
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SIREN: SUBGRAPH ISOMORPHISM VIA REINFORCE-
MENT ENHANCED GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The subgraph isomorphism problem comprises two distinct objectives: (a) Ex-
istence determination: Verifying whether an input graph contains a subgraph
isomorphic to another input graph; and (b) Complete solution enumeration: Out-
putting the exhaustive set of all isomorphic mappings when they exist. Solving this
problem serves as a fundamental requirement for numerous application domains.
However, as an NP-complete problem, existing mainstream solvers primarily rely
on heuristic techniques, demonstrating limited efficiency when handling large-
scale input graphs. To address this challenge, we propose SIREN - a graph neural
network enhanced with deep reinforcement learning for subgraph isomorphism res-
olution. SIREN establishes graph embeddings through partial order-aware GNNs,
while employing Deep Q-Networks with bidomain-based pruning to accelerate the
graph matching process. Experimental results on real-world datasets demonstrate
that SIREN achieves 100% precision with modest computational time, outperform-
ing AI-based approximate matching methods. Compared to state-of-the-art exact
solvers, SIREN delivers ∼ 52% faster execution than leading AI approaches and
∼ 21% acceleration over top heuristic methods.

1 INTRODUCTION

The representation of structured data using graphs has evolved over decades as a foundational
methodology in data modeling West et al. (2001). Meanwhile, graph-based algorithms have found
widespread adoption for analyzing complex relational patterns across scientific and industrial domains
Dijkstra (2022); Kruskal (1956). Within graph theory, the subgraph isomorphism problem represents
a core computational challenge Nguyen et al. (2022); Zhang et al. (2024). Specifically, it requires
determining whether a given graph contains a structurally isomorphic subgraph of another graph,
while also deriving the explicit node correspondence when such isomorphism exists.

The subgraph isomorphism problem has garnered significant attention across pivotal domains due
to its critical role in enabling structural pattern analysis. In biomolecular sciences, it underpins the
determination of structural compatibility between molecules and proteins for drug discovery and
protein interaction studies Balaban (1985); Bonnici et al. (2013). Within semantic web technologies,
it facilitates efficient Resource Description Framework (RDF) query processing to traverse complex
knowledge graphs Kim et al. (2015). Social network analytics leverages subgraph isomorphism
detection to generate personalized recommendation systems through dynamic community subpattern
mining Rong et al. (2018). Furthermore, in domain-specific computing architectures, this capability
proves essential for optimizing loop mapping schemes in reconfigurable computing systems, where
topological constraints demand rigorous subgraph matching Hamzeh et al. (2012). These cross-
disciplinary applications collectively demonstrate the problem’s fundamental importance in modern
computational paradigms.

The subgraph isomorphism problem, known to be NP-complete Conte et al. (2004), is classically
tackled using heuristic methods, which can be broadly classified into three categories: (1) Tree search
algorithms, ranging from classical ones (Ullmann Ullmann (1976), VF-series Carletti et al. (2017))
to modern extensions (RM Sun et al. (2020), VEQ Kim et al. (2021), CaLiG Yang et al. (2023)),
that employ depth-first search combined with pruning techniques; (2) Constraint programming
frameworks, which model the problem as a constraint satisfaction problem (CSP) using integer
linear programming (ILP), SAT, or other formalisms (e.g., McGregor McGregor (1979), Solnon

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Solnon (2010), Zampelli Zampelli et al. (2010)); (3) Graph indexing approaches, often inspired by
database systems (e.g., GraphQL He & Singh (2008), QuickSI Shang et al. (2008), GADDI Zhang
et al. (2009)), that use precomputed structural signatures and inverted indices to accelerate filtering.
Despite the use of advanced pruning strategies, state-of-the-art heuristic solvers still suffer from
exponential worst-case time complexity, which often limits their practicality on large real-world
graphs.

Recent advances in artificial intelligence, particularly graph neural networks (GNNs) designed for
graph isomorphism analysis Xu et al. (2019), have spurred new learning-based approaches for
subgraph isomorphism. Representative methods include IsoNet Roy et al. (2022), streaming models
Duong et al. (2021), GMN Li et al. (2019), GNN-PE Ye et al. (2024b), EinsMatch Ramachandran
et al. (2024), and SubMDSE Raj et al. (2025). Furthermore, AI techniques have been extended
to address related problems such as subgraph alignment Bainson et al. (2024), graph edit distance
computation Piao et al. (2023), and maximum common subgraph identification Bai et al. (2021).

However, current learning-based methods exhibit notable limitations: they often yield probabilistic
approximations rather than exact solutions Ramachandran et al. (2024), or are confined to very small
query graphs (e.g., ≤ 10 nodes) Ye et al. (2024b). A more fundamental constraint is their heavy
reliance on solver-generated labels produced by traditional algorithms for supervised training, which
introduces computational bottlenecks and restricts practical deployment.

To address the limitations of existing approaches, we present SIREN (Subgraph Isomorphism via
Reinforcement-Enhanced Graph Neural Networks). Our framework integrates a Deep Q-Network
(DQN) Volodymyr et al. (2019) with bidomain-based pruning to autonomously discover optimal
node selection heuristics, which are critical components in state-of-the-art subgraph isomorphism
solvers. Complementing this, SIREN employs a pretrained graph neural network grounded in
partial order relation learning to hierarchically encode subgraph structural dependencies. While
maintaining provable completeness, experimental results demonstrate that SIREN outperforms all
machine learning-based methods in accuracy for approximate matching tasks. Simultaneously, it
achieves significant efficiency gains over both heuristic approaches and AI-based methods when
enumerating complete solution sets. The primary contributions of this paper are as follows:

1. DQN-GNN integration with provable completeness: We propose a novel DQN-GNN in-
tegration method with bidomain-based pruning that efficiently solves subgraph isomorphism
problems while guaranteeing provable completeness.

2. Partial-order-aware pretrained GNN: We introduce a partial-order-aware GNN pre-
training strategy that eliminates dependency on solver-generated labels while enhancing
substructure relationship understanding.

3. Unified framework: Our framework simultaneously addresses both existence determination
and complete solution enumeration for subgraph isomorphism.

4. Superior precision and efficiency: Experimental results on real-world datasets demonstrate
that SIREN achieves 100% precision with modest computational time, outperforming AI-
based approximate matching methods. Compared to state-of-the-art exact solvers, SIREN
delivers ∼ 52% faster execution than leading AI approaches and ∼ 21% acceleration over
top heuristic methods.

2 PRELIMINARIES

1) Graph: A graph can be formally defined as G = (V,E), where V = {v1, . . . , vn} denotes the
finite set of vertices and E ⊆ V × V denotes the edge set. Each edge eij ∈ E connects two vertices
vi, vj in V .

2) Graph Isomorphism: Two graphsG1 = (V1, E1) andG2 = (V2, E2) are isomorphic (G1
∼= G2)

if there exists a bijective mapping f : V1
∼−→ V2 such that:

∀vi, vj ∈ V1, (vi, vj) ∈ E1 ⇐⇒ (f(vi), f(vj)) ∈ E2 (1)

3) Subgraph: Let G = (V,E) be a graph. A subgraph G′ = (V ′, E′) of G is defined as G′ ⊑ G,
which satisfies:

V ′ ⊆ V and E′ ⊆
{
(u, v) ∈ E | u, v ∈ V ′} (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a)

Matching State

Initialization

State Heap
Φ

End

Target DQN Model

Policy Decision

State Update

N

Matched
Y

Update

Upperbound Calculation

Prune Y

N

N

RL-Driven SearchNN Model Training

Initialization

Curriculum Learning

Trained GNN Model

Trained DQN Model

ε-Greedy Training
Experience Collection

Network Update

Imitation Learning
Experience Collection

Network Update

VF-Based Pretraining
Experience Collection

Network Update

Synchronize

Target
Graph

Mapping
State

Query
Graph

5 1

4
6

3

2

8

9

7
100

10
11

12

13 010

001

000 110110

010

5 1

4
6

3

2

Bidomains Calculation

Query Graph Target Graph

Features

Matched nodes

Node type and labels
(k-hop) local degree

Edges

Features

Matched nodes

Node type and labels
(k-hop) local degree

Edges

Features

Matched nodes

Node type and labels
(k-hop) local degree

Edges

Features

Matched nodes

Node type and labels
(k-hop) local degree

Edges

K Layers *

Partial Order-Aware GIN

h5

h1'
Concat

h1

h4

h3

h2

hst

hBD

Embedding Fusion

1D Conv Max Pooling

hGQ

hGT

Partial Order is Maintained

x

y

MLP Q Value

Partial Order-Aware GNN-Based
DQN Architecture

Wa

Learnable Action
Projection Weights

Feature
Vector
ψ(at)

 Action Embedding

(b) (c)

Policy Decision

Figure 1: Overview of the framework of SIREN. (a) NN Training Framework, (b) Reinforcement
Learning-Driven Search Framework, (c) Partial Order-Aware GNN-based DQN Architecture

4) Subgraph Isomorphism Problem: The subgraph isomorphism problem involves determining
whether there exists a subgraph G′ ⊑ GT such that GQ

∼= G′, where GQ denotes the query graph
and GT denotes the target graph. Formally:

∃G′ = (V ′, E′) ⊑ GT s.t. GQ
∼= G′ (3)

If such subgraphs exist, the solution set SG comprises all valid subgraphs:

SG =
{
G′ ⊑ GT | GQ

∼= G′} (4)

3 THE SIREN METHOD

In this section, we provide a detailed description of the SIREN framework, which stands for Subgraph
Isomorphism via Reinforcement-Enhanced Graph Neural Networks. Section 3.1 presents our DQN-
based provably complete framework for subgraph isomorphism, and Section 3.2 introduces our partial
order relation-aware GNN architecture.

3.1 PROVABLY COMPLETE FRAMEWORK FOR SUBGRAPH ISOMORPHISM

SIREN addresses the subgraph isomorphism problem by integrating graph neural networks with
reinforcement learning. This approach formulates the problem as a Markov Decision Process (MDP)
Puterman (1990) and employs a DQN-based framework Volodymyr et al. (2019) to enhance traditional
tree-search heuristics Carletti et al. (2017). Our search framework guarantees the completeness of
SIREN, with a detailed proof provided in Section A.4.

1) DQN-Enhanced Search Framework. The DQN-enhanced search framework of SIREN, depicted
in Figure 1(b), maintains a state heap ST to store feasible states. At each decision step, the state st
with the maximal action space cardinality |At| is selected as the current state, prioritizing branches
with higher combinatorial potential. At each step, the agent either adds a new node pair to the
current partial matching or backtracks from a previous decision. The selection of candidate nodes
is optimized using a partial order-aware Graph Isomorphism Network (GIN) integrated within the
DQN. The search process terminates when all possible isomorphisms are found or non-existence is
proven. SIREN can also be configured to terminate upon discovering the first feasible solution, which
is suitable for applications requiring only a single valid subgraph matching.

2) DQN Framework. As illustrated in Figure 1(c), the framework utilizes continuous embedding
representations to encode states st and actions at. These representations are processed by a DQN
architecture that consists of a partial-order aware GNN encoder and learnable projection modules. The
DQN maps state-action pairs (st, at) to Q-value estimates Q(st, at), thereby enabling data-driven
policy optimization.

3) State Representation. A state st comprises the node-node mappingMt between the selected
subgraphs, the input graphs themselves, and the bidomain information corresponding to the current
mappingMt. The features provided to the GNN model for state st include node types/labels, (k-hop)
local degree profiles, matching status indicators, and edge information of the graphs.

4) Action Space. At each step, the agent selects (1) a node pair (vq, vt) ∈ Ct that maintains
topological consistency withMt, and (2) a special ⟨terminate⟩ action to prune unpromising branches,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where Ct denotes the candidate node pairs for expansion. The action space size is dynamic: |Ct|+ 1
(including termination).

5) Action Embedding. SIREN incorporates an action embedding optimization mechanism. For each
feasible node pair (vq, vt), the associated node features are projected into a low-dimensional embed-
ding space via a learnable matrix Wa. This embedding captures the essential value characteristics of
the action, which in turn refines the Q-value computation.

6) Reward Function. The reward function of SIREN is designed to guide the learning process
through a dense reward mechanism:

• A base reward of +α · 1/|VQ| for each valid node pair matching (default α = 0.5), where
|VQ| is the number of nodes in the query graph.

• An incremental structural reward of +β ·∆E/|ET | for each newly matched edge (default
β = 0.5), where ∆E denotes the increase in the number of correctly matched edges and
|ET | is the total number of edges in the target graph.

• A sparse success reward of +γ · |VQ| (default γ = 0.05) upon finding a complete isomor-
phism.

7) Bidomain-Based Embeddings and Pruning. SIREN leverages Bidomains Bai et al. (2021) to
enhance its search process in two key ways: by providing additional graph embeddings that inform
the Q-value computation, and by facilitating efficient pruning through estimates of the exploration
upper bound. For state st =Mt = (MQ,MT) with matched setsMQ ⊆ V (GQ),MT ⊆ V (GT),
the k-th bidomain Bk is defined as:

Bk = ⟨VQ
k ,V

T
k ⟩ (5)

where VQ
k ⊆ V (GQ) and VT

k ⊆ V (GT) satisfy:

∀u ∈ VQ
k , v ∈ V

T
k : adj(u,MQ) ≡ adj(v,MT) (6)

denoting identical connectivity patterns to matched setsMQ ⊆ V (GQ) andMT ⊆ V (GT). A
detailed description of the bidomain technique is provided in Section A.8.

8) Embedding Fusion. We perform embedding fusion on the embeddings hGQ
and hGT

generated
by the GNN for the query graph and target graph, respectively. This alignment operation involves
processing each embedding through a 1D convolutional layer followed by a pooling layer, and
subsequently merging the resulting representations.

9) Action-Value Function. For state transition, candidate actions At = {(u, v) ∈ Ct} are evaluated
by the DQN’s action value function Qθ(st, at), where h denotes the graph embeddings generated
with our trained GNN model:

Qθ(st, at) =F
(

GNNenc(GQ, GT , st,Bst)︸ ︷︷ ︸
state embedding

⊕ Waψ(at)︸ ︷︷ ︸
action embedding

)
=F(hst ,Fuse(hGQ

,hGT
),hBD, at)

(7)

where ψ(at) is the feature vector of action at , and Wa denotes learnable action projection weights.

10) ϵ-Greedy Action Selection. The agent selects an action at at each timestep using an ϵ-greedy
policy based on the current Q-value estimates:

a∗t =

{
argmaxat∈At

(Qθ(st, at)) with probability 1− ϵ
random action with probability ϵ

The updated state st+1 =Mt ∪ a∗t is is then pushed back onto ST .

11) Action Space Partition. For large-scale graphs where the number of candidate matching actions
(node pairs) becomes prohibitively large, we partition the action space into chunks and compute Q-
values separately for each chunk. This approach prevents GPU memory overflow while maintaining
computational efficiency.

The training process of our DQN model consists of three consecutive phases: pretraining, imitation
learning, and reinforcement learning, which is detailed in Section A.5. To analyze the impact of
different reinforcement learning paradigms, we conducted comparisons between DQN and Proximal
Policy Optimization (PPO) Schulman et al. (2017), as detailed in Section A.11.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 PARTIAL ORDER-AWARE GNN ARCHITECTURE

The subgraph relationship satisfies the properties of reflexivity, transitivity, and antisymmetry, thereby
establishing it as a partial order on the set of graphs. Formally:

• Reflexivity: G ⊑ G, G ∼= G.
• Transitivity: (G1 ⊑ G2) ∧ (G2 ⊑ G3) =⇒ G1 ⊑ G3.
• Antisymmetry: (G1 ⊑ G2) ∧ (G2 ⊑ G1) ⇐⇒ G1 = G2.

The formal proof of these properties is provided in Section A.1. Moreover, The intersection of the
set of G1’s subgraphs and the set of G2’s subgraphs contains all common subgraphs of G1 and
G2 Lou et al. (2020). Therefore, SIREN employs a partial order-aware GNN to enforce that the
learned graph embeddings preserve the isomorphic partial order relationships within the embedding
space. This geometric constraint ensures that for any two graphs GQ and GT with embeddings
hGQ

= (h1
GQ
, ...,hD

GQ
) and hGT

= (h1
GT
, ...,hD

GT
):

∀i ∈ 1, ..., D,hi
GQ
≤ hi

GT
⇐⇒ G1 ⊑ G2 (8)

The proof that our GNN model satisfies the partial order relationships described in Equation 8 is
provided in Section A.3. To preserve the partial order relationship of the subgraphs, we use the max
margin loss to train our GNN model. Within each minibatch, we define P = {(q, t) ∈MB | N (q) ⊑
N (t)} as the set of positive pairs where the neighborhood subgraph of query node q is isomorphic to
a subgraph of target node t’s neighborhood, and N =MB \ P as the negative pairs violating this
structural constraint. The loss function L then operates on these sets to enforce geometric consistency
in the embedding space:

L(hq,ht) =
∑

hq,ht∈P

E(hq,ht) +
∑

hq,ht∈N

max(0, α− E(hq,ht)) (9)

where
E(hq,ht) = ||max(0,hq − ht)||22 (10)

We employed an improved GIN model Xu et al. (2019), incorporating multi-scale feature fusion
techniques to generate graph embedding vectors. For layer l ∈ {0, 1, ..., L− 1}, the embedding of
node v is computed as:

h(l+1)
v = MLP(l)((1 + ϵ(l)) · h(l)

v +
∑

u∈N (v)

h(l)
u) (11)

where ϵ(l) ∈ R is a learnable scalar parameter, N (v) denotes the neighborhood of node v, and
MLP(l) denotes the multi-layer perceptron with LeakyReLU Maas et al. (2013) activation σ. Let γl
be the learnable hierarchical weight coefficient, the graph embedding is obtained by concatenating
sum-pooled features across layers:

hG =

L∑
l=0

γl ·
∑
v∈V

h(l)v (12)

The training protocol of our partial order-aware GNN model is detailed in Section A.6.

4 EXPERIMENTS

To evaluate the effectiveness and efficiency of SIREN, we compared SIREN with 19 state-of-the-art
neural network-based methods and heuristic methods. The experiments are conducted real large
graph datasets from TUDataset Morris et al. (2020) and on synthetic graph datasets.

4.1 BASELINE METHODS

We compared SIREN with 10 state-of-the-art neural network-based methods for subgraph isomor-
phism, including SimGNN Bai et al. (2019), GraphSim Bai et al. (2020), GEDGNN Piao et al. (2023),
GOTSim Doan et al. (2021), ERIC Zhuo & Tan (2022), NeuroMatch Lou et al. (2020), GMN Li et al.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Evaluation of Mean Average Precision (MAP) on real-world graph pairs. K = layers, |ND|
= node state dimensions. Each dataset contains 300 query graphs and 800 target graphs.

Method K |ND| AIDS MUTAG PTC-FM PTC-FR PTC-MM PTC-MR

Average |VQ| 11.61 12.91 11.73 11.81 11.80 11.87
Max |VQ| 15 15 15 15 15 15
Average |VT | 18.50 18.41 18.30 18.32 18.36 18.32
Max |VT | 20 20 20 20 20 20

SIMGNN 3 10 0.326 ± 0.019 0.303 ± 0.012 0.416 ± 0.015 0.355 ± 0.015 0.358 ± 0.015 0.308 ± 0.017
GRAPHSIM 3 10 0.173 ± 0.007 0.182 ± 0.008 0.231 ± 0.011 0.165 ± 0.007 0.2 ± 0.009 0.216 ± 0.013
GEDGNN 3 10 0.340 ± 0.015 0.605 ± 0.029 0.437 ± 0.013 0.497 ± 0.018 0.509 ± 0.018 0.309 ± 0.009
GOTSIM 5 10 0.336 ± 0.017 0.387 ± 0.018 0.459 ± 0.017 0.361 ± 0.013 0.417 ± 0.017 0.430 ± 0.017
ERIC 5 10 0.512 ± 0.022 0.558 ± 0.027 0.624 ± 0.019 0.572 ± 0.021 0.573 ± 0.02 0.639 ± 0.018
GMN-MATCH 3 10 0.609 ± 0.02 0.693 ± 0.026 0.686 ± 0.018 0.667 ± 0.021 0.627 ± 0.02 0.683 ± 0.017
NEUROMATCH 3 10 0.454 ± 0.025 0.583 ± 0.027 0.622 ± 0.019 0.572 ± 0.023 0.522 ± 0.019 0.565 ± 0.02
ISONET 3 10 0.704 ± 0.021 0.733 ± 0.023 0.782 ± 0.017 0.734 ± 0.02 0.758 ± 0.016 0.764 ± 0.015
SUBMDSE-LATE 5 10 0.712 ± 0.018 0.721 ± 0.025 0.793 ± 0.016 0.744 ± 0.019 0.758 ± 0.015 0.782 ± 0.014
SUBMDSE-EARLY 5 10 0.817 ± 0.017 0.837 ± 0.02 0.887 ± 0.012 0.854 ± 0.013 0.849 ± 0.012 0.864 ± 0.011

SIREN-MINI 3 10 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Avg. Runtime (ms) 41.3 33.4 35.5 43.7 34.8 44.2

SIREN 8 64 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Avg. Runtime (ms) 50.5 47.3 42.5 56.3 52.4 52.7

Improvement 18.3% 16.3% 11.3% 14.6% 15.1% 13.6%

(2019), IsoNet Roy et al. (2022), SubMDSE Raj et al. (2025) and GNN-PE Ye et al. (2024b), as well
as 9 heuristic state-of-the-art methods for solving the subgraph isomorphism problem, including RI
Bonnici et al. (2013), VF2++ Jüttner & Madarasi (2018), GraphQL He & Singh (2008), QuickSI
Shang et al. (2008), VF3 Carletti et al. (2017), RM Sun et al. (2020), VEQ Kim et al. (2021), CaLiG
Yang et al. (2023), and DPIso Han et al. (2019).

Existing neural network-based subgraph isomorphism methods can be divided into two categories:
exact matching and approximate prediction. Exact matching methods return the precise solution
set for the subgraph isomorphism problem, while approximate prediction methods provide a quick
assessment of whether two graphs satisfy the subgraph isomorphism relationship. Among these
methods, GNN-PE is an exact matching method, while the other 7 methods are approximate prediction
methods. To ensure a fair comparison, we evaluated the solving speed against GNN-PE and heuristic
methods, and compared the solving accuracy with the other 7 methods, using the same real-world
datasets and sampling settings as in the original papers.

4.2 EXPERIMENTAL SETTINGS

In SIREN, we utilize 8 layers of Graph Isomorphism Networks (GIN) Xu et al. (2019) each with 64
dimensions for the embeddings. For DQN, we use MLP layers to project concatenated embeddings
to a scalar. The discount factor γ of the DQN is set to 1.0, and the learning rate of the DQN and
the GIN is set to 0.001. The models are trained using the Adam optimizer Kingma (2014). The
learning rate is annealed with a cosine annealer with restarts every 100 epochs. The DQN is trained
by 10000 iterations. Prior to DQN training, we conduct a 50000-epochs supervised pre-training of
the GNN model to generate geometrically consistent partial order-preserving graph embeddings. The
training data is generated by randomly sampling neighborhoods from large real-world graph datasets
Morris et al. (2020), while being regenerated every 50 epochs. To ensure fairness across diverse
tasks, we trained two distinct GNN configurations (in SIREN-Mini and SIREN). Detailed parameter
specifications are provided in Table 1. The experiments were conducted on a Ubuntu server equipped
with a 128-Core Intel(R) Xeon(R) Gold 5218 CPU running at 2.30 GHz and 256 GB of memory,
along with 4× Nvidia Tesla A800 GPU. SIREN were implemented with the PyTorch and PyTorch
Geometric libraries Fey & Lenssen (2019).

4.3 EFFECTIVENESS OF SIREN

To compare SIREN with approximate prediction deep learning methods, we selected the same datasets
as SubMDSE Raj et al. (2025) from TUDataset Morris et al. (2020) for testing, i.e., PTC-FR, PTC-
FM, PTC-MM, PTC-MR, MUTAG, and AIDS. We compared SIREN with 9 state-of-the-art neural
methods. The experimental results indicate that, without limiting the search time, SIREN achieved
correct solutions for all datasets, with the longest time not exceeding 2 seconds (∼1.8s). Compared
to the most accurate neural method SubMDSE-Early Raj et al. (2025), SIREN improved Mean

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Ablation Study of SIREN by Mean Average Precision (MAP) on Real-World Graph Pairs.
Method PTC-FR PTC-FM PTC-MM PTC-MR MUTAG AIDS
SIREN-DQN 0.880 0.893 0.961 0.828 0.952 0.904
v.s. IsoNet +2.3% -0.8% +5.5% -6.6% +3.2% +1.0%
SIREN-GNN 0.766 0.796 0.886 0.738 0.861 0.842
v.s. IsoNet -9.1% -10.5% -2.0% -15.6% -5.9% -5.2%

SIREN 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: Runtime on Large-Scale Dense Real-World Graphs (Unit: s), OOM: Out of Memory.
nodes of GT 1000 2000 3000 4000 5000 10000
nodes of GQ 200 400 600 800 1000 2000
Edge density 0.4 0.3 0.2 0.2 0.2 0.2

VF3 12151.6 16351.2 4292.6 > 105 > 105 > 105

VF3P 1187.8 1923.6 636.2 24058.0 51020.4 > 105

VEQ 860.9 OOM OOM OOM OOM OOM
GNN-PE > 105 > 105 > 105 > 105 > 105 > 105

GLSEARCH 7534.5 > 105 4682.1 > 105 > 105 > 105

SIREN 642.4 943.2 486.7 16842.4 34719.5 > 105

Average Precision by an average of 14.9%. The experimental results show that SIREN outperforms
approximate prediction deep learning methods in terms of effectiveness. These experimental results
align with the theory, as SIREN guarantees that, given enough time, it can obtain an exact solution
or prove that no valid solution exists. Furthermore, these results demonstrate that SIREN is a more
effective method for general real-world datasets, as it provides acceptable running times and more
accurate results.

4.4 EFFICIENCY AND THROUGHPUT RATE

To compare SIREN with exact matching deep learning methods and heuristic methods, we selected
the same datasets as GNN-PE Roy et al. (2022) from TUDataset Morris et al. (2020) for testing, i.e.,
Yeast, Human, HPRD, WordNet, DBLP, Youtube, and US Patents. Statistics of these real graphs
are summarized in Section A.10. We divided the dataset according to the method used in GNN-PE
Roy et al. (2022), where the size of |V (q)| is set to 8. Figure 2 shows the efficiency test results
on large-scale datasets, which indicate that our SIREN method outperforms all existing heuristic
methods across all test data, and it also surpasses GNN-PE in the majority of cases. Only for the
DBLP dataset does SIREN (∼0.19s) perform slightly slower than GNN-PE (∼0.17s), with almost
no difference. On average, compared to RI Bonnici et al. (2013), VF Jüttner & Madarasi (2018),
GraphQL He & Singh (2008), QuickSI Shang et al. (2008), GNN-PE Roy et al. (2022), VF3 Carletti
et al. (2017), RM Sun et al. (2020), VEQ Kim et al. (2021), CaLiG Yang et al. (2023), and DPIso Han
et al. (2019), SIREN achieves speedups of 36.5×, 29.0×, 171.2×, 25.7×, 52.1%, 14.4×, 92.4%,
21.3%, 7.70×, and 55.3%, respectively.

Figure 3 compares the throughput, measured in generated matched embeddings per second (EPS), of
SIREN against other methods on large-scale datasets. As shown, SIREN achieves a higher throughput
than all baseline methods, outperforming the state-of-the-art approach VEQ by 1.046×.

4.5 SCALABILITY OF SIREN

To evaluate the scalability of SIREN, we compared SIREN with GNN-PE Roy et al. (2022), GLSearch
Bai et al. (2021), VEQ Kim et al. (2021), and the state-of-the-art CPU-parallelized subgraph iso-
morphism method VF3p Carletti et al. (2017) on synthetic large adversarial dense graph dataset
by VF3 Carletti et al. (2017). As shown in Table 3, experimental results on large graphs demon-
strate that despite the server CPU’s higher theoretical FP32 compute capacity (CPU: 140 TFLOPS
vs. GPU: 40 TFLOPS), SIREN still outperforms traditional methods. On average, compared to
GNN-PE, GLSearch, VF3, VF3p and VEQ, SIREN achieves speedups of 8.32×, 4.82×, 3.34×,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1.0

10.0

100.0

1000.0

10000.0

100000.0

1000000.0

Yeast Human HPRD WordNet DBLP Youtube US Patents Average

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Efficiency on Large Real Graphs

RI VF GraphQL QuickSI GNN-PE VF3 RM VEQ CaliG DPIso SIREN

Figure 2: Efficiency of different methods.

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

Yeast Human HPRD WordNet DBLP Youtube US Patents Average

Em
be

dd
in

gs
 P

er
 S

ec
on

d

Throughput Rate on Large Real Graphs

RI VF GraphQL QuickSI GNN-PE VF3 RM VEQ CaliG DPIso SIREN

Figure 3: Throughput Rate of different methods.
47.0%, and 34.0%, respectively (excluding cases exceeding 105 seconds or OOM). Our experi-
ments further demonstrate that VEQ encounters out-of-memory failures under a 256GB memory
constraint—already substantial for graph processing—when handling graphs exceeding 2000 nodes
with edge density ρ > 0.3. This limitation stems from VEQ’s significantly higher space complexity
compared to SIREN, preventing it from scaling to large dense graphs.

4.6 ABLATION STUDY

Table 2 presents the ablation study results for two modules in SIREN: DQN and GNN. Here, SIREN-
DQN refers to the results obtained using only the DQN + GNN structure, where GNN is randomly
initialized without any pre-training method. SIREN-GNN indicates the scenario where the DQN
structure is not used, and the NeuralMatch method Lou et al. (2020) is employed to directly output
estimates for the subgraph isomorphism problem. The experimental results demonstrate that both the
lack of GNN pre-training and the absence of the DQN model lead to a decline in solution quality.

5 RELATED WORK

5.1 TRADITIONAL APPROACHES

The subgraph isomorphism problem is known to be NP-complete and has traditionally been tackled
using heuristic methods. These approaches can be broadly categorized as follows:

1) Tree Search: Classical algorithms such as Ullmann’s algorithm Ullmann (1976) and the VF-
series Cordella et al. (2001; 2004); Carletti et al. (2017) employ depth-first search combined with
pruning heuristics (e.g., degree and label filters). VF3 Carletti et al. (2017) introduces state-space
precomputation and look-ahead pruning to improve efficiency, particularly for large dense graphs.
More recent methods, including RM Sun et al. (2020), VEQ Kim et al. (2021), and CaLiG Yang et al.
(2023), further accelerate the resolution process.

2) Constraint Programming: These approaches model the problem as a Constraint Satisfaction
Problem (CSP), using integer linear programming (ILP), Boolean satisfiability (SAT), or related
formalisms. Variables typically represent query nodes, with domains consisting of candidate target
nodes, and constraints encode structural requirements. Methods by McGregor McGregor (1979),
Solnon Solnon (2010), and Zampelli Zampelli et al. (2010) employ arc consistency techniques to
iteratively prune the solution space.

3) Graph Indexing: Methods inspired by database systems, such as GraphQL He & Singh (2008),
QuickSI Shang et al. (2008), and GADDI Zhang et al. (2009), leverage precomputed structural
signatures and inverted indices to enable efficient pre-match filtering and early termination.

Limitations: Despite their practical utility, all these methods exhibit exponential worst-case time
complexity—typicallyO(nk) for a query pattern of size k—and are sensitive to label noise and graph
density. Indexing techniques also involve significant memory overhead, often reaching O(md) for
depth-d neighborhood features.

5.2 NEURAL APPROACHES FOR SUBGRAPH ISOMORPHISM

Recent neural network-based approaches for subgraph isomorphism can be divided into two main
categories:

1) Exact Solvers: These methods aim to provably determine the existence of subgraph isomorphisms
and recover corresponding node mappings. Representative techniques include subgraph index

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

embeddings Duong et al. (2021) and path dominance embeddings Ye et al. (2024b), which encode
structural hierarchies to facilitate exact matching.

2) Approximate Heuristics: These methods prioritize scalability and efficiency at the cost of
completeness, often relying on probabilistic or learned similarity measures. Examples include
similarity-based networks Li et al. (2019), geometric embeddings Lou et al. (2020), and IsoNet Roy
et al. (2022). More recent advances include EinsMatch Ramachandran et al. (2024), which introduces
iterative alignment refinement, and SubMDSE Raj et al. (2025), which explores multifaceted design
spaces for improved performance.

Limitations: Exact solvers typically depend on expensive solver-generated labels for supervised
training, leading to high annotation and computational costs. On the other hand, approximate
methods often lack theoretical guarantees and tend to exhibit reduced accuracy when applied to strict
isomorphism problems.

5.3 NEURAL APPROACHES FOR RELATED PROBLEMS

1) Graph Isomorphism: While graph isomorphism can be solved in quasi-polynomial time, i.e.,
O(e(logn)c) Babai (2016), it is often studied to characterize the expressive power of graph neural
networks. Methods such as GIN Xu et al. (2019)—which simulates the Weisfeiler-Leman (WL) test
Leman & Weisfeiler (1968)—and Graph Transformers Yun et al. (2019); Lee et al. (2024) have been
developed, but they generally lack the precision required for subgraph isomorphism tasks.

2) Maximum Common Subgraph (MCS): Subgraph isomorphism is a special case of MCS in which
the common subgraph must be isomorphic to the query graph GQ. Neural solvers such as GLSearch
Bai et al. (2021) and MCSP+RL Liu et al. (2019) have been proposed for MCS, but they often fail to
fully leverage the topological structure of the query graph, resulting in suboptimal efficiency.

3) Subgraph Alignment: This problem involves determining whether a query graph GQ is isomor-
phic to an induced subgraph of a target graph GT . A recent spectral-based method Bainson et al.
(2024) has been proposed to address it. Although subgraph alignment is a special case of subgraph
isomorphism, the two are not identical; clarifying their distinctions is necessary to prevent confusion
arising from terminological overlap.

4) Graph Alignment: Graph alignment aims to find a bijective mapping between the nodes of two
graphs such that structural differences after mapping are minimized. FUGAL Bommakanti et al.
(2024) introduces a learning-based approach for this task, while a differentiable top-kmethod Wang
et al. (2023) addresses partial graph matching, a related relaxation.

5) Graph Edit Distance (GED): Subgraph isomorphism can be reduced to GED by setting infinite
substitution costs. However, general neural solvers for GED Raveaux (2021); Piao et al. (2023) are
not well-suited for exact isomorphism due to their flexible cost models and broader objective.

6) Large Language Model (LLM)-Based Methods: Recent efforts such as ThinkOnGraph Sun
et al. (2024) and GraphGPT Tang et al. (2024) focus primarily on attributed graphs. Although
InstructGLM Ye et al. (2024a) encodes structural information through prompting, it—like other
LLM-based approaches—has not yet shown effectiveness for exact combinatorial isomorphism
problems.

6 CONCLUSION

The subgraph isomorphism problem is a challenging NP-complete problem with wide applications
across various fields. In this paper, we introduce SIREN, an RL-enhanced GNN for subgraph
isomorphism. Through our proposed DQN-based reinforcement learning framework and the GNN
model based on partial order relations, we can improve the candidate node selection process in solving
the subgraph isomorphism problem. Experiments on real datasets show that SIREN can effectively
accelerate the solving of the subgraph isomorphism problem and enhance solution quality. Future
work includes further improvements to the reinforcement learning framework and GNN, testing on
more large-scale real datasets, and extending similar methods to other NP problems, such as the
maximum clique problem.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

László Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp. 684–697, 2016.

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neural
network approach to fast graph similarity computation. In Proceedings of the twelfth ACM
international conference on web search and data mining, pp. 384–392, 2019.

Yunsheng Bai, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. Learning-based efficient graph
similarity computation via multi-scale convolutional set matching. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 3219–3226, 2020.

Yunsheng Bai, Derek Xu, Yizhou Sun, and Wei Wang. Glsearch: Maximum common subgraph
detection via learning to search. In International Conference on Machine Learning, pp. 588–598.
PMLR, 2021.

Ama Bembua Bainson, Judith Hermanns, Petros Petsinis, Niklas Aavad, Casper Dam Larsen, Tiarnan
Swayne, Amit Boyarski, Davide Mottin, Alex M. Bronstein, and Panagiotis Karras. Spectral
subgraph localization. In Soledad Villar and Benjamin Chamberlain (eds.), Proceedings of the Sec-
ond Learning on Graphs Conference, volume 231 of Proceedings of Machine Learning Research,
pp. 7:1–7:11. PMLR, 27–30 Nov 2024. URL https://proceedings.mlr.press/v231/
bainson24a.html.

Alexandru T Balaban. Applications of graph theory in chemistry. Journal of chemical information
and computer sciences, 25(3):334–343, 1985.

Luc Rey Bellet. Ergodic properties of markov processes. In Open Quantum Systems II: The Markovian
Approach, pp. 1–39. Springer, 2006.

Aditya Bommakanti, Harshith Reddy Vonteri, Konstantinos Skitsas, Sayan Ranu, Davide Mottin,
and Panagiotis Karras. Fugal: Feature-fortified unrestricted graph alignment. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Ad-
vances in Neural Information Processing Systems, volume 37, pp. 19523–19546. Curran Asso-
ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/22b111819c74453837899689166c4cf9-Paper-Conference.pdf.

Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Alfredo Ferro. A
subgraph isomorphism algorithm and its application to biochemical data. BMC bioinformatics, 14:
1–13, 2013.

Vincenzo Carletti, Pasquale Foggia, Alessia Saggese, and Mario Vento. Challenging the time
complexity of exact subgraph isomorphism for huge and dense graphs with vf3. IEEE transactions
on pattern analysis and machine intelligence, 40(4):804–818, 2017.

Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of graph matching
in pattern recognition. International journal of pattern recognition and artificial intelligence, 18
(03):265–298, 2004.

Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub) graph isomorphism algo-
rithm for matching large graphs. IEEE transactions on pattern analysis and machine intelligence,
26(10):1367–1372, 2004.

Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento, et al. An improved algorithm
for matching large graphs. In 3rd IAPR-TC15 workshop on graph-based representations in pattern
recognition, pp. 149–159. Citeseer, 2001.

Edsger W Dijkstra. A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra: his
life, work, and legacy, pp. 287–290. 2022.

Khoa D Doan, Saurav Manchanda, Suchismit Mahapatra, and Chandan K Reddy. Interpretable graph
similarity computation via differentiable optimal alignment of node embeddings. In Proceedings
of the 44th international ACM SIGIR conference on research and development in information
retrieval, pp. 665–674, 2021.

10

https://proceedings.mlr.press/v231/bainson24a.html
https://proceedings.mlr.press/v231/bainson24a.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/22b111819c74453837899689166c4cf9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/22b111819c74453837899689166c4cf9-Paper-Conference.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chi Thang Duong, Trung Dung Hoang, Hongzhi Yin, Matthias Weidlich, Quoc Viet Hung Nguyen,
and Karl Aberer. Efficient streaming subgraph isomorphism with graph neural networks. Proceed-
ings of the VLDB Endowment, 14(5):730–742, 2021.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. Epimap: Using epimorphism to map
applications on cgras. In Proceedings of the 49th Annual Design Automation Conference, pp.
1284–1291, 2012.

Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han. Efficient subgraph
matching: Harmonizing dynamic programming, adaptive matching order, and failing set together.
In Proceedings of the 2019 international conference on management of data, pp. 1429–1446, 2019.

Huahai He and Ambuj K Singh. Graphs-at-a-time: query language and access methods for graph
databases. In Proceedings of the 2008 ACM SIGMOD international conference on Management of
data, pp. 405–418, 2008.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodology
and distribution, pp. 492–518. Springer, 1992.

Alpár Jüttner and Péter Madarasi. Vf2++—an improved subgraph isomorphism algorithm. Discrete
Applied Mathematics, 242:69–81, 2018.

Hyunjoon Kim, Yunyoung Choi, Kunsoo Park, Xuemin Lin, Seok-Hee Hong, and Wook-Shin
Han. Versatile equivalences: Speeding up subgraph query processing and subgraph matching. In
Proceedings of the 2021 international conference on management of data, pp. 925–937, 2021.

Jinha Kim, Hyungyu Shin, Wook-Shin Han, Sungpack Hong, and Hassan Chafi. Taming subgraph
isomorphism for rdf query processing. arXiv preprint arXiv:1506.01973, 2015.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical society, 7(1):48–50, 1956.

O-Joun Lee et al. Transitivity-preserving graph representation learning for bridging local connectivity
and role-based similarity. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 12456–12465, 2024.

Andrei Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching networks
for learning the similarity of graph structured objects. In International conference on machine
learning, pp. 3835–3845. PMLR, 2019.

Yan-li Liu, Chu-min Li, Hua Jiang, and Kun He. A learning based branch and bound for maximum
common subgraph problems. arXiv preprint arXiv:1905.05840, 2019.

Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec, et al. Neural subgraph
matching. arXiv preprint arXiv:2007.03092, 2020.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, pp. 3. Atlanta, GA, 2013.

James J McGregor. Relational consistency algorithms and their application in finding subgraph and
graph isomorphisms. Information Sciences, 19(3):229–250, 1979.

Volodymyr Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Lam BQ Nguyen, Ivan Zelinka, Vaclav Snasel, Loan TT Nguyen, and Bay Vo. Subgraph mining in a
large graph: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
12(4):e1454, 2022.

Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, and Hong Cheng. Computing
graph edit distance via neural graph matching. Proc. VLDB Endow., 16(8):1817–1829, April 2023.
ISSN 2150-8097. doi: 10.14778/3594512.3594514. URL https://doi.org/10.14778/
3594512.3594514.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Vaibhav Raj, Indradyumna Roy, Ashwin Ramachandran, Soumen Chakrabarti, and Abir De. Charting
the design space of neural graph representations for subgraph matching. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=5pd78GmXC6.

Ashwin Ramachandran, Vaibhav Raj, Indrayumna Roy, Soumen Chakrabarti, and Abir De. It-
eratively refined early interaction alignment for subgraph matching based graph retrieval. In
A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
Advances in Neural Information Processing Systems, volume 37, pp. 77593–77629. Curran Asso-
ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/8dc8a46f3981224217d32eb3f8362998-Paper-Conference.pdf.

Romain Raveaux. On the unification of the graph edit distance and graph matching problems.
Pattern Recognition Letters, 145:240–246, 2021. ISSN 0167-8655. doi: https://doi.org/10.1016/
j.patrec.2021.02.014. URL https://www.sciencedirect.com/science/article/
pii/S0167865521000763.

Huan Rong, Tinghuai Ma, Meili Tang, and Jie Cao. A novel subgraph k+-isomorphism method in
social network based on graph similarity detection. Soft Computing, 22(8):2583–2601, 2018.

Indradyumna Roy, Venkata Sai Baba Reddy Velugoti, Soumen Chakrabarti, and Abir De. Interpretable
neural subgraph matching for graph retrieval. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pp. 8115–8123, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism. Proceedings of the VLDB Endowment, 1(1):
364–375, 2008.

Christine Solnon. Alldifferent-based filtering for subgraph isomorphism. Artificial Intelligence, 174
(12-13):850–864, 2010.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel Ni,
Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
language model on knowledge graph. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=nnVO1PvbTv.

Shixuan Sun, Xibo Sun, Yulin Che, Qiong Luo, and Bingsheng He. Rapidmatch: A holistic approach
to subgraph query processing. Proceedings of the VLDB Endowment, 14(2):176–188, 2020.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’24, pp. 491–500, New York, NY, USA, 2024. Association for Computing Machinery.
ISBN 9798400704314. doi: 10.1145/3626772.3657775. URL https://doi.org/10.1145/
3626772.3657775.

12

https://doi.org/10.14778/3594512.3594514
https://doi.org/10.14778/3594512.3594514
https://openreview.net/forum?id=5pd78GmXC6
https://openreview.net/forum?id=5pd78GmXC6
https://proceedings.neurips.cc/paper_files/paper/2024/file/8dc8a46f3981224217d32eb3f8362998-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/8dc8a46f3981224217d32eb3f8362998-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S0167865521000763
https://www.sciencedirect.com/science/article/pii/S0167865521000763
https://openreview.net/forum?id=nnVO1PvbTv
https://doi.org/10.1145/3626772.3657775
https://doi.org/10.1145/3626772.3657775

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM), 23(1):
31–42, 1976.

Mnih Volodymyr et al. Human-level control through deep reinforcement learning. Nature, 518(7540):
529–533, 2019.

Runzhong Wang, Ziao Guo, Shaofei Jiang, Xiaokang Yang, and Junchi Yan. Deep learning of partial
graph matching via differentiable top-k. In 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6272–6281, 2023. doi: 10.1109/CVPR52729.2023.00607.

Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River,
2001.

Keyulu Xu et al. How powerful are graph neural networks? In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, 2019. URL https://
openreview.net/forum?id=ryGs6iA5Km.

Rongjian Yang, Zhijie Zhang, Weiguo Zheng, and Jeffrey Xu Yu. Fast continuous subgraph matching
over streaming graphs via backtracking reduction. Proceedings of the ACM on Management of
Data, 1(1):1–26, 2023.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Language is all a
graph needs. In Yvette Graham and Matthew Purver (eds.), Findings of the Association for
Computational Linguistics: EACL 2024, pp. 1955–1973, St. Julian’s, Malta, March 2024a.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
findings-eacl.132/.

Yutong Ye, Xiang Lian, and Mingsong Chen. Efficient exact subgraph matching via gnn-based path
dominance embedding. Proceedings of the VLDB Endowment, 17(7):1628–1641, 2024b.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Stéphane Zampelli, Yves Deville, and Christine Solnon. Solving subgraph isomorphism problems
with constraint programming. Constraints, 15:327–353, 2010.

Shijie Zhang, Shirong Li, and Jiong Yang. Gaddi: distance index based subgraph matching in
biological networks. In Proceedings of the 12th international conference on extending database
technology: advances in database technology, pp. 192–203, 2009.

Zhijie Zhang, Yujie Lu, Weiguo Zheng, and Xuemin Lin. A comprehensive survey and experimental
study of subgraph matching: trends, unbiasedness, and interaction. Proceedings of the ACM on
Management of Data, 2(1):1–29, 2024.

Wei Zhuo and Guang Tan. Efficient graph similarity computation with alignment regularization.
Advances in Neural Information Processing Systems, 35:30181–30193, 2022.

13

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://aclanthology.org/2024.findings-eacl.132/
https://aclanthology.org/2024.findings-eacl.132/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 PROOFS OF PROPERTIES OF SUBGRAPH RELATIONSHIP

We provide proofs for the properties related to the subgraph relationship below, including reflexivity,
transitivity, and antisymmetry.

Theorem A.1 (Reflexivity). G ⊑ G

Proof. Let G = (V,E). Since V ⊆ V , E ⊆
{
(u, v) ∈ E | u, v ∈ V

}
, it follows from the definition

of the subgraph relationship that G ⊑ G.

Theorem A.2 (Reflexivity of Graph Isomorphism). G ∼= G

Proof. Consider a bijection f : V
∼−→ V defined by f(v) = v for all v ∈ V . This satisfies

∀vi, vj ∈ V, (vi, vj) ∈ E ⇐⇒ (f(vi), f(vj)) = (vi, vj) ∈ E.

By the definition of graph isomorphism, G and G are isomorphic, i.e., G ∼= G.

Theorem A.3 (Transitivity). (G1 ⊑ G2) ∧ (G2 ⊑ G3) =⇒ G1 ⊑ G3.

Proof. Let G1 = (V1, E1), G2 = (V2, E2), and G3 = (V3, E3). From G1 ⊑ G2, we have:

V1 ⊆ V2 and E1 ⊆ {(u, v) ∈ E2 | u, v ∈ V1} .

Similarly, from G2 ⊑ G3, we have:

V2 ⊆ V3 and E2 ⊆ {(u, v) ∈ E3 | u, v ∈ V2} .

Since V1 ⊆ V2 and V2 ⊆ V3, it follows that:

V1 ⊆ V3.

For edges, from E1 ⊆ {(u, v) ∈ E2 | u, v ∈ V1} and E2 ⊆ {(u, v) ∈ E3 | u, v ∈ V2}, we deduce:

∀(u, v) ∈ E1, (u, v) ∈ E2 ⊆ E3 with u, v ∈ V1 ⊆ V3.

Therefore, we conclude:
E1 ⊆ {(u, v) ∈ E3 | u, v ∈ V1} .

Theorem A.4 (Antisymmetry). (G1 ⊑ G2) ∧ (G2 ⊑ G1) ⇐⇒ G1 = G2.

Proof. Let G1 = (V1, E1) and G2 = (V2, E2). If G1 ⊑ G2 and G2 ⊑ G1, we have:

V1 ⊆ V2 and E1 ⊆ {(u, v) ∈ E2 | u, v ∈ V1} ,

and
V2 ⊆ V1 and E2 ⊆ {(u, v) ∈ E1 | u, v ∈ V2} .

From V1 ⊆ V2 and V2 ⊆ V1, we conclude V1 = V2. Similarly, E1 ⊆ E2 and E2 ⊆ E1 imply
E1 = E2. Therefore, we have G1 = G2.

Conversely, if G1 = G2, then we have:

V1 = V2 and E1 = {(u, v) ∈ E2 | u, v ∈ V1} ,

and
V2 = V1 and E2 = {(u, v) ∈ E1 | u, v ∈ V2} .

Therefore, G1 ⊑ G2 and G2 ⊑ G1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 COROLLARIES OF SUBGRAPH ISOMORPHISM RELATIONSHIP

Corollary A.5 (Subgraph Isomorphism Partial Order). Building upon the properties mentioned in
Section 3.2, the subgraph isomorphism relation ⪯:

G1 ⪯ G2 ⇐⇒ ∃G′ = (V ′, E′) ⊑ G2 s.t. G1
∼= G′ (13)

satisfies the fundamental characteristics of a partial ordering on the graph space G:

• Reflexivity:
∀G ∈ G, G ⪯ G

• Transitivity:
(G1 ⪯ G2) ∧ (G2 ⪯ G3) =⇒ G1 ⪯ G3

• Antisymmetry:
(G1 ⪯ G2) ∧ (G2 ⪯ G1) ⇐⇒ G1

∼= G2

We provide proofs for the properties related to the subgraph isomorphism below, including reflexivity,
transitivity, and antisymmetry.
Theorem A.6 (Reflexivity). ∀G ∈ G, G ⪯ G

Proof. By Theorem A.1, we have G ⊑ G; by Theorem A.2, we have G ∼= G, then we have
G ⪯ G.

Theorem A.7 (Transitivity). (G1 ⪯ G2) ∧ (G2 ⪯ G3) =⇒ G1 ⪯ G3

Proof. Let G1 = (V1, E1), G2 = (V2, E2), and G3 = (V3, E3). Given G1 ⪯ G2, there exists a
mapping f1 : V1 → V2 such that

∀vi, vj ∈ V1, (vi, vj) ∈ E1 =⇒ (f1(vi), f1(vj)) ∈ E2.

Similarly, from G2 ⪯ G3, there exists a mapping f2 : V2 → V3 satisfying
∀vi, vj ∈ V2, (vi, vj) ∈ E2 =⇒ (f2(vi), f2(vj)) ∈ E3.

Define a composite mapping g : V1 → V3 = f1 ◦ f2 as g(v) = f2(f1(v)). Then:
∀vi, vj ∈ V1, (vi, vj) ∈ E1 =⇒ (f1(vi), f1(vj)) ∈ E2 =⇒ (g(vi), g(vj)) ∈ E3.

Construct G′
3 = ({g(v) | v ∈ V1}, {(g(vi), g(vj)) | vi, vj ∈ V1}). This satisfies:

G′
3 ⊑ G3 with G1

∼= G′
3.

Therefore, G1 ⪯ G3 holds.

Theorem A.8 (Antisymmetry). (G1 ⪯ G2) ∧ (G2 ⪯ G1) ⇐⇒ G1
∼= G2

Proof. Let G1 = (V1, E1), and G2 = (V2, E2). Given G1 ⪯ G2, there exists a mapping f1 : V1 →
V2 such that

∀vi, vj ∈ V1, (vi, vj) ∈ E1 =⇒ (f1(vi), f1(vj)) ∈ E2.

Similarly, from G2 ⪯ G1, there exists a mapping f2 : V2 → V1 satisfying
∀vi, vj ∈ V2, (vi, vj) ∈ E2 =⇒ (f2(vi), f2(vj)) ∈ E1.

The mappings f1 and f2 induce a bijective correspondence f ′ : V1
∼−→ V2 that preserves adjacency:

∀vi, vj ∈ V1, (vi, vj) ∈ E1 ⇐⇒ (f ′(vi), f
′(vj)) ∈ E2 (14)

Therefore, G1
∼= G2 holds.

Conversely, if G1
∼= G2, there exists a bijective mapping f : V1

∼−→ V2 satisfying:
∀vi, vj ∈ V1, (vi, vj) ∈ E1 ⇐⇒ (f(vi), f(vj)) ∈ E2 (15)

The inverse mapping f−1 : V2
∼−→ V1 consequently preserves:

∀vi, vj ∈ V2, (vi, vj) ∈ E2 ⇐⇒ (f−1(vi), f
−1(vj)) ∈ E1

establishing G2
∼= G1.

Through constructive verification:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Let G′ = G2. By definition:
G′ ⊑ G2 and G1

∼= G′ =⇒ G1 ⪯ G2

• Let G′′ = G1. Similarly:
G′′ ⊑ G1 and G2

∼= G′′ =⇒ G2 ⪯ G1

For isomorphic graphs G1
∼= G2, the partial order relation becomes symmetric:
(G1 ⪯ G2) ∧ (G2 ⪯ G1) ⇐⇒ G1

∼= G2

By Corollary A.5, the subgraph isomorphism relation satisfies the partial order properties. Conse-
quently, the partial order-aware GNN proposed in this work demonstrates superior effectiveness in
solving subgraph isomorphism problems.

A.3 PROOF OF PARTIAL ORDER-AWARE GNN

We demonstrate that the order constraints in Equation 8 are preserved under the composition of
multiple message-passing layers in GNNs, particularly in simple models like the Graph Isomorphism
Network (GIN) Xu et al. (2019).

Proof Strategy: By leveraging mathematical induction, we prove that GIN-style models inherently
maintain these properties. Consider a k-layer GNN encoding nodes u (in search graphs) and v (in
query graphs):

1. Base Case: For the trivial case of a single node v (i.e., 0−hop neighborhood where
N0(v) = {v}), the partial ordering relation ⪯ trivially satisfies:

∀v ∈ V, h(0)
v ⪯ h(0)

v

This follows directly from the reflexive property of partial orders. The 0−hop neighborhood
contains only the node itself, making the order embedding comparison degenerate to self-
comparison.

2. Inductive Step: If the k-hop neighborhood of u forms a subgraph of v’s k-hop neighborhood
(Nk(u) ⊑ Nk(v)), then:

∀s ∈ N (v), ∃t ∈ N (u) s.t. Nk−1(s) ⊑ Nk−1(t)

The (k − 1)-hop neighborhoods of u’s neighbors are subgraphs of corresponding neigh-
borhoods of v’s neighbors. This inductive process guarantees the preservation of order
constraints through layer composition.

Order Embedding Guarantee: Suppose all GNN embeddings at layer (k − 1) satisfy order
constraints after transformation. Using sum-based neighborhood aggregation:

h(k)
v = fagg

({
h(k−1)
u | u ∈ N (v)

})
(16)

where fagg is order-preserving under summation. Then:

h(k)
v ⪯ h

(k)
v′ if ∀u ∈ N (v), ∃w ∈ N (v′) with h(k−1)

u ⪯ h(k−1)
w (17)

Subgraph Composition Property: This corresponds to the fundamental property of subgraph
composition:
Theorem A.9 (Order Preservation). Given GIN’s update rule:

h(l+1)
v = MLP(l)

(1 + ϵ(l)) · h(l)
v +

∑
u∈N (v)

h(l)
u

 (18)

and the graph embedding by concatenating sum-pooled features across layers:

hG =

L∑
l=0

γl ·
∑
v∈V

h(l)v (19)

the GNN preserves partial order relationships between subgraphs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proof. The MLP’s universal approximation capability combined with sum aggregation maintains the
partial order structure through Lipschitz continuity. The loss function explicitly enforces:

hq ⪯ ht ⇐⇒ Gq ⊑ Gt

making the embedding space order-isomorphic to the subgraph lattice.

Definition A.10 (Max-Margin Order Loss). The structural constraint is enforced through our margin-
based loss function:

L(hq,ht) =
∑

(hq,ht)∈P

E(hq,ht)

+
∑

(hq,ht)∈N

max (0, α− E(hq,ht)) (20)

where
E(hq,ht) = ∥max (0,hq − ht)∥22 (21)

Proposition A.11 (Learning Dynamics). The loss design induces asymmetric gradient signals:

• For positive pairs P = {(q, t) ∈MB | N (q) ⊑ N (t)}, gradients dominate in dimensions
where hiq > hit

• For negative pairs N =MB \ P , gradients activate only when E(hq,ht) > α

This creates faster convergence for order-satisfying pairs compared to violating ones.

Theorem A.12 (Order-Preserving Embedding). After sufficient training iterations, the GIN embed-
dings satisfy the vector partial order:

∀i ∈ {1, ..., D}, hi
G1
≤ hi

G2
⇐⇒ G1 ⊑ G2 (22)

A.4 PROBABILISTIC COMPLETENESS

We establish that SIREN guarantees to either find an exact solution or prove the non-existence of a
solution given sufficient time. This probabilistic completeness relies on three fundamental properties:
a finite search space, persistent exploration, and Markov chain ergodicity.

1) Finite State Space: The search space forms a finite state transition graph where each state s
represents a partial isomorphism mapping M ⊆ VQ × VT that satisfies the required topologi-
cal constraints. For |VQ| = n and |VT | = m, the cardinality of the state space is bounded by∑n

k=0

(
n
k

)
P (m, k) = O(mn), ensuring finiteness. Our state encoding scheme explicitly tracks

partial mappings to preserve this property.

2) Non-Zero Action Probabilities: SIREN employs an ϵ-greedy policy with a non-decaying ϵ,
ensuring that the probability of selecting any valid branch remains strictly positive. The DQN is
used solely to prioritize branch exploration (e.g., by favoring branches with higher Q-values) without
performing irreversible pruning; even branches with low Q-values remain explorable in subsequent
steps. Furthermore, the algorithm does not permanently exclude any branch due to state memorization.
Consequently, the probability of selecting any feasible path branch remains non-zero.

3) Ergodic Markov Chain: The search process constitutes a finite Markov chain (S, P) with transi-
tion probabilities P (s′|s) =

∑
a:s→s′ πθ(a|s). This chain is irreducible (enabled by backtracking

actions that permit state revisitation) and aperiodic (due to the existence of self-transitions). By the
ergodic theorem Bellet (2006), the chain visits all states with probability 1 over infinite time.

4) Robustness: Pathological cases are mitigated through the following mechanisms:

• Permanent availability of all valid actions (πθ(a|s) > 0 for any valid a);

• Explicit backtracking mechanisms;

• Absence of irreversible pruning, with the exception of Bidomain-based pruning that defini-
tively precludes solution existence.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

These features ensure exhaustive exploration even for deceptive graph structures.

In summary, given the finite state space, persistent exploration via strictly positive transition proba-
bilities, ergodic properties, and robust backtracking mechanisms, SIREN guarantees probabilistic
completeness.

A.5 TRAINING PROCESS OF THE RL-ENHANCED SUBGRAPH ISOMORPHISM SOLVER

The training process consists of three consecutive phases: pretraining, imitation learning, and
reinforcement learning. Each phase follows the same core workflow of experience collection followed
by network updates.

Pretraining Phase (1250 iterations): Heuristic methods (specifically, the traditional subgraph
matching algorithm VF3 Carletti et al. (2017)) are used to generate search trajectories and populate
the experience replay buffer. This approach avoids the inefficiency of initial random exploration. The
objective is to provide the network with high-quality initial samples of effective matching patterns,
establishing a solid foundation for subsequent reinforcement learning.

Imitation Learning Phase (2500 iterations): The agent continues to use VF3 Carletti et al. (2017) to
generate demonstration trajectories. However, the DQN now begins to learn by imitating the Q-value
distribution of this heuristic policy. The goal is for the network to quickly converge to a performance
level comparable to that of the traditional algorithm, thereby reducing the cost of exploration.

Reinforcement Learning Phase (6250 iterations): The agent relies entirely on the DQN’s ϵ-greedy
policy for exploration. The Q-values are optimized through environmental feedback (rewards),
allowing the policy to be progressively refined. The final objective is to enable the network to surpass
the performance of traditional heuristic methods by discovering more efficient matching paths.

Algorithm 1 Training Process of the RL-Enhanced Subgraph Isomorphism Solver
1: Initialize replay buffer D, policy network πθ, target network πθ−

2: for episode = 1 to M do
3: Sample graph pair (GQ, GT), initialize state s0
4: for t = 1 to Tmax do
5: Select action at via ϵ-greedy: at ∼ πθ(st)
6: Execute at, observe st+1, reward rt
7: Store transition (st, at, rt, st+1) in D
8: Sample batch D ∼ D, update θ via DQN loss L
9: Update target network: θ− ← τθ + (1− τ)θ−

10: end for
11: end for

SIREN learns via deep Q-learning with prioritized experience replay Mnih (2013), as outlined in
Algorithm 1. The framework maintains three core components: a replay buffer D storing transition
trajectories (st, at, rt, st+1), a policy network πθ parameterized by θ for action selection, and a target
network πθ− with delayed weight updates to stabilize training. The core training loop in each phase
consists of two main stages: experience collection (populating the replay buffer) and network update
(learning from the buffer).

The experience collection stage involves the following steps:

• Search initialization

• Action selection and search expansion

• Reward calculation and experience storage

The network update stage comprises the following steps:

• Experience sampling from the replay buffer

• Target Q-value computation

• Loss calculation and parameter optimization

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• Periodic synchronization of the target network

At the start of each episode, a graph pair (GQ, GT) is sampled from the training distribution Ptrain,
and an initial state s0 = InitState(GQ, GT) is constructed. The agent interacts with the environment
for Tmax timesteps using an ϵ-greedy exploration strategy: with probability ϵ, random actions are
selected from the available action space At, otherwise the optimal action at = argmaxaQθ(st, a)
is chosen by the policy network. Executing action at yields a new state st+1 and immediate reward
rt, with the transition tuple (st, at, rt, st+1) stored in D for subsequent learning.

Parameter updates are performed through minimization of the Huber loss L(θ) Huber (1992):

E(s,a,r,s′)∼D

[(
r + γmax

a′
Qθ−(s′, a′)−Qθ(s, a)

)2
]

(23)

where γ denotes the discount factor, and r = +1 for the immediate reward. The target network
parameters θ− are softly updated using the rule:

θ− ← τθ + (1− τ)θ− with τ ≪ 1 (24)

A.6 TRAINING METHODOLOGY OF THE PARTIAL-ORDER-AWARE GNN

The training protocol for our partial-order-aware GNN comprises two coordinated phases: (1)
Training Data Generation and (2) Loss-Driven Optimization.

A.6.1 TRAINING DATA GENERATION

Algorithm 2 Contrastive Subgraph Sampling
1: Sample anchor node u ∈ VT from target graph GT

2: Generate Gu ⊑ GT via randomized BFS with edge traversal probability p = 0.8
3: Construct query graph Gq by reapplying same BFS protocol on Gu anchored at u

Ensure: Gq ⊑ Gu (preserves subgraph isomorphism via construction)
4: Generate negative pairs:
5: Type I: Random anchor u′ ̸= u with BFS-generated Gu′

6: Type II: Perturb Gq via edge deletions/additions violating Gq ⊑ GT

The data generation process ensures diverse yet controlled learning signals:

• Positive Pairs: For each target subgraph Gu ⊆ GT , we systematically construct isomorphic
queries Gq through duplicate randomized breadth-first search (BFS) traversals with edge
sampling probability p = 0.8. This procedural generation guarantees Gq ⊑ Gu by design.

• Negative Pairs: We implement two challenging negative sampling strategies:
1. Non-anchored Negatives: Random anchor selection with independent BFS generations

that break subgraph relationships
2. Structurally Damaged Negatives: Adversarial edge perturbations (15% edge flip proba-

bility) that invalidate subgraph isomorphism

A.6.2 LOSS COMPUTATION AND OPTIMIZATION

Let hq,hu denote GNN embeddings of query Gq and target subgraph Gu. The contrastive loss from
Definition A.10 is computed as:

L =
∑

(q,u)∈P

∥max(0,hq − hu)∥2 +
∑

(q,u′)∈N

max(0, α− ∥hq − hu′∥2) (25)

Backpropagation updates both the GNN parameters θ and the anchor-aware embedding space through:

θ ← θ − η∇θL (26)

where η is the learning rate.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 3 SIREN’s RL-Enhanced Search Framework.
1: Input: Query Graph GQ, Target Graph GT

2: Output: Solution Set SG =
{
G′ ⊑ GT | GQ

∼= G′}
3: ST ← ϕ, SG ← ϕ
4: ST .push(ϵ)
5: while ST ≠ ϕ do
6: st← ST .pop()
7: curG← st.getMCS()
8: if |V (curG)| = |V (GQ)| then
9: SG ← SG ∪ curG

10: continue
11: end if
12: UB ← |curG|+ bound(st)
13: if |UB| ≤ |V (GQ)| or |st.actions| = 0 then
14: continue
15: end if
16: a∗t ← Policy(st)
17: st+1 ← Action(st, a∗t)
18: st.actions← st.actions \ {a∗t }
19: ST .push(st)
20: ST .push(st+1)
21: end while

A.7 REINFORCEMENT LEARNING-ENHANCED HEURISTIC SEARCH

In SIREN, we established a reinforcement learning-enhanced heuristic search framework for subgraph
isomorphism by augmenting a classical branch-and-bound maximum common subgraph search
paradigm. As formalized in Algorithm 3, SIREN maintains a state heap ST to track partial mapping
states during subgraph isomorphism search. At each iteration, the algorithm retrieves the top state
st =Mt, whereMt represents the current node mapping set between the pattern graph GQ and the
target graph GT . The subgraph curG corresponding toMt is then extracted which satisfies both
curG ⊑ GT and curG ⊑ GQ. A critical pruning decision is made based on a bidomain-estimated
upper bound UB, as detailed in Section A.8. If this bound falls below the number of nodes of GQ,
i.e. |V (GQ)|, the branch is pruned. When curG achieves full isomorphism with GQ (curG ∼= GQ),
it is added to the solution set SG.

A.8 ADDITIONAL EMBEDDINGS AND UPPERBOUND ESTIMATION VIA BIDOMAINS

In our methodology, inspired by GLSearch Bai et al. (2021), bidomains are introduced to provide
more information for our partial-order aware GIN model, and facilitate pruning through estimating
the upper bound UB. For a given state st =Mt, the k−th bidomain Bk is defined as:

Bk = ⟨VkQ, VkT ⟩ (27)

where VkQ ⊆ V (GQ) and VkT ⊆ V (GT) exhibit identical connectivity patterns with respect to the
already matched node setsMt = ⟨V s

Q, V
s
T ⟩, V s

Q ⊆ V (GQ) and V s
T ⊆ V (GT). For the state st with

n matched node pairs, i.e., 
|V s

Q| = |V s
T | = n

V s
Q = {vsQ1, v

s
Q2, ..., v

s
Qn}

V s
T = {vsT1, v

s
T2, ..., v

s
Tn}

(28)

there are a total of 2n bidomains. The 2n bidomains are B(d1...dn)2 = ⟨V(d1...dn)2Q, V(d1...dn)2T ⟩,
where d1, ..., dn ∈ {0, 1}. For i ∈ {1, 2, ..., n}, The nodes in B(d1...dn)2 satisfy:

di = 1 ⇐⇒ ∀v ∈ V(d1...dn)2Q,∃e = (v, vsQi) ∈ E(GQ)

di = 0 ⇐⇒ ∀v ∈ V(d1...dn)2Q,∄e = (v, vsQi) ∈ E(GQ)

di = 1 ⇐⇒ ∀v ∈ V(d1...dn)2T ,∃e = (v, vsT i) ∈ E(GT)

di = 0 ⇐⇒ ∀v ∈ V(d1...dn)2T ,∄e = (v, vsT i) ∈ E(GT)

(29)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) Query Graph (b) Target Graph

(c) Bidomains of Query Graph (d) Bidomains of Target Graph

5 1

4
6

3

2

8

9

7
100

10
11

12

13 010

001

000 110
110

010

5 1

4
6

3

2

Figure 4: Examples of subgraph isomorphism and bidomains. (a) Query graph GQ, (b) Target graph
GT , (c-d) Bidomains of GQ and GT .

Figure 4 presents an example of subgraph isomorphism and bidomains. Figure 4(a) shows the query
graph GQ, while Figure 4(b) displays the target graph GQ. Figures 4(c) and 4(d) illustrate the
bidomains when the currently matched nodes are ⟨vQ1, vT1⟩, ⟨vQ2, vT2⟩, and ⟨vQ3, vT3⟩. As shown
in Figures 4(c), the nodes vQ5 and vQ6 are in the set V(010)2Q, and the node vQ4 is in the set V(110)2Q.
As shown in Figures 4(d), the nodes vT5 and vT6 are in the set V(010)2T , the node vT4 is in the set
V(110)2T . vT7 and vT8 are in V(100)2T . vT9, vT10 and vT11 are in V(001)2T . vT12 and vT13 are in
V(000)2T .

To estimate the upperbound, note that each bidomain can contribute at most min(|VkQ|, |VkT |) nodes
to the future best solution. Therefore, the upperbound can be estimated as:∑

Bk∈B
min(|VkQ|, |VkT |) (30)

which is the bound() function in Algorithm 3.

We also incorporate the bidomain information as node labels into our partial-order-aware GNN. The
resulting embeddings are used to enhance the input to our DQN model.

A.9 EXAMPLE OF THE SUBGRAPH ISOMORPHISM

Below, we give an example of the subgraph isomorphism in real applications of loop mapping in
coarse-grained reconfigurable architectures (CGRAs).

Example 1 (Loop mapping): In CGRA loop mapping, Figure 5 illustrates a 2 × 2 processing
element (PE) array case where subgraph isomorphism verifies if the compiler-generated data flow
graph (DFG) (Figure 5(a)) embeds into the time-extended CGRA (TEC) model (Figure 5(b)) under a
target initiation interval (II). This spatiotemporal mapping solution (Figure 5(c)) explicitly defines
PE operations per cycle and inter-PE routing, systematically optimizing parallelism and resource
utilization through isomorphic correspondence between DFG and TEC structures.

A.10 STATISTICS OF REAL-WORLD GRAPH DATASETS

In Section 4.4, we selected the same datasets as GNN-PE Ye et al. (2024b) from TUDataset Morris
et al. (2020) for testing, i.e., Yeast, Human, HPRD, WordNet, DBLP, Youtube, and US Patents.
Statistics of these real graphs are summarized in Table 4.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) DFG of Auto Regression Filter (b) Time-extended CGRA

M

A

M M M

A

M M M M

A A

M M M M M MMM

AA A A

A A

A

A

(c) Mapping result, II=7

II=7

M

A

M M M

A

A

M M

A

M

M

M

A

PE1 PE2 PE3 PE4

A

AA

1
2
3
4
5
6
7
8
9

A A

M

MM M

A A

M M

A A

M

M M M M

A A

PE1 PE2

PE3 PE4

PE1 PE2

PE3 PE4

PE1 PE2

PE3 PE4

t

t+1

t+2

time

…

M

A

Multiply

Add

time

Figure 5: Example of loop mapping on CGRA with subgraph isomorphism. (a) DFG of Auto
Regression Filter, (b) Time-extended CGRA of a 2× 2 PEA, (c) mapping result, II = 2.

Table 4: Statistics of Real-World Graph Datasets.

Datasets |V (G)| |E(G)| |Σ| deg(G)

Yeast 3112 12519 71 8.0
Human 4674 86282 44 36.9
HPRD 9460 34998 307 7.4
WordNet 76853 120399 5 3.1
DBLP 317080 1049866 15 6.6
Youtube 1134890 2987624 25 5.3
US Patents 3774768 16518947 20 8.8

A.11 RL FRAMEWORK ABLATION STUDY AND SCALABILITY BENCHMARKING

To analyze the impact of different reinforcement learning paradigms, we conducted comparisons
between Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO) Schulman et al. (2017).
Our baseline DQN implementation follows the parametrization:

Qθ(st, at) =F
(

GNNenc(GQ, GT , st)︸ ︷︷ ︸
state embedding hst∈Rd

⊕ Waϕ(at)︸ ︷︷ ︸
action embedding hat∈Rd

)
=MLP

(
hst ∥ hGQ

∥ hGT
∥ hat

) (31)

where ⊕ denotes vector concatenation. For comparison, we adapt the PPO framework with dual-
network architecture:

πθ(at|st) =Softmax
(
Wπ · GNNenc(GQ, GT , st)

)
Vϕ(st) =w⊤

v · GNNenc(GQ, GT , st)
(32)

Remark A.13. The key difference lies in DQN’s action-conditioned Q-function versus PPO’s state-
conditioned policy distribution. Our GNN encoder maintains identical architecture across frameworks
to isolate RL algorithm effects.

We validate scalability on a million-scale graph from the US Patent dataset (|V | = 3,774,768).
Through random bipartition, we generate query-target pairs with matched cardinality (|VQ| = |VT |).
The MCS identification time complexity is measured for four methods: GLSearch Bai et al. (2021),
GNN-PE Ye et al. (2024b), SIREN and PPO-based SIREN (SIREN-PPO). The results are detailed in
5.

Despite being optimized for subgraph isomorphism, SIREN achieves 3.83× speedup over GLSearch
at 5K-node scale. The performance gap widens exponentially with graph size (R2 = 0.98 for

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Time cost (seconds) for MCS identification across graph sizes. Bold: best performance.
Method Graph Size (Nodes)

1K 2K 3K 4K 5K

GLSEARCH 364.5 664.6 1820.2 2163.2 21507.2
GNN-PE > 105 > 105 > 105 > 105 > 105

SIREN 165.4 357.3 639.8 939.8 5612.3
SIREN-PPO 245.8 518.1 888.6 1119.6 7241.6

quadratic fit), demonstrating our method’s superior asymptotic complexity. The GNN-PE’s failure
highlights the necessity of partial-order-preserving architectures for structural tasks.

Assumption A.14 (RL Framework Efficacy). The superior empirical performance of our DQN-based
framework compared to the PPO variant (Table 5) stems from two synergistic factors:

• Partial-Order Preservation: The ⪯-preserving GNN embeddings intrinsically capture
subgraph containment relationships through the lens of order embeddings hG ∈ RD

+ (Theo-
rem A.12)

• Compatibility with Value Iteration: The subgraph isomorphism search dynamics are
naturally expressible through Q-learning’s state-action value formulation:

Q(s, a) = E

R(s, a) + γmax
a′
⟨hs′ ,hGT

⟩︸ ︷︷ ︸
order alignment

 (33)

where R(s, a) encodes topological validity rewards

Assumption A.15 (Policy Gradient Limitations). The relative underperformance of policy-based
methods suggests:

∇θJ (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st)Ât

]
(34)

suffers from high variance in credit assignment for structural actions. Future work will develop
SIREN-PPO+ with:

• Action space decomposition leveraging partial order constraints

• GNN-based advantage estimation Ât = fϕ(hst ,hGT
)

A.12 COMPLEXITY ANALYSIS

The time complexity of our GNN-based query processing is approximatelyO(k|VT ||VQ|), where k de-
notes the number of GNN layers. The per-iteration computational complexity remains O(k|VT ||VQ|).
Although the theoretical worst-case time complexity suggests exponential scaling, experimental
results reveal a practical polynomial-time behavior within O((|VT ||VQ|)4) to O((|VT ||VQ|)5).

A.13 LIMITATIONS

While SIREN performs well on moderately sized graphs, we acknowledge the scalability limitations
inherent in RL-driven search and GNN embedding generation when applied to massive graphs.
However, our systematic benchmarking reveals a critical industry-wide challenge: When confronted
with ultra-dense, large-scale graphs typical of real-world applications, neither traditional heuristic
approaches (VF3 Carletti et al. (2017), RI Bonnici et al. (2013), GraphQL He & Singh (2008), ...)
nor modern neural network-based solutions (GNN-PE Ye et al. (2024b), GLSearch Bai et al. (2021))
demonstrate viable computational tractability. Specifically, as benchmarked on graphs exceeding 104

nodes with density ρ > 0.3, all existing methods exhibit exponential time complexity growth beyond
practical feasibility thresholds.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.14 ETHICS STATEMENT

All authors have read and will adhere to the ICLR Code of Ethics throughout the submission process.
To the best of our knowledge, this work does not present any potential ethical concerns.

A.15 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work and welcome discussions with reviewers
regarding any reproducibility concerns during the review process. The supplementary material
includes the core implementation of SIREN. Upon acceptance of the paper, we will release the
full source code, trained models, datasets, checkpoints, and related resources to ensure complete
reproducibility.

A.16 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The use of Large Language Models (LLMs) in this work was solely restricted to polishing and
refining the linguistic expression of the manuscript. LLMs were not employed in any other aspect of
the research, including but not limited to: related work survey, code development, model training and
testing, or conducting proofs.

24

	Introduction
	Preliminaries
	The SIREN Method
	Provably Complete Framework for Subgraph Isomorphism
	Partial Order-Aware GNN Architecture

	Experiments
	Baseline Methods
	Experimental Settings
	Effectiveness of SIREN
	Efficiency and Throughput Rate
	Scalability of SIREN
	Ablation Study

	Related Work
	Traditional Approaches
	Neural Approaches for Subgraph Isomorphism
	Neural Approaches for Related Problems

	Conclusion
	Technical Appendices and Supplementary Material
	Proofs of Properties of Subgraph Relationship
	Corollaries of Subgraph Isomorphism Relationship
	Proof of Partial Order-Aware GNN
	Probabilistic Completeness
	Training Process of the RL-Enhanced Subgraph Isomorphism Solver
	Training Methodology of the Partial-Order-Aware GNN
	Training Data Generation
	Loss Computation and Optimization

	Reinforcement Learning-Enhanced Heuristic Search
	Additional Embeddings and Upperbound Estimation via Bidomains
	Example of the Subgraph Isomorphism
	Statistics of Real-world Graph Datasets
	RL Framework Ablation Study and Scalability Benchmarking
	Complexity Analysis
	Limitations
	Ethics Statement
	Reproducibility statement
	The Use of Large Language Models (LLMs)

