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BSTRACT 

-quadruplexes (G4s) are secondary structures 

bundant in DNA that may play regulatory roles 

n cells. Despite the ubiquity of the putative G- 
uadruplex-forming sequences (PQS) in the human 

 enome , only a small fraction forms G4 structures in 

ells. Folded G4, histone methylation and chromatin 

ccessibility are all parts of the complex cis regula- 
ory landscape. We propose an approach for predic- 
ion of G4 formation in cells that incorporates epi- 
enetic and chromatin accessibility data. The novel 
pproach termed epiG4NN efficiently predicts cell- 
pecific G4 formation in live cells based on a local 
pigenomic snapshot. Our results confirm the close 

elationship between H3K4me3 histone methylation, 
hromatin accessibility and G4 structure formation. 
rained on A549 cell data, epiG4NN was then able 

o predict G4 formation in HEK293T and K562 cell 
ines. We observe the dependency of model perf or - 

ance with different epigenetic features on the un- 
erl ying e xperimental condition of G4 detection. We 

xpect that this approach will contribute to the sys- 
ematic understanding of correlations between struc- 
ural and epigenomic feature landscape. 

NTRODUCTION 

N A and RN A are ca pable of forming m ultiple confor-
ations of secondary structures, including G-quadruplexes 

G4s). G4 structures may be implicated in important bi- 
logical processes, including replication, transcription ( 1– 

 ), telomere maintenance ( 2 , 4 , 5 ), and RNA processing and
ranslation ( 6–9 ). G4-forming sequences are found in the 
romoters of genes related to cancer, such as VEGF ( 10 ), 
cl-2 ( 11 ), c-kit ( 12 , 13 ), KRAS ( 14 ). G4 structures are at-
racti v e drug targets ( 15 , 16 ) and it is important to predict
heir formation in li v e cells. 

The first G4 prediction approaches were based on bio- 
hysical knowledge that a DNA motif with four runs of at 

east three guanines separated by loops of 1–7 nucleotides is 
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ikely to fold into a G4, and the first search of such patterns 
n the human genome resulted in around 376 000 matches 
 17 , 18 ). As the di v ersity of confirmed G4s was e xpanded,
.g. G4s with long loops ( 19 ), G4s with bulges ( 20 ) and
4s with missing guanines ( 21–23 ), algorithms for search 

nd prediction of G4s e volv ed to accommodate the di v er- 
ity of motifs as well. Novel whole-genome searches in- 
lude inter-molecular G4s formed between the two DNA 

trands ( 24 ), and slightly mismatched sequences ( 25 ). Fur- 
her approaches incorporated contextually enhanced pre- 
iction, such as G-runs continuity coupled with loop size 
 26 ), and nucleotide content bias ( 27 , 28 ). Recently, new ex-
erimental methods for G4 detection have emerged. A poly- 
erase stop assay Illumina sequencing method was de v el- 

ped that allowed to detect over 525 000 G4s in purified 

uclear DNA in vitro , or more than 710 000 G4s with a 

4-stabilising ligand ( 29 ) . In cellulo G4 detection meth- 
ds include G4 chromatin immunoprecipitation sequencing 

ChIP-seq) methods that use structure-specific antibodies 
o detect G4 formed in cellular cultures ( 30–32 ) and tumor 
enografts ( 33 ), and G4 detection with cleavage under tar- 
ets and tagmentation (CUT&Tag) technique ( 34 , 35 ). The 
umbers of reported G4s in cells vary greatly between the 
xperimental methods and cell types (Table 1 ). 

Methods for G4 detection in cells imply G4 detection 

x vivo or in situ . The former means that the cells are 
xed and chromatin is fragmented before it is enriched 

ith a specific antibody, usually BG4 ( 30 , 31 , 36 ). The latter
eans that BG4 antibody permeates the plasma and nu- 

leus membranes and tethers Tn5 transposase for tagmen- 
ation ( 35 , 38 ), or another small G4-binding protein, G4P, 
s expressed endo genousl y for a subsequent ChIP-seq ex- 
eriment ( 32 ). Only a fraction of resulting G4s overlap in 

he same cell line using two different types methods –– about 
0–60% ( 35 ), or 45% ( 38 ). The di v ergent numbers of G4
ormed in different types of cells and detected with differ- 
nt approaches may be due to both technical and biologi- 
al variability and suggest the need for understanding the 
imits of technical artefacts and exploration of the biolog- 
cal causes. Predicti v e models f or G4 f ormation based on 

hese experimental data have been implemented: Quadron 

 40 ) and PENGUINN ( 41 ) trained on in vitro DNA G4
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Table 1. Reported DNA and RNA G4 formed in vitro , in cells and in patient tissue samples 

GEO ID Study Source Method 
Cell, tissue type / 
experimental conditions No. G4 peaks 

GSE76688 ( 31 ) HaCaT BG4 ChIP-seq epidermal 19 021 
GSE76688 ( 31 ) NHEK BG4 ChIP-seq epidermal 3131 
GSE99205 ( 36 ) HaCaT BG4 ChIP-seq epidermal 11 539 
GSE107690 ( 37 ) K562 BG4 ChIP-seq blood 8955 
GSE152216 ( 33 ) P atient br east cancer 

samples 
qG4 ChIP–seq breast 26 000+ 

GSE133379 ( 32 ) HEK293T G4P ChIP-Seq kidney 40 790 
GSE133379 ( 32 ) A549 G4P ChIP-Seq lung 123 274 
GSE133379 ( 32 ) H1975 G4P ChIP-Seq lung 152 072 
GSE133379 ( 32 ) HeLa G4P ChIP-Seq uterus 17 787 
GSE178668 ( 35 ) HEK293T G4-CUT&Tag kidney 17 888 
GSE178668 ( 35 ) HEK293T G4-ChIP-seq kidney 9202 
GSE173103 ( 38 ) HaCaT G4-CUT&Tag epidermal 10 000+ 

GSE173103 ( 38 ) HEK293T G4-CUT&Tag kidney 10 000+ 

GSE181373 ( 34 ) K562 G4-CUT&Tag blood 21 312 
GSE181373 ( 34 ) U2OS G4-CUT&Tag bone 35 452 
GSE63874 ( 29 ) in vitro G4-seq in vitro, K 

+ 525 908 
GSE63874 ( 29 ) in vitro G4-seq in vitro, K 

+ , PDS 716 311 
GSE77282 ( 39 ) in vitro rG4-seq (RNA) in vitro, K 

+ 3383 
GSE77282 ( 39 ) in vitro rG4-seq (RNA) in vitro, K 

+ , PDS 11 367 
- This report in silico Regular expression search GRCh37 / hg19 2 105 837 
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data, DeepG4 ( 42 ) with an additional feature of local chro-
matin accessibility for G4 prediction in cells, and G4RNA
screener ( 43 ) trained on experimental RNA G4 data. To
date, only DeepG4 implemented actual cellular context for
G4 formation prediction, howe v er, only the G4s that are
formed both in vitro and in cells were selected. A significant
portion of weaker G4s not folded in vitro that might play
important regulatory roles in cells were , therefore , excluded
from the training data. Excluding weaker G4s might inher-
ently lead to higher accuracies too, as lower experimental
scores for these G4s are likely related to finer biological
fea tures. Additionally, chroma tin accessibility profile was
the only feature used. The roles of open chromatin, histone
and DNA chemical modifications in G4 formation is be-
ing discover ed r ecently ( 31 , 35 , 37 , 38 , 42 ). Le v eraging multi-
ple epigenomic features to predict G4 formation in cells and
determining the importance of these features may provide
novel insights into G4 formation mechanisms and their reg-
ulatory roles. 

G4 existence in the epigenetic context 

DNA G-quadruplex es ar e over-r epr esented in gene promot-
ers and are thought to be involved in gene regulation at
the transcription le v el. More than 40% of gene promot-
ers in the human genome contain G4-forming motifs ( 44 ),
and their structural properties make them attracti v e drug
targets for diseases involving d ysregula tion of gene tran-
scription ( 15 ). Folded G4s were confirmed to be highly en-
riched in gene promoters in cells more than in any other
region ( 31 ), with some studies showing that most folded
G4s are, in fact, located in the promoter regions in cells
( 35 ). Both G4s formed in cells ( 31 ) and gene promoters are
associated with open chromatin ( 45 , 46 ), aiding the acces-
sibility for transcription machinery. Open chromatin was
indeed found to contain 85.8% of G4 in HaCaT cells and
97.2% in NHEK cells ( 31 ), whereas we found that for A549
cells G4 data ( 32 ), only 6.6% of G4s intersected with peaks
fr om chr omatin accessibility (ATAC-seq) experiment, likely
dri v en by a higher number of G4 peaks reported in A549.
It has been hypothesized that G4 formation promotes tran-
scription factor docking by keeping the DNA double he-
lix open ( 47–49 ) and allows re-initiation of transcription.
Ther efor e, G4s ar e likely to be located in accessible chro-
matin regions due to the local regulatory roles, but the
ways G4s are related to accessible chromatin and epige-
netic marks are highly complex (Figure 1 ). Recently, ev-
idence of high colocalization of other epigenetic marks,
such as histone modifications, with G4 formation became
available ( 35 ). H3K4me3 was found to be the most corre-
lated to G4 formation in HEK293T cells, as measured by
G4 ChIP-seq, followed by H3K4me2, H3K4me1 and chro-
matin accessibility by ATAC-sequencing ( 35 ). Additionally,
acti v e G4s are present in CpG island (CGIs) regions de-
pleted in cytosine methylation ( 37 , 38 ) and inhibit methyla-
tion of DNA ( 37 ). CGI methyla tion pa tterns, in turn, medi-
ate binding of specific families of transcription factors that
have pr efer ence for either methylated or h ypometh ylated
CGI ( 50 ), ther efor e leading to transcriptional regulation
via epigenetic modifications. Another mechanism of G4 in-
volvement in cellular processes regulation through epige-
netic marking is the G4 involvement in DNA replication.
It was demonstrated that G4 formed during DNA replica-
tion leads to epigenetic instability due to failure of copying
the chromatin r epr essi v e mar ks ( 51 ). Additionally, G4 are
known to recruit histone modification agents ( 52 , 53 ) and
chr omatin remodelling pr oteins ( 54 ). The interplay between
folded G4s and epigenetic marks is evident, however, it is
still not sufficiently explored for G4 formation prediction. 

While the correlations of accessible chromatin and some
epigenetic marks hint the relative importance of these fea-
tures for G4 formation, our goal is to use machine learning
to de v elop a model tha t can predict G4 forma tion in cells
and rate the importance of these features for G4 formation.
Fi v e histone modification marks (H3K4me1, H3K4me3,
H3K9me3, H3K27ac, H3K36me3) and chromatin accessi-
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Open chromatin1

Gene promoters1

CpG islands 
methylation2

1Hänsel-Hertsch R, Nat. Genet., 2016
2Mao SQ, Nat. Struct. Mol. Biol. 2018
3Yin Y, Science, 2017
4Sarkies P, Mol. Cell, 2010
5Lago S,  Nat. Comm., 2021
6Hirschi A, RNA, 2016
7Saha D, J. Biol. Chem., 2017
8Li C, Genome Res., 2021

Binding of specific 
families of TF3

Copying of chromatin 
repressive marks 
during replication4

Epigenetic instability4

Recruitment of chromatin 
remodelling proteins5

Recruitment of histone 
modification agents6,7

Colocalization with 
histone modifications

(H3K4me3, 
H3K27ac...)8

Figure 1. G4 involvement in the epigenetic r egulation. G4s ar e colocalized with gene promoters, open chromatin and certain epigenetic marks (such as 
H3K4me3), are able to recruit chromatin remodelling proteins and histone modification agents, and pre v ent CpG islands from cytosine methylation. 
Additionally, G4 may arrest the copying of the chromatin repressi v e mar ks, leading to epigenetic instability. 
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ility (ATAC-seq) were selected for training and evaluation. 
e aim to predict weaker G4s formed in cells along with sta- 

le G4s. We base our predictions on a broad set of putati v e
uadruplex-f orming sequences (PQS) f ound in the human 

enome according to the latest motif definitions (see Mate- 
ials and Methods) and infer the PQS formation probability 

n cells. The de v eloped approach is designed to transfer the 
earned features to predict G4 in unseen types of cells based 

n the underlying sequence and local epigenetic snapshot. 

ATERIALS AND METHODS 

4 input pr epar ation f or epiG4NN model 

QS sequences were found with a regular expression 

earch using python re package in the hg19 / GRCh37 

uman genome assemb ly, retrie v ed from the UCSC 

enome Browser ( http://genome.ucsc.edu/ ). We broadened 

he existing definitions of G4 and used the follow- 
ng regular expressions: [G 3+ 

L 1-12 ] 3+ 

G 3+ 

–– canonical 
4 pattern with extended loop length; 

GN 0-1 GN 0-1 GL 1-3 ] 3+ 

GN 0-1 GN 0-1 G –– bulged G4 pattern 

ith possible G-run breaks; [G 1-2 N 1-2 ] 7+ 

G 1-2 –– irregular G4 

attern, where L is any of { A, T, C, G } and N is any of { A,
, C } . A total number of guanines greater than or equal 
2 was r equir ed to allow thr ee-layer ed G4s. The search 

as performed on both strands. We filtered the redundant 
nd nested G4s by only considering distinct sequences 
epara ted by a t least one nucleotide. The overlapping 

equences were not merged. The first encountered motif 
rom the 5 

′ end of the overlapping group is considered. 
 total of 2 105 837 PQS were f ound f or the three types

Supplementary Figure S1). PQS were then padded to 1000 

t and one-hot-encoded for training as follows: A = [1, 0, 0, 
], T = [0, 1, 0, 0], C = [0, 0, 1, 0], G = [0, 0, 0, 1], N = [0, 0, 0,
]. For each PQS, the respecti v e G4 score was found from 

he experimental dataset by overlapping the PQS motif 
ith experimental peaks and taking an average of the con- 

inuous .bedgraph signal. If there is no signal corresponding 

o the PQS coordinate, the score was set as 0.0. G4 labels 
or training were obtained from the G4P ChIP-seq study 

ith GEO accession number GSE133379 for A549 and 

EK293T cell lines. The upper 5 percentiles of the normal- 
zed experimental scor es wer e characterized as ‘positi v e’ 
lass, and the rest of PQS as ‘negati v e’ (Supplementary 

igure S2). As a result, > 105 000 PQS were classified as 
ositi v e for A549 –– a slightly more conservati v e number of 
eaks as compared to the number of peaks determined in 

he downstream analyses in the original study ( 32 ). A549 

ell data were selected for training, and HEK293T for 
ndependent evaluation. For HEK293T, upper 2 percentiles 
ere used to match the originally reported number of called 

eaks ( > 40 000). For additional evaluation and analyses, 
re-processed G4 peaks for HeLa (GSE133379), HaCaT 

GSE76688) and K562 (GSE107690) were used. 

hromatin accessibility and epigenetic marks data pr epar a- 
ion 

pigenetic information is generally preserved across tis- 
ues in species, especially for cell cultures with common 

rogenitor cells ( 55 ), ther efor e, using G4 data and epi- 
enetic data from different studies of the same cell line 
s possible. We used histone 3 lysine residue 4 methy- 
a tion and trimethyla tion, histone 3 lysine 9 and lysine 
6 residues trimethylation, histone 3 lysine 27 residue 
cetylation, and nucleosome availability as epigenetic 
arks for our experiments. We retrieved H3K4me1, 
3K4me3, H3K9me3, H3K27ac, H3K36me3 ChIP- 

eq datasets and ATAC-seq dataset for A549 cells, and 

3K4me3, H3K27ac ChIP-seq for HEK293T from 

he Encyclopedia of DNA elements (ENCODE) ( 56 ) 
eference Epigenome project with accession codes 
NCFF633KDT, ENCFF021UDY , ENCFF474QYY , 
NCFF126BYV, ENCFF053BXF, ENCFF735UWS, 
nd accession codes ENCFF315TAU, ENCFF186KMN, 
especti v ely. ATAC-seq signal for HEK293T was retrie v ed 

r om GEO pr oject with accession code GSM3905877. For 
562 cells, we used ENCODE projects with accession 

odes ENCFF252GZO for ATAC-seq, ENCFF929TPH 

http://genome.ucsc.edu/
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for H3K4me3, and ENCFF488FYZ for H3K27ac. If the
data were originall y ma pped to hg38, they were lifted
over to hg19 using UCSC liftOver tool with a chain
downloaded from the UCSC genome browser ( https:
//hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/ ). We
filter ed out r egions with no full coverage of any of the
featur es to ensur e continuous data availability for e v ery
PQS. All epigenetic data were normalized to a range of
values [0, 1]. We then created input arrays of 1000-nt
epigenetic profiles for each PQS with bedtools intersect
command-line tool. Genomic tracks were visualized with
pyGenomeT r acks tool ( 57 ). 

Model ar chitectur e 

epiG4NN ar chitectur e is based on a ResNet ( 58 ) –– neural
network class with residual convolutional layers and di-
lation. We designed our ar chitectur e as sequential convo-
lutional towers of four residual blocks each, where each
residual block contains ba tch normaliza tion ( ×2), recti-
fied linear unit (ReLU) activation (x2) and convolutional
layer with 32 kernels and variable kernel size ( ×2) (Sup-
plementary Figure S3). We constructed a model with only
sequence input ( G4NN ) as a baseline for epiG4NN . Model
inputs are arrays of shape [1000, 4] for G4NN , sequence-
based model, and arrays of shape [1000, 5] for epiG4NN .
The first four rows of the input are the one-hot-encoded se-
quences, and the last row is the normalized epigenetic fea-
ture. Output of each residual unit is added to the penulti-
mate layer through a 1D convolution with hidden state of
size 32, ther efor e implementing skip, or r esidual, connec-
tions between units for better convergence and avoidance of
vanishing / e xploding gradients prob lem ( 58 ). Classification
objecti v e for this model is single-class, single label binarized
probability of G4 formation. We performed a search for op-
timal hyperparameter set by training a grid of models with
various hyperparameters. The optimal parameters were se-
lected based on the performance of the model on the vali-
da tion da taset during training: K = 3, W = [11, 11, 15], D
= [1, 4, 10], where K is the number of conv olutional to wers,
W i is the convolutional filter width in the i th residual block,
D i is the dilation rate of the i th residual block. We addition-
ally trained a similar set of models with 250-nt inputs to see
whether the performance suffers significantly, and, indeed,
the evaluation of the 250-nt model revealed lower AUROCs
and AUPRCs (Supplementary Figure S4). 

Model training and evaluation 

Training data from A549 dataset were split into train and
test subsets, where the test set contains all the PQS that
belong to chromosomes 1, 3, 5, 7, 9, and train set – all
PQS that belong to chromosomes 2, 4, 6, 8, 10–22, X, Y .
The models were trained with batch size of 64 and a con-
stant learning rate of 0.001 with Adam stochastic gradi-
ent descent optimizer method based on adapti v e estimation
of lower-order moments ( 59 ). Upon initialization, model
weights are filled with random numbers. At each train-
ing iteration, binary cross entropy loss function is mini-
mized over the target train labels. Output labels are deter-
mined via sigmoid function applied to the ultimate logit.
Due to the large number of input data samples, chromo-
some data were input gradually and training on one chro-
mosome from the train set constituted a full iter ation. Tr ain-
ing then continued with the next chromosome, to a total
of 19 iteration steps in one epoch. Optimal hyperparame-
ters were determined from the performance of the sequence-
only model on the validation dataset, as determined by the
ar ea under pr ecision-r ecall curve (AUPRC), and applied to
all the other models. Most of PQS had zero scor es, ther e-
fore, the classes are highly imbalanced and are contribut-
ing unequally to the metrics and loss, with low probability
class (unfolded G4) skewing the metrics. This problem was
addressed by implementing balanced class weights for the
optimizer: w eight i = N samples / (N classes ·fr equency i ) , resulting
in weights 0.35 and 35.69 for negati v e and positi v e classes.
We evaluated the models on withheld test samples using ac-
curacy and area under the recei v er oper ating char acteris-
tic curve (AUROC) to determine class separability. AUROC
x-axis depicts false positi v e rate (FPR), and y-axis depicts
true positi v e rate (TPR), defined as FPR = FP / (FP + TN)
and TPR = TP / (TP + FN) . Howe v er, these metrics are not
optimal for imbalanced classification problems, ther efor e
we additionally evaluate areas under the precision–recall
curve (AUPRC) to determine precision and recall of pos-
iti v e G4 samples. Precision ( P ) and recall ( R ) are defined as
follows: P = TP / (TP + FP) , R = TP / (TP + FN), where
TP is true positi v es, FP is false positi v es, and FN is false
negati v es. Training and e valuation were performed using
TensorFlow (v2.4.0) using python keras API. Respecti v e
python scripts can be found at https://github.com/anyakors/
epiG4NN . For the promoter-enhancer bias assessment,
gene promoter data for hg19 were downloaded from the
UCSC table browser, and cell line-specific enhancer data
were downloaded from the Enhancer Atlas v 2.0 database
http://www.enhanceratlas.or g/do wnloadv2.php ( 60 ). 

RESULTS 

Broadening the definition of G4-forming motifs 

Earl y a pproaches to defining G4-forming motifs used
r egular expr essions of type [G 3+ 

L 1-7 ] 3+ 

G 3+ 

( 17 , 18 , 61 )
and yielded around 376 000 putati v e G4s. Many G4s
forming in vitro still did not adhere to this limited defini-
tion ( 29 ), including G4s with missing guanines ( 21–23 ),
G4s with ultra-long loops ( 19 ), bulged G4s ( 20 ) and G4s
with runs of irregular length ( 62 ), to name a few. Later
search efforts considered variable numbers of guanines
in the run ( 63 ), bulges and mismatches (‘imperfections’)
( 25 , 26 ), longer loops of up to 12 nucleotides ( 29 ), G-rich
sequences considering cytosine bias ( 27 ), and duplex
stem-containing loops ( 64 ). As the goal of this work
was to define a set of G4 motifs covering a significant part
of the in vivo formed peaks for training, we broadened
the existing definitions of G4s and used the following
r egular expr essions: [G 3+ 

L 1-12 ] 3+ 

G 3+ 

–– canonical G4
pattern with extended loop length, similarly to ( 29 );
[GN 0-1 GN 0-1 GL 1-3 ] 3+ 

GN 0-1 GN 0-1 G –– G4 pattern with
possible bulges, with restrictions as described in ( 20 );
[G 1-2 N 1-2 ] 7+ 

G 1-2 –– irregular G4 pattern alike those studied
in ( 62 ). These three definitions do not aim to e xhausti v ely

https://hgdownload.soe.ucsc.edu/goldenPath/hg38/liftOver/
https://github.com/anyakors/epiG4NN
http://www.enhanceratlas.org/downloadv2.php
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over the G4 motif r epertoir e, and only select a r epr esenta-
i v e set of G4 motifs for training. An alternati v e approach
ould be to use algorithms measuring the G-richness or 
-skewness such as G4Hunter, but the definitions above 

over a substantial variability of motifs for a r epr esentati v e
nd large sample of G4 sequences, plus different subtypes 
f G4s may be enriched in different regions of the genome, 
aking interpretation of the downstream analyses easier. A 

otal of 2 105 837 G4 motifs were determined after filtering 

see Materials and Methods), where 907 845 instances are 
ulged G4s, 652 908 are irregular G4s, and 545 084 are 
anonical G4s with extended loop length. 

4s colocalize with accessible chromatin and epigenetic 
arks in cells 

e interrogated the mean profiles of fiv e epigenetic marks 
nd chromatin accessibility genome-wide at acti v e G4 loci 
n A549 cells ( 32 ) (Figure 2 ). Mean normalized signals of 

3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K36me3 

istone modifications, and ATAC-seq signal were centered 

nd plotted at PQS motifs with G4P ChIP-seq peaks. 
3K4me3, H3K27ac and ATAC-seq profiles displayed pos- 

ti v e association of epigenetic mark occupancy with the G4 

eaks, while H3K4me1, H3K9me3 and H3K36me3 marks 
emonstrated the opposite trend. H3K4me1, H3K9me3 

nd H3K36me3 exhibit a dip at G4 sites compared to the 
enome-wide background le v el, while H3K4me3, H3K27ac 
nd ATAC-seq demonstrate peaks at G4 sites compared 

o background le v el (Figure 2 B). Heatmap analysis (Fig- 
re 2 C) of the top 6000 profiles of each mark re v ealed that
3K4me3, H3K27ac and open chromatin (ATAC-seq) sig- 

als contribute the highest number of informati v e profiles 
s well. The profiles were sorted by average intensity and 

lotted from highest to lowest. H3K4me1, H3K9me3 and 

3K36me3 have most of profiles with close-to-zero inten- 
ity, while H3K4me3, H3K27ac and ATAC-seq enrich more 
han six thousand profiles (Figure 2 D). 

Recently, similar results were reported for histone mark 

nrichment in mouse embryonic stem cells ( 38 ), where 
igh confidence G4 CUT&Tag peaks overlapped with 

pen chromatin, H3K4me3 and H3K27ac peaks, whereas 
3K4me1 and H3K9me3 exhibited a local minimum. 
cti v e G4, H3K4me2 and H3K4me3 peaks followed by 

3K27ac and open chromatin densely occupy gene pro- 
oter regions in HEK293T cells in another study ( 35 ). It 
as confirmed earlier that folded G4s are enriched at gene 
romoter regions characterized by open chromatin ( 31 ). 
her efor e, H3K4me3, and H3K27ac histone modifications 
nd open chromatin (ATAC-seq) signal are good candidates 
o inform the G4 prediction in cells. We aim to extract the 
nformati v e signal from both the epigenetic landscape and 

he PQS sequence with a neural network termed epiG4NN 

nd compare it with the baseline G4NN that only uses the 
NA sequence. 

piG4NN is a new hybrid model lever aging differ ent epige- 
etic marks 

e de v eloped epiG4NN , a hybrid sequence and epigenetic 
ontext-based model for prediction of G4 formation in cells. 
piG4NN is a neural network model that consists of stacks 
f con volutional la yers with skip connections f or better 
raining convergence ( 58 ). Convolutional networks (CNNs) 
re a class of deep learning methods that achie v ed signif- 
cant breakthroughs in the genomic predictions ( 65–68 ). 
onvolutional kernels slide along the inputs and extract in- 
ut features, passed on to the next layers. CNNs allow for 
ierar chical r epr esenta tion of fea tures through learning the 
atterns in the input sequence without explicit feature engi- 
eering. For inputs, we used PQS and different auxiliary ar- 
ays of processed epigenetic marks aligned to PQS: histone 
 lysine 4 residue mono-methylation (H3K4me1), histone 
 lysine 4, 9 and 36 residues tri-methylation (H3K4me3, 
3K9me3, H3K36me3), histone 3 lysine 27 residue acetyla- 

ion (H3K27ac), and chromatin accessibility (ATAC ChIP- 
eq data). Each epigenetic feature was tested independently 

Figure 3 ). Comparisons were made with a sequence-based 

odel G4NN with the same ar chitectur e and hyperparame- 
ers (number of residual stacks, convolutional kernel prop- 
rties , learning rate , batch size). We trained our models 
n A549 G4 data from a RHAU-deri v ed G4-binding pro- 
ein G4P-ChIP-seq experiment ( 32 ) and subsequently eval- 
ated on both A549 withheld test samples and unseen 

EK293T and K562 cell data. 

ccur ate pr ediction of G4 f ormation in cells based on epige- 
etic features using epiG4NN 

pon optimization of hyperparameters, the best epiG4NN 

r chitectur e was determined. We trained six epiG4NN 

odels ( epiG4NN -H3K4me1, epiG4NN -H3K4me3, 
piG4NN -H3K9me3, epiG4NN -H3K27ac, epiG4NN - 
3K36me3, epiG4NN -ATAC) on A549 cell data ( 32 ) along 

ith the baseline sequence-only G4NN . Different epige- 
etic marks and ATAC-seq signal were used for training by 

ndependently stacking each normalized epigenetic feature 
rray with the one-hot-encoded sequence, hence expanding 

he transverse dimension of the encoded sequence from 

 to 5 (Figure 3 ). Both area under the recei v er operating
haracteristic (AUROC) and area under the precision– 

 ecall curve (AUPRC) wer e used as quality measures of the 
odel. AUROC measures the separability of the positi v e 

nd negati v e classes, wher e a scor e of 1 means perfect abil-
ty of the model to distinguish betw een classes. How e v er, 
UROC may be skewed by an imbalance of number of 

amples in classes. AUPRC measures the trade-off between 

r ecision and r ecall, and AUPRC of 1 means high pr ecision 

nd high recall. The class imbalance prob lem e xists in G4 

raining data. We found about 2 100 000 of potential G4 

otifs, w hile onl y about 105 000 of them are formed in 

549 cells. Accuracy and AUROC metrics ar e, ther efor e, 
ot sensiti v e enough for training and e valuation in this 
roblem. Instead, AUPRC can be used as characteristic 

or the G4 prediction objecti v e. Pre viousl y, the maxim um 

UROC of 0.988 and AUPRC of 0.309 wer e r eported 

or the problem of G4 prediction in cells ( 42 ). Here, we 
chie v e an AUROC of 0.996 and an AUPRC of 0.907 

Figure 4 ) for the epiG4NN -H3K4me3 model on the A549 

nseen chromosome set. In accordance with the widely 

ccepted fact that G4s generally colocalize with accessible 
hromatin regions ( 31 ), the performances of our models 
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C D

Figure 2. Genome-wide profiles of epigenetic mark occupancy at G4 sites. ( A ) Unlike in vitro conditions, in cells G4s are formed in the chromatin context 
with possible epigenetic chemical modifications, such as histone 3 lysine residue 4 methylation and tri-methylation (H3K4me1, H3K4me3), and others. 
( B ) Mean distribution of normalized H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K36me3 and ATAC-signal (chromatin accessibility) in the 6000 
nt vicinity of acti v e G4 loci in A549 cells. Mean genome-wide background le v els are shown with dashed line. ( C ) Density heatmaps of the H3K4me1, 
H3K4me3, H3K9me3, H3K27ac, H3K36me3 and ATAC-signal in the 250 nt vicinity of acti v e G4 loci in A549 cells. Top 6000 profiles sorted by signal 
intensity are shown. ( D ) Rate of decrease of epigenetic signal for the top 6000 profiles at acti v e G4 sites. 
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epiG4NN -ATAC and epiG4NN -H3K27ac support the
importance of open chromatin (AUROC = 0.993,
AUPRC = 0.837) and the epigenetic mark of active
enhancers, H3K27ac (AUROC = 0.991, AUPRC = 0.838)
f or G4 f ormation. On the other hand, epiG4NN -
H3K4me1, epiG4NN -H3K9me3 and epiG4NN-
H3K36me3 gave only moderate improvements (AUROC =
0.984, A UPRC = 0.693; A UROC = 0.984, A UPRC = 0.686
and AUROC = 0.982, AUPRC = 0.673, respecti v ely) com-
pared to sequence-based G4NN (AUROC = 0.983,
AUPRC = 0.668). Combining two best predicti v e features
only resulted in a marginal performance improvement
(see Supplementary Note 1). Of note, some of the used
ENCODE da tasets (see Ma terials and Methods) have
low coverage depth, as they were chosen for keeping the
technical cross-laboratory variability to a minimum rather
than maximizing the quality of the dataset. The model,
howe v er, reached the state-of-the-art performance on these
data, ther efor e we can expect it to perform e v en better on
higher quality data. 

epiG4NN predicts G4 formation in unseen cell lines 

Populations of G4s in cellular context are shared between
cell lines or formed uniquely in some cells. We compared
the pre-processed G4 peaks obtained from HEK293T, Ha-
CaT, HeLa cells using G4P ChIP-seq ( 32 ), K562 cells us-
ing BG4 ChIP-seq ( 37 ), and K562 cells using CUT&Tag
( 34 ) with G4 peaks detected in A549 cells with G4P ChIP-
seq ( 32 ). A549 and HeLa cell lines are epithelial-like cells
deri v ed from lung and uterus, respecti v el y, w hereas Ha-
CaT are keratinocytes; HEK293T are deri v ed from kid-
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A
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Figure 3. epiG4NN is a ResNet-based ar chitectur e dir ectly incorpor ating r aw DNA sequence and local epigenetic profiles for G4 prediction in cells. ( A ) 
epiG4NN training objecti v e is to predict G4 formation in cells, including those G4s not found in vitro . ( B ) PQS sequence with immediate flanks to a total 
of 1000 nt is taken for input and stacked with the normalized array of the gi v en epigenetic feature. The architecture is based on 12 residual convolutional 
blocks with dilation. epiG4NN outputs a normalized probability of G4 formation. 

Figure 4. epiG4NN improves G4 formation prediction in cells on held-out A549 test samples by using epigenetic features for training, as measured by 
recei v er operating characteristic and pr ecision–r ecall curv es. Recei v er oper ating char acteristic (left) and pr ecision–r ecall (right) curves of the baseline G4NN 

model (dashed gray) and epiG4NN -H3K4me1, epiG4NN -H3K4me3, epiG4NN -H3K9me3, epiG4NN -H3K27ac, epiG4NN -H3K36me3, epiG4NN -ATAC 

models. Areas under the recei v er operating characteristic curve (AUROC) and under the pr ecision–r ecall curve (AUPRC) are shown. 
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ey cells, and K562 are lymphoblast cells. G4P ChIP-seq 

nd CUT&Tag methods detect G4s in situ , while BG4 

hIP-seq detects G4s ex vivo . We found that only 53% 

f HaCaT, 76% of HEK293T, 60% of K562 (BG4 ChIP- 
eq), 38% of K562 (CUT&Tag) and 82% of HeLa G4 

eaks are common with A549. To assess how well our 
odel performs on different cell types with distinct un- 

erlying epigenetic landscapes, we additionally carried out 
odel evaluation on HEK293T (G4P ChIP-seq) and K562 

CUT&Tag) cell lines. As epiG4NN was trained on G4 

eaks from A549 cells obtained with G4P ChIP-seq, we 
nly used data from in situ G4 detection experiments to 

 xclude possib le technical variability. We selected the three 
est models as tested on A549 unseen samples ( epiG4NN - 
3K4me3, epiG4NN -ATAC, epiG4NN -H3K27ac) together 
ith the baseline sequence-only model G4NN and mea- 
ured their performance on new cell lines with AUROC and 

UPRC (Figure 5 ). epiG4NN -H3K4me3 showed the best 
erformance with both HEK293T (AUPRC = 0.836) and 

562 (CUT&Tag) (AUPRC = 0.838) cell data, followed 

y epiG4NN -ATAC for K562 (CUT&Tag) and epiG4NN - 
3K27ac for HEK293T. epiG4NN -ATAC, howe v er, per- 

ormed slightly worse than sequence alone for HEK293T. 

odel learned from in situ data cannot predict well ex vivo 

ata 

dditionally, we tested another K562 cell line G4 dataset 
btained with the ex vivo BG4 ChIP-seq method. Gi v en 

he same epigenetic profile and the same sequence motifs 
s for the K562 (CUT&Tag) data, with a different set of 
4 peaks to predict, epiG4NN -H3K4me3 and epiG4NN - 
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A

B

Figure 5. epiG4NN predicts G4 formation in unseen cell lines. Recei v er operating characteristics and pr ecision–r ecall curves for epiG4NN evaluation of 
G4 formation prediction: ( A ) in K562 cells obtained with an in situ CUT&Tag experiment ( 34 ), ( B ) in HEK293T cells obtained in an in situ G4P ChIP-seq 
experiment ( 32 ), all evaluated with G4NN (sequence-only, gray dashed line) and epiG4NN -ATAC, epiG4NN -H3K27ac, and epiG4NN -H3K4me3. Areas 
under the recei v er operating characteristic curve (AUROC) and under the pr ecision–r ecall curve (AUPRC) are shown. 
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H3K27ac models were only able to perform marginally
better than the G4NN baseline in terms of AUROC and
AUPRC; epiG4NN -ATAC resulted in a slightly better eval-
uation (AUROC = 0.909, AUPRC = 0.342) (Figure 6 ). The
underlying technical / experimental condition difference be-
tween BG4 ChIP-seq and CUT&Tag methods of G4 detec-
tion in cells, ther efor e, makes the transfer of learned features
challenging. The features learnt from one experimental con-
dition may differ from the features in other conditions, re-
sulting in poor cross-method model performance. 

An example of differential epiG4NN prediction 

The first intronic region of the human GRHL3 gene, lo-
cated on the chromosome 1, contains se v eral PQS, where
one PQS is formed in both HEK293T and A549 cell lines,
while the other PQS is formed in HEK293T cells but not
in A549 cells ( 32 ) (Figure 7 ). We created pseudo-genomic
tracks that demonstrate the formation of these PQS using
epiG4NN -H3K4me3 and making point predictions for each
nucleotide in the region of interest. 

We found se v en PQS corresponding to GRHL3 intron 1
r egion (Figur e 7 ), wher e four PQS ar e found on the plus
strand (numbered 1, 3, 5 and 7), and three PQS on the minus
strand (numbered 2, 4 and 6). We additionally refer to the in
vitr o da ta. Interestingl y, onl y one in vitro formed G4 on the
plus strand was matching the region, and it did not overlap
with any of the PQS motifs. In cells, A549 G4P ChIP-seq
data has one G4 peak corresponding to PQS number 3 and
HEK293T has two peaks corresponding to PQS numbers
3, 5 (Figure 7 ). epiG4NN -H3K4me3 captures the difference
between the H3K4me3 features in A549 and HEK293T cell
lines gi v en the same sequence of the G4 motif and predicts
unique formation of the PQS number 5 in HEK293T, while
PQS number 3 is predicted in both cell lines. Previously re-
ported DeepG4 model only used G4 forming both in cells
and in vitro for training and testing ( 42 ). The lack of match-
ing in vitro peak highlights the importance of prediction in
cells irrespecti v e of the G4 forma tion in vitr o . 

epiG4NN -H3K4me3 exhibits a promoter and enhancer bias 

Certain histone marks are known to be enriched in open
chromatin, gene enhancer, and promoter regions of the
genome ( 69 ). H3K4me3 is an ‘acti v e’ histone mark thought
to play a role in transcription ( 70 , 71 ) and is marking gene
promoters ( 72 ), while H3K27ac is marking gene enhancers
( 73 ). To test whether our model is biased towards these re-
gions, we extracted G4 overlapping gene promoters ( 74 )
and cell-specific enhancers for A549 and HEK293T cell
lines ( 75 ), and evaluated the region-specific performance
of epiG4NN -H3K4me3. Evaluation re v ealed ov erall better
AUPRC scores for enhancer and promoter regions com-
pared to random regions (Figure 8 ) together with the fact
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Figure 6. epiG4NN has compromised performance in an ex vivo G4 da taset. epiG4NN -ATAC , epiG4NN -H3K27ac and epiG4NN -H3K4me3 models were 
evaluated on BG4 ChIP-seq data of K562 cells with recei v er oper ating char acteristics and pr ecision–r ecall curves. Ar eas under the r ecei v er operating 
characteristic curve (AUROC) and under the pr ecision–r ecall curve (AUPRC) are shown. 

Figure 7. epiG4NN predicts uni v ersally and differentially formed G4s in the GRHL3 first intron region. Genome tracks, from top to bottom: (1) RefSeq 
transcripts; PQS detected in hg19 with bioinformatic motif search, plus str and: y ellow, minus str and: blue; (2) in vitro detected G4 peaks (G4-seq in K 

+ ) 
( 31 ), plus strand: green, minus strand: not detected; (3) A549 predictions with epiG4NN -H3K4me3 and G4 peaks detected with G4P ChIP-seq ( 32 ); (4) 
HEK293T predictions with epiG4NN -H3K4me3 and G4 peaks detected with G4P ChIP-seq ( 32 ). PQS numbered 3 has a peak in both HEK293T and 
A549 cells, while PQS number 5 has a peak in HEK293T only. PQS number 5 is highlighted, and its sequence is shown. 
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ha t a grea ter proportion of G4s is formed in promoter re-
ions. Ubiquitous formation of G4s in the promoter regions 
as indeed experimentally confirmed previously ( 31 , 54 , 76 ). 
 significantly lower proportion of the G4s is formed in 

he enhancer regions (Figure 8 D), and e v en less so in the
andom r egions (Figur e 8 F), while the quality of prediction 

rops the most drastically for random regions in HEK293T 

ell lines. 

ISCUSSION 

enome-wide G4 prediction methods are important for un- 
erstanding G4 biology and for targeting such structures. 
ecent progress in chromatin immunoprecipitation meth- 
ds was applied to G4 detection, and multiple experimen- 
al G4 datasets wer e r eported. Howe v er, the discrepancies 
etween G4 formed in different cells and experiment types 
ointed to the need for understanding G4 formation in cells. 
he vast body of cellular epigenetic data allows to attribute 
4 formation in cells to specific cellular features. So far, lit- 

le is known about the correlations between G4 formation 

nd such cellular da ta. Here, we demonstra te a novel ap- 
roach, epiG4NN, that comprises of a hybrid deep neural 
etwork that uses cellular epigenetic features and DNA se- 
uence for G4 prediction in genomic DNA. Compared to 

re viously pub lished methods, epiG4NN achie v es unprece- 
ented precision and recall in G4 prediction in unseen cell 

ines. Additionally, epiG4NN allows to rate the relevance of 
3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K36me3 

nd chromatin accessibility signals to G4 prediction 

roblem. 
Through our studies on the A549, HEK293T and K562 

ata, we show that supplementing epigenetic data improves 
earning for prediction of G4 formation, as compared to 

equence-based model G4NN with the same ar chitectur e 
nd number of parameters. We demonstra te tha t epiG4NN - 
3K4me3, epiG4NN -H3K27ac and epiG4NN -ATAC con- 

iderably outperform G4NN . H3K4me3 is the strongest 
redictor of the G4 formation in our studies on A549 

nd HEK293T (G4P ChIP-seq ( 32 )) and K562 cell data 

CUT&Tag ( 34 )), followed by ATAC-seq and H3K27ac sig- 
als. We found that the optimal epigenetic predictor for 
ell lines depends on the experimental condition of the un- 
erlying da ta. Independent evalua tion of epiG4NN on G4 
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Figure 8. Promoter-enhancer bias in the epiG4NN prediction quality. ( A , C , E ) Precision–recall curves for epiG4NN -H3K4me3 in promoters, enhancers 
and random regions in A549 (left-out chromosome set) and HEK293T (unseen) cells, respecti v ely. ( B , D , F ) Proportions of formed G4s, experimental and 
predicted, in promoters, enhancers and random regions in A549 and HEK293T cells. 
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data obtained with G4P ChIP-seq ( 32 ) and CUT&Tag ( 34 )
showed that H3K4me3 is a good predictor of G4 forma-
tion for the G4 detected in situ , while open chromatin is the
only predictor for ex vivo type of experiment (K562 data,
BG4 ChIP-seq ( 37 )) that improves over the sequence-only
prediction. This likely reflects the different approach behind
the experimental datasets: K562 cells in BG4 ChIP-seq were
fixed and chromatin was fragmented before it reacted with
a G4-specific antibody, while A549 cells were subjected to
a G4P knock-in and the antibody / G4-binding protein was
e xpressed nati v ely. It is not clear how fragmentation and
purifica tion of DNA af fects G4 forma tion, and fea tures
learned by the model trained on in situ data do not seem
to translate to another class of G4 detection experiment.
The finding that ATAC-seq improves G4 predictions effi-
ciency is in line with a previous report ( 42 ), while H3K4me3
was found to be highly colocalized with G4 sites in other
recent studies ( 35 , 38 ). Additionally, we have demonstrated
that only H3K4me3, H3K27ac and open chromatin sig-
nals contribute to a large number of acti v e G4 sites, while
H3K4me1, H3K9me3 and H3K36me3 are largely depleted.
The key difference between epiG4NN and previously re-
ported models lies in the usage and comparison of multiple
epigenetic marks or features for contextual prediction of G4
formation in cells. We achie v e a better performance in G4
prediction and demonstrate relati v e importance of differ-
ent epigenetic features. We additionally retrained the previ-
ously reported model DeepG4 ( 42 ) on our data to compare
the model ar chitectur es, and obtained an AUROC or 0.981
and an AUPRC of 0.644 for the A549 left-out test samples
(Supplementary Figure S5), demonstrating that our archi-
tecture may be more suitable for this task. Additionally, un-
like DeepG4 we employ a full snapshot of the local epi-
genetic profile, in contrast with a single average value for
a gi v en G4 motif r egion. We show that our model can r e-
produce peak signatures from two different cell lines, A549
and HEK293T, where a PQS is formed differentially. Our
model, howe v er, suffers from a prediction accuracy bias in
the random regions as compared with gene promoter or en-
hancer regions. We belie v e that epiG4NN can contribute to
elucidation of the roles of chromatin accessibility and epi-
genetic marks in the sequence-structure relationship. 

DA T A A V AILABILITY 

Da ta prepara tion and epiG4NN training scripts
are available in the GitHub repository ( https:
//github.com/anyakors/epiG4NN/ ) and via Zenodo
( https://doi.org/10.5281/zenodo.8144456 ). Datasets
used in this study are publicly available from GEO
( www.ncbi.nlm.nih.gov/geo/ ): GSE133379, GSE133379,
GSE76688, GSE107690, GSM3905877 and ENCODE
data portal ( www.encodeproject.org/ ): ENCFF633KDT,
ENCFF021UDY , ENCFF474QYY , ENCFF126BYV,
ENCFF053BXF, ENCFF735UWS, ENCFF315TAU,
ENCFF186KMN, ENCFF252GZO, ENCFF929TPH,
ENCFF488FYZ. 

SUPPLEMENT ARY DA T A 

Supplementary Data are available at NARGAB Online. 

https://github.com/anyakors/epiG4NN/
https://doi.org/10.5281/zenodo.8144456
http://www.ncbi.nlm.nih.gov/geo/
http://www.encodeproject.org/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqad071#supplementary-data
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