
StrucText-Eval: Evaluating Large Language Model’s Reasoning Ability in
Structure-Rich Text

Anonymous ACL submission

Abstract001

The effective utilization of structured data, inte-002
gral to corporate data strategies, has been chal-003
lenged by the rise of large language models004
(LLMs) capable of processing unstructured in-005
formation. This shift prompts the question: can006
LLMs interpret structured data directly in its007
unstructured form? We propose an automatic008
evaluation data generation method for assess-009
ing LLMs’ reasoning capabilities on structure-010
rich text to explore this. Our approach supports011
8 structured languages and 29 tasks, generating012
data with adjustable complexity through con-013
trollable nesting and structural width. We intro-014
duce StrucText-Eval, a benchmark containing015
5,800 pre-generated and annotated samples de-016
signed to evaluate how well LLMs understand017
and reason through structured text. StrucText-018
Eval is divided into two suites: a regular Test019
suite (3,712 samples) and a Test-Hard suite020
(2,088 samples), the latter emphasizing the021
gap between human and model performance022
on more complex tasks. Experimental results023
show that while open-source LLMs achieve a024
maximum accuracy of 74.9% on the standard025
dataset, their performance drops significantly026
to 45.8% on the harder dataset. In contrast,027
human participants reach an accuracy of 92.6%028
on StrucText-Eval-Hard, highlighting LLMs’029
current limitations in handling intricate struc-030
tural information.031

1 Introduction032

Structured data, often represented by various struc-033

tured languages such as JSON (Pezoa et al., 2016),034

YAML (Evans, 2001), ORG (org, 2023), or Mark-035

down (Gruber, 2012), Latex (Lamport, 1985) etc.,036

has consistently been central to corporate data037

strategies due to its ability to capture, store, and an-038

alyze essential information systematically. The in-039

herent benefits of structured data lie in its standard-040

ized format and high degree of organization, which041

facilitates efficient data querying and machine pro-042

cessing, clearly surpassing the inherent chaos of043

unstructured data. However, with the advancement 044

of large language models (LLMs) (Achiam et al., 045

2023; Touvron et al., 2023a,b; Sun et al., 2021), 046

there has been a significant shift towards the ef- 047

fective utilization of unstructured data, attributed 048

to the LLMs’ capacity to comprehend and gener- 049

ate complex and nuanced semantics within such 050

data (Brown et al., 2020). Considering that struc- 051

tured data can be directly presented in an unstruc- 052

tured format, it makes us wonder: whether it is 053

possible to rely on LLMs to interpret structured 054

data through unstructured format directly. 055

Current LLM researchers have addressed their 056

comprehension of structure-rich text of limited 057

categories: Graphs (Fatemi et al., 2023; Per- 058

ozzi et al., 2024; Guo et al., 2023; Tang et al., 059

2023a; Chen et al., 2023), Tables (Sui et al., 2024; 060

Campbell-Kelly, 2003; Pasupat and Liang, 2015) 061

and JSON (Chen et al., 2024; Suzgun et al., 2022). 062

However, these categories do not encompass all po- 063

tential use cases of structure-rich text. For instance, 064

scenarios requiring a direct understanding of arti- 065

cles in Latex or Markdown formats, data in YAML 066

or ORG formats, or various custom-structured lan- 067

guages need to be adequately covered. Moreover, 068

existing benchmarks often rely on manually an- 069

notated data for evaluation, which limits the de- 070

velopment of robust evaluation frameworks and 071

potentially facilitates model cheating (Zhou et al., 072

2023). 073

We propose a method for automatically gener- 074

ating evaluation data to assess models’ capabili- 075

ties in structure-rich text reasoning. This method 076

is applied to 8 structured languages, as shown in 077

Fig. 1, across 29 specific tasks, enabling data gen- 078

eration with controllable difficulty by adjusting 079

the depth of structured nesting and the number 080

of width and columns in the sample. Based on 081

this method, we further introduce the Structure- 082

Rich Text Evaluation Benchmark (StrucText- 083

Eval), a comprehensive benchmark with 5,800 pre- 084

1



Benchmark CSV/Table Tree JSON YAML XML MD. LaTeX Org Total

BIG-Bench (Srivastava et al., 2022) - - 31,907 - - - - - 31,907
TEMPTABQA (Gupta et al., 2023) 1,208 - - - - - - - 1,208
Struc-Bench (Tang et al., 2023b) 4.1k - - - - - 5.5k - 9,600
DocCGen (Pimparkhede et al., 2024) - - - 18k - - - - 18,000
SUC (Sui et al., 2024) 1,500 - - - - - - - 1,500
StrucText-Eval (Ours) 841 841 841 841 841 841 841 841 6,728

Table 1: Benchmark comparison across different structural language.

generated and annotated samples designed to evalu-085

ate the proficiency of LLMs in deciphering embed-086

ded structures within input text. StrucText-Eval087

aims to evaluate whether LLMs understand raw088

structural tags, execute logical inferences based089

on the decoded semantics of these symbols, and090

organize their responses according to instruction091

requirements.092

The StrucText-Eval dataset contains three test093

sets: Test (3,712 samples), Real-Test (928 sam-094

ples), and Test-Hard (2,088 samples). Since the095

Test set questions were created using rule-based096

generation, we selected 928 questions from it and097

rewrote them using real-world examples to form098

the Real-Test set, making it closer to practical099

needs for LLMs to understand structured text. The100

Test-Hard set includes much longer questions, with101

an average length of 16,535 characters and the102

longest question containing 102,531 characters,103

greatly showing the gap between LLMs and hu-104

mans in understanding structured data. The experi-105

mental results indicate that StrucText-Eval presents106

significant challenges in evaluating current LLMs’107

structured text processing capabilities. While vari-108

ous open-sourced models achieve a maximum ac-109

curacy of 74.9% under different prompting meth-110

ods, their performance declines markedly to 45.8%111

when tested on the more complex StrucText-Eval-112

Hard dataset. In contrast, human participants at-113

tain an accuracy of 92.6% on StrucText-Eval-Hard,114

highlighting the limitations of existing LLMs in115

comprehending and reasoning through complex116

structural information.117

2 Related Work118

2.1 Structural Text Understanding119

Enhancements120

Recent efforts to enhance LLMs have focused on121

integrating external structures such as graphs, tool122

flows, and cross-domain representations to im-123

prove reasoning capabilities across various tasks.124

For instance, ControlLLM utilizes tool graphs to125

decompose complex multimodal tasks, resulting126

Structure-Rich Texts

Structured Data

Tabular

CSV

Tree

Custom Language

Semi-Structured Data

Object Notation

JSON YAML XML

Markup Language

Markdown LaTeX Org

Figure 1: Taxonomy of Structure-Rich Texts covered in
StrucText-Eval.

in enhanced performance on image and audio pro- 127

cessing tasks by leveraging the topological depen- 128

dencies of tools (Liu et al., 2023). Graph-based 129

models like GraphGPT and BooG have shown 130

promising results, with the former improving gen- 131

eralization across node classification and molecu- 132

lar tasks via graph instruction tuning (Zhao et al., 133

2023; Tang et al., 2024). At the same time, the 134

latter employs virtual supernodes to unify graph 135

structures across domains, fostering cross-domain 136

task transferability (Cheng et al., 2024). Addition- 137

ally, methods like RC2R demonstrate the effective 138

combination of knowledge graphs and LLMs for 139

domain-specific causal reasoning, particularly in 140

financial risk propagation tasks (Yu et al., 2024). 141

These advancements highlight the benefits of em- 142

bedding structural elements, from graph architec- 143

tures to domain-specific knowledge graphs, within 144

LLM frameworks to improve task-specific infer- 145

ence and reasoning. 146

2.2 Structural Text Understanding 147

Evaluation 148

Evaluating LLMs’ understanding of structured data 149

has become increasingly critical, though bench- 150

marks remain limited. GraphQA and Struc-Bench 151

are key datasets that assess LLMs’ reasoning over 152

graph-structured data and tabular text, respectively, 153

illustrating the models’ varying capabilities based 154

on input encoding (Fatemi et al., 2023; Tang et al., 155

2023b). More specialized benchmarks, such as 156

TEMPTABQA, evaluate temporal reasoning in tab- 157

ular data, while TableLLM tests LLMs’ proficiency 158

in handling complex document-based table ma- 159

nipulation tasks (Gupta et al., 2023; Zhang et al., 160

2



2024). Other works, such as the evaluation of161

knowledge graph-based reasoning in complex time-162

series QA systems (JMFRN) (Huang et al., 2024),163

and privacy-oriented graph tasks in GHRatio (Yuan164

et al., 2024), further explore how LLMs handle in-165

tricate, structure-rich information, shedding light166

on their performance across different structured167

data formats.168

Our work diverges from prior research by focus-169

ing exclusively on structure-based inference, de-170

liberately removing semantic content to challenge171

LLMs to reason purely from structural patterns.172

Unlike previous approaches that use structural data173

as supplementary input for classification or seman-174

tic tasks (Pasupat and Liang, 2015; Sui et al., 2024),175

we design semantically agnostic tasks requiring176

models to infer meaning solely from symbolic177

structures. Moreover, while earlier benchmarks178

emphasize graph reasoning or tabular information179

retrieval, our work extends to a broader spectrum of180

structure-rich text types, encompassing various in-181

put formats and more complex dependency-based182

inference tasks.183

3 StrucText-Eval Construction184

3.1 Structure-Rich Texts Taxonomy185

To explore structure-rich texts comprehensively,186

we propose a dataset for eight structured data187

types, each categorized within a taxonomy de-188

picted in Fig. 1. This taxonomy encompasses189

both structured and semi-structured data formats.190

The structured data types include Tree ((Cormen191

et al., 2022)), Tabular ((Campbell-Kelly, 2003)),192

and Object Notation such as JSON ((Pezoa et al.,193

2016)), YAML ((Evans, 2001)), and XML ((Bray194

et al., 1998)). The semi-structured data types in-195

clude Markup Languages like Markdown ((Gru-196

ber, 2012)), LaTeX ((Lamport, 1985)), and Org197

((org, 2023)). Within StrucText-Eval, Tabular is198

stored in CSV format, whereas Tree is denoted by199

a custom format that nodes are represented as the200

string “xxx”, connected with “->” and separated201

by “\n”. For examples encompassing all languages202

and tasks, please refer to Sec. F in the Appendix.203

3.2 Generation of Test Suite204

An example of JSON’s PathCompose is shown in205

Fig. 2 to illustrate the dataset generation process.206

The generation process mainly entails construct-207

ing an abstract structure tree, manually drafting208

question templates, and developing corresponding209

#Sample #Reference #GroundTruth Depth Width
StrucText-Eval-Test

3,712 804 47 - -
1,856 582 19 1 1
1,856 1,026 74 2 1

StrucText-Eval-Real-Test
928 562 74 - -
464 319 39 1 1
464 805 109 2 1

StrucText-Eval-Test-Hard
2,088 16,535 1,169 - -

232 573 22 1 1
232 614 26 1 2
232 663 25 1 3
232 992 80 2 1
232 2,108 136 2 2
232 3,866 283 2 3
232 5,036 312 3 1
232 32,428 2,229 3 2
232 102,531 7,411 3 3

Table 2: Statistics for StrucText-Eval test suite.

answer discovery algorithms. The first step of the 210

generation process is to define the complexity of 211

the problem, characterized by depth, width, and 212

column (Col), as well as its type, including task 213

and language. During the construction of the ab- 214

stract tree, depth represents the depth of the tree, 215

width indicates the number of children for each 216

non-leaf node, and Col specifies the number of 217

fields associated with each node. When construct- 218

ing the question template, predefined templates are 219

retrieved based on the specified task. Finally, dur- 220

ing sample generation, the selected task is used 221

to identify the corresponding ground truth accord- 222

ing to specific rules, and both the abstract tree and 223

the ground truth are translated into the selected 224

language. 225

Eight task categories have been delineated for 226

eight languages, as detailed in Fig. 3b. 29 rules 227

and question templates have been formulated for 228

these tasks, with the specific rule templates detailed 229

in Sec. G in the Appendix. Each sample in the 230

dataset comprises four main fields: “Reference”, 231

“Question”, “Requirement” and “Answer”. We give 232

examples for each language and task in Sec. F in 233

the Appendix. 234

3.3 Generation of Real-Test Suite 235

To enhance the alignment between StrucText-Eval- 236

Test and real-world data, we selected a represen- 237

tative subset of samples for manual modification. 238

We maintained consistency with StrucText-Eval- 239

Test by extracting equal proportions of data across 240

tasks, languages, and complexity levels. Five grad- 241

3



Figure 2: The illustration of the dataset generation pro-
cess, the Json PathCompose task, is an example.

uate students from computer science backgrounds242

were invited to modify the “Reference” and “An-243

swer” part of raw data by replacing abstract node244

values with meaningful real-world information. In245

annotation process, each question is assigned a246

unique scenario (e.g., athletic activities, glassware247

specifications), and annotation need to ensure the248

modified content aligned with these scenarios and249

thereby facilitating diverse, non-repetitive datasets250

that closely approximate real-world applications.251

For instance, to annotate in an athletic scenario,252

an abstract JSON structure “a”: “b”, “c”: “ddd”253

is transformed into “Name”: “James”, “Special-254

ity”: “Running”. The comprehensive guidelines of255

manual rewriting are detailed in Appendix C.256

3.4 Statistic Information257

StrucText-Eval has assembled two datasets.258

StrucText-Eval-Test comprises 3,712 samples,259

StrucText-Eval-Real-Test comprises 928 samples,260

and StrucText-Eval-Test-Hard comprises 2,088261

samples, each of the 29 specific tasks for eight262

languages as depicted in Fig. 3a. Detailed statis-263

tics regarding the number of samples, lengths, and264

complexity levels across all tasks, languages, and265

difficulties are detailed in Tab. 2.266

4 Experiment Setup 267

To evaluate LLMs’ current capability of processing 268

structure-rich text and executing dependent infer- 269

ence, we conducted a series of experiments using 270

StrucText-Eval in various settings. Our study uti- 271

lizes both prompt-based and finetuning methods to 272

analyze the performance variations. 273

4.1 Models 274

We tested six Open-Source LLMs in both 275

StrucText-Eval Test and Test-Hard Suite, and we 276

use the short name (in the bracket) of these LLMs 277

in the experiments: Qwen/Qwen2-7B-Instruct 278

(Qwen-2-7B), Qwen/Qwen2-72B-Instruct 279

(Qwen-2-72B), meta-llama/Meta-Llama-3.1- 280

8B-Instruct (Llama-3.1-8B), meta-llama/Meta- 281

Llama-3.1-72B-Instruct (Llama-3.1-70B), 282

meta-llama/Meta-Llama-3.1-405B-Instruct 283

(Llama-3.1-405B), mistralai/Mistral-7B- 284

Instruct-v0.2 (Mistral-0.2-7B) 285

Considering the huge expense of using an API- 286

based model, we only tested six Close-Source 287

LLMs in StrucText-Eval-Hard: gpt-4o-2024-08- 288

06 (gpt-4o), gpt-4o-mini-2024-07-18 (gpt-4o- 289

mini), gemini-1.5-pro(gemini-1.5-pro), gemini- 290

1.5-flash(gemini-1.5-flash), GLM-4-Plus (glm-4- 291

plus), GLM-4-Flash (glm-4-flash). 292

4.2 Prompt-based Method 293

We also evaluated the impact of different prompt 294

designs on the performance of LLMs by utiliz- 295

ing six distinct prompt configurations in the main 296

experiments. Detailed implementation of these 297

prompts can be found in Sec. E in the Appendix. 298

The six primary prompt settings are as follows: 299

Naive involves a straightforward in- 300

put of “Context”, “Question”, and “Op- 301

tions” into the LLMs to generate re- 302

sponses. Self-Chain-of-Thought 303

(Self-CoT) (Kojima et al., 2022) incor- 304

porates a step-by-step reasoning prompt to 305

guide the model through logical reasoning. 306

Plan-and-Solve CoT (PS-CoT) (Wang 307

et al., 2023) emphasizes problem decomposition 308

before solving, encouraging the model to first 309

break down the problem before generating a 310

solution. With Hint (w/ hint) provide 311

manually curated hints to the model to observe 312

its performance when additional information 313

is injected. Since this approach introduces 314

supplementary data, it is delineated by a dashed 315

4



PC

StrucText-Eval

ND

StrucText-Eval

JO

StrucText-Eval

TH

StrucText-Eval

ST

StrucText-Eval

TR

StrucText-EvalPC StrucText-Eval

PW

StrucText-Eval

SY

StrucText-Eval

TR

StrucText-Eval

PC

StrucText-Eval

PW

StrucText-Eval

SY

StrucText-Eval

TR

StrucText-Eval

SY

StrucText-Eval

TR

StrucText-Eval

PW

StrucText-Eval TRStrucText-Eval

PW

StrucText-Eval

TR

StrucText-Eval

PW

StrucText-Eval

TR

StrucText-Eval

Tree

StrucText-Eval

Tabular

StrucText-Eval

JSON

StrucText-Eval

YAML

StrucText-Eval

XML

StrucText-Eval MarkdownStrucText-Eval

ORG

StrucText-Eval

LaTeX

StrucText-Eval

(a) Benchmark Decomposition

Task Name Abbr. Task Description

Syntax SY
Focuses on detecting structural errors in data formats such as
JSON, XML, and YAML.

PathWalk PW
Focuses on extracting specific sections or subsections from struc-
tured documents such as org, LaTeX, or markdown files.

TextRetrieval TR
Assesses the ability to extract specific information from various
document formats, including text content and image filenames.

Statistic ST
Concentrates on statistical queries to calculate the number of em-
ployees meeting specific salary conditions.

Join JO
Assesses the ability to filter data sets that meet specific criteria by
combining multiple tables in a database through SQL queries.

Tree.Height TH
Evaluates calculating the height of the longest path from the root
node to any leaf node in a tree structure.

Node.Depth ND
Assesses the depth of any node in a tree structure relative to the
root node.

PathCompose PC
Evaluates reasoning of paths and multi-level data indexing within
hierarchical or tree-like structures.

(b) Descriptions of tasks for evaluating structured data understanding in
large language models

Figure 3: The tasks within StrucText-Eval and their description.

line from other methods in Table 3. Few-Shot316

Demonstration involves appending few317

training data directly to the prompt. The Simple318

Few-Shot Demonstration uses only the319

shortest examples from the training set as few-shot320

demonstrations.321

4.3 Evaluation Method322

We use the RougeL metric (Lin, 2004) to assess323

the degree of character-level similarity between324

model outputs in the main content of this paper.325

Sometimes, the task requires the LLM to generate326

the entire reasoning path leading to the answer,327

which results in high RougeL scores. So, we assign328

a score of 0 if the RougeL score falls below 0.75.329

Additionally, we present the results of other330

evaluation metrics, including LLM-as-Judge-331

Score (Zheng et al., 2023), BLEU (Papineni et al.,332

2002), and Exact Match, in Tab. 6 in the Ap-333

pendix. Furthermore, we conduct a consistency334

analysis across these metrics compared to human335

judgments, as shown in Fig. 5.336

5 Analysis337

5.1 Overall Performance in StrucText-Eval338

The overall performance in StrucText-Eval is pre-339

sented in Table 3, revealing significant variations in340

the performance of different models across various341

languages and tasks. For instance, the Qwen2-72B-342

Instruct model demonstrates optimal performance343

on JSON-formatted tasks with an 85.8% accuracy344

under the “Naive” prompt. It also achieves notable345

results in YAML and CSV tasks, with accuracies346

of 82.7% and 86.4%, respectively. In contrast,347

the Meta-Llama-3.1-8B-Instruct-Turbo model per-348

forms poorly under the same settings, achieving349

only 64.6% accuracy on LaTeX tasks. Manually in- 350

jected hints (w/ hint) generally improve model per- 351

formance, particularly in tasks requiring deep rea- 352

soning, such as those involving YAML and JSON. 353

For example, the Meta-Llama-3.1-70B-Instruct- 354

Turbo model’s accuracy improves from 75.4% un- 355

der the “Naive” prompt to 84.9% with the “w/ Hint” 356

strategy. However, with “Self-CoT” and “PS-CoT” 357

prompts, specific models like Qwen2-7B-Instruct 358

exhibit lower accuracy across multiple tasks, es- 359

pecially when handling complex structures such 360

as XML and Tree data, performing significantly 361

worse compared to other prompting methods. 362

These performance disparities can be primar- 363

ily attributed to training sample biases and the in- 364

fluence of different prompting strategies. JSON, 365

being a widely used format in internet data, is fre- 366

quently encountered by many large models during 367

training, leading to a pronounced advantage in han- 368

dling JSON-formatted tasks—a clear manifestation 369

of training sample bias. Moreover, the choice of 370

prompting strategy directly affects a model’s infer- 371

ence capabilities. The “w/ Hint” method, which 372

introduces human reasoning rules, compensates for 373

the model’s limitations in reasoning through com- 374

plex structures. Conversely, while the “Self-CoT” 375

and “PS-CoT” approaches encourage step-by-step 376

reasoning, they often result in logical inconsisten- 377

cies and reasoning errors in complex tasks due 378

to the requirement for autonomous generation of 379

reasoning paths. 380

5.2 Performance Comparsion on 381

StrucText-Eval Test and Real-Test 382

Fig. 6 shows that most LLMs demonstrate com- 383

parable performance across both test sets, with 384

5



Model Prompt Languages Tasks all
JSON LaTeX Md. ORG CSV Tree XML YAML PC PW SY TR JO ST ND TH

Qwen2-7B

Base 70.4 68.8 68.0 54.5 83.5 68.9 57.6 68.5 48.5 74.2 49.2 72.4 79.5 78.4 47.7 93.2 30.0
Self-CoT 12.8 1.5 1.5 9.1 29.0 4.5 3.6 3.5 4.5 6.4 6.1 8.1 27.3 26.1 2.3 6.8 17.2
PS-CoT 31.7 31.7 19.4 20.1 67.0 36.4 25.8 24.9 9.8 19.8 32.6 34.1 63.6 60.2 25.0 72.7 29.1

w/ Hint 70.8 66.1 66.5 58.1 85.2 56.8 55.2 70.2 43.9 72.3 43.2 75.3 86.4 77.3 45.5 65.9 44.0

Qwen2-72B

Base 85.8 73.7 75.1 67.1 92.6 86.4 71.2 82.7 80.3 81.5 62.9 80.8 90.9 90.9 77.3 95.5 42.6
Self-CoT 85.4 69.9 70.8 65.2 95.5 90.2 79.5 89.7 78.8 77.1 81.1 81.7 90.9 95.5 84.1 95.5 51.0
PS-CoT 89.5 70.1 68.9 61.7 92.0 84.8 81.1 93.4 76.5 77.6 87.9 80.8 81.8 93.2 86.4 97.7 65.3

w/ Hint 90.0 72.5 79.1 68.6 94.9 81.1 72.7 90.8 81.1 84.0 77.3 82.4 95.5 92.0 72.7 86.4 49.4

Llama-3.1-8B

Base 43.9 64.6 49.3 48.3 42.6 50.0 26.5 46.9 30.3 49.4 1.5 61.0 11.4 45.5 22.7 79.5 21.3
Self-CoT 52.2 40.6 49.2 39.0 66.5 43.2 36.6 55.2 40.9 40.2 39.7 53.0 77.3 65.9 52.3 36.4 48.5
PS-CoT 45.8 18.7 34.0 32.8 64.0 63.1 44.6 41.3 48.8 50.5 44.7 32.8 69.8 56.8 64.3 62.8 55.9

w/ Hint 44.9 62.2 55.9 48.1 29.0 54.5 30.5 51.4 31.8 45.4 9.1 63.4 2.3 22.7 38.6 90.9 26.9

Llama-3.1-70B

Base 93.8 70.9 69.8 62.8 72.7 51.5 78.7 88.8 81.8 75.4 82.6 81.0 72.7 59.1 47.7 43.2 50.8
Self-CoT 93.6 71.4 69.7 54.8 96.0 84.1 87.1 95.9 88.6 67.9 86.4 85.7 97.7 93.2 77.3 97.7 76.7
PS-CoT 94.5 68.7 72.7 61.7 93.7 83.2 93.9 98.5 90.8 77.0 93.9 84.2 93.2 90.9 81.8 90.9 72.9

w/ Hint 93.6 73.9 77.4 71.6 72.7 74.2 80.4 93.6 88.6 84.9 84.1 83.5 70.5 60.2 65.9 75.0 58.4

Llama-3.1-405B

Base 82.0 62.9 70.0 60.9 96.6 65.9 61.5 78.1 74.2 69.4 32.6 82.4 97.7 94.3 45.5 79.5 38.3
Self-CoT 87.7 62.2 74.2 62.2 95.5 75.8 78.5 90.8 87.9 73.2 63.6 83.4 100.0 90.9 59.1 88.6 67.1
PS-CoT 84.5 67.4 76.0 66.7 92.0 86.7 94.7 94.7 88.3 79.1 93.2 81.1 97.7 85.2 90.9 88.6 74.9

w/ Hint 85.4 68.3 75.1 66.7 98.3 70.5 74.5 87.2 74.2 78.0 59.1 84.9 97.7 97.7 50.0 84.1 46.5

Mistral-7B

Base 32.5 42.1 44.9 40.2 9.1 4.5 14.8 33.5 6.1 30.8 0.0 47.7 0.0 6.8 0.0 0.0 11.3
Self-CoT 56.5 35.1 40.3 36.6 34.7 15.9 33.7 54.3 28.8 49.2 64.4 43.9 6.8 23.9 13.6 13.6 8.1
PS-CoT 43.9 19.7 22.9 15.6 14.8 18.2 34.6 44.1 18.9 30.6 56.8 29.1 22.7 6.8 13.6 22.7 19.5

w/ Hint 34.6 39.4 52.7 40.5 10.2 6.8 12.7 36.5 9.8 34.3 0.0 48.9 0.0 8.0 0.0 0.0 10.6

Table 3: RougeL score for open sourced LLMs’ performance. Bolded text represent the best performance in the
column. Underlined text represent the second best performance in the column.

Figure 4: Heatmaps illustrating the correlation of RougeL scores and standard deviations (STD) across different
models and evaluation criteria. The rows represent different levels of depth, and the columns represent varying
levels of width, indicating increasing task complexity. “All” refers to combined results across languages and tasks,
while “GPT” shows results specific to GPT-based models. “Lang STD” and “Task STD” indicate the variability in
performance across different languages and tasks, respectively.

variations typically within three percentage points.385

This consistency validates the effectiveness of our386

synthetic data design in simulating real-world sce-387

narios. And with the introduction of rule hints, the388

performance disparity between the two test sets389

becomes more pronounced. Llama3.1-405B’s ad-390

vantage in Real-Test further amplifies, exceeding391

its Test set performance by over six percentage392

points. Similarly, Llama3.1-8B demonstrates en-393

hanced performance on Real-Test, achieving re-394

sults approximately 3.5 percentage points higher.395

However, Qwen2-7B exhibits a contrasting trend,396

with its Real-Test performance falling approxi-397

mately six percentage points below its Test set 398

results. These divergent patterns suggest that rule 399

hints exert varying influences on different models’ 400

capacity to generalize to authentic data. 401

5.3 Overall Performance on StrucText-Eval 402

Hard 403

Table 4 presents the performance of various models 404

on the StrucText-Eval Hard dataset, characterized 405

by more complex tasks with longer sequences and 406

deeper structures. This complexity results in a sig- 407

nificant performance decline across all models. For 408

instance, the accuracy of the Qwen2-72B-Instruct 409

6



Model Prompt
Base w/ Hint 3-Shot Simple 3-Shot

Human 92.6 - - -
GPT-4o-Turbo 51.1 54.2 69.5 49.7
GPT-4o-Mini 39.3 47.7 65.6 39.9
Gemini1.5-Pro 11.2 15.7 53.0 12.5
Gemini1.5-Pro-Flash 12.9 12.9 38.3 11.9
GLM-4-Plus 47.3 50.9 65.8 51.7
GLM-4-Flash 40.9 47.8 55.2 41.7
QWen-2-7B 29.6 35.0 51.9 30.0
QWen-2-72B 42.5 45.3 61.4 36.2
Llama-3.1-8B 22.3 26.7 33.7 34.2
Llama-3.1-70B 45.8 56.0 58.4 50.1
Llama-3.1-405B 34.4 41.7 48.7 40.6
Mistral-0.2-7B 7.0 9.5 21.0 6.9

Table 4: Performance of all LLMs and Humans on
StrucText-Eval-Hard. Bolded text represent the best
performance in the column. Underlined text represent
the second best performance in the column.

Figure 5: Correlation between different evaluation met-
rics.

model decreases from 78.4% to 65.0%, while the410

Meta-Llama-3.1-70B-Instruct-Turbo model’s accu-411

racy drops sharply from 75.4% to 43.2%. Unlike412

the standard dataset, the Hard dataset demands413

more advanced reasoning skills, and even with414

the “w/ Hint” strategy, models achieve only lim-415

ited improvements, in contrast to the substantial416

gains observed in more straightforward contexts.417

Notably, human accuracy on StrucText-Eval-Hard418

reaches 95.7%, significantly surpassing that of the419

best-performing large language models (LLMs),420

highlighting a considerable gap in models’ capa-421

bilities for structured reasoning.422

This performance gap can be primarily at-423

tributed to biases in training data and the limita-424

tions of current prompting methods. The StrucText-425

Eval Hard dataset, with increased question com-426

plexity and depth, requires models to possess en-427

hanced abstraction abilities and a deeper under-428

standing of complex structures. However, most429

models are trained on relatively more straightfor-430

ward structured text, which makes them less effec-431

Figure 6: Performance comparsion among open-source
models on StrucText-Eval Test and Real-Test.

tive when tackling deeply nested reasoning tasks. 432

Additionally, prompting methods like “w/ Hint” 433

fail to achieve human-level understanding in multi- 434

layered scenarios. The differences in prompting 435

methods become more pronounced with increased 436

complexity; more straightforward methods, such 437

as Self-CoT, need to be revised for guiding models 438

through multi-step reasoning in these challenging 439

contexts. While the “3-shot demonstration” ap- 440

proach significantly improves model performance, 441

the simpler “simple 3-shot” method, despite fol- 442

lowing similar reasoning rules, fails to match the 443

former due to its insufficient complexity. 444

5.4 Performance Gap on Human & LLMs 445

with Different Ability 446

Fig. 7 reveal significant performance variations 447

among GPT-4, Qwen-2.7B, and human partici- 448

pants in structured data processing tasks. GPT-4 449

demonstrates superior performance in computa- 450

tional tasks, achieving over 88% accuracy in Join 451

and Statistics operations, substantially outperform- 452

ing Qwen2-7B’s modest results, which are 38.89% 453

and 62.50% respectively. Moreover, GPT-4 ex- 454

hibits enhanced stability across tasks, particularly 455

in computational operations, with standard devia- 456

tions consistently below 0.35, whereas Qwen-2.7B 457

shows higher variability with standard deviations 458

exceeding 0.4. 459

Interestingly, human participants excel in copy- 460

intensive tasks such as PathWalk with 96.50% 461

and TextRetrieval with 95.00%, significantly sur- 462

passing both models’ performance in these areas. 463

However, in computational tasks, human perfor- 464

mance aligns closely with GPT-4, suggesting that 465

advanced language models have achieved near- 466

human capability in specific structured computa- 467

7



Figure 7: Performance on StrucText-Eval Hard on best llm, famous small llm, and human in each tasks. LLM
Performance is plotted against the primary (left) y-axis, while Human Performance is plotted against the secondary
(right) y-axis

tional operations. These findings underscore the468

complementary strengths of human cognition and469

artificial intelligence in processing structured data,470

while highlighting the impact of model scale on471

performance stability and complex reasoning capa-472

bilities.473

5.5 Model Performance Across Different474

Difficulty Levels, Languages, and Tasks475

Figure 4 illustrates the performance variations of476

models across different languages and tasks. The477

two figures on the left reveal that, while numerical478

differences exist among models, including GPT479

models, they exhibit a consistent trend: Increas-480

ing the reference’s depth and width results in a481

significant decline in performance. Notably, all482

models show a high variance in performance when483

the depth and width are limited, suggesting that the484

StrucText-Eval Test suite effectively distinguishes485

the capabilities of most models under these condi-486

tions.487

However, for GPT models, substantial variance488

in performance is observed only when the depth489

and width increase significantly, indicating that490

the StrucText-Eval-Hard Test suite is necessary to491

better differentiate the performance of more ad-492

vanced models. Additionally, there is considerable493

variance in model performance across different494

languages and tasks, suggesting substantial differ-495

ences in models’ proficiency in handling various496

linguistic and task-specific challenges. This dis-497

crepancy is likely due to biases in training samples498

and the varying difficulty levels of those samples,499

as suggested by earlier analyses.500

5.6 Correlation Between Different Metrics501

Figure 5 presents the correlations between vari-502

ous evaluation metrics. The high correlation be-503

tween Human Judge and GPT-4o Judge (0.9937) 504

indicates a strong alignment between GPT-4o’s 505

automated assessments and human evaluations. Al- 506

though Exact Match exhibits a notable correlation 507

with Human Judge (0.9501), its stringent crite- 508

ria often result in scores significantly lower than 509

those of human evaluators, making it less suit- 510

able for capturing the diversity and naturalness 511

of model outputs. Among the metrics, RougeL 512

stands out with a correlation of 0.9932 with Hu- 513

man Judge, demonstrating its effectiveness in cap- 514

turing surface-level textual similarity while main- 515

taining high consistency with human judgments. 516

Compared to the more rigid Exact Match and the 517

relatively lower correlation of BLEU, RougeL of- 518

fers a better balance between textual similarity and 519

evaluation accuracy. 520

6 Conclusion 521

The capability to directly interpret structural-rich 522

text in a free-text format is an essential skill all 523

LLMs require. In response, we have developed 524

StrucText-Eval to evaluate this capability of LLMs. 525

Our findings indicate that the proficiency of cur- 526

rent LLMs in training on these structural-rich texts 527

varies depending on user frequency, leading to 528

markedly different outcomes when the same tasks 529

are performed in various languages. LLMs’ un- 530

derstanding of structural-rich texts remains super- 531

ficially tied to the training data, and these models 532

need a profound understanding of the structure it- 533

self. This deficiency becomes evident when LLMs 534

encounter complex structures composed of com- 535

mon languages or need to parse structural-rich text 536

by custom languages, resulting in significant per- 537

formance degradation. 538

8



7 Limitation539

This paper focuses on evaluating LLM’s reasoning540

abilities on structure-rich text by designing a bench-541

mark called StrucText-Eval. However, StrucText-542

Eval includes only eight types of structured lan-543

guages and encompasses a total of 29 different544

tasks. Given the vast array of actual structured lan-545

guages and the myriad methodologies employed546

beyond these 29 types, StrucText-Eval can only par-547

tially represent the LLMs’ capacity to understand548

structure-rich text. Additionally, due to regional549

restrictions, we are unable to utilize some highly ef-550

fective baseline LLMs, such as Gemini and Claude.551

Therefore, the conclusions drawn in this paper are552

based on the assumption that GPT-4 and GPT-4553

Turbo represent the top-tier LLMs now.554

8 Ethical Concern555

We contend that this article is devoid of ethical556

concerns for several reasons:557

1. Nature of StrucText-Eval Content:558

StrucText-Eval is primarily composed559

of structured language syntax and some560

nonsensical strings, which do not present561

potential ethical issues such as gender bias or562

racial discrimination.563

2. Objective Presentation of Experimental564

Results: The experimental results pertain-565

ing to StrucText-Eval objectively demonstrate566

the comprehension abilities of various large567

models on structure-rich text included in the568

benchmark. We have thoroughly validated the569

outputs and assessment details of the models570

to ensure that the entire evaluation adheres to571

the experimental setup and maintains objec-572

tivity.573

3. Completion of Manual Tasks: All manual574

tasks associated with this study were con-575

ducted by the authors themselves, thereby576

eliminating any issues of unfair labor prac-577

tices or unethical cost imposition.578

References579

2023. Org Mode Manual: History and Acknowledg-580
ments. Free Software Foundation. Accessed: 2024-581
03-18.582

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama583
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,584

Diogo Almeida, Janko Altenschmidt, Sam Altman, 585
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 586
arXiv preprint arXiv:2303.08774. 587

Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, 588
Eve Maler, and François Yergeau. 1998. Extensible 589
markup language (xml) 1.0. 590

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 591
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 592
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 593
Askell, et al. 2020. Language models are few-shot 594
learners. Advances in neural information processing 595
systems, 33:1877–1901. 596

Martin Campbell-Kelly. 2003. The history of mathe- 597
matical tables: from Sumer to spreadsheets. Oxford 598
University Press. 599

Weize Chen, Chenfei Yuan, Jiarui Yuan, Yusheng Su, 600
Chen Qian, Cheng Yang, Ruobing Xie, Zhiyuan 601
Liu, and Maosong Sun. 2024. Beyond natural 602
language: Llms leveraging alternative formats for 603
enhanced reasoning and communication. arXiv 604
preprint arXiv:2402.18439. 605

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi 606
Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei Yin, 607
Wenqi Fan, Hui Liu, et al. 2023. Exploring the po- 608
tential of large language models (llms) in learning 609
on graphs. arXiv preprint arXiv:2307.03393. 610

Yao Cheng, Yige Zhao, Jianxiang Yu, and Xiang Li. 611
2024. Boosting graph foundation model from struc- 612
tural perspective. arXiv preprint arXiv:2407.19941. 613

Thomas H Cormen, Charles E Leiserson, Ronald L 614
Rivest, and Clifford Stein. 2022. Introduction to 615
algorithms. MIT press. 616

Clark Evans. 2001. Yaml draft 0.1. Yahoo! Tech 617
groups: sml-dev. Archived from the original on 618
2001-06-03. 619

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. 620
2023. Talk like a graph: Encoding graphs for large 621
language models. arXiv preprint arXiv:2310.04560. 622

John Gruber. 2012. Markdown: Syntax. URL 623
http://daringfireball. net/projects/markdown/syntax. 624
Retrieved on June, 24:640. 625

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi 626
He, and Shi Han. 2023. Gpt4graph: Can large 627
language models understand graph structured data? 628
an empirical evaluation and benchmarking. arXiv 629
preprint arXiv:2305.15066. 630

Vivek Gupta, Pranshu Kandoi, Mahek Bhavesh Vora, 631
Shuo Zhang, Yujie He, Ridho Reinanda, and Vivek 632
Srikumar. 2023. Temptabqa: Temporal question an- 633
swering for semi-structured tables. arXiv preprint 634
arXiv:2311.08002. 635

9

https://orgmode.org/org.html#History-and-Acknowledgments
https://orgmode.org/org.html#History-and-Acknowledgments
https://orgmode.org/org.html#History-and-Acknowledgments
https://web.archive.org/web/20010603191223/http://www.eisentraut.org/resources/yaml-spec/yaml-spec-01pre.html


Rikui Huang, Wei Wei, Xiaoye Qu, Wenfeng Xie, Xi-636
anling Mao, and Dangyang Chen. 2024. Joint multi-637
facts reasoning network for complex temporal ques-638
tion answering over knowledge graph. In ICASSP639
2024-2024 IEEE International Conference on Acous-640
tics, Speech and Signal Processing (ICASSP), pages641
10331–10335. IEEE.642

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-643
taka Matsuo, and Yusuke Iwasawa. 2022. Large644
language models are zero-shot reasoners. Advances645
in neural information processing systems, 35:22199–646
22213.647

Leslie Lamport. 1985. Latex : A document preparation648
system.649

Chin-Yew Lin. 2004. Rouge: A package for automatic650
evaluation of summaries. In Text summarization651
branches out, pages 74–81.652

Zhaoyang Liu, Zeqiang Lai, Zhangwei Gao, Erfei Cui,653
Zhiheng Li, Xizhou Zhu, Lewei Lu, Qifeng Chen,654
Yu Qiao, Jifeng Dai, et al. 2023. Controlllm: Aug-655
ment language models with tools by searching on656
graphs. arXiv preprint arXiv:2310.17796.657

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-658
Jing Zhu. 2002. Bleu: a method for automatic evalu-659
ation of machine translation. In Proceedings of the660
40th annual meeting of the Association for Computa-661
tional Linguistics, pages 311–318.662

Panupong Pasupat and Percy Liang. 2015. Compo-663
sitional semantic parsing on semi-structured tables.664
arXiv preprint arXiv:1508.00305.665

Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsit-666
sulin, Mehran Kazemi, Rami Al-Rfou, and Jonathan667
Halcrow. 2024. Let your graph do the talking: En-668
coding structured data for llms. arXiv preprint669
arXiv:2402.05862.670

Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martín671
Ugarte, and Domagoj Vrgoč. 2016. Foundations of672
json schema. In Proceedings of the 25th interna-673
tional conference on World Wide Web, pages 263–674
273.675

Sameer Pimparkhede, Mehant Kammakomati, Srikanth676
Tamilselvam, Prince Kumar, Ashok Pon Kumar, and677
Pushpak Bhattacharyya. 2024. Doccgen: Document-678
based controlled code generation. arXiv preprint679
arXiv:2406.11925.680

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,681
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,682
Adam R Brown, Adam Santoro, Aditya Gupta,683
Adrià Garriga-Alonso, et al. 2022. Beyond the684
imitation game: Quantifying and extrapolating the685
capabilities of language models. arXiv preprint686
arXiv:2206.04615.687

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and688
Dongmei Zhang. 2024. Table meets llm: Can large689
language models understand structured table data?690

a benchmark and empirical study. In Proceedings 691
of the 17th ACM International Conference on Web 692
Search and Data Mining, pages 645–654. 693

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding, 694
Chao Pang, Junyuan Shang, Jiaxiang Liu, Xuyi Chen, 695
Yanbin Zhao, Yuxiang Lu, et al. 2021. Ernie 3.0: 696
Large-scale knowledge enhanced pre-training for lan- 697
guage understanding and generation. arXiv preprint 698
arXiv:2107.02137. 699

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se- 700
bastian Gehrmann, Yi Tay, Hyung Won Chung, 701
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, 702
Denny Zhou, et al. 2022. Challenging big-bench 703
tasks and whether chain-of-thought can solve them. 704
arXiv preprint arXiv:2210.09261. 705

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, 706
Suqi Cheng, Dawei Yin, and Chao Huang. 2023a. 707
Graphgpt: Graph instruction tuning for large lan- 708
guage models. arXiv preprint arXiv:2310.13023. 709

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, 710
Suqi Cheng, Dawei Yin, and Chao Huang. 2024. 711
Graphgpt: Graph instruction tuning for large lan- 712
guage models. In Proceedings of the 47th Inter- 713
national ACM SIGIR Conference on Research and 714
Development in Information Retrieval, pages 491– 715
500. 716

Xiangru Tang, Yiming Zong, Yilun Zhao, Arman 717
Cohan, and Mark Gerstein. 2023b. Struc-bench: 718
Are large language models really good at gener- 719
ating complex structured data? arXiv preprint 720
arXiv:2309.08963. 721

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 722
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 723
Baptiste Rozière, Naman Goyal, Eric Hambro, 724
Faisal Azhar, et al. 2023a. Llama: Open and ef- 725
ficient foundation language models. arXiv preprint 726
arXiv:2302.13971. 727

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 728
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 729
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 730
Bhosale, et al. 2023b. Llama 2: Open founda- 731
tion and fine-tuned chat models. arXiv preprint 732
arXiv:2307.09288. 733

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi 734
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan- 735
and-solve prompting: Improving zero-shot chain-of- 736
thought reasoning by large language models. arXiv 737
preprint arXiv:2305.04091. 738

Guanyuan Yu, Xv Wang, Qing Li, and Yu Zhao. 2024. 739
Fusing llms and kgs for formal causal reasoning 740
behind financial risk contagion. arXiv preprint 741
arXiv:2407.17190. 742

Hanyang Yuan, Jiarong Xu, Cong Wang, Ziqi Yang, 743
Chunping Wang, Keting Yin, and Yang Yang. 2024. 744
Unveiling privacy vulnerabilities: Investigating the 745
role of structure in graph data. In Proceedings of 746

10

https://api.semanticscholar.org/CorpusID:60891396
https://api.semanticscholar.org/CorpusID:60891396
https://api.semanticscholar.org/CorpusID:60891396


the 30th ACM SIGKDD Conference on Knowledge747
Discovery and Data Mining, pages 4059–4070.748

Xiaokang Zhang, Jing Zhang, Zeyao Ma, Yang Li,749
Bohan Zhang, Guanlin Li, Zijun Yao, Kangli750
Xu, Jinchang Zhou, Daniel Zhang-Li, et al. 2024.751
Tablellm: Enabling tabular data manipulation by752
llms in real office usage scenarios. arXiv preprint753
arXiv:2403.19318.754

Qifang Zhao, Weidong Ren, Tianyu Li, Xiaoxiao Xu,755
and Hong Liu. 2023. Graphgpt: Graph learning with756
generative pre-trained transformers. arXiv preprint757
arXiv:2401.00529.758

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan759
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,760
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.761
Judging llm-as-a-judge with mt-bench and chatbot762
arena. Advances in Neural Information Processing763
Systems, 36:46595–46623.764

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen,765
Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong766
Wen, and Jiawei Han. 2023. Don’t make your llm767
an evaluation benchmark cheater. arXiv preprint768
arXiv:2311.01964.769

A Case Study770

Two case studies illustrate the evaluation setup of771

StrucText-Eval (Figure 8). In the JSON-based Text772

Retrieval task, GPT4-Turbo accurately identified773

deeply nested objects and adhered to the free-text774

format for outputting dictionary types, reflecting775

its firm grasp of structured text. Minimax also776

produced a correct answer but deviated from the777

prescribed format, a common issue explored in ex-778

isting research. In contrast, GPT4-Turbo initially779

failed to merge two tables and deduce the correct780

record count without fine-tuning in the SQL-based781

Join task. However, a finetuned model steadily im-782

proved, achieving the correct solution after 5100783

training steps. This progression demonstrates the784

importance of task-specific fine-tuning in enhanc-785

ing models’ capabilities in handling complex SQL786

queries and database structures.787

B Few-Shot Demonstration on Structural788

Text Inference789

Figure 9 demonstrates that model performance790

improves with an increasing number of demon-791

strations under Few-Shot settings. In the 3-shot792

scenario, GPT-4 achieves an accuracy of 69.5%,793

significantly outperforming models like Gemini-794

Pro-Flash and Mistral, which remain around 21%795

or lower. The Qwen-2-72B-Instruct model shows796

Aspect Requirements

Structure
• Maintain the original data structure and format
• Do not alter the nesting levels or relationships

Content

• Use real-world examples from assigned scenarios (e.g., e-
commerce, finance, sports)

• Ensure data values are realistic and scenario-appropriate
• Maintain semantic relationships between related fields

Reference

• Base modifications on actual examples from the assigned
scenario

• Keep data consistency within each reference
• Avoid sensitive or identifiable information

Table 5: Guidelines for Manual Data Annotation

steady improvement as more examples are pro- 797

vided, although it continues to trail behind GPT- 798

4. Generally, performance increases from 1-shot 799

to 3-shot, but the gains become less pronounced 800

at 5-shot, with some models showing overfitting. 801

In contrast, the performance of CoT and PS ap- 802

proaches remains less consistent as the number of 803

demonstrations increases. 804

This trend suggests that a more significant 805

number of examples helps models to understand 806

problem structures and reasoning processes bet- 807

ter, thereby enhancing their inference capabili- 808

ties. However, providing too many examples 809

can lead to models overfitting to specific patterns, 810

which diminishes their ability to generalize to new 811

tasks. The quality and diversity of examples are 812

critical—high-quality examples can guide practi- 813

cal reasoning, while poor examples may mislead 814

the models. While few-shot learning enhances 815

model adaptability, those with limited pretraining 816

data or lower parameter counts may struggle to 817

capitalize on this approach entirely. For CoT and 818

PS methods, the reasoning process requires addi- 819

tional steps, which means that simply increasing 820

the number of few-shot demonstrations does not 821

consistently yield performance improvements. 822

C Detail about Manual Works 823

This paper involves the manual works in writing 824

Question Templates, acquisition of human perfor- 825

mance on StrucText-Eval-Hard-Test and construct- 826

ing Real-Test Suite. All annotation works are car- 827

ried out by the authors of this paper, so there is no 828

payment for manual annotation. 829

C.1 Development of Question Templates 830

The development and validation of Question Tem- 831

plates constituted a significant component of our 832

methodological framework. Three researchers col- 833

laboratively formulated and verified 29 distinct 834

Question Templates. To ensure transparency and 835

11



Figure 8: Cases for performance of different LLMs and finetuned stages on Structured Text.

reproducibility, we have made these templates ac-836

cessible to the academic community through our837

public repository.838

C.2 Human Performance Evaluation839

To establish a robust human baseline for the840

StrucText-Eval-Hard-Test, we conducted a com-841

prehensive evaluation process. Three researchers842

independently responded to an identical set of 500843

questions, with each researcher dedicating approx-844

imately 17 hours to this task. The human per-845

formance metrics presented in Table 4 represent846

the mean scores calculated from this substantial847

dataset of 1,500 responses.848

C.3 Construction of Real-Test Suite849

The development of the StrucText-Eval-Real-Test850

Suite involved five researchers in a systematic an-851

notation process. Initially, the first author gener-852

ated 928 diverse scenario categories, encompassing853

domains such as athletics, financial services, glass-854

ware specifications, academic writing etc. Subse-855

quently, these scenarios were systematically as-856

signed to individual questions. The annotators857

were tasked with modifying samples according858

to their assigned scenarios, adhering to specific859

annotation guidelines as detailed in Table 5. This860

process resulted in a comprehensive test suite of861

Model Human GPT-4o 4o-Mini RougeL BLEU EM

GPT-4o-Turbo 56.13 55.75 51.00 51.1 45.94 40.31
GPT-4o-Mini 36.15 36.02 40.73 39.3 46.08 33.93
Gemini1.5-Pro 12.39 12.80 10.62 11.2 12.60 8.75
Gemini1.5-Pro-Flash 13.83 13.19 12.96 12.9 14.01 9.67
GLM-4-Plus 52.90 52.62 46.02 47.3 32.75 38.27
GLM-4-Flash 41.50 41.34 38.99 40.9 37.43 34.80
QWen-2-7B 32.95 31.99 30.10 29.6 27.98 18.70
QWen-2-72B 40.87 38.66 31.24 42.5 37.76 35.67
Llama-3.1-8B 21.78 21.98 22.36 22.3 20.88 14.75
Llama-3.1-70B 46.64 41.38 40.83 45.8 41.50 27.46
Llama-3.1-405B 35.01 35.97 35.88 34.4 28.00 21.29
Mistral-0.2-7B 7.85 7.33 7.32 7.0 5.09 4.47

Table 6: Performance of all LLMs and Humans on
StrucText-Eval-Hard based on different metrics (1,000
samples for each metrics).

928 questions. 862

D Other Metrics 863

Given the substantial expense in evaluating all re- 864

sults using multiple metrics, we selected a subset 865

of 300 test results for each model on the StrucText- 866

Hard dataset, using a naive prompting method for 867

assessment. The complete evaluation results are 868

presented in Table 6. 869

E Detail Prompt 870

The prompts used in the experiment can be catego- 871

rized into three types: Example of Base Prompts 872

are shown in Tab. 7. Example of CoT Prompts are 873

shown in Tab. 8. Example of Few-Shot Prompts 874

12



Figure 9: The model’s performance on StrucText-Eval-
Test under different Few-Shot Demonstration settings.

are shown in Tab. 9. Example of Rule Hints are875

shown in Tab. 10.876

F Examples for All Languages & Tasks877

In this section, we provide detailed examples for878

each language we discuss, illustrating how specific879

tasks are executed within those languages. These880

examples are meant to offer clear insights into the881

application and utility of each language in various882

contexts. Through these demonstrations, readers883

can better understand the unique features and capa-884

bilities of each language when applied to different885

tasks.886

F.1 Tree887

See Figure 10.888

F.2 Tabular889

See Figure 11.890

F.3 JSON891

See Figure 12.892

F.4 YAML893

See Figure 13.894

F.5 XML895

See Figure 14.896

Figure 10: Sample input and tasks of Tree.

o->p\np->q\nq->r\nq->s\nq->t\nq->u\np->v\nv->w\nv-
>x\nv->y\nv->z\np->ab\nab->bb\nab->cb\nab->db\nab-
>eb\np->fb\nfb->gb\nfb->hb\nfb->ib\nfb->jb\no-
>kb\nkb->lb\nlb->mb\nlb->nb\nlb->ob\nlb->pb\nkb-
>qb\nqb->rb\nqb->sb\nqb->tb\nqb->ub\nkb->vb\nvb-
>wb\nvb->xb\nvb->yb\nvb->zb\nkb->ac\nac->bc\nac-
>cc\nac->dc\nac->ec\no->fc\nfc->gc\ngc->hc\ngc-
>ic\ngc->jc\ngc->kc\nfc->lc\nlc->mc\nlc->nc\nlc-
>oc\nlc->pc\nfc->qc\nqc->rc\nqc->sc\nqc->tc\nqc-
>uc\nfc->vc\nvc->wc\nvc->xc\nvc->yc\nvc->zc\no-
>ad\nad->bd\nbd->cd\nbd->dd\nbd->ed\nbd->fd\nad-
>gd\ngd->hd\ngd->id\ngd->jd\ngd->kd\nad->ld\nld-
>md\nld->nd\nld->od\nld->pd\nad->qd\nqd->rd\nqd-
>sd\nqd->td\nqd->ud

What is the path from the root node to the node z. Answer should look like A->D->H.

Input

Question

o->p->v->z

Ground Truth

Task 1

What is the depth of node nd? Answer an integer, root is of depth 0.

Question

3

Ground Truth

Task 2

What is the height of the root node, i.e., the number of edges in the longest path from root node 
to any leaf nodes? Answer an integer, leaf is of height 0.

Question

3

Ground Truth

Task 3

F.6 LaTeX 897

See Figure 15. 898

F.7 Markdown 899

See Figure 16. 900

F.8 Org 901

See Figure 17. 902

G Rules & Rule Hints 903

We list all the rules in Regular Express in this sec- 904

tion, and list all the hints for these rules in Lis. 1. 905

G.1 Tree 906

We build tree-structured input as a list of edges in 907

a tree, in a format of “father->child”, sepa- 908

rated by newline. 909

identifier := [a-z]+

Edge := identifier->identifier

Tree := Edge(\nEdge)*

InputF ile := Tree

910

13



# -*- coding: utf-8 -*-
Variables:
!<INPUT 0>! – Language
!<INPUT 1>! – Question
!<INPUT 2>! – Reference
!<INPUT 3>! – Requirement
<commentblockmarker>###</commentblockmarker>
you are a !<INPUT 0>! file parser, you are required to answer questions pertaining to the given !<INPUT
0>! file.

### Question:
!<INPUT 1>!

### Reference:
!<INPUT 2>!

### Requirement:
!<INPUT 3>!

Please follow the format below for your output:

### Answer:
xxxxx

Table 7: Prompt of Naive Prompt method

G.2 Tabular911

Formally, input texts are classified as tabular data912

given that they are composed of a list of newline913

separated lines, each of which is a list of text cells914

delimited by comma.915

head := [A-Z][a-z]*

cell := [A-Za-z0-9]+

headline := identifier(, identifier)*

subline := cell(, cell)*

Tabular := headline(\nsubline)+

InputF ile := Tabular

916

G.3 JSON917

Due to the inherit hierarchy structure of Object918

Notations, we adopted a recursive scheme to define919

our input texts.920

lb(left bracket) := [[]

rb := []]

val := [a-z]+

key := [A-Z]+

JSON := {
"id":"val"

"subs":lbrb|lbJSON(,\nJSON

)*rb

("key":"val"\n)+

}
InputF ile := JSON

921

G.4 YAML 922

The rules for constructing YAML and XML input 923

are similarly recursive. 924

Y AML :=

id : val

subs : lbrb|(\n(\t) ∗ - Y AML)

+ (key : val\n)+

InputF ile := Y AML

925

14



# -*- coding: utf-8 -*-
Variables:
!<INPUT 0>! – Language
!<INPUT 1>! – Question
!<INPUT 2>! – Reference
!<INPUT 3>! – Requirement
<commentblockmarker>###</commentblockmarker>
you are a !<INPUT 0>! file parser, you are required to answer questions pertaining to the given !<INPUT
0>! file.

### Question:
!<INPUT 1>!

### Reference:
!<INPUT 2>!

### Requirement:
!<INPUT 3>!

Please follow the format below for your output:

### Reasoning Prcess:
xxxx

### Answer:
xxxxx

Table 8: Prompt of CoT method

G.5 XML926

firstline := <?xml version="1.0"

textttencoding =“UTF-8”?>

XML :=

firstline

XMLObject

tag := [A-Z]+

val := [a-z]+

attr := [A-Z]+="val"

content := [a-z \n\t]*

XMLObject :=

<tag( attr) ∗ >
((\t) ∗XMLObject)∗
content

</tag>

InputF ile := XML

927

G.6 LaTeX928

In LaTeX input texts, we include textbf and929

includegraphics commands to accommo-930

date for the text retrieval tasks. The headings serve 931

as anchors for structure traversal. 932

command := \(section|subsection|
subsubsection)

heading := command{[a-z]+}|[a-z]+
inclg :=

\includegraphics[width=

0.5\textwidth]{[a-z]+[.]
(png|jpg|jpeg|gif)}

bf := \textbf{[a-z ]+}
content := ([a-z ]|bf |inclg)+
LaTeX := heading\ncontent(\nLaTeX)∗

InputF ile := LaTeX

933

G.7 Markdown 934

In markdown input texts, the syntax counterparts 935

for heading, text face and including figure are em- 936

ployed in our dataset. 937

15



# -*- coding: utf-8 -*-
Variables:
!<INPUT 0>! – Language
!<INPUT 1>! – Demonstration
!<INPUT 2>! – Question
!<INPUT 3>! – Reference
!<INPUT 4>! – Requirement
<commentblockmarker>###</commentblockmarker>
you are a !<INPUT 0>! file parser, you are required to answer questions pertaining to the given !<INPUT
0>! file.

### Demonstration:
!<INPUT 1>!

### Question:
!<INPUT 2>!

### Reference:
!<INPUT 3>!

### Requirement:
!<INPUT 4>!

Please follow the format below for your output:

### Answer:
xxxxx

Table 9: Prompt of Few Shot method

heading := [#]* [a-z]+

inclg := !lbaltrb\([a-z]+[.](png

|jpg|jpeg|gif)

"hover text"\)

bf := [*]{2}[a-z ]+[*]{2}

content := ([a-z ]|bf |inclg)+
Markdown := heading\n

content(\nMarkdown)∗
InputF ile := Markdown

938

G.8 Org939

In Org input texts, the syntax is obtained from940

JSON construction rules by replacing the markups941

for heading, including figures and bold font face. 942

heading := [*]* [a-z]+

inclg := lb{2}[a-z]+[.](png|jpg|
jpeg|gif)rb{2}

bf := [*][a-z ]+[*]

content := ([a-z ]|bf |inclg)+
Org := heading\ncontent(\nOrg)∗

InputF ile := Org

943

Listing 1: All rule hints in StrucText-Eval
944

SQL,Tree,JSON,YAML,XML,Markdown,LaTeX, 945
↪→ ORG 946

To find the value of specific field of 947
↪→ record with specified primeKey. 948
↪→ You have to first, locate the line 949
↪→ with the specific primeKey. Then 950
↪→ find the required value under the 951
↪→ desired column in that line. 952

To get the number of people with salary 953
↪→ above a threshold, you need to 954
↪→ find the table with salary 955
↪→ information. Then you go over each 956
↪→ line and check the salary field. 957

16



# -*- coding: utf-8 -*-
Variables:
!<INPUT 0>! – Language
!<INPUT 1>! – Question
!<INPUT 2>! – Reference
!<INPUT 3>! – Requirement
!<INPUT 4>! – Rule Hint
<commentblockmarker>###</commentblockmarker>
you are a !<INPUT 0>! file parser, you are required to answer questions pertaining to the given !<INPUT
0>! file.

### Question:
!<INPUT 1>!

### Reference:
!<INPUT 2>!

### Requirement:
!<INPUT 3>!

### Rule Hint:
!<INPUT 4>!

Please follow the format below for your output:

### Answer:
xxxxx

Table 10: Prompt of \w Hint method

↪→ During the process count only958
↪→ those lines with value of salary959
↪→ strictly greater than the960
↪→ specified threshold towards your961
↪→ final sum. The sum after checking962
↪→ each line is the right answer.963

To get the number of female, first find964
↪→ the table with column name ’’.965
↪→ Then check each line for field966
↪→ gender, and count these lines with967
↪→ value ’female’ towards your final968
↪→ sum. The process applies to969
↪→ finding number of male too.970

To get the number of people living in971
↪→ specified city who are also taller972
↪→ than threshold, you need to first973
↪→ join the two table on primeKey,974
↪→ and check each row of joined table975
↪→ for lines that satisfies both976
↪→ condition, i.e., lines with city977
↪→ specified in query and height978
↪→ strictly greater than threshold.979
↪→ The total number of such rows is980
↪→ the right answer.981

To answer the height of tree, you need982
↪→ to take a recursive strategy. For983
↪→ each node, you will find its984
↪→ height by first finding its985
↪→ children’s heights. Then, the986

↪→ height of node is the maximum 987
↪→ subtree heights plus 1. The base 988
↪→ case occurs when a node has no 989
↪→ children, i.e., it’s a leaf node. 990
↪→ Leaf’s height is defined to be 0, 991
↪→ without the need of further 992
↪→ queries. Then the height the tree 993
↪→ is the height of its root node. 994

To find the depth of a node, you need to 995
↪→ find the number of edges from 996
↪→ root to node. You have to start 997
↪→ from the root with depth 0 and 998
↪→ assign the depth for each node 999
↪→ recursively. For any given node, 1000
↪→ it gets depth of current depth. 1001
↪→ Increment the depth by 1 before go 1002
↪→ to its subtree and repeat the 1003
↪→ process until every node gets a 1004
↪→ depth. 1005

To get the path from root to a node, you 1006
↪→ need to find recursively. For any 1007
↪→ node, you can find the path to 1008
↪→ the target node by find path from 1009
↪→ its children to target. Then check 1010
↪→ each child’s output, if any child 1011
↪→ returns with valid path instead 1012
↪→ of an empty path indicating target 1013
↪→ -not-found, the path from node to 1014
↪→ target is that path from its child 1015

17



Figure 11: Sample input and tasks of tabular data.

primeKey gender age name height weight color
a female 23 n 157 144 olive
b male 39 o 191 104 swarthy
c male 14 p 134 162 black
d male 39 q 163 124 brown

primeKey status salary companylocation
a employed 460789 TwitterNY
b retired861910 NVIDIA GA
c retired360565 Meta CA
d employed 350426 Google GA

What is the color of record with primeKey c

Input

Question

black

Ground Truth

Task 1

How many people who work in IL are taller than 171?

Question

0

Ground Truth

Task 2

How many people work with salary more than 516275?

Question

1

Ground Truth

Task 3

How many people are female?

Question

1

Ground Truth

Task 4

↪→ to target prepended with itself.1016
↪→ The answer can be found by1017
↪→ searching with root as starting1018
↪→ point.1019

To find the object with specified id,1020
↪→ you need to first parse the json1021
↪→ file and get the outermost object,1022
↪→ starting from which search the1023
↪→ subs field recursively and looking1024
↪→ for the desired value in id field1025
↪→ for each visited object. Retrieve1026
↪→ the content of that object once1027
↪→ found.1028

To find the first object’s id of subs,1029
↪→ first parse the json file and get1030
↪→ the outermost object, in the1031
↪→ outermost object’s subs list, get1032
↪→ the first element. That element is1033
↪→ another object, and its id is the1034
↪→ answer.1035

To find the error in the json file, you1036
↪→ need to parse the json file and1037
↪→ report any syntax error if1038
↪→ encountered any. Potential errors1039
↪→ include missing ending curly1040
↪→ braces.1041

To get the path to access specified1042
↪→ value. You have to do a recursive1043

Figure 12: Sample input and tasks of JSON.

{"id":"o",
"Z":"u",
"subs":[
{
"id":"p",
"Y":"t",
"subs":[
{
"id":"q",
"X":"s",
"subs":[]
}]}

]
}

What is the first object’s id of subs?

Input

Question

p

Ground Truth

Task 1

What is the object with id p? The content should be an excerpt as it appears in the JSON file.

Question

{\n"id":"p",\n"Y":"t",\n"subs":[\n{\n"id":"q",\n"X":"s",\n"subs":[]}]}

Ground Truth

Task 2

How to access value ”u"? Answer should be like obj[key or index 1][key or index 2][key or 
index 3]...

Question

obj["Z"]

Ground Truth

Task 3

What are the most deeply nested objects, i.e., no value of type list or dict?The content should 
be an excerpt as they appear in the JSON file, separated by \\n\\n.

Question

{\n  "id":"q",\n  "X":"s",\n  "subs":[]\n  }

Ground Truth

Task 4

Is there any structural error in this JSON? If so, give the answer 'True' and spot them out. If it 
is free from error, just give the answer 'False'.

Question

True

Ground Truth

Task 5

{"id":"o",
"Z":"u",
"subs":[
{
"id":"p",
"Y":"t",
"subs":[
"id":"q",
"X":"s",
"subs":]
]}

]
}

Input for Task 5

↪→ search along the subs fields, 1044
↪→ starting from the outermost parsed 1045
↪→ object. For each visited object, 1046
↪→ check each fields except for subs, 1047
↪→ and record the path along the way 1048
↪→ , i.e., subs inside brackets and 1049
↪→ index into subs inside brackets, 1050
↪→ and at which field you find the 1051
↪→ value. 1052

To get the most deeply nested objects, 1053
↪→ start from the outermost object, 1054
↪→ recursively search along the subs 1055
↪→ fields. For each object, check its 1056
↪→ subs field, any object with an 1057
↪→ empty subs is one most deeply 1058
↪→ nested object. 1059

18



Figure 13: Sample input and tasks of YAML.

id: "s"
Z: e,
subs: 
- id: "t"

Y: d,
subs: 
- id: "u"

X: c,
subs: []

What is the first object's id of subs?

Input

Question

t

Ground Truth

Task 1

How to access value ”d"? Answer should be like obj[key or index 1][key or index 2][key or 
index 3]...

Question

obj[“subs”][0][“Y”]

Ground Truth

Task 2

Is there any structural error in this YAML? If so, give the answer 'True' and spot them out. If it 
is free from error, just give the answer 'False'.

Question

True

Ground Truth

Task 3

id: "s"
Z: e,
subs: 
- id: "t"

Y: d
subs: 
- id: "u"

X:
subs: []

Input for Task 3

What is the object with id t? The content should be an excerpt as it appears in the YAML file.

Question

id: "t”\n  Y: d,\n  subs: \n  - id: "u”\n    X: c,\n    subs: []

Ground Truth

Task 4

What are the most deeply nested objects, i.e., no value of type list or dict?The content should 
be an excerpt as they appear in the YAML file, separated by \\n\\n.

Question

id: "u”\n    X: c,\n    subs: []

Ground Truth

Task 5

To find the object with specified id,1060
↪→ you need to first parse the yaml1061
↪→ file and get the outermost object,1062
↪→ starting from which search the1063
↪→ subs field recursively and looking1064
↪→ for the desired value in id field1065
↪→ for each visited object. Retrieve1066
↪→ the content of that object once1067
↪→ found.1068

To find the first object’s id of subs,1069
↪→ first parse the yaml file and get1070
↪→ the outermost object, in the1071
↪→ outermost object’s subs list, get1072
↪→ the first element. That element is1073
↪→ another object, and its id is the1074
↪→ answer.1075

To find the error in the yaml file, you1076
↪→ need to parse the yaml file and1077
↪→ report any syntax error if1078

Figure 14: Sample input and tasks of XML.

<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<A Z=\"v\">\n <B Y=\"u\">\n  <C>\n   <D>\n    dentist\n   
<E X=\"t\">\n    essence\n   </E>\n   <F W=\"s\">\n    far\n   <G V=\"r\">\n    groot\n   cafe\n  
<H>\n   <I>\n    idiot\n   <J>\n    jargon\n   <K>\n    kangaroo\n   </K>\n   <L>\n    lamb\n   
halo\n  <M U=\"q\">\n   <N T=\"p\">\n    nob\n   <O>\n    oops\n   <P S=\"o\">\n    perish\n   
<Q>\n    qualify\n   monkey\n  <R>\n   <S>\n    salvage\n   <T>\n    transformer\n   <U R=\"n\">\n    
unique\n   <V Q=\"m\">\n    vigor\n   ravish\n  banana\n <W P=\"l\">\n  <X>\n   <Y>\n    yogurt\n   
<Z O=\"k\">\n    zen\n   <AB>\n    apple banana\n   </AB>\n   <BB>\n    banana banana\n   X-ray\n  
</X>\n  <CB N=\"j\">\n   <DB>\n    dentist banana\n   <EB M=\"i\">\n    essence banana\n   <FB 
L=\"h\">\n    far banana\n   <GB>\n    groot banana\n   cafe banana\n  <HB K=\"g\">\n   <IB>\n    
idiot banana\n   <JB>\n    jargon banana\n   <KB>\n    kangaroo banana\n   </KB>\n   <LB J=\"f\">\n    
lamb banana\n   halo banana\n  <MB I=\"e\">\n   <NB H=\"d\">\n    nob banana\n   <OB G=\"c\">\n    
oops banana\n   <PB>\n    perish banana\n   <QB F=\"b\">\n    qualify banana\n   monkey banana\n  
wake\n <RB E=\"a\">\n  <SB D=\"zy\">\n   <TB C=\"yy\">\n    transformer banana\n   <UB>\n    unique 
banana\n   <VB B=\"xy\">\n    vigor banana\n   </VB>\n   <WB A=\"wy\">\n    wake banana\n   salvage 
banana\n  </SB>\n  <XB>\n   <YB>\n    yogurt banana\n   <ZB ZY=\"vy\">\n    zen banana\n   <AC>\n    
apple cafe\n   </AC>\n   <BC>\n    banana cafe\n   X-ray banana\n  </XB>\n  <CC>\n   <DC 
YY=\"uy\">\n    dentist cafe\n   <EC XY=\"ty\">\n    essence cafe\n   <FC WY=\"sy\">\n    far 
cafe\n   <GC>\n    groot cafe\n   cafe cafe\n  </CC>\n  <HC>\n   <IC VY=\"ry\">\n    idiot cafe\n   
<JC UY=\"qy\">\n    jargon cafe\n   <KC TY=\"py\">\n    kangaroo cafe\n   <LC>\n    lamb cafe\n   
halo cafe\n  ravish banana\n <MC>\n  <NC SY=\"oy\">\n   <OC>\n    oops cafe\n   <PC>\n    perish 
cafe\n   </PC>\n   <QC>\n    qualify cafe\n   <RC>\n    ravish cafe\n   nob cafe\n  <SC 
RY=\"ny\">\n   <TC>\n    transformer cafe\n   <UC>\n    unique cafe\n   <VC QY=\"my\">\n    vigor 
cafe\n   </VC>\n   <WC>\n    wake cafe\n   salvage cafe\n  </SC>\n  <XC>\n   <YC>\n    yogurt 
cafe\n   </YC>\n   <ZC PY=\"ly\">\n    zen cafe\n   <AD OY=\"ky\">\n    apple dentist\n   </AD>\n   
<BD>\n    banana dentist\n   X-ray cafe\n  <CD NY=\"jy\">\n   <DD>\n    dentist dentist\n   <ED 
MY=\"iy\">\n    essence dentist\n   <FD>\n    far dentist\n   <GD LY=\"hy\">\n    groot dentist\n   
cafe dentist\n  </CD>\n  monkey cafe\n apple

What is the content of tag HB? The content should be an excerpt as it appears in the XML file.

Input for Task 3

Question

<IB>\n  idiot banana\n </IB>\n <JB F=\"jy\">\n  jargon banana\n </JB>\n <KB>\n  kangaroo banana\n 
</KB>\n <LB>\n  lamb banana\n </LB>\n halo banana

Ground Truth

Task 1

What is the tag with attribute of value xy?

Question

N

Ground Truth

Task 2

Is there any structural error in this XML? If so, give the answer 'True' and spot them out. If it is 
free from error, just give the answer 'False'.

Question

True

Ground Truth

Task 3

<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<A>\n <B>\n  <C>\n   <D Z=\"d\">\n    dentist\n   
</D>\n   <E>\n    essence\n   </E>\n   <F>\n    far\n   </F>\n   <G Y=\"c\">\n    groot\n   </G>\n   
cafe\n  </C>\n  <H X=\"b\">\n   <I>\n    idiot\n   </I>\n   <J W=\"a\">\n    jargon\n   </J>\n   
<K>\n    kangaroo\n   </K>\n   <L V=\"zy\">\n    lamb\n   </L>\n   halo\n  </H>\n  <M U=\"yy\">\n   
<N T=\"xy\">\n    nob\n   </N>\n   <O S=\"wy\">\n    oops\n   </O>\n   <P R=\"vy\">\n    perish\n   
</P>\n   <Q Q=\"uy\">\n    qualify\n   </Q>\n   monkey\n  </M>\n  <R>\n   <S P=\"ty\">\n    
salvage\n   </S>\n   <T O=\"sy\">\n    transformer\n   </T>\n   <U>\n    unique\n   </U>\n   <V 
N=\"ry\">\n    vigor\n   </V>\n   ravish\n  </R>\n  banana\n </B>\n <W>\n  <X>\n   <Y M=\"qy\">\n    
yogurt\n   </Y>\n   <Z L=\"py\">\n    zen\n   </Z>\n   <AB>\n    apple banana\n   </AB>\n   <BB 
K=\"oy\">\n    banana banana\n   </BB>\n   X-ray\n  </X>\n  <CB>\n   <DB J=\"ny\">\n    dentist 
banana\n   </DB>\n   <EB I=\"my\">\n    essence banana\n   </EB>\n   <FB H=\"ly\">\n    far 
banana\n   </FB>\n   <GB>\n    groot banana\n   </GB>\n   cafe banana\n  </CB>\n  <HB G=\"ky\">\n   
<IB>\n    idiot banana\n   </IB>\n   <JB F=\"jy\">\n    jargon banana\n   </JB>\n   <KB>\n    
kangaroo banana\n   </KB>\n   <LB>\n    lamb banana\n   </LB>\n   halo banana\n  </HB>\n  <MB>\n   
<NB>\n    nob banana\n   </NB>\n   <OB E=\"iy\">\n    oops banana\n   </OB>\n   <PB>\n    perish 
banana\n   </PB>\n   <QB>\n    qualify banana\n   </QB>\n   monkey banana\n  </MB>\n  wake\n </W>\n 
<RB D=\"hy\">\n  <SB>\n   <TB>\n    transformer banana\n   </TB>\n   <UB>\n    unique banana\n   
</UB>\n   <VB C=\"gy\">\n    vigor banana\n   </VB>\n   <WB B=\"fy\">\n    wake banana\n   </WB>\n   
salvage banana\n  </SB>\n  <XB A=\"ey\">\n   <YB ZY=\"dy\">\n    yogurt banana\n   </YB>\n   <ZB>\n    
zen banana\n   </ZB>\n   <AC YY=\"cy\">\n    apple cafe\n   </AC>\n   <BC>\n    banana cafe\n   
</BC>\n   X-ray banana\n  </XB>\n  <CC XY=\"by\">\n   <DC WY=\"ay\">\n    dentist cafe\n   </DC>\n   
<EC VY=\"zx\">\n    essence cafe\n   </EC>\n   <FC UY=\"yx\">\n    far cafe\n   </FC>\n   <GC>\n    
groot cafe\n   </GC>\n   cafe cafe\n  </CC>\n  <HC TY=\"xx\">\n   <IC>\n    idiot cafe\n   </IC>\n   
<JC SY=\"wx\">\n    jargon cafe\n   </JC>\n   <KC RY=\"vx\">\n    kangaroo cafe\n   </KC>\n   
<LC>\n    lamb cafe\n   </LC>\n   halo cafe\n  </HC>\n  ravish banana\n </RB>\n <MC QY=\"ux\">\n  
<NC PY=\"tx\">\n   <OC>\n    oops cafe\n   </OC>\n   <PC OY=\"sx\">\n    perish cafe\n   </PC>\n   
<QC>\n    qualify cafe\n   </QC>\n   <RC NY=\"rx\">\n    ravish cafe\n   </RC>\n   nob cafe\n  
</NC>\n  <SC>\n   <TC MY=\"qx\">\n    transformer cafe\n   </TC>\n   <UC>\n    unique cafe\n   
</UC>\n   <VC>\n    vigor cafe\n   </VC>\n   <WC>\n    wake cafe\n   </WC>\n   salvage cafe\n  
</SC>\n  <XC LY=\"px\">\n   <YC KY=\"ox\">\n    yogurt cafe\n   </YC>\n   <ZC JY=\"nx\">\n    zen
cafe\n   </ZC>\n   <AD>\n    apple dentist\n   </AD>\n   <BD IY=\"mx\">\n    banana dentist\n   
</BD>\n   X-ray cafe\n  </XC>\n  <CD>\n   <DD HY=\"lx\">\n    dentist dentist\n   </DD>\n   <ED>\n    
essence dentist\n   </ED>\n   <FD GY=\"kx\">\n    far dentist\n   </FD>\n   <GD>\n    groot
dentist\n   </GD>\n   cafe dentist\n  </CD>\n  monkey cafe\n </MC>\n apple\n</A>

Input

↪→ encountered any. Potential errors 1079
↪→ include missing key before colon. 1080

To get the path to access specified 1081
↪→ value. You have to do a recursive 1082
↪→ search along the subs fields, 1083
↪→ starting from the outermost parsed 1084
↪→ object. For each visited object, 1085
↪→ check each fields except for subs, 1086
↪→ and record the path along the way 1087
↪→ , i.e., subs inside brackets and 1088
↪→ index into subs inside brackets, 1089
↪→ and at which field you find the 1090
↪→ value. 1091

To get the most deeply nested objects, 1092
↪→ start from the outermost object, 1093
↪→ recursively search along the subs 1094
↪→ fields. For each object, check its 1095
↪→ subs field, any object with an 1096

19



Figure 15: Sample input and tasks of LaTeX.

O
monkey \textbf{banana}nob wake yogurt groot wake 
jargon ravish
\section{p}
nob nob wake 
\textbf{cafe}yogur\includegraphics[width=0.5\textwid
th]{mh.jpeg}t groot wake jargon ravish
\subsection{q}
oops nob wake yogurt groot wake 
jargon\textbf{dentist} ravish

Extract all bold texts. Print those raw texts separated by \\n.

Input

Question

banana\ncafe\ndentist

Ground Truth

Task 1

Extract all included graph files. Print those file names separated by \\n.

Question

mh.jpeg

Ground Truth

Task 2

What is the content of 1th section? The content should be an excerpt as it appears in the LaTeX 
file, including the heading line and any sub-section.

Question

\section{p}
nob nob wake 
\textbf{cafe}yogur\includegraphics[width=0.5\textwidth]{mh.jpeg
}t groot wake jargon ravish
\subsection{q}
oops nob wake yogurt groot wake jargon\textbf{dentist} ravish

Ground Truth

Task 3

↪→ empty subs is one most deeply1097
↪→ nested object.1098

To find the content of a specific tag,1099
↪→ you need to search for desired tag1100
↪→ throughout the xml file. Once1101
↪→ located, find the surrounding left1102
↪→ and right angle, these area is1103
↪→ tha starting tag. Then find the1104
↪→ ending tag, which is the tag1105
↪→ surrounded by angle with exception1106
↪→ that right angle is preceded by a1107
↪→ slash. The content between1108
↪→ starting and ending tags is the1109
↪→ answer.1110

To find the tag name of particular1111
↪→ attribute value, just search the1112
↪→ file for that value and find the1113
↪→ surrounding left and right angles,1114
↪→ i.e., boundary of tag. The word1115
↪→ next to left angle is tag name.1116

To find the error in the xml file, you1117
↪→ need to parse the xml file and1118
↪→ report any syntax error if1119
↪→ encountered any. Potential errors1120
↪→ include missing ending tags.1121

To find the bold texts, search for1122
↪→ double stars, i.e., **, the1123
↪→ content between two occurrences of1124
↪→ double stars is the bold texts.1125
↪→ Note that the bold range should1126
↪→ start from the double stars1127
↪→ occurring at i-th spot throughout1128

Figure 16: Sample input and tasks of Markdown.

w
banana cafe vigor cafe peris![alt](mj.gif "hover 
text")h perish monkey wake
# x
cafe cafe vigor cafe perish peris**banana**h monkey 
wake
## y
dentist cafe vigor c**cafe**![alt](nj.jpg "hover 
text")afe perish perish monkey wake

Extract all bold texts. Print those raw texts separated by \\n.

Input

Question

cafe\nbanana

Ground Truth

Task 1

Extract all included image files. Print those file names separated by \\n.

Question

mj.gif\nnj.jpg

Ground Truth

Task 2

What is the content of 1th section? The content should be an excerpt as it appears in the 
markdown file, including the heading line and any sub-section.

Question

# x
cafe cafe vigor cafe perish peris**banana**h monkey wake
## y
dentist cafe vigor c**cafe**![alt](nj.jpg "hover text")afe
perish perish monkey wake

Ground Truth

Task 3

Figure 17: Sample input and tasks of Org.

p
kanga*lamb*roo zen yogurt X-ray halo zen nob qualify
* q
lamb zen yogurt X-ray halo zen nob qu[[ei.jpg]]alify
** r
monkey zen yogurt X-ray halo zen nob qualify

Extract all bold texts. Print those raw texts separated by \\n.

Input

Question

lamb

Ground Truth

Task 1

Extract all included image files. Print those file names separated by \\n.

Question

ei.jpg

Ground Truth

Task 2

What is the content of 1th subsection under 1th section? The content should be an excerpt as it 
appears in the org file, including the heading line and any sub-section.

Question

** r\nmonkey zen yogurt X-ray halo zen nob qualify

Ground Truth

Task 3

20



↪→ the whole input file, where i is1129
↪→ odd, and end with double stars1130
↪→ occurring at jth spot where j is1131
↪→ even. For example, text between1132
↪→ double stars appearing first and1133
↪→ second time.1134

To find the content of certain section,1135
↪→ starting from the headings start1136
↪→ with one hashtag, and go to the1137
↪→ ith heading as specified in number1138
↪→ of sections. Then start from that1139
↪→ line, look for j-th heading with1140
↪→ 2 hashtags as specified in1141
↪→ subsection number. For kth1142
↪→ subsubsection, look for kth1143
↪→ heading with 3 hashtags starting1144
↪→ from the located subsubsection.1145
↪→ Stop searching early if the1146
↪→ subsection or subsubsection is not1147
↪→ queried.1148

To find the image files, look for texts1149
↪→ matching ![*](TARGET "*"), the1150
↪→ TARGET part is filename. Star1151
↪→ means any text is possible.1152

To find the bold texts, search for macro1153
↪→ textbf, and everything after \\1154
↪→ textbf{ and before the first }1155
↪→ encountered is bold text.1156

Note that section title is enclosed by1157
↪→ \\section{}, and \\subsection for1158
↪→ subsection, \\subsubsection for1159
↪→ subsubsection. To find the content1160
↪→ of certain section, look for ith1161
↪→ section as specified, and start1162
↪→ from there look for jth subsection1163
↪→ . And from located subsection,1164
↪→ look for kth subsubsection as1165
↪→ queried. Search may stop early if1166
↪→ subsection or subsubsection is not1167
↪→ queried.1168

To find the image files imported, search1169
↪→ for pattern \\includegraphics[*]{1170
↪→ TARGET}, the TARGET part is the1171
↪→ filename. Star means any text is1172
↪→ possible.1173

To find the bold texts, search for1174
↪→ single star, i.e., *, the content1175
↪→ between two occurrences of single1176
↪→ star is the bold texts. Note that1177
↪→ the bold range should start from1178
↪→ the single star occurring at i-th1179
↪→ spot throughout the whole input1180
↪→ file, where i is odd, and end with1181
↪→ single star occurring at jth spot1182
↪→ where j is even. For example,1183
↪→ text between single star appearing1184
↪→ first and second time.1185

Note that section, subsection,1186
↪→ subsubsection titles are preceded1187
↪→ by *, **, *** respectively, with1188
↪→ one or more whitespaces in between1189
↪→ . To find the content of certain1190
↪→ section, look for ith section as1191
↪→ specified, and start from there1192
↪→ look for jth subsection. And from1193
↪→ located subsection, look for kth1194
↪→ subsubsection as queried. Search1195
↪→ may stop early if subsection or1196
↪→ subsubsection is not queried.1197

To find the image files, look for texts1198

↪→ matching [[TARGET]], the TARGET 1199
↪→ part is filename 12001201

H Detail Setting 1202

All experiments and training process is carried out 1203

on a three 3090 GPUs service. The setting of API 1204

calling is illustrated in Tab. 11 1205

21



Random Seed
torch.manual_seed torch.cuda.manual_seed_all numpy.random.seed random.seed torch.backends.cudnn.deterministirc

42 42 42 42 True
AutoCausalLM

temperature top_p top_k num_beams max_new_token
0.95 0.95 5 2 1

Table 11: All the parameter setting in our experiments.

22


	Introduction
	Related Work
	Structural Text Understanding Enhancements
	Structural Text Understanding Evaluation

	StrucText-Eval Construction
	Structure-Rich Texts Taxonomy
	Generation of Test Suite
	Generation of Real-Test Suite
	Statistic Information

	Experiment Setup
	Models
	Prompt-based Method
	Evaluation Method

	Analysis
	Overall Performance in StrucText-Eval
	Performance Comparsion on StrucText-Eval Test and Real-Test
	Overall Performance on StrucText-Eval Hard
	Performance Gap on Human & LLMs with Different Ability
	Model Performance Across Different Difficulty Levels, Languages, and Tasks
	Correlation Between Different Metrics

	Conclusion
	Limitation
	Ethical Concern
	Case Study
	Few-Shot Demonstration on Structural Text Inference
	Detail about Manual Works
	Development of Question Templates
	Human Performance Evaluation
	Construction of Real-Test Suite

	Other Metrics
	Detail Prompt
	Examples for All Languages & Tasks
	Tree
	Tabular
	JSON
	YAML
	XML
	LaTeX
	Markdown
	Org

	Rules & Rule Hints
	Tree
	Tabular
	JSON
	YAML
	XML
	LaTeX
	Markdown
	Org

	Detail Setting

