.e. feature $y^s \neq a_j^s$ is biased as well, implies that the marginal distribution of a_i^t and a_j^s is matched, i.e. $\lim_{\theta \rightarrow 1} p_j^s = p_i^t$.*

Proof. We first derive the upper and lower bound of the p_j^s , and then we can prove the proposition with the squeeze theorem Stewart (2012).

According to the condition that both features in the spurious attribute are biased and the definition of biased feature in ref, we can have the following inequalities:

$$\rho_j > \theta \cdot \rho_j^{\max} = \theta \cdot (1 - p_i^t), \quad (10)$$

$$\rho_- > \theta \cdot \rho_{\neq j}^{\max} = \theta \cdot p_i^t \quad (11)$$

where $0 < \theta \leq 1$ is the threshold.

We can also derive the simplified bias magnitude of feature $y^s \neq a_j^s$ based on the conditional distribution, and find its relationship with ρ_j :

$$\rho_- = \tau_{\neq j} - p_-^t \quad (12)$$

$$= \frac{1 - p_i^t - p_j^s(1 - \tau_j)}{1 - p_j^s} - (1 - p_i^t) \quad (13)$$

$$= \frac{p_j^s(\tau_j - p_i^t)}{1 - p_j^s} \quad (14)$$

$$= \frac{p_j^s}{1 - p_j^s} \rho_j \quad (15)$$

We can then derive the lower bound of p_j^s with the above equation and inequalities:

$$\frac{p_j^s}{1 - p_j^s}(1 - p_i^t) \geq \frac{p_j^s}{1 - p_j^s} \rho_j = \rho_- \geq \theta \cdot p_i^t \quad (16)$$

$$p_j^s \geq \frac{\theta \cdot p_i^t}{1 - p_i^t + \theta \cdot p_i^t} \geq \theta \cdot p_i^t = LB(\theta) \quad (17)$$

We can also derive the following equation and inequalities of τ_j according to its definition.

$$\tau_j = \frac{p_j^s \cdot P(y^s = a_j^s | y^t = a_i^t)}{p_j^s} \leq \frac{p_i^t}{p_j^s} \quad (18)$$

$$\tau_j = p_i^t + \rho_j \geq \theta(1 - p_i^t) + p_i^t \quad (19)$$

Then we can derive the upper bound of p_j^s :

$$\theta(1 - p_i^t) + p_i^t \leq \tau_j \leq \frac{p_i^t}{p_j^s} \quad (20)$$

$$p_j^s \leq \frac{p_i^t}{\theta(1 - p_i^t) + p_i^t} = UB(\theta) \quad (21)$$

We then demonstrate the convergence of the $LB(\theta)$ and $UB(\theta)$ as $\theta \rightarrow 1$:

$$\lim_{\theta \rightarrow 1} LB(\theta) = \lim_{\theta \rightarrow 1} \theta \cdot p_i^t = p_i^t \quad (22)$$

$$\lim_{\theta \rightarrow 1} UB(\theta) = \lim_{\theta \rightarrow 1} \frac{p_i^t}{\theta(1 - p_i^t) + p_i^t} = p_i^t \quad (23)$$

Finally, we can prove the proposition according to the squeeze theorem Stewart (2012):

$$LB(\theta) \leq p_j^s \leq UB(\theta) \quad (24)$$

$$\lim_{\theta \rightarrow 1} p_j^s = \lim_{\theta \rightarrow 1} LB(\theta) = \lim_{\theta \rightarrow 1} UB(\theta) = p_i^t \quad (25)$$

C.3 PROOF OF PROPOSITION 2

Proposition 2 shows that high bias prevalence distribution implies uniform marginal distributions.

Proposition 2. *Given that the marginal distribution of a_j^s and a_i^t are matched and not uniform, i.e. $p = p_i^s = p_j^t < 0.5$. The bias magnitude of sparse feature, i.e. ρ_j^* , is monotone decreasing at p , with $\lim_{p \rightarrow 0^+} \rho_j^* = -\log(1 - \phi_j)$. The bias magnitude of the other features, i.e. $\rho_{\neq j}^*$, is monotone increasing at p , with $\lim_{p \rightarrow 0^+} \rho_{\neq j}^* = 0$.*

Proof. Given the distribution proposed in section C.1 and the condition $p = p_j^s = p_i^t < 0.5$, we further use $\phi_j = \frac{\rho_j}{\rho_j^{\max}}$ to express τ :

$$\tau_j = p + \phi_j(1 - p) \quad (26)$$

$$\tau_{\neq j} = 1 - p + \phi_j \cdot p \quad (27)$$

1026 We can then derive the bias magnitude of the sparse feature $y^s = a_j^s$, given $p = p_j^s = p_i^t < 0.5$, and
 1027 warp it with a function $t(p)$.
 1028

$$\rho_j^* = KL(P(y^t), P(y^t|y^s = a_j^s)) \quad (28)$$

$$= p \cdot \log\left(\frac{p}{\tau_j}\right) + (1-p) \cdot \log\left(\frac{1-p}{1-\tau_j}\right) \quad (29)$$

$$= p \cdot \log\left(\frac{p}{p + \phi_j(1-p)}\right) + (1-p) \cdot \log\left(\frac{1-p}{1-p - \phi_j(1-p)}\right) \quad (30)$$

$$= p \cdot \log\left(\frac{p}{p + \phi_j(1-p)}\right) + (1-p) \cdot \log\left(\frac{1}{1-\phi_j}\right) \quad (31)$$

$$= p \cdot \log\left(\frac{p(1-\phi_j)}{p + \phi_j(1-p)}\right) + \log\left(\frac{1}{1-\phi_j}\right) = t(p) \quad (32)$$

1039 We further derive the partial derivative of ρ_j^* on p as follows:
 1040

$$\frac{\partial t(p)}{\partial p} = p \cdot \log\left(\frac{p(1-\phi_j)}{p + \phi_j(1-p)}\right) + 1 - \frac{p(1-\phi_j)}{p + \phi_j(1-p)} \quad (33)$$

1044 Here we apply substitution method to replace $\frac{p(1-\phi_j)}{p + \phi_j(1-p)}$ with x :
 1045

$$\frac{\partial t(p)}{\partial p} = f(x) = \log x - (x-1) \quad (34)$$

$$0 < x = \frac{p(1-\phi_j)}{p + \phi_j(1-p)} \leq 1 \quad (35)$$

1051 We then show that $f(x)$ is monotone increasing in the interval $0 < x \leq 1$ and the critical point is at
 1052 $x = 1$.
 1053

$$f'(x) = \frac{1}{x} - 1 \geq 0 \quad (36)$$

$$f(1) = 0 \quad (37)$$

1057 Thus, we have $f(x) < 0$ in the interval $0 < x \leq 1$, proving $\rho_j^* = t(p)$ to be monotone decreasing at
 1058 p .
 1059

$$\frac{\partial \rho_j^*}{\partial p} = \frac{\partial t(p)}{\partial p} < 0 \quad (38)$$

1062 Similarly, we can derive the bias magnitude of the dense feature $y^s \neq a_j^s$, and see that it is just
 1063 $t(1-p)$
 1064

$$\rho_{\neq j}^* = KL(P(y^t), P(y^t|y^s \neq a_j^s)) \quad (39)$$

$$= (1-p) \cdot \log\left(\frac{(1-p)(1-\phi_j)}{1-p + \phi_j \cdot p}\right) + \log\left(\frac{1}{1-\phi_j}\right) \quad (40)$$

$$= t(1-p) \quad (41)$$

1069 As a result, we can prove the monotonicity of $\rho_{\neq j}^*$ with the chain rule.
 1070

$$\frac{\partial \rho_{\neq j}^*}{\partial p} = \frac{\partial t(1-p)}{\partial p} \quad (42)$$

$$= \frac{\partial t(1-p)}{\partial(1-p)} \cdot \frac{\partial(1-p)}{\partial p} \quad (43)$$

$$= -\frac{\partial t(1-p)}{\partial(1-p)} \quad (44)$$

$$= -\frac{\partial t(p)}{\partial p} > 0 \quad (45)$$

1080 We can then derive the convergence of sparse feature bias magnitude ρ_j^* when p approaches 0 with
 1081 L'Hôpital's Rule Stewart (2012).

$$1083 \lim_{p \rightarrow 0^+} \rho_j^* = \lim_{p \rightarrow 0^+} t(p) \quad (46)$$

$$1085 = \lim_{p \rightarrow 0^+} \left(p \cdot \log\left(\frac{p(1 - \phi_j)}{p + \phi_j(1 - p)}\right) \right) + \log\left(\frac{1}{1 - \phi_j}\right) \quad (47)$$

$$1087 = \lim_{p \rightarrow 0^+} \left(p \cdot \log(p) \right) + \lim_{p \rightarrow 0^+} \left(p \cdot \log\left(\frac{1 - \phi_j}{p + \phi_j(1 - p)}\right) \right) + \log\left(\frac{1}{1 - \phi_j}\right) \quad (48)$$

$$1090 = \lim_{p \rightarrow 0^+} \frac{\log(p)}{\frac{1}{p}} + \log\left(\frac{1}{1 - \phi_j}\right) \quad (49)$$

$$1093 = \lim_{p \rightarrow 0^+} \frac{(\log(p))'}{\left(\frac{1}{p}\right)'} + \log\left(\frac{1}{1 - \phi_j}\right) \quad (50)$$

$$1095 = \lim_{p \rightarrow 0^+} \frac{\frac{1}{p}}{-\frac{1}{p^2}} + \log\left(\frac{1}{1 - \phi_j}\right) \quad (51)$$

$$1098 = \log\left(\frac{1}{1 - \phi_j}\right) \quad (52)$$

1099 Similarly, we can derive the convergence of dense feature bias magnitude $\rho_{\neq j}^*$ when p approaches to
 1100 0.

$$1102 \lim_{p \rightarrow 0^+} \rho_{\neq j}^* = \lim_{p \rightarrow 0^+} t(1 - p) \quad (53)$$

$$1104 = \lim_{p \rightarrow 1^-} \left(p \cdot \log\left(\frac{p(1 - \phi_j)}{p + \phi_j(1 - p)}\right) \right) + \log\left(\frac{1}{1 - \phi_j}\right) \quad (54)$$

$$1107 = \log(1 - \phi_j) + \log\left(\frac{1}{1 - \phi_j}\right) \quad (55)$$

$$1109 = 0 \quad (56)$$

D EXPERIMENT DETAILS

D.1 EVALUATION METRICS

1115 Following previous works Nam et al. (2020); Lee et al. (2021); Kim et al. (2022); Lim et al. (2023);
 1116 Zhao et al. (2023); Lee et al. (2023), we use the accuracy of BC samples and the average accuracy on
 1117 balanced test set as our main metrics. As a complement, we also present the accuracy of BN and BA
 1118 samples when analyzing the performance of methods. Formally, we categorize samples according to
 1119 the attributes (y^s, y^t) and a function $g : y^s \rightarrow y^t$ that maps the biased features to its correlated class.

$$1120 BA = \{i | y^s[i] \in B, y^t[i] = g(y^s[i])\} \quad (57)$$

$$1121 BC = \{i | y^s[i] \in B, y^t[i] \neq g(y^s[i])\} \quad (58)$$

$$1123 BN = \{i | y^s[i] \notin B\} \quad (59)$$

1124 where $y^s[i]$ and $y^t[i]$ the attribute value of sample i , and $B = \{a | \rho_a^* > \theta\}$ is the set of biased features.

D.2 DATASETS

1128 **Colored MNIST (Reddy et al., 2021).** We construct the Colored MNIST dataset based on the
 1129 MNIST Lecun et al. (1998) dataset and set the background color as the bias attribute. Different from
 1130 Colored MNIST used in previous work that simply correlates each of the 10 digits with a distinct
 1131 color, where the strength of the correlation is controlled by setting the number of bias-aligned samples
 1132 to $\{0.95\%, 0.98\%, 0.99\%, 0.995\%\}$, we proposed a more fine-grained generation process that is
 1133 capable of various biased distributions, including LMLP, HMLP, HMHP. See Appendix B for more
 1134 details.

1134 **Corrupted CIFAR10 (Nam et al., 2020).** We construct the Corrupted CIFAR10 dataset based on
 1135 the CIFAR10 Krizhevsky (2009) dataset and set the corruption as the bias attribute. Different from
 1136 Corrupted CIFAR10 used in previous work that simply correlates each of the 10 objects with a distinct
 1137 corruption, where the strength of the correlation is controlled by setting the number of bias-aligned
 1138 samples to $\{0.95\%, 0.98\%, 0.99\%, 0.995\%\}$, we proposed a more fine-grained generation process
 1139 that is capable of various biased distributions, including LMLP, HMLP, HMHP. See Appendix B for
 1140 more details.

1141

1142 **BAR (Nam et al., 2020).** Biased Action Recognition (BAR) is a semi-synthetic dataset deliberately
 1143 curated to contain spurious correlations between six human action classes and six place attributes.
 1144 Following Nam et al. (2020), the ratio of bias-conflicting samples in the training set was set to 5%,
 1145 and the test set consisted of only bias-conflicting samples. We report the accuracy of bias-conflicting
 1146 samples following Nam et al. (2020).

1147

1148 **NICO (Kim et al., 2022)** NICO is a real-world dataset for simulating out-of-distribution image
 1149 classification scenarios. Following the setting used by Wang et al. (2021), we use a curated animal
 1150 subset of NICO that exhibits strong biases (thus still semi-synthetic), which is labeled with 10 object
 1151 and 10 context classes for evaluating the debiasing methods. The training set consists of 7 context
 1152 classes per object class and they are long-tailed distributed (e.g., dog images are more frequently
 1153 coupled with the ‘on grass’ context than any of the other 6 contexts). The validation and test sets
 1154 consist of 7 seen context classes and 3 unseen context classes per object class. We verify the ability
 1155 of debiasing a model from object-context correlations through evaluation on NICO. We report the
 1156 average accuracy on the test set following Kim et al. (2022).

1157

1158 **WaterBirds (Sagawa* et al., 2020).** The task is to classify images of birds as “waterbird” or
 1159 “landbird”, and the label is spuriously correlated with the image background, which is either “land”
 1160 or “water”. We report the worst group accuracy following Liu et al. (2021).

1161

1162 **MultiNLI (Williams et al., 2018).** Given a pair of sentences, the task is to classify whether the
 1163 second sentence is entailed by, neutral with, or contradicts the first sentence. We use the spurious
 1164 attribute from Sagawa* et al. (2020), which is the presence of negation words in the second sentence;
 1165 due to the artifacts from the data collection process, contradiction examples often include negation
 1166 words.

1167

1168 **CivilComments-WILDS (Koh et al., 2021).** The task is to classify whether an online comment
 1169 is toxic or non-toxic, and the label is spuriously correlated with mentions of certain demographic
 1170 identities (male, female, White, Black, LGBTQ, Muslim, Christian, and other religion). We use
 1171 the evaluation metric from Koh et al. (2021), which defines 16 overlapping groups (a, toxic) and (a,
 1172 non-toxic) for each of the above 8 demographic identities a, and report the worst-group performance
 1173 over these groups.

1174

1175 D.3 BASELINES

1176

1177 **LfF (Nam et al., 2020).** Learning from Failure (LfF) is a debiasing technique that addresses
 1178 the issue of models learning from spurious correlations present in biased datasets. The method
 1179 involves training two neural networks: one biased network that amplifies the bias by focusing on
 1180 easily learnable spurious correlations, and one debiased network that emphasizes samples the biased
 1181 network misclassifies. This dual-training scheme enables the debiased network to focus on more
 1182 meaningful features that generalize better across various datasets.

1183

1184 **DisEnt (Lee et al., 2021).** The DisEnt method enhances debiasing by using disentangled feature
 1185 augmentation. It identifies intrinsic and spurious attributes within data and generates new samples by
 1186 swapping these attributes among the training data. This approach significantly diversifies the training
 1187 set with bias-conflicting samples, which are crucial for effective debiasing. By training models with
 1188 these augmented samples, DisEnt achieves better generalization and robustness against biases in
 1189 various datasets.

1188 **JTT (Liu et al., 2021).** JTT is a classic debiasing method w/o bias label, that has been applied
 1189 to both the image and NLP domains. JTT identifies challenging examples by training an initial
 1190 model using standard empirical risk minimization (ERM) and collecting misclassified examples
 1191 into an error set. The second stage involves re-training the model while upweighting the error
 1192 set to prioritize examples that the first-stage model struggled with. This approach aims to address
 1193 performance disparities caused by spurious correlations, leading to better generalization across groups
 1194 with minimal additional annotation costs.

1195 **BE (Lee et al., 2023).** BiasEnsemble (BE) is a recent advancement in debiasing techniques that
 1196 emphasizes the importance of amplifying biases to improve the training of debiased models. BE
 1197 involves pretraining multiple biased models with different initializations to capture diverse visual
 1198 attributes associated with biases. By filtering out bias-conflicting samples using these pre-trained
 1199 models, BE constructs a refined bias-amplified dataset for training the biased network. This method
 1200 ensures the biased model is highly focused on bias attributes, thereby enhancing the overall debiasing
 1201 performance of the subsequent debiased model.

1202 **DPR (Han et al., 2024).** DPR is another recently proposed debiasing method w/o bias label. DPR
 1203 rectifies biased models through fine-tuning. They construct a small pivotal subset with a higher
 1204 proportion of bias-conflicting samples using BCSI, which serves as an effective alternative to an
 1205 unbiased set. Leveraging this pivotal set, they rectify a biased model through fine-tuning with only a
 1206 few additional iterations.

1207 **DeNetDM (Sreelatha et al., 2024)** . DeNetDM is another recently proposed debiasing method w/o
 1208 bias label. utilize a technique inspired by the Product of Experts, where one expert is deeper than
 1209 the other. They propose a strategy where they train a deep debiased model utilizing the information
 1210 acquired from both deep (perfectly biased) and shallow (weak debiased) network in the previous
 1211 phase.

1212 **Group DRO (Sagawa* et al., 2020).** Group DRO is a supervised debiasing method aiming to
 1213 improve the worst group accuracy. It is commonly used as an upper bound in the worst group accuracy
 1214 for unsupervised methods.

1215 D.4 IMPLEMENTATION DETAILS

1216 **Reproducibility.** To ensure the statistical robustness and reproducibility of the result in this work,
 1217 we repeat each experiment within this work 3 times with consistent random seeds [0, 1, 2]. All results
 1218 are the average of the three independent runs.

1219 **Architecture.** Following Nam et al. (2020); Lee et al. (2021), we use a multi-layer perceptron
 1220 (MLP) which consists of three hidden layers for Colored MNIST. For the Corrupted CIFAR10, BAR,
 1221 NICO, WaterBirds dataset, we train ResNet18 He et al. (2015) with random initialization. For CelebA
 1222 dataset, we train ResNet50 with random initialization, following Liu et al. (2021). For MultiNLI and
 1223 CivilComments-WILDS datasets, we use Bert for training, following Liu et al. (2021).

1224 **Training hyper-parameters.** We set the learning rate as 0.001, batch size as 256, momentum as
 1225 0.9, and number of steps as 25000. We used the default values of hyper-parameters reported in the
 1226 original papers for the baseline models.

1227 **Data augmentation.** The image sizes are 28×28 for Colored MNIST and 224×224 for the rest of
 1228 the datasets. For Colored MNIST, we do not apply additional data augmentation techniques. For
 1229 Corrupted CIFAR10, we apply random crop and horizontal flip transformations. Also, images are
 1230 normalized along each channel (3, H, W) with the mean of (0.4914, 0.4822, 0.4465) and standard
 1231 deviation of (0.2023, 0.1994, 0.2010).

1232 **Training device.** We conducted all experiments on a workstation with an Intel(R) Xeon(R) Gold
 1233 5220R CPU at 2.20GHz, 256 G memory, and 4 NVIDIA GeForce RTX 3090 GPUs. Note that only a
 1234 single GPU is used for a single task.

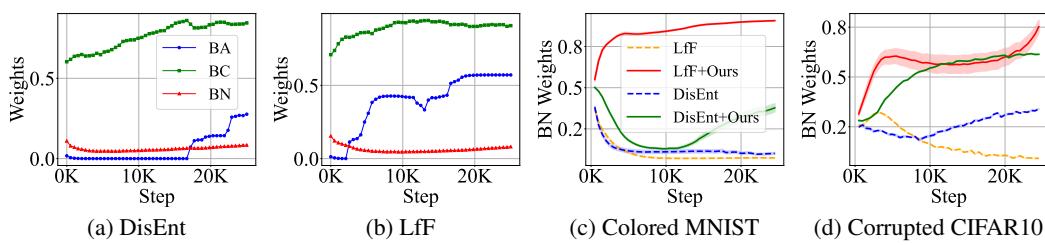


Figure 7: Figure 7(a) and 7(b) support our claim in section 4 that existing debiasing methods tend to overlook BN samples when training on LP distributions. Figure 7(a) and 7(b) show that our approach effectively emphasizes BN samples by raising its weights.

D.5 DESIGN OF FEATURE DESTRUCTING METHODS

For in visual recognition tasks, the shape of objects is a basic element of human visual perception (Geirhos et al., 2019). Therefore, the patch-shuffle destruction of shape (Lee et al., 2024) when capturing bias from visual recognition datasets is a feasible approach. We adopt the patch-shuffle approach for all the visual dataset within the paper except for CelebA. We apply a gray-scale transformation for CelebA as its recognition task is hair color. Anyhow, the feature destruction method could be highly flexible for different tasks.

For NLP tasks, we first introduce the common biases within the NLP domain followed by a simple design of feature destruction method in the NLP domain. The commonly used NLP datasets for debiasing are MultiNLI and CivilComments-WILDS dataset. Specifically, the bias within the MultiNLI dataset is the correlation between the negation words and the entailment task and the bias within the CivilComments-WILDS dataset is the correlation between words implying demographic identities and the toxicity task. The target features of both datasets are semantic information of the sentences where the position of words matters, and the spurious features are the individual words which is insensitive to positions. Furthermore, such position sensitivity difference between target and spurious features within NLP biases is not limited to these two datasets but rather quite common. For example, CLIP has also been found with the "bag of words" phenomenon (Yuksekgonul et al., 2023), which ignores the semantic meaning of the inputs and relies on words individually for prediction. As a result, a straightforward approach for feature destruction is to shuffle the words within the sentences.

D.6 APPLYING DiD TO EXISTING METHODS

As aforementioned in the main paper, when applying our method to the existing debiasing methods Nam et al. (2020); Lee et al. (2021; 2023), we do not modify the training procedure of the debiased model M_d . For both methods, we train the biased model M_b with target feature destroyed data. This is done by simply adding a feature destructive data transformation during data processing, with minimal computational overhead.

Note, for BE Lee et al. (2023), such feature destructive data transformation is not applied when training the bias-conflicting detectors.

E ADDITIONAL EMPIRICAL RESULTS

E.1 DETAILED RESULTS AND EXPLANATIONS OF THE MAIN EXPERIMENTS

The main results in the main paper are presented in the form of performance gain and only contain results of BC accuracy and average accuracy on the unbiased test set, here we present the results in their original form, together with error bars, detailed results of accuracies for BA and BN samples of each dataset as well. Results on the Colored MNIST and Corrupted CIFAR10 datasets can be found in Table 5 and Table 6, respectively. It shows that combining DiD not only boosts the performance of existing debiasing methods but also achieves the best performance.

The performance generally varies between different datasets, different types of biased distribution, and algorithms with and without BiasEnsemble, e.g. between LfF and BEL. Firstly, the inconsistency

1296 between datasets is likely to depend on how thoroughly the target feature is destroyed within the
 1297 dataset. The target features of Colored MNIST, i.e. digits, are destroyed more completely by
 1298 patch shuffling, for shape is the only feature within digits. In comparison, the target feature of
 1299 Corrupted CIFAR10 is more complicated (including shape, texture, color, etc.), and thus can not be
 1300 thoroughly destroyed by patch shuffling, causing relatively lower performance gain. Secondly, the
 1301 performance inconsistency between different biased distributions is due to the reliance of existing
 1302 debiasing methods on the high bias prevalence assumption for bias capturing as discussed in section
 1303 4.2. Specifically, as the bias prevalence of the training distribution becomes higher, better bias
 1304 capture can be achieved even without our method, thus making our improvement on the performance
 1305 less significant, but still quite effective. This conclusion is supported by our experimental results
 1306 shown in Figure 5. As for the performance inconsistency between algorithms with and without
 1307 BiasEnsemble, it is due to the fact that BiasEnsemble is also a method targeted to enhance the bias
 1308 capture procedure of the debiasing framework. As we can see that BiasEnsemble is much more robust
 1309 to the change in the bias magnitude and prevalence from Table 1. In other words, certain overlap
 1310 between the goals of BiasEnsemble and our method resulted in smaller improvement of our method
 1311 on BiasEnsemble-based baselines.

1312 Table 5: Results on Colored MNIST dataset show that combining DiD not only boosts the performance
 1313 of existing debiasing methods but also achieves the best performances. The accuracy of BN samples
 1314 is marked as '-' in LMLP and HMHP distribution for there is no BN sample within the dataset
 1315 according to our evaluation setting in Appendix D.

Distr.	Algorithm	Accuracy			
		BA acc	BC acc	BN acc	Avg acc
LMLP	ERM	97.73 \pm 0.09	91.13 \pm 0.17	-	91.73 \pm 0.16
	LfF	80.25 \pm 4.86	68.41 \pm 2.01	-	69.74 \pm 2.41
	+ DiD	92.16 \pm 0.35	91.03 \pm 0.15	-	91.15 \pm 0.17
	BEL	82.95 \pm 1.68	83.60 \pm 0.85	-	83.53 \pm 0.75
	+ DiD	93.49 \pm 0.81	89.25 \pm 0.64	-	89.67 \pm 0.54
	DisEnt	84.45 \pm 1.72	73.87 \pm 2.52	-	74.93 \pm 2.44
HMHP	+ DiD	94.03 \pm 0.66	91.09 \pm 0.24	-	91.38 \pm 0.28
	BED	80.18 \pm 1.94	81.07 \pm 2.50	-	80.98 \pm 2.29
	+ DiD	91.89 \pm 0.26	89.80 \pm 0.97	-	90.01 \pm 0.89
	ERM	99.32 \pm 0.34	85.25 \pm 1.62	90.30 \pm 0.56	89.82 \pm 0.70
	LfF	87.76 \pm 4.12	57.98 \pm 3.58	63.72 \pm 3.22	63.35 \pm 3.02
	+ DiD	82.99 \pm 5.08	90.54 \pm 0.74	89.04 \pm 0.84	89.12 \pm 0.77
HMLP	BEL	57.65 \pm 32.14	80.02 \pm 1.10	82.84 \pm 1.68	82.33 \pm 1.93
	+ DiD	63.95 \pm 15.64	89.11 \pm 1.29	87.28 \pm 1.54	87.22 \pm 1.58
	DisEnt	77.55 \pm 7.93	66.52 \pm 8.75	72.69 \pm 5.91	72.18 \pm 6.05
	+ DiD	88.78 \pm 7.24	88.52 \pm 1.47	89.04 \pm 1.13	88.99 \pm 1.16
	BED	41.84 \pm 6.21	77.59 \pm 0.69	80.87 \pm 1.78	80.19 \pm 1.71
	+ DiD	31.97 \pm 7.08	89.33 \pm 1.07	85.88 \pm 0.86	85.66 \pm 0.89
HMHP	ERM	99.57 \pm 0.07	48.54 \pm 1.22	-	53.38 \pm 1.10
	LfF	57.16 \pm 8.27	65.62 \pm 2.87	-	64.59 \pm 3.31
	+ DiD	77.84 \pm 2.49	66.91 \pm 1.73	-	68.00 \pm 1.80
	BEL	73.61 \pm 1.03	66.90 \pm 0.43	-	67.57 \pm 0.47
	+ DiD	85.65 \pm 2.53	66.37 \pm 2.54	-	68.30 \pm 2.50
	DisEnt	59.89 \pm 4.19	68.29 \pm 1.43	-	67.45 \pm 1.28
	+ DiD	83.65 \pm 0.13	69.05 \pm 0.38	-	70.51 \pm 0.33
	BED	77.74 \pm 2.51	67.51 \pm 1.33	-	68.53 \pm 1.45
	+ DiD	84.62 \pm 1.16	69.50 \pm 1.23	-	71.01 \pm 1.08

1350
 1351 Table 6: Results on Corrupted CIFAR10 dataset show that combining DiD not only boosts the
 1352 performance of existing debiasing methods but also achieves the best performances. The accuracy of
 1353 BN samples is marked as '-' in LMLP and HMHP distribution for there is no BN sample within the
 1354 dataset according to our evaluation setting in Appendix D.

Distr.	Algorithm	Accuracy			
		BA acc	BC acc	BN acc	Avg acc
LMLP	ERM	80.40 \pm 0.81	62.50 \pm 0.15	-	64.29 \pm 0.06
	LfF	59.13 \pm 0.68	55.03 \pm 0.04	-	55.44 \pm 0.09
	+ DiD	69.47 \pm 0.96	62.04 \pm 0.21	-	62.78 \pm 0.10
	BEL	70.87 \pm 1.30	52.10 \pm 0.30	-	53.98 \pm 0.40
	+ DiD	63.23 \pm 2.10	53.21 \pm 0.20	-	54.21 \pm 0.38
	DisEnt	61.58 \pm 0.57	55.45 \pm 0.23	-	56.06 \pm 0.17
	+ DiD	72.23 \pm 0.74	60.84 \pm 0.40	-	61.98 \pm 0.30
	BED	62.73 \pm 0.61	56.59 \pm 0.08	-	57.20 \pm 0.13
	+ DiD	65.98 \pm 0.40	60.92 \pm 0.20	-	61.42 \pm 0.21
	ERM	84.67 \pm 0.64	55.85 \pm 0.17	65.75 \pm 0.00	65.05 \pm 0.13
HMLP	LfF	73.33 \pm 1.67	47.70 \pm 0.58	54.58 \pm 0.49	54.15 \pm 0.41
	+ DiD	78.67 \pm 2.14	54.81 \pm 2.26	63.71 \pm 2.69	63.06 \pm 2.63
	BEL	70.33 \pm 2.19	50.96 \pm 2.35	54.14 \pm 0.25	54.02 \pm 0.36
	+ DiD	68.80 \pm 0.88	50.20 \pm 0.79	54.39 \pm 0.18	54.15 \pm 0.15
	DisEnt	61.67 \pm 1.67	52.48 \pm 0.56	54.65 \pm 0.56	54.53 \pm 0.49
	+ DiD	73.67 \pm 2.64	55.26 \pm 0.93	62.11 \pm 0.17	61.61 \pm 0.13
	BED	75.33 \pm 5.21	49.15 \pm 1.54	56.86 \pm 0.30	56.35 \pm 0.35
	+ DiD	78.40 \pm 1.00	54.09 \pm 1.07	62.05 \pm 0.34	61.50 \pm 0.38
	ERM	89.97 \pm 0.34	29.37 \pm 0.30	-	35.43 \pm 0.24
	LfF	72.70 \pm 0.81	35.30 \pm 0.33	-	39.04 \pm 0.33
HMHP	+ DiD	82.07 \pm 1.09	37.05 \pm 0.31	-	41.55 \pm 0.19
	BEL	82.73 \pm 0.92	31.48 \pm 0.82	-	36.61 \pm 0.65
	+ DiD	78.30 \pm 0.47	32.90 \pm 1.79	-	37.44 \pm 1.61
	DisEnt	70.77 \pm 2.27	36.04 \pm 0.62	-	39.51 \pm 0.36
	+ DiD	76.60 \pm 0.70	39.05 \pm 0.35	-	42.80 \pm 0.25
	BED	78.60 \pm 1.56	34.20 \pm 0.43	-	38.64 \pm 0.38
	+ DiD	78.70 \pm 1.47	37.72 \pm 0.96	-	41.82 \pm 0.91

1390
 1391 Table 7: Our approach consistently demonstrated the effectiveness on real-world datasets in both
 1392 image and language modality. Group DRO is a supervised debiasing method, acting as an upper
 1393 bound for worst-group accuracy.

Bias supervision?	MultiNLI		CivilComments-WILDS		CelebA	
	Avg	Worst Acc.	Avg	Worst Acc.	Avg	Worst Acc.
ERM	No	80.1	76.41	92.06	50.87	95.75
JTT	No	80.51	73.02	91.25	59.49	80.49
+Ours	No	+1.06	+2.71	+0.38	+6.41	+6.43
Group DRO	Yes	82.11	78.67	83.92	80.20	91.96
						91.49

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
Table 8: DiD still effectively boosts the performance of even very recent methods. This further demonstrated the adaptability of our approach. The experiments are conducted based on Corrupted CIFAR10.

Algorithm	LMLP		HMLP		HMHP	
	BC acc	Avg acc	BC acc	Avg acc	BC acc	Avg acc
DPR	51.54	54.25	43.67	44.67	25.92	31.77
+ DiD	+6.97	+4.36	+5.44	+13.16	+2.61	+2.47
DeNetDM	60.18	61.98	49.67	62.11	24.48	31.25
+ DiD	+1.93	+2.00	+3.66	+1.30	+3.21	+2.99

Table 9: Experiments on the multiple bias setting with LMLP and HMLP combined has demonstrated consistent effectiveness of our approach in handling multiple biases. [Here HMLP BC and LMLP refer to the BC sample correctness for the HMLP-distributed bias feature and LMLP-distributed feature, respectively.](#)

Algorithm	LMLP BC	HMLP BC	Avg
LfF	47.09	48.56	48.27
+ DiD	+9.40	+10.66	+9.74
DisEnt	50.82	49.15	51.09
+ DiD	+6.70	+7.01	+7.00
BEL	53.66	56.33	54.72
+ DiD	+2.23	+2.89	+2.69
BED	56.26	54.66	56.54
+ DiD	+1.02	+1.20	+0.94

E.2 RESULTS ON MORE EXISTING DEBIASING METHODS

In Table 8, we show the results on more existing debiasing methods to show the generality of DiD. The results show that our approach is consistently effective on DPR and DeNetDM.

E.3 DEBIAS ON UNBIASED DATASETS

As we do not know how biased or is the training data biased at all in real-world scenarios, it is important to evaluate the performance of debiasing methods on unbiased training data to ensure that they do not cause severe performance degradation, if not improving the performance. As shown in Table 11, existing methods perform poorly on unbiased training data, causing severe performance degradation, yet our approach greatly boosts their performances.

E.4 EXPERIMENTS ON MULTI-BIAS SETTINGS

The existence of multiple biases is another challenge in debiasing in the real world Li et al. (2023). We further propose multiple biases with different magnitude and prevalence (HMLP + LMLP) based on Corrupted CIFAR10 benchmark, containing 10 target features and 20 spurious features. As shown in Table 9, our approach is consistently effective on multiple bias settings, debiasing multiple biases at the same time.

Interestingly, no signs of the whac-a-mole phenomenon is observed. We suspect that the phenomenon might occur only between two extremely strong biases, as assumed in the original paper.

E.5 APPLICATION OF DiD ON THE BIAS DETECTION TASK

Some recent work (Yenamandra et al., 2023; Kim et al., 2024) has focused on the task of detecting biases rather than debiasing directly. Such methods also involve a biased auxiliary model for the

1458 Table 10: DiD effectively improves the bias identification ability of B2T, improving both CLIP Score
 1459 and Subgroup Accuracy on the ground truth bias keywords of CelebA dataset.

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

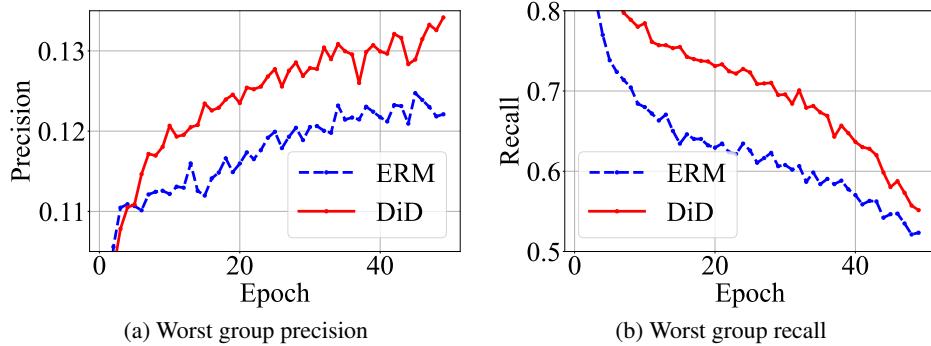
1485

1486

1487

1488

	Blond: Actor		Not Blond: Actress	
	CLIP Score↑	Subgroup Acc.↓	CLIP Score↑	Subgroup Acc.↓
B2T	0.125	86.71	2.188	97.11
B2T + DiD	0.188	85.29	2.297	95.81



(a) Worst group precision

(b) Worst group recall

Figure 8: DiD consistently improves the worst group precision and recall in the error dataset across the epochs.

detection. To test the effectiveness of DiD on bias detection tasks, we apply DiD to the recently proposed B2T (Kim et al., 2024) method. Specifically, B2T detects bias keywords by calculating their CLIP score, whose calculation involves a biased auxiliary model to define an error dataset, similar to JTT. A keyword is identified as biased if it has a higher CLIP score and the subgroup defined by it should have lower accuracy.

Following Kim et al. (2024), we use CelebA as the dataset for bias detection, where the keyword "Actor" (a proxy for Male) is considered ground truth for class Blond, and the keyword "Actress" (a proxy for Female) is considered ground truth for the class not Blond. As we can see in Table ??, by applying DiD to the training of the auxiliary model, we effectively improve both metrics CLIP score and subgroup accuracy, enhancing B2T's bias detection ability.

To further validate the effectiveness of DiD in improving the quality of the error dataset, we adopt the worst group precision and recall metrics proposed by Liu et al. (2021) for evaluation. Specifically, the worst group precision and recall indicate how accurately the error dataset represents the worst group samples. As shown in Figure 8, DiD improves both worst group precision and recall, demonstrating better bias identification ability.

E.6 RESULTS OF BN SAMPLES UNDER LMLP SETTINGS

To further examine the correctness of our analysis and the effectiveness of our design, we show the weights of BN samples under the LMLP settings. As the LMLP distribution defined in the main paper contains biased features with similar levels of bias magnitude, the choice of threshold for identifying BN samples becomes not so intuitive. Thus a threshold of 0 is selected for the categorization in the main paper, defining all samples either BA or BC samples. Consequently, we define another version of LMLP distribution named LMLP' where the magnitude of bias for each feature is low but at the same time distinguishable from each other. (Please refer to Appendix B for details) Based on LMLP' we are able to confidently define BN samples for the BN weights analysis. As shown in Figure 9, DiD consistently emphasizes BN samples in the LMLP distribution across datasets and debiasing algorithms.

1512
1513
1514
1515
1516
1517
1518
1519
1520

Table 11: Existing debiasing methods perform poorly on unbiased training data, while DiD greatly boosts the performance.

1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533

Algorithm	Colored MNIST	Corrupted CIFAR10
ERM	94.14 ± 0.21	67.91 ± 0.13
LfF	70.19 ± 1.50	52.04 ± 2.14
+ DiD	93.18 ± 0.26	57.29 ± 0.22
DisEnt	75.24 ± 3.40	58.50 ± 0.20
+ DiD	92.24 ± 0.44	64.58 ± 0.02
BEL	84.14 ± 0.61	55.64 ± 0.66
+ DiD	90.02 ± 0.54	56.28 ± 0.45
BED	80.66 ± 0.90	58.57 ± 0.12
+ DiD	89.10 ± 1.28	62.97 ± 0.16

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547

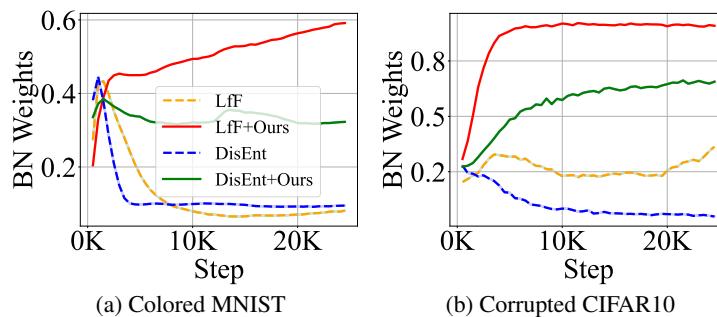


Figure 9: DiD consistently emphasizes BN samples in LMLP distributions across datasets and algorithms. Our approach is marked with solid lines.

1560
1561
1562
1563
1564
1565

1566 Table 12: Results demonstrate that DiD is consistently effective regardless of different experimental
 1567 settings of WaterBirds. The results are based on the ResNet50 architecture.

	Bias supervision	WaterBirds	
		Avg Acc.	Worst-group Acc.
1572 ERM	No	78.82	31
1573 JTT	No	90.99	65.26
1574 +DiD	No	+3.45	+17.45
1576 Group DRO	Yes	92.89	83.49

1577 Table 13: Correlation of the measured dataset bias with biased model behaviour.

Bias Magnitude - $Corr_{scp}$	0.1	0.3	0.5	0.7	0.9	0.98
Bias Magnitude - KLD (Ours)	0	0.168	0.531	1.146	2.536	4.613
Avg Acc	93.99	93.50	92.08	89.53	77.95	48.13
BC Acc	93.76	93.11	91.45	88.55	75.63	42.42
Model Bias (Avg Drop)	0	0.49	1.91	4.46	16.04	45.86
Model Bias (BC Drop)	0	0.65	2.31	5.21	18.13	51.34

E.7 ADDITIONAL RESULTS ON THE WATERBIRDS DATASET

1590 As mentioned in Appendix D, the evaluations on the WaterBirds dataset are based on the ResNet18
 1591 architecture, which is the architecture widely adopted by many previous works (Nam et al., 2020;
 1592 Lee et al., 2021; 2023). However, there are also some other works (Liu et al., 2021) that evaluate
 1593 the WaterBirds dataset based on the ResNet50 architecture with better baseline performances. To
 1594 demonstrate that our approach is consistently effective regardless of the experimental settings, we
 1595 further test our approach with the exact same setting in Liu et al. (2021). As shown in Table 12, DiD
 1596 is consistently effective regardless of different experimental settings of WaterBirds.

E.8 CORRELATION OF THE MEASURED DATASET BIAS WITH BIASED MODEL BEHAVIOUR

1599 We conducted additional experiments on datasets with various degrees of bias to explore how different
 1600 bias magnitude measures correlate with the biased behavior of models (model bias) trained on them.
 1601 Here, we measure the degree of model bias as the accuracy drop compared to the model trained on
 1602 an unbiased set. As shown in Table 13, KL-divergence (KLD) measured bias magnitude strongly
 1603 correlates with the model bias measured by both Average and BC sample accuracy drop, achieving a
 1604 high Pearson correlation of 0.977 and 0.978, respectively. In comparison, the widely used measure
 1605 $Corr_{scp} = P(y^t = a_t | y^s = a_s)$ achieves a Pearson correlation of merely 0.772 and 0.774.

E.9 RESULTS ON REAL-WORLD TABULAR DATASETS

1609 We further evaluate the performance of the proposed method on 3 real-world tabular datasets,
 1610 including COMPAS, Adult, and German. For the COMPAS and Adult dataset, the "race" attribute
 1611 is considered the biased feature. For German dataset, the attribute "sex" is considered the biased
 1612 feature. For all 3 datasets in the tabular modality, we use MLP with 3 hidden layers as the backbone.
 1613 As shown in the Table 14, the proposed method significantly boosts the performance of debiasing
 1614 methods by a large margin on all 3 tabular datasets.

F RELATED WORKS

1618 **Model Bias.** The tendency of machine learning models to learn and predict according to spurious
 1619 Arjovsky et al. (2020) or shortcut Geirhos et al. (2020) features instead of intrinsic features, i.e.
 model bias, is found in a variety of domains Heuer et al. (2016); Tang et al. (2021); Gururangan

1620 Table 14: Performance Comparison (Avg and BC Accuracy) on COMPAS, German, and Adult
 1621 Datasets

Algorithm	COMPAS		German		Adult	
	BC	Avg	BC	Avg	BC	Avg
LfF	40.44	39.35	46.83	47.06	51.57	71.94
+ DiD	63.78	61.74	62.70	68.29	83.44	81.67
DisEnt	40.81	37.50	48.81	50.67	65.40	60.59
+ DiD	79.56	49.72	59.52	71.83	78.68	80.59
BEL	48.44	37.71	43.25	39.00	46.37	65.35
+ DiD	79.63	60.20	61.51	66.61	77.14	82.94
BED	48.44	37.22	44.44	43.83	48.39	51.67
+ DiD	76.59	40.66	60.71	71.00	80.84	81.61

1635
 1636 et al. (2018); McCoy et al. (2019); Sagawa* et al. (2020) and is of interest from both a scientific and
 1637 practical perspective. For example, visual recognition models may overly rely on the background of
 1638 the picture rather than the targeted foreground object during prediction. One subtopic of model bias
 1639 is model fairness, which generally refers to the issue that social biases are captured by models Hort
 1640 et al. (2021), where the spurious features are usually human-related and annotated, such as gender,
 1641 race, and age mat; Hofmann (1994;?).

1642
 1643 **Data Bias: spurious correlation.** Generally, spurious correlation refers to the phenomenon that
 1644 two distinct concepts are statistically correlated within the training distribution, though there is no
 1645 causal relationship between them, e.g. background and foreground object. The spurious correlation is
 1646 a vital aspect of understanding how machine learning models learn and generalize Arjovsky et al.
 1647 (2020). Specifically, studies on distribution shift Wiles et al. (2022) claim that spurious correlation is
 1648 one of the major types of distribution shift in the real world, and thus an important distribution shift
 1649 that a reliable model should be robust to. Furthermore, studies on fairness and bias Mehrabi et al.
 1650 (2021) have demonstrated the pernicious impact of spurious correlation in classification Geirhos et al.
 1651 (2019), conversation Beery et al. (2020), and image captioning Tang et al. (2021). However, despite
 1652 its broad impact, spurious correlation is generally used as a vague concept in previous works and
 1653 lacks a proper definition and deeper understanding of it. This is also the major motivation of this
 1654 work.

1655
 1656 **Debiasing without bias supervision.** In this work, we focus only on debiasing methods that do
 1657 not require bias information, i.e. without annotation on the spurious attribute, for it is more practical.
 1658 *Existing work* Nam et al. (2020); Lee et al. (2021); Kim et al. (2022); Hwang et al. (2022); Lim et al.
 1659 (2023); Zhao et al. (2023); Lee et al. (2023); Park et al. (2024); Han et al. (2024); Sreelatha et al.
 1660 (2024) in the area generally involve a biased auxiliary model to capture biases within the training
 1661 data, according to which the debiased is trained with various techniques. Specifically, Nam et al.
 1662 (2020) is the first work to propose to use GCE for bias capture, and the loss-based sample re-weighing
 1663 scheme to train the debiased model. Lee et al. (2021) further proposed a feature augmentation
 1664 technique to further utilize the captured bias, enhancing the BC samples. Hwang et al. (2022)
 1665 proposed to augment biased data identified according to the biased auxiliary model by applying
 1666 mixup Zhang et al. (2018) to contradicting pairs. Lim et al. (2023) proposed to conduct adversarial
 1667 attacks on the biased auxiliary model to augment BC samples aiming to increase the diversity of BC
 1668 samples. Lee et al. (2023) proposed to first filter out BC samples before training the biased auxiliary
 1669 model aiming to enhance the bias capture process of the biased model. Liu et al. (2021) regards the
 1670 samples misclassified by the biased auxiliary model as BC samples and emphasizes them during
 1671 training of the debiased model. Park et al. (2024) proposed to provide models with explicit spatial
 1672 guidance that indicates the region of intrinsic features according to a biased auxiliary model. Kim et al.
 1673 (2021) create images without bias attributes using an image-to-image translation model Park et al.
 1674 (2020) built upon a biased auxiliary model. A recent pair-wise debiasing method χ^2 model Zhang
 1675 et al. (2023a) based on biased auxiliary models encourages the debiased model to retain intra-class
 1676 compactness using samples generated via feature-level interpolation between BC and BA samples.

1674 Recently, Han et al. (2024) propose to use the disagreement leverages the disagreement probability
 1675 between the target label and the prediction of a biased model to determine the weight of each training
 1676 example. Sreelatha et al. (2024) propose a strategy where they train a deep debiased model utilizing
 1677 the information acquired from both deep (perfectly biased) and shallow (weak debiased) network in
 1678 the previous phase. **Per-sample Gradient-based Debiasing (PGD)** (Ahn & Yun, 2022) is a two-stage
 1679 method that identifies bias-conflicting (BC) samples by their high gradient norms from an auxiliary
 1680 biased model, then resamples the data to focus the final model on these "hard" samples. A more
 1681 recent and conceptually related approach is DiffuBias (Ko et al., 2024), which also begins by training
 1682 an auxiliary biased model to capture biases via top-K loss. DiffuBias employs an augmentation
 1683 pipeline: it captions the identified hard samples using an LLM and then uses a latent diffusion model
 1684 to generate new, synthetic bias-conflict images from these text prompts. *Despite different technique
 1685 routes, it's implicitly or explicitly assumed by these works that the biases can be well captured by the
 1686 biased models, which serves as a foundation for subsequent debiasing. However, in this work, we
 1687 show that such assumptions might be challenged under real-world scenarios.*

1688 G LIMITATIONS AND FUTURE WORK

1690 We uncover the insufficiency of existing debiasing benchmarks theoretically and empirically, high-
 1691 lighting the importance and novel challenges of debiasing in the real world, i.e. Sparse bias capturing.
 1692 We further proposed a simple yet effective method to address the challenge. However, there are still a
 1693 few limitations of this work:

- 1694 • While we have proposed fine-grained empirical and theoretical analysis on real-world biases
 1695 with important characteristics found, due to the complexity of the data bias problem, there
 1696 might be other important characteristics of real-world biases that we are unaware of. We
 1697 believe this is another important direction for future research, which serves as the foundation
 1698 for developing debiasing methods that are applicable in the real world.
- 1699 • While DiD has been shown to be simple and effective, it remains a preliminary solution
 1700 to tackle the Sparse bias capturing challenge in real-world debiasing, and there is still
 1701 much room for improvement. We believe there will be more sophisticated and potentially
 1702 better-performing approaches to tackle the challenge in the future.

1703 We see potential within those limitations and leave them for future research.

1704 H BOARDER IMPACT

1705 From a technical standpoint, our research provides a fine-grained framework for analyzing data biases,
 1706 a systematic evaluation framework for real-world debiasing, and a simple yet effective solution to
 1707 the challenges in real-world debiasing. The bias analysis framework serves as the basis for deepen
 1708 our understanding of dataset biases. The evaluation framework paves the path towards developing
 1709 debiasing methods applicable in real-world scenarios. The proposed approach DiD, is highly effective
 1710 and adaptive to the various debiasing methods. Thus, we believe DiD have high potential to be
 1711 adopted in debiasing methods in the future.

1712 By advancing the understanding of dataset biases and improving the performance of debiasing
 1713 methods in real-world scenarios, our research contributes to the development of more robust and
 1714 generalizable AI models. This is particularly relevant in an era where AI systems are increasingly
 1715 deployed in dynamic and diverse environments, necessitating models that can adapt and maintain
 1716 high performance across different contexts and populations.

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750

1751 Table 15: Our approach still effectively boosts the performance of even very recent methods. This
 1752 further demonstrated the adaptability of our approach. The experiments are conducted based on
 1753 Corrupted CIFAR10.

1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781

Algorithm	LMLP		HMLP		HMHP	
	BC acc	Avg acc	BC acc	Avg acc	BC acc	Avg acc
DPR	51.54	54.25	43.67	44.67	25.92	31.77
+ DiD	+6.97	+4.36	+5.44	+13.16	+2.61	+2.47