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ABSTRACT

The subgraph isomorphism problem comprises two distinct objectives: (a) Ex-
istence determination: Verifying whether an input graph contains a subgraph
isomorphic to another input graph; and (b) Complete solution enumeration: Out-
putting the exhaustive set of all isomorphic mappings when they exist. Solving this
problem serves as a fundamental requirement for numerous application domains.
However, as an NP-complete problem, existing mainstream solvers primarily rely
on heuristic techniques, demonstrating limited efficiency when handling large-
scale input graphs. To address this challenge, we propose SIREN - a graph neural
network enhanced with deep reinforcement learning for subgraph isomorphism res-
olution. SIREN establishes graph embeddings through partial order-aware GNNs,
while employing Deep Q-Networks with bidomain-based pruning to accelerate the
graph matching process. Experimental results on real-world datasets demonstrate
that SIREN achieves 100% precision with modest computational time, outperform-
ing AI-based approximate matching methods. Compared to state-of-the-art exact
solvers, SIREN delivers ∼ 52% faster execution than leading AI approaches and
∼ 21% acceleration over top heuristic methods.

1 INTRODUCTION

The representation of structured data using graphs has evolved over decades as a foundational
methodology in data modeling West et al. (2001). Meanwhile, graph-based algorithms have found
widespread adoption for analyzing complex relational patterns across scientific and industrial domains
Dijkstra (2022); Kruskal (1956). Within graph theory, the subgraph isomorphism problem represents
a core computational challenge Nguyen et al. (2022); Zhang et al. (2024). Specifically, it requires
determining whether a given graph contains a structurally isomorphic subgraph of another graph,
while also deriving the explicit node correspondence when such isomorphism exists.

The subgraph isomorphism problem has garnered significant attention across pivotal domains due
to its critical role in enabling structural pattern analysis. In biomolecular sciences, it underpins the
determination of structural compatibility between molecules and proteins for drug discovery and
protein interaction studies Balaban (1985); Bonnici et al. (2013). Within semantic web technologies,
it facilitates efficient Resource Description Framework (RDF) query processing to traverse complex
knowledge graphs Kim et al. (2015). Social network analytics leverages subgraph isomorphism
detection to generate personalized recommendation systems through dynamic community subpattern
mining Rong et al. (2018). Furthermore, in domain-specific computing architectures, this capability
proves essential for optimizing loop mapping schemes in reconfigurable computing systems, where
topological constraints demand rigorous subgraph matching Hamzeh et al. (2012). These cross-
disciplinary applications collectively demonstrate the problem’s fundamental importance in modern
computational paradigms.

The subgraph isomorphism problem, known to be NP-complete Conte et al. (2004), is classically
tackled using heuristic methods, which can be broadly classified into three categories: (1) Tree search
algorithms, ranging from classical ones (Ullmann Ullmann (1976), VF-series Carletti et al. (2017))
to modern extensions (RM Sun et al. (2020), VEQ Kim et al. (2021), CaLiG Yang et al. (2023)),
that employ depth-first search combined with pruning techniques; (2) Constraint programming
frameworks, which model the problem as a constraint satisfaction problem (CSP) using integer
linear programming (ILP), SAT, or other formalisms (e.g., McGregor McGregor (1979), Solnon
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Solnon (2010), Zampelli Zampelli et al. (2010)); (3) Graph indexing approaches, often inspired by
database systems (e.g., GraphQL He & Singh (2008), QuickSI Shang et al. (2008), GADDI Zhang
et al. (2009)), that use precomputed structural signatures and inverted indices to accelerate filtering.
Despite the use of advanced pruning strategies, state-of-the-art heuristic solvers still suffer from
exponential worst-case time complexity, which often limits their practicality on large real-world
graphs.

Recent advances in artificial intelligence, particularly graph neural networks (GNNs) designed for
graph isomorphism analysis Xu et al. (2019), have spurred new learning-based approaches for
subgraph isomorphism. Representative methods include IsoNet Roy et al. (2022), streaming models
Duong et al. (2021), GMN Li et al. (2019), GNN-PE Ye et al. (2024b), EinsMatch Ramachandran
et al. (2024), and SubMDSE Raj et al. (2025). Furthermore, AI techniques have been extended
to address related problems such as subgraph alignment Bainson et al. (2024), graph edit distance
computation Piao et al. (2023), and maximum common subgraph identification Bai et al. (2021).

However, current learning-based methods exhibit notable limitations: they often yield probabilistic
approximations rather than exact solutions Ramachandran et al. (2024), or are confined to very small
query graphs (e.g., ≤ 10 nodes) Ye et al. (2024b). A more fundamental constraint is their heavy
reliance on solver-generated labels produced by traditional algorithms for supervised training, which
introduces computational bottlenecks and restricts practical deployment.

To address the limitations of existing approaches, we present SIREN (Subgraph Isomorphism via
Reinforcement-Enhanced Graph Neural Networks). Our framework integrates a Deep Q-Network
(DQN) Volodymyr et al. (2019) with bidomain-based pruning to autonomously discover optimal
node selection heuristics, which are critical components in state-of-the-art subgraph isomorphism
solvers. Complementing this, SIREN employs a pretrained graph neural network grounded in
partial order relation learning to hierarchically encode subgraph structural dependencies. While
maintaining provable completeness, experimental results demonstrate that SIREN outperforms all
machine learning-based methods in accuracy for approximate matching tasks. Simultaneously, it
achieves significant efficiency gains over both heuristic approaches and AI-based methods when
enumerating complete solution sets. The primary contributions of this paper are as follows:

1. DQN-GNN integration with provable completeness: We propose a novel DQN-GNN in-
tegration method with bidomain-based pruning that efficiently solves subgraph isomorphism
problems while guaranteeing provable completeness.

2. Partial-order-aware pretrained GNN: We introduce a partial-order-aware GNN pre-
training strategy that eliminates dependency on solver-generated labels while enhancing
substructure relationship understanding.

3. Unified framework: Our framework simultaneously addresses both existence determination
and complete solution enumeration for subgraph isomorphism.

4. Superior precision and efficiency: Experimental results on real-world datasets demonstrate
that SIREN achieves 100% precision with modest computational time, outperforming AI-
based approximate matching methods. Compared to state-of-the-art exact solvers, SIREN
delivers ∼ 52% faster execution than leading AI approaches and ∼ 21% acceleration over
top heuristic methods.

2 PRELIMINARIES

1) Graph: A graph can be formally defined as G = (V,E), where V = {v1, . . . , vn} denotes the
finite set of vertices and E ⊆ V × V denotes the edge set. Each edge eij ∈ E connects two vertices
vi, vj in V .

2) Graph Isomorphism: Two graphsG1 = (V1, E1) andG2 = (V2, E2) are isomorphic (G1
∼= G2)

if there exists a bijective mapping f : V1
∼−→ V2 such that:

∀vi, vj ∈ V1, (vi, vj) ∈ E1 ⇐⇒ (f(vi), f(vj)) ∈ E2 (1)

3) Subgraph: Let G = (V,E) be a graph. A subgraph G′ = (V ′, E′) of G is defined as G′ ⊑ G,
which satisfies:

V ′ ⊆ V and E′ ⊆
{
(u, v) ∈ E | u, v ∈ V ′} (2)

2
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Figure 1: Overview of the framework of SIREN. (a) NN Training Framework, (b) Reinforcement
Learning-Driven Search Framework, (c) Partial Order-Aware GNN-based DQN Architecture

4) Subgraph Isomorphism Problem: The subgraph isomorphism problem involves determining
whether there exists a subgraph G′ ⊑ GT such that GQ

∼= G′, where GQ denotes the query graph
and GT denotes the target graph. Formally:

∃G′ = (V ′, E′) ⊑ GT s.t. GQ
∼= G′ (3)

If such subgraphs exist, the solution set SG comprises all valid subgraphs:

SG =
{
G′ ⊑ GT | GQ

∼= G′} (4)

3 THE SIREN METHOD

In this section, we provide a detailed description of the SIREN framework, which stands for Subgraph
Isomorphism via Reinforcement-Enhanced Graph Neural Networks. Section 3.1 presents our DQN-
based provably complete framework for subgraph isomorphism, and Section 3.2 introduces our partial
order relation-aware GNN architecture.

3.1 PROVABLY COMPLETE FRAMEWORK FOR SUBGRAPH ISOMORPHISM

SIREN addresses the subgraph isomorphism problem by integrating graph neural networks with
reinforcement learning. This approach formulates the problem as a Markov Decision Process (MDP)
Puterman (1990) and employs a DQN-based framework Volodymyr et al. (2019) to enhance traditional
tree-search heuristics Carletti et al. (2017). Our search framework guarantees the completeness of
SIREN, with a detailed proof provided in Section A.4.

1) DQN-Enhanced Search Framework. The DQN-enhanced search framework of SIREN, depicted
in Figure 1(b), maintains a state heap ST to store feasible states. At each decision step, the state st
with the maximal action space cardinality |At| is selected as the current state, prioritizing branches
with higher combinatorial potential. At each step, the agent either adds a new node pair to the
current partial matching or backtracks from a previous decision. The selection of candidate nodes
is optimized using a partial order-aware Graph Isomorphism Network (GIN) integrated within the
DQN. The search process terminates when all possible isomorphisms are found or non-existence is
proven. SIREN can also be configured to terminate upon discovering the first feasible solution, which
is suitable for applications requiring only a single valid subgraph matching.

2) DQN Framework. As illustrated in Figure 1(c), the framework utilizes continuous embedding
representations to encode states st and actions at. These representations are processed by a DQN
architecture that consists of a partial-order aware GNN encoder and learnable projection modules. The
DQN maps state-action pairs (st, at) to Q-value estimates Q(st, at), thereby enabling data-driven
policy optimization.

3) State Representation. A state st comprises the node-node mappingMt between the selected
subgraphs, the input graphs themselves, and the bidomain information corresponding to the current
mappingMt. The features provided to the GNN model for state st include node types/labels, (k-hop)
local degree profiles, matching status indicators, and edge information of the graphs.

4) Action Space. At each step, the agent selects (1) a node pair (vq, vt) ∈ Ct that maintains
topological consistency withMt, and (2) a special ⟨terminate⟩ action to prune unpromising branches,

3
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where Ct denotes the candidate node pairs for expansion. The action space size is dynamic: |Ct|+ 1
(including termination).

5) Action Embedding. SIREN incorporates an action embedding optimization mechanism. For each
feasible node pair (vq, vt), the associated node features are projected into a low-dimensional embed-
ding space via a learnable matrix Wa. This embedding captures the essential value characteristics of
the action, which in turn refines the Q-value computation.

6) Reward Function. The reward function of SIREN is designed to guide the learning process
through a dense reward mechanism:

• A base reward of +α · 1/|VQ| for each valid node pair matching (default α = 0.5), where
|VQ| is the number of nodes in the query graph.

• An incremental structural reward of +β ·∆E/|ET | for each newly matched edge (default
β = 0.5), where ∆E denotes the increase in the number of correctly matched edges and
|ET | is the total number of edges in the target graph.

• A sparse success reward of +γ · |VQ| (default γ = 0.05) upon finding a complete isomor-
phism.

7) Bidomain-Based Embeddings and Pruning. SIREN leverages Bidomains Bai et al. (2021) to
enhance its search process in two key ways: by providing additional graph embeddings that inform
the Q-value computation, and by facilitating efficient pruning through estimates of the exploration
upper bound. For state st =Mt = (MQ,MT ) with matched setsMQ ⊆ V (GQ),MT ⊆ V (GT ),
the k-th bidomain Bk is defined as:

Bk = ⟨VQ
k ,V

T
k ⟩ (5)

where VQ
k ⊆ V (GQ) and VT

k ⊆ V (GT ) satisfy:

∀u ∈ VQ
k , v ∈ V

T
k : adj(u,MQ) ≡ adj(v,MT ) (6)

denoting identical connectivity patterns to matched setsMQ ⊆ V (GQ) andMT ⊆ V (GT ). A
detailed description of the bidomain technique is provided in Section A.8.

8) Embedding Fusion. We perform embedding fusion on the embeddings hGQ
and hGT

generated
by the GNN for the query graph and target graph, respectively. This alignment operation involves
processing each embedding through a 1D convolutional layer followed by a pooling layer, and
subsequently merging the resulting representations.

9) Action-Value Function. For state transition, candidate actions At = {(u, v) ∈ Ct} are evaluated
by the DQN’s action value function Qθ(st, at), where h denotes the graph embeddings generated
with our trained GNN model:

Qθ(st, at) =F
(

GNNenc(GQ, GT , st,Bst)︸ ︷︷ ︸
state embedding

⊕ Waψ(at)︸ ︷︷ ︸
action embedding

)
=F(hst ,Fuse(hGQ

,hGT
),hBD, at)

(7)

where ψ(at) is the feature vector of action at , and Wa denotes learnable action projection weights.

10) ϵ-Greedy Action Selection. The agent selects an action at at each timestep using an ϵ-greedy
policy based on the current Q-value estimates:

a∗t =

{
argmaxat∈At

(Qθ(st, at)) with probability 1− ϵ
random action with probability ϵ

The updated state st+1 =Mt ∪ a∗t is is then pushed back onto ST .

11) Action Space Partition. For large-scale graphs where the number of candidate matching actions
(node pairs) becomes prohibitively large, we partition the action space into chunks and compute Q-
values separately for each chunk. This approach prevents GPU memory overflow while maintaining
computational efficiency.

The training process of our DQN model consists of three consecutive phases: pretraining, imitation
learning, and reinforcement learning, which is detailed in Section A.5. To analyze the impact of
different reinforcement learning paradigms, we conducted comparisons between DQN and Proximal
Policy Optimization (PPO) Schulman et al. (2017), as detailed in Section A.11.
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3.2 PARTIAL ORDER-AWARE GNN ARCHITECTURE

The subgraph relationship satisfies the properties of reflexivity, transitivity, and antisymmetry, thereby
establishing it as a partial order on the set of graphs. Formally:

• Reflexivity: G ⊑ G, G ∼= G.
• Transitivity: (G1 ⊑ G2) ∧ (G2 ⊑ G3) =⇒ G1 ⊑ G3.
• Antisymmetry: (G1 ⊑ G2) ∧ (G2 ⊑ G1) ⇐⇒ G1 = G2.

The formal proof of these properties is provided in Section A.1. Moreover, The intersection of the
set of G1’s subgraphs and the set of G2’s subgraphs contains all common subgraphs of G1 and
G2 Lou et al. (2020). Therefore, SIREN employs a partial order-aware GNN to enforce that the
learned graph embeddings preserve the isomorphic partial order relationships within the embedding
space. This geometric constraint ensures that for any two graphs GQ and GT with embeddings
hGQ

= (h1
GQ
, ...,hD

GQ
) and hGT

= (h1
GT
, ...,hD

GT
):

∀i ∈ 1, ..., D,hi
GQ
≤ hi

GT
⇐⇒ G1 ⊑ G2 (8)

The proof that our GNN model satisfies the partial order relationships described in Equation 8 is
provided in Section A.3. To preserve the partial order relationship of the subgraphs, we use the max
margin loss to train our GNN model. Within each minibatch, we define P = {(q, t) ∈MB | N (q) ⊑
N (t)} as the set of positive pairs where the neighborhood subgraph of query node q is isomorphic to
a subgraph of target node t’s neighborhood, and N =MB \ P as the negative pairs violating this
structural constraint. The loss function L then operates on these sets to enforce geometric consistency
in the embedding space:

L(hq,ht) =
∑

hq,ht∈P

E(hq,ht) +
∑

hq,ht∈N

max(0, α− E(hq,ht)) (9)

where
E(hq,ht) = ||max(0,hq − ht)||22 (10)

We employed an improved GIN model Xu et al. (2019), incorporating multi-scale feature fusion
techniques to generate graph embedding vectors. For layer l ∈ {0, 1, ..., L− 1}, the embedding of
node v is computed as:

h(l+1)
v = MLP(l)((1 + ϵ(l)) · h(l)

v +
∑

u∈N (v)

h(l)
u ) (11)

where ϵ(l) ∈ R is a learnable scalar parameter, N (v) denotes the neighborhood of node v, and
MLP(l) denotes the multi-layer perceptron with LeakyReLU Maas et al. (2013) activation σ. Let γl
be the learnable hierarchical weight coefficient, the graph embedding is obtained by concatenating
sum-pooled features across layers:

hG =

L∑
l=0

γl ·
∑
v∈V

h(l)v (12)

The training protocol of our partial order-aware GNN model is detailed in Section A.6.

4 EXPERIMENTS

To evaluate the effectiveness and efficiency of SIREN, we compared SIREN with 19 state-of-the-art
neural network-based methods and heuristic methods. The experiments are conducted real large
graph datasets from TUDataset Morris et al. (2020) and on synthetic graph datasets.

4.1 BASELINE METHODS

We compared SIREN with 10 state-of-the-art neural network-based methods for subgraph isomor-
phism, including SimGNN Bai et al. (2019), GraphSim Bai et al. (2020), GEDGNN Piao et al. (2023),
GOTSim Doan et al. (2021), ERIC Zhuo & Tan (2022), NeuroMatch Lou et al. (2020), GMN Li et al.
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Table 1: Evaluation of Mean Average Precision (MAP) on real-world graph pairs. K = layers, |ND|
= node state dimensions. Each dataset contains 300 query graphs and 800 target graphs.

Method K |ND| AIDS MUTAG PTC-FM PTC-FR PTC-MM PTC-MR

Average |VQ| 11.61 12.91 11.73 11.81 11.80 11.87
Max |VQ| 15 15 15 15 15 15
Average |VT | 18.50 18.41 18.30 18.32 18.36 18.32
Max |VT | 20 20 20 20 20 20

SIMGNN 3 10 0.326 ± 0.019 0.303 ± 0.012 0.416 ± 0.015 0.355 ± 0.015 0.358 ± 0.015 0.308 ± 0.017
GRAPHSIM 3 10 0.173 ± 0.007 0.182 ± 0.008 0.231 ± 0.011 0.165 ± 0.007 0.2 ± 0.009 0.216 ± 0.013
GEDGNN 3 10 0.340 ± 0.015 0.605 ± 0.029 0.437 ± 0.013 0.497 ± 0.018 0.509 ± 0.018 0.309 ± 0.009
GOTSIM 5 10 0.336 ± 0.017 0.387 ± 0.018 0.459 ± 0.017 0.361 ± 0.013 0.417 ± 0.017 0.430 ± 0.017
ERIC 5 10 0.512 ± 0.022 0.558 ± 0.027 0.624 ± 0.019 0.572 ± 0.021 0.573 ± 0.02 0.639 ± 0.018
GMN-MATCH 3 10 0.609 ± 0.02 0.693 ± 0.026 0.686 ± 0.018 0.667 ± 0.021 0.627 ± 0.02 0.683 ± 0.017
NEUROMATCH 3 10 0.454 ± 0.025 0.583 ± 0.027 0.622 ± 0.019 0.572 ± 0.023 0.522 ± 0.019 0.565 ± 0.02
ISONET 3 10 0.704 ± 0.021 0.733 ± 0.023 0.782 ± 0.017 0.734 ± 0.02 0.758 ± 0.016 0.764 ± 0.015
SUBMDSE-LATE 5 10 0.712 ± 0.018 0.721 ± 0.025 0.793 ± 0.016 0.744 ± 0.019 0.758 ± 0.015 0.782 ± 0.014
SUBMDSE-EARLY 5 10 0.817 ± 0.017 0.837 ± 0.02 0.887 ± 0.012 0.854 ± 0.013 0.849 ± 0.012 0.864 ± 0.011

SIREN-MINI 3 10 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Avg. Runtime (ms) 41.3 33.4 35.5 43.7 34.8 44.2

SIREN 8 64 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
Avg. Runtime (ms) 50.5 47.3 42.5 56.3 52.4 52.7

Improvement 18.3% 16.3% 11.3% 14.6% 15.1% 13.6%

(2019), IsoNet Roy et al. (2022), SubMDSE Raj et al. (2025) and GNN-PE Ye et al. (2024b), as well
as 9 heuristic state-of-the-art methods for solving the subgraph isomorphism problem, including RI
Bonnici et al. (2013), VF2++ Jüttner & Madarasi (2018), GraphQL He & Singh (2008), QuickSI
Shang et al. (2008), VF3 Carletti et al. (2017), RM Sun et al. (2020), VEQ Kim et al. (2021), CaLiG
Yang et al. (2023), and DPIso Han et al. (2019).

Existing neural network-based subgraph isomorphism methods can be divided into two categories:
exact matching and approximate prediction. Exact matching methods return the precise solution
set for the subgraph isomorphism problem, while approximate prediction methods provide a quick
assessment of whether two graphs satisfy the subgraph isomorphism relationship. Among these
methods, GNN-PE is an exact matching method, while the other 7 methods are approximate prediction
methods. To ensure a fair comparison, we evaluated the solving speed against GNN-PE and heuristic
methods, and compared the solving accuracy with the other 7 methods, using the same real-world
datasets and sampling settings as in the original papers.

4.2 EXPERIMENTAL SETTINGS

In SIREN, we utilize 8 layers of Graph Isomorphism Networks (GIN) Xu et al. (2019) each with 64
dimensions for the embeddings. For DQN, we use MLP layers to project concatenated embeddings
to a scalar. The discount factor γ of the DQN is set to 1.0, and the learning rate of the DQN and
the GIN is set to 0.001. The models are trained using the Adam optimizer Kingma (2014). The
learning rate is annealed with a cosine annealer with restarts every 100 epochs. The DQN is trained
by 10000 iterations. Prior to DQN training, we conduct a 50000-epochs supervised pre-training of
the GNN model to generate geometrically consistent partial order-preserving graph embeddings. The
training data is generated by randomly sampling neighborhoods from large real-world graph datasets
Morris et al. (2020), while being regenerated every 50 epochs. To ensure fairness across diverse
tasks, we trained two distinct GNN configurations (in SIREN-Mini and SIREN). Detailed parameter
specifications are provided in Table 1. The experiments were conducted on a Ubuntu server equipped
with a 128-Core Intel(R) Xeon(R) Gold 5218 CPU running at 2.30 GHz and 256 GB of memory,
along with 4× Nvidia Tesla A800 GPU. SIREN were implemented with the PyTorch and PyTorch
Geometric libraries Fey & Lenssen (2019).

4.3 EFFECTIVENESS OF SIREN

To compare SIREN with approximate prediction deep learning methods, we selected the same datasets
as SubMDSE Raj et al. (2025) from TUDataset Morris et al. (2020) for testing, i.e., PTC-FR, PTC-
FM, PTC-MM, PTC-MR, MUTAG, and AIDS. We compared SIREN with 9 state-of-the-art neural
methods. The experimental results indicate that, without limiting the search time, SIREN achieved
correct solutions for all datasets, with the longest time not exceeding 2 seconds (∼1.8s). Compared
to the most accurate neural method SubMDSE-Early Raj et al. (2025), SIREN improved Mean
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Table 2: Ablation Study of SIREN by Mean Average Precision (MAP) on Real-World Graph Pairs.
Method PTC-FR PTC-FM PTC-MM PTC-MR MUTAG AIDS
SIREN-DQN 0.880 0.893 0.961 0.828 0.952 0.904
v.s. IsoNet +2.3% -0.8% +5.5% -6.6% +3.2% +1.0%
SIREN-GNN 0.766 0.796 0.886 0.738 0.861 0.842
v.s. IsoNet -9.1% -10.5% -2.0% -15.6% -5.9% -5.2%

SIREN 1.000 1.000 1.000 1.000 1.000 1.000

Table 3: Runtime on Large-Scale Dense Real-World Graphs (Unit: s), OOM: Out of Memory.
nodes of GT 1000 2000 3000 4000 5000 10000
nodes of GQ 200 400 600 800 1000 2000
Edge density 0.4 0.3 0.2 0.2 0.2 0.2

VF3 12151.6 16351.2 4292.6 > 105 > 105 > 105

VF3P 1187.8 1923.6 636.2 24058.0 51020.4 > 105

VEQ 860.9 OOM OOM OOM OOM OOM
GNN-PE > 105 > 105 > 105 > 105 > 105 > 105

GLSEARCH 7534.5 > 105 4682.1 > 105 > 105 > 105

SIREN 642.4 943.2 486.7 16842.4 34719.5 > 105

Average Precision by an average of 14.9%. The experimental results show that SIREN outperforms
approximate prediction deep learning methods in terms of effectiveness. These experimental results
align with the theory, as SIREN guarantees that, given enough time, it can obtain an exact solution
or prove that no valid solution exists. Furthermore, these results demonstrate that SIREN is a more
effective method for general real-world datasets, as it provides acceptable running times and more
accurate results.

4.4 EFFICIENCY AND THROUGHPUT RATE

To compare SIREN with exact matching deep learning methods and heuristic methods, we selected
the same datasets as GNN-PE Roy et al. (2022) from TUDataset Morris et al. (2020) for testing, i.e.,
Yeast, Human, HPRD, WordNet, DBLP, Youtube, and US Patents. Statistics of these real graphs
are summarized in Section A.10. We divided the dataset according to the method used in GNN-PE
Roy et al. (2022), where the size of |V (q)| is set to 8. Figure 2 shows the efficiency test results
on large-scale datasets, which indicate that our SIREN method outperforms all existing heuristic
methods across all test data, and it also surpasses GNN-PE in the majority of cases. Only for the
DBLP dataset does SIREN (∼0.19s) perform slightly slower than GNN-PE (∼0.17s), with almost
no difference. On average, compared to RI Bonnici et al. (2013), VF Jüttner & Madarasi (2018),
GraphQL He & Singh (2008), QuickSI Shang et al. (2008), GNN-PE Roy et al. (2022), VF3 Carletti
et al. (2017), RM Sun et al. (2020), VEQ Kim et al. (2021), CaLiG Yang et al. (2023), and DPIso Han
et al. (2019), SIREN achieves speedups of 36.5×, 29.0×, 171.2×, 25.7×, 52.1%, 14.4×, 92.4%,
21.3%, 7.70×, and 55.3%, respectively.

Figure 3 compares the throughput, measured in generated matched embeddings per second (EPS), of
SIREN against other methods on large-scale datasets. As shown, SIREN achieves a higher throughput
than all baseline methods, outperforming the state-of-the-art approach VEQ by 1.046×.

4.5 SCALABILITY OF SIREN

To evaluate the scalability of SIREN, we compared SIREN with GNN-PE Roy et al. (2022), GLSearch
Bai et al. (2021), VEQ Kim et al. (2021), and the state-of-the-art CPU-parallelized subgraph iso-
morphism method VF3p Carletti et al. (2017) on synthetic large adversarial dense graph dataset
by VF3 Carletti et al. (2017). As shown in Table 3, experimental results on large graphs demon-
strate that despite the server CPU’s higher theoretical FP32 compute capacity (CPU: 140 TFLOPS
vs. GPU: 40 TFLOPS), SIREN still outperforms traditional methods. On average, compared to
GNN-PE, GLSearch, VF3, VF3p and VEQ, SIREN achieves speedups of 8.32×, 4.82×, 3.34×,
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Figure 3: Throughput Rate of different methods.
47.0%, and 34.0%, respectively (excluding cases exceeding 105 seconds or OOM). Our experi-
ments further demonstrate that VEQ encounters out-of-memory failures under a 256GB memory
constraint—already substantial for graph processing—when handling graphs exceeding 2000 nodes
with edge density ρ > 0.3. This limitation stems from VEQ’s significantly higher space complexity
compared to SIREN, preventing it from scaling to large dense graphs.

4.6 ABLATION STUDY

Table 2 presents the ablation study results for two modules in SIREN: DQN and GNN. Here, SIREN-
DQN refers to the results obtained using only the DQN + GNN structure, where GNN is randomly
initialized without any pre-training method. SIREN-GNN indicates the scenario where the DQN
structure is not used, and the NeuralMatch method Lou et al. (2020) is employed to directly output
estimates for the subgraph isomorphism problem. The experimental results demonstrate that both the
lack of GNN pre-training and the absence of the DQN model lead to a decline in solution quality.

5 RELATED WORK

5.1 TRADITIONAL APPROACHES

The subgraph isomorphism problem is known to be NP-complete and has traditionally been tackled
using heuristic methods. These approaches can be broadly categorized as follows:

1) Tree Search: Classical algorithms such as Ullmann’s algorithm Ullmann (1976) and the VF-
series Cordella et al. (2001; 2004); Carletti et al. (2017) employ depth-first search combined with
pruning heuristics (e.g., degree and label filters). VF3 Carletti et al. (2017) introduces state-space
precomputation and look-ahead pruning to improve efficiency, particularly for large dense graphs.
More recent methods, including RM Sun et al. (2020), VEQ Kim et al. (2021), and CaLiG Yang et al.
(2023), further accelerate the resolution process.

2) Constraint Programming: These approaches model the problem as a Constraint Satisfaction
Problem (CSP), using integer linear programming (ILP), Boolean satisfiability (SAT), or related
formalisms. Variables typically represent query nodes, with domains consisting of candidate target
nodes, and constraints encode structural requirements. Methods by McGregor McGregor (1979),
Solnon Solnon (2010), and Zampelli Zampelli et al. (2010) employ arc consistency techniques to
iteratively prune the solution space.

3) Graph Indexing: Methods inspired by database systems, such as GraphQL He & Singh (2008),
QuickSI Shang et al. (2008), and GADDI Zhang et al. (2009), leverage precomputed structural
signatures and inverted indices to enable efficient pre-match filtering and early termination.

Limitations: Despite their practical utility, all these methods exhibit exponential worst-case time
complexity—typicallyO(nk) for a query pattern of size k—and are sensitive to label noise and graph
density. Indexing techniques also involve significant memory overhead, often reaching O(md) for
depth-d neighborhood features.

5.2 NEURAL APPROACHES FOR SUBGRAPH ISOMORPHISM

Recent neural network-based approaches for subgraph isomorphism can be divided into two main
categories:

1) Exact Solvers: These methods aim to provably determine the existence of subgraph isomorphisms
and recover corresponding node mappings. Representative techniques include subgraph index
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embeddings Duong et al. (2021) and path dominance embeddings Ye et al. (2024b), which encode
structural hierarchies to facilitate exact matching.

2) Approximate Heuristics: These methods prioritize scalability and efficiency at the cost of
completeness, often relying on probabilistic or learned similarity measures. Examples include
similarity-based networks Li et al. (2019), geometric embeddings Lou et al. (2020), and IsoNet Roy
et al. (2022). More recent advances include EinsMatch Ramachandran et al. (2024), which introduces
iterative alignment refinement, and SubMDSE Raj et al. (2025), which explores multifaceted design
spaces for improved performance.

Limitations: Exact solvers typically depend on expensive solver-generated labels for supervised
training, leading to high annotation and computational costs. On the other hand, approximate
methods often lack theoretical guarantees and tend to exhibit reduced accuracy when applied to strict
isomorphism problems.

5.3 NEURAL APPROACHES FOR RELATED PROBLEMS

1) Graph Isomorphism: While graph isomorphism can be solved in quasi-polynomial time, i.e.,
O(e(logn)c) Babai (2016), it is often studied to characterize the expressive power of graph neural
networks. Methods such as GIN Xu et al. (2019)—which simulates the Weisfeiler-Leman (WL) test
Leman & Weisfeiler (1968)—and Graph Transformers Yun et al. (2019); Lee et al. (2024) have been
developed, but they generally lack the precision required for subgraph isomorphism tasks.

2) Maximum Common Subgraph (MCS): Subgraph isomorphism is a special case of MCS in which
the common subgraph must be isomorphic to the query graph GQ. Neural solvers such as GLSearch
Bai et al. (2021) and MCSP+RL Liu et al. (2019) have been proposed for MCS, but they often fail to
fully leverage the topological structure of the query graph, resulting in suboptimal efficiency.

3) Subgraph Alignment: This problem involves determining whether a query graph GQ is isomor-
phic to an induced subgraph of a target graph GT . A recent spectral-based method Bainson et al.
(2024) has been proposed to address it. Although subgraph alignment is a special case of subgraph
isomorphism, the two are not identical; clarifying their distinctions is necessary to prevent confusion
arising from terminological overlap.

4) Graph Alignment: Graph alignment aims to find a bijective mapping between the nodes of two
graphs such that structural differences after mapping are minimized. FUGAL Bommakanti et al.
(2024) introduces a learning-based approach for this task, while a differentiable top-kmethod Wang
et al. (2023) addresses partial graph matching, a related relaxation.

5) Graph Edit Distance (GED): Subgraph isomorphism can be reduced to GED by setting infinite
substitution costs. However, general neural solvers for GED Raveaux (2021); Piao et al. (2023) are
not well-suited for exact isomorphism due to their flexible cost models and broader objective.

6) Large Language Model (LLM)-Based Methods: Recent efforts such as ThinkOnGraph Sun
et al. (2024) and GraphGPT Tang et al. (2024) focus primarily on attributed graphs. Although
InstructGLM Ye et al. (2024a) encodes structural information through prompting, it—like other
LLM-based approaches—has not yet shown effectiveness for exact combinatorial isomorphism
problems.

6 CONCLUSION

The subgraph isomorphism problem is a challenging NP-complete problem with wide applications
across various fields. In this paper, we introduce SIREN, an RL-enhanced GNN for subgraph
isomorphism. Through our proposed DQN-based reinforcement learning framework and the GNN
model based on partial order relations, we can improve the candidate node selection process in solving
the subgraph isomorphism problem. Experiments on real datasets show that SIREN can effectively
accelerate the solving of the subgraph isomorphism problem and enhance solution quality. Future
work includes further improvements to the reinforcement learning framework and GNN, testing on
more large-scale real datasets, and extending similar methods to other NP problems, such as the
maximum clique problem.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 PROOFS OF PROPERTIES OF SUBGRAPH RELATIONSHIP

We provide proofs for the properties related to the subgraph relationship below, including reflexivity,
transitivity, and antisymmetry.

Theorem A.1 (Reflexivity). G ⊑ G

Proof. Let G = (V,E). Since V ⊆ V , E ⊆
{
(u, v) ∈ E | u, v ∈ V

}
, it follows from the definition

of the subgraph relationship that G ⊑ G.

Theorem A.2 (Reflexivity of Graph Isomorphism). G ∼= G

Proof. Consider a bijection f : V
∼−→ V defined by f(v) = v for all v ∈ V . This satisfies

∀vi, vj ∈ V, (vi, vj) ∈ E ⇐⇒ (f(vi), f(vj)) = (vi, vj) ∈ E.

By the definition of graph isomorphism, G and G are isomorphic, i.e., G ∼= G.

Theorem A.3 (Transitivity). (G1 ⊑ G2) ∧ (G2 ⊑ G3) =⇒ G1 ⊑ G3.

Proof. Let G1 = (V1, E1), G2 = (V2, E2), and G3 = (V3, E3). From G1 ⊑ G2, we have:

V1 ⊆ V2 and E1 ⊆ {(u, v) ∈ E2 | u, v ∈ V1} .

Similarly, from G2 ⊑ G3, we have:

V2 ⊆ V3 and E2 ⊆ {(u, v) ∈ E3 | u, v ∈ V2} .

Since V1 ⊆ V2 and V2 ⊆ V3, it follows that:

V1 ⊆ V3.

For edges, from E1 ⊆ {(u, v) ∈ E2 | u, v ∈ V1} and E2 ⊆ {(u, v) ∈ E3 | u, v ∈ V2}, we deduce:

∀(u, v) ∈ E1, (u, v) ∈ E2 ⊆ E3 with u, v ∈ V1 ⊆ V3.

Therefore, we conclude:
E1 ⊆ {(u, v) ∈ E3 | u, v ∈ V1} .

Theorem A.4 (Antisymmetry). (G1 ⊑ G2) ∧ (G2 ⊑ G1) ⇐⇒ G1 = G2.

Proof. Let G1 = (V1, E1) and G2 = (V2, E2). If G1 ⊑ G2 and G2 ⊑ G1, we have:

V1 ⊆ V2 and E1 ⊆ {(u, v) ∈ E2 | u, v ∈ V1} ,

and
V2 ⊆ V1 and E2 ⊆ {(u, v) ∈ E1 | u, v ∈ V2} .

From V1 ⊆ V2 and V2 ⊆ V1, we conclude V1 = V2. Similarly, E1 ⊆ E2 and E2 ⊆ E1 imply
E1 = E2. Therefore, we have G1 = G2.

Conversely, if G1 = G2, then we have:

V1 = V2 and E1 = {(u, v) ∈ E2 | u, v ∈ V1} ,

and
V2 = V1 and E2 = {(u, v) ∈ E1 | u, v ∈ V2} .

Therefore, G1 ⊑ G2 and G2 ⊑ G1.
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A.2 COROLLARIES OF SUBGRAPH ISOMORPHISM RELATIONSHIP

Corollary A.5 (Subgraph Isomorphism Partial Order). Building upon the properties mentioned in
Section 3.2, the subgraph isomorphism relation ⪯:

G1 ⪯ G2 ⇐⇒ ∃G′ = (V ′, E′) ⊑ G2 s.t. G1
∼= G′ (13)

satisfies the fundamental characteristics of a partial ordering on the graph space G:

• Reflexivity:
∀G ∈ G, G ⪯ G

• Transitivity:
(G1 ⪯ G2) ∧ (G2 ⪯ G3) =⇒ G1 ⪯ G3

• Antisymmetry:
(G1 ⪯ G2) ∧ (G2 ⪯ G1) ⇐⇒ G1

∼= G2

We provide proofs for the properties related to the subgraph isomorphism below, including reflexivity,
transitivity, and antisymmetry.
Theorem A.6 (Reflexivity). ∀G ∈ G, G ⪯ G

Proof. By Theorem A.1, we have G ⊑ G; by Theorem A.2, we have G ∼= G, then we have
G ⪯ G.

Theorem A.7 (Transitivity). (G1 ⪯ G2) ∧ (G2 ⪯ G3) =⇒ G1 ⪯ G3

Proof. Let G1 = (V1, E1), G2 = (V2, E2), and G3 = (V3, E3). Given G1 ⪯ G2, there exists a
mapping f1 : V1 → V2 such that

∀vi, vj ∈ V1, (vi, vj) ∈ E1 =⇒ (f1(vi), f1(vj)) ∈ E2.

Similarly, from G2 ⪯ G3, there exists a mapping f2 : V2 → V3 satisfying
∀vi, vj ∈ V2, (vi, vj) ∈ E2 =⇒ (f2(vi), f2(vj)) ∈ E3.

Define a composite mapping g : V1 → V3 = f1 ◦ f2 as g(v) = f2(f1(v)). Then:
∀vi, vj ∈ V1, (vi, vj) ∈ E1 =⇒ (f1(vi), f1(vj)) ∈ E2 =⇒ (g(vi), g(vj)) ∈ E3.

Construct G′
3 = ({g(v) | v ∈ V1}, {(g(vi), g(vj)) | vi, vj ∈ V1}). This satisfies:

G′
3 ⊑ G3 with G1

∼= G′
3.

Therefore, G1 ⪯ G3 holds.

Theorem A.8 (Antisymmetry). (G1 ⪯ G2) ∧ (G2 ⪯ G1) ⇐⇒ G1
∼= G2

Proof. Let G1 = (V1, E1), and G2 = (V2, E2). Given G1 ⪯ G2, there exists a mapping f1 : V1 →
V2 such that

∀vi, vj ∈ V1, (vi, vj) ∈ E1 =⇒ (f1(vi), f1(vj)) ∈ E2.

Similarly, from G2 ⪯ G1, there exists a mapping f2 : V2 → V1 satisfying
∀vi, vj ∈ V2, (vi, vj) ∈ E2 =⇒ (f2(vi), f2(vj)) ∈ E1.

The mappings f1 and f2 induce a bijective correspondence f ′ : V1
∼−→ V2 that preserves adjacency:

∀vi, vj ∈ V1, (vi, vj) ∈ E1 ⇐⇒ (f ′(vi), f
′(vj)) ∈ E2 (14)

Therefore, G1
∼= G2 holds.

Conversely, if G1
∼= G2, there exists a bijective mapping f : V1

∼−→ V2 satisfying:
∀vi, vj ∈ V1, (vi, vj) ∈ E1 ⇐⇒ (f(vi), f(vj)) ∈ E2 (15)

The inverse mapping f−1 : V2
∼−→ V1 consequently preserves:

∀vi, vj ∈ V2, (vi, vj) ∈ E2 ⇐⇒ (f−1(vi), f
−1(vj)) ∈ E1

establishing G2
∼= G1.

Through constructive verification:
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• Let G′ = G2. By definition:
G′ ⊑ G2 and G1

∼= G′ =⇒ G1 ⪯ G2

• Let G′′ = G1. Similarly:
G′′ ⊑ G1 and G2

∼= G′′ =⇒ G2 ⪯ G1

For isomorphic graphs G1
∼= G2, the partial order relation becomes symmetric:
(G1 ⪯ G2) ∧ (G2 ⪯ G1) ⇐⇒ G1

∼= G2

By Corollary A.5, the subgraph isomorphism relation satisfies the partial order properties. Conse-
quently, the partial order-aware GNN proposed in this work demonstrates superior effectiveness in
solving subgraph isomorphism problems.

A.3 PROOF OF PARTIAL ORDER-AWARE GNN

We demonstrate that the order constraints in Equation 8 are preserved under the composition of
multiple message-passing layers in GNNs, particularly in simple models like the Graph Isomorphism
Network (GIN) Xu et al. (2019).

Proof Strategy: By leveraging mathematical induction, we prove that GIN-style models inherently
maintain these properties. Consider a k-layer GNN encoding nodes u (in search graphs) and v (in
query graphs):

1. Base Case: For the trivial case of a single node v (i.e., 0−hop neighborhood where
N0(v) = {v}), the partial ordering relation ⪯ trivially satisfies:

∀v ∈ V, h(0)
v ⪯ h(0)

v

This follows directly from the reflexive property of partial orders. The 0−hop neighborhood
contains only the node itself, making the order embedding comparison degenerate to self-
comparison.

2. Inductive Step: If the k-hop neighborhood of u forms a subgraph of v’s k-hop neighborhood
(Nk(u) ⊑ Nk(v)), then:

∀s ∈ N (v), ∃t ∈ N (u) s.t. Nk−1(s) ⊑ Nk−1(t)

The (k − 1)-hop neighborhoods of u’s neighbors are subgraphs of corresponding neigh-
borhoods of v’s neighbors. This inductive process guarantees the preservation of order
constraints through layer composition.

Order Embedding Guarantee: Suppose all GNN embeddings at layer (k − 1) satisfy order
constraints after transformation. Using sum-based neighborhood aggregation:

h(k)
v = fagg

({
h(k−1)
u | u ∈ N (v)

})
(16)

where fagg is order-preserving under summation. Then:

h(k)
v ⪯ h

(k)
v′ if ∀u ∈ N (v), ∃w ∈ N (v′) with h(k−1)

u ⪯ h(k−1)
w (17)

Subgraph Composition Property: This corresponds to the fundamental property of subgraph
composition:
Theorem A.9 (Order Preservation). Given GIN’s update rule:

h(l+1)
v = MLP(l)

(1 + ϵ(l)) · h(l)
v +

∑
u∈N (v)

h(l)
u

 (18)

and the graph embedding by concatenating sum-pooled features across layers:

hG =

L∑
l=0

γl ·
∑
v∈V

h(l)v (19)

the GNN preserves partial order relationships between subgraphs.
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Proof. The MLP’s universal approximation capability combined with sum aggregation maintains the
partial order structure through Lipschitz continuity. The loss function explicitly enforces:

hq ⪯ ht ⇐⇒ Gq ⊑ Gt

making the embedding space order-isomorphic to the subgraph lattice.

Definition A.10 (Max-Margin Order Loss). The structural constraint is enforced through our margin-
based loss function:

L(hq,ht) =
∑

(hq,ht)∈P

E(hq,ht)

+
∑

(hq,ht)∈N

max (0, α− E(hq,ht)) (20)

where
E(hq,ht) = ∥max (0,hq − ht)∥22 (21)

Proposition A.11 (Learning Dynamics). The loss design induces asymmetric gradient signals:

• For positive pairs P = {(q, t) ∈MB | N (q) ⊑ N (t)}, gradients dominate in dimensions
where hiq > hit

• For negative pairs N =MB \ P , gradients activate only when E(hq,ht) > α

This creates faster convergence for order-satisfying pairs compared to violating ones.

Theorem A.12 (Order-Preserving Embedding). After sufficient training iterations, the GIN embed-
dings satisfy the vector partial order:

∀i ∈ {1, ..., D}, hi
G1
≤ hi

G2
⇐⇒ G1 ⊑ G2 (22)

A.4 PROBABILISTIC COMPLETENESS

We establish that SIREN guarantees to either find an exact solution or prove the non-existence of a
solution given sufficient time. This probabilistic completeness relies on three fundamental properties:
a finite search space, persistent exploration, and Markov chain ergodicity.

1) Finite State Space: The search space forms a finite state transition graph where each state s
represents a partial isomorphism mapping M ⊆ VQ × VT that satisfies the required topologi-
cal constraints. For |VQ| = n and |VT | = m, the cardinality of the state space is bounded by∑n

k=0

(
n
k

)
P (m, k) = O(mn), ensuring finiteness. Our state encoding scheme explicitly tracks

partial mappings to preserve this property.

2) Non-Zero Action Probabilities: SIREN employs an ϵ-greedy policy with a non-decaying ϵ,
ensuring that the probability of selecting any valid branch remains strictly positive. The DQN is
used solely to prioritize branch exploration (e.g., by favoring branches with higher Q-values) without
performing irreversible pruning; even branches with low Q-values remain explorable in subsequent
steps. Furthermore, the algorithm does not permanently exclude any branch due to state memorization.
Consequently, the probability of selecting any feasible path branch remains non-zero.

3) Ergodic Markov Chain: The search process constitutes a finite Markov chain (S, P ) with transi-
tion probabilities P (s′|s) =

∑
a:s→s′ πθ(a|s). This chain is irreducible (enabled by backtracking

actions that permit state revisitation) and aperiodic (due to the existence of self-transitions). By the
ergodic theorem Bellet (2006), the chain visits all states with probability 1 over infinite time.

4) Robustness: Pathological cases are mitigated through the following mechanisms:

• Permanent availability of all valid actions (πθ(a|s) > 0 for any valid a);

• Explicit backtracking mechanisms;

• Absence of irreversible pruning, with the exception of Bidomain-based pruning that defini-
tively precludes solution existence.
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These features ensure exhaustive exploration even for deceptive graph structures.

In summary, given the finite state space, persistent exploration via strictly positive transition proba-
bilities, ergodic properties, and robust backtracking mechanisms, SIREN guarantees probabilistic
completeness.

A.5 TRAINING PROCESS OF THE RL-ENHANCED SUBGRAPH ISOMORPHISM SOLVER

The training process consists of three consecutive phases: pretraining, imitation learning, and
reinforcement learning. Each phase follows the same core workflow of experience collection followed
by network updates.

Pretraining Phase (1250 iterations): Heuristic methods (specifically, the traditional subgraph
matching algorithm VF3 Carletti et al. (2017)) are used to generate search trajectories and populate
the experience replay buffer. This approach avoids the inefficiency of initial random exploration. The
objective is to provide the network with high-quality initial samples of effective matching patterns,
establishing a solid foundation for subsequent reinforcement learning.

Imitation Learning Phase (2500 iterations): The agent continues to use VF3 Carletti et al. (2017) to
generate demonstration trajectories. However, the DQN now begins to learn by imitating the Q-value
distribution of this heuristic policy. The goal is for the network to quickly converge to a performance
level comparable to that of the traditional algorithm, thereby reducing the cost of exploration.

Reinforcement Learning Phase (6250 iterations): The agent relies entirely on the DQN’s ϵ-greedy
policy for exploration. The Q-values are optimized through environmental feedback (rewards),
allowing the policy to be progressively refined. The final objective is to enable the network to surpass
the performance of traditional heuristic methods by discovering more efficient matching paths.

Algorithm 1 Training Process of the RL-Enhanced Subgraph Isomorphism Solver
1: Initialize replay buffer D, policy network πθ, target network πθ−

2: for episode = 1 to M do
3: Sample graph pair (GQ, GT ), initialize state s0
4: for t = 1 to Tmax do
5: Select action at via ϵ-greedy: at ∼ πθ(st)
6: Execute at, observe st+1, reward rt
7: Store transition (st, at, rt, st+1) in D
8: Sample batch D ∼ D, update θ via DQN loss L
9: Update target network: θ− ← τθ + (1− τ)θ−

10: end for
11: end for

SIREN learns via deep Q-learning with prioritized experience replay Mnih (2013), as outlined in
Algorithm 1. The framework maintains three core components: a replay buffer D storing transition
trajectories (st, at, rt, st+1), a policy network πθ parameterized by θ for action selection, and a target
network πθ− with delayed weight updates to stabilize training. The core training loop in each phase
consists of two main stages: experience collection (populating the replay buffer) and network update
(learning from the buffer).

The experience collection stage involves the following steps:

• Search initialization

• Action selection and search expansion

• Reward calculation and experience storage

The network update stage comprises the following steps:

• Experience sampling from the replay buffer

• Target Q-value computation

• Loss calculation and parameter optimization

18
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• Periodic synchronization of the target network

At the start of each episode, a graph pair (GQ, GT ) is sampled from the training distribution Ptrain,
and an initial state s0 = InitState(GQ, GT ) is constructed. The agent interacts with the environment
for Tmax timesteps using an ϵ-greedy exploration strategy: with probability ϵ, random actions are
selected from the available action space At, otherwise the optimal action at = argmaxaQθ(st, a)
is chosen by the policy network. Executing action at yields a new state st+1 and immediate reward
rt, with the transition tuple (st, at, rt, st+1) stored in D for subsequent learning.

Parameter updates are performed through minimization of the Huber loss L(θ) Huber (1992):

E(s,a,r,s′)∼D

[(
r + γmax

a′
Qθ−(s′, a′)−Qθ(s, a)

)2
]

(23)

where γ denotes the discount factor, and r = +1 for the immediate reward. The target network
parameters θ− are softly updated using the rule:

θ− ← τθ + (1− τ)θ− with τ ≪ 1 (24)

A.6 TRAINING METHODOLOGY OF THE PARTIAL-ORDER-AWARE GNN

The training protocol for our partial-order-aware GNN comprises two coordinated phases: (1)
Training Data Generation and (2) Loss-Driven Optimization.

A.6.1 TRAINING DATA GENERATION

Algorithm 2 Contrastive Subgraph Sampling
1: Sample anchor node u ∈ VT from target graph GT

2: Generate Gu ⊑ GT via randomized BFS with edge traversal probability p = 0.8
3: Construct query graph Gq by reapplying same BFS protocol on Gu anchored at u

Ensure: Gq ⊑ Gu (preserves subgraph isomorphism via construction)
4: Generate negative pairs:
5: Type I: Random anchor u′ ̸= u with BFS-generated Gu′

6: Type II: Perturb Gq via edge deletions/additions violating Gq ⊑ GT

The data generation process ensures diverse yet controlled learning signals:

• Positive Pairs: For each target subgraph Gu ⊆ GT , we systematically construct isomorphic
queries Gq through duplicate randomized breadth-first search (BFS) traversals with edge
sampling probability p = 0.8. This procedural generation guarantees Gq ⊑ Gu by design.

• Negative Pairs: We implement two challenging negative sampling strategies:
1. Non-anchored Negatives: Random anchor selection with independent BFS generations

that break subgraph relationships
2. Structurally Damaged Negatives: Adversarial edge perturbations (15% edge flip proba-

bility) that invalidate subgraph isomorphism

A.6.2 LOSS COMPUTATION AND OPTIMIZATION

Let hq,hu denote GNN embeddings of query Gq and target subgraph Gu. The contrastive loss from
Definition A.10 is computed as:

L =
∑

(q,u)∈P

∥max(0,hq − hu)∥2 +
∑

(q,u′)∈N

max(0, α− ∥hq − hu′∥2) (25)

Backpropagation updates both the GNN parameters θ and the anchor-aware embedding space through:

θ ← θ − η∇θL (26)

where η is the learning rate.
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Algorithm 3 SIREN’s RL-Enhanced Search Framework.
1: Input: Query Graph GQ, Target Graph GT

2: Output: Solution Set SG =
{
G′ ⊑ GT | GQ

∼= G′}
3: ST ← ϕ, SG ← ϕ
4: ST .push(ϵ)
5: while ST ≠ ϕ do
6: st← ST .pop()
7: curG← st.getMCS()
8: if |V (curG)| = |V (GQ)| then
9: SG ← SG ∪ curG

10: continue
11: end if
12: UB ← |curG|+ bound(st)
13: if |UB| ≤ |V (GQ)| or |st.actions| = 0 then
14: continue
15: end if
16: a∗t ← Policy(st)
17: st+1 ← Action(st, a∗t )
18: st.actions← st.actions \ {a∗t }
19: ST .push(st)
20: ST .push(st+1)
21: end while

A.7 REINFORCEMENT LEARNING-ENHANCED HEURISTIC SEARCH

In SIREN, we established a reinforcement learning-enhanced heuristic search framework for subgraph
isomorphism by augmenting a classical branch-and-bound maximum common subgraph search
paradigm. As formalized in Algorithm 3, SIREN maintains a state heap ST to track partial mapping
states during subgraph isomorphism search. At each iteration, the algorithm retrieves the top state
st =Mt, whereMt represents the current node mapping set between the pattern graph GQ and the
target graph GT . The subgraph curG corresponding toMt is then extracted which satisfies both
curG ⊑ GT and curG ⊑ GQ. A critical pruning decision is made based on a bidomain-estimated
upper bound UB, as detailed in Section A.8. If this bound falls below the number of nodes of GQ,
i.e. |V (GQ)|, the branch is pruned. When curG achieves full isomorphism with GQ (curG ∼= GQ),
it is added to the solution set SG.

A.8 ADDITIONAL EMBEDDINGS AND UPPERBOUND ESTIMATION VIA BIDOMAINS

In our methodology, inspired by GLSearch Bai et al. (2021), bidomains are introduced to provide
more information for our partial-order aware GIN model, and facilitate pruning through estimating
the upper bound UB. For a given state st =Mt, the k−th bidomain Bk is defined as:

Bk = ⟨VkQ, VkT ⟩ (27)

where VkQ ⊆ V (GQ) and VkT ⊆ V (GT ) exhibit identical connectivity patterns with respect to the
already matched node setsMt = ⟨V s

Q, V
s
T ⟩, V s

Q ⊆ V (GQ) and V s
T ⊆ V (GT ). For the state st with

n matched node pairs, i.e., 
|V s

Q| = |V s
T | = n

V s
Q = {vsQ1, v

s
Q2, ..., v

s
Qn}

V s
T = {vsT1, v

s
T2, ..., v

s
Tn}

(28)

there are a total of 2n bidomains. The 2n bidomains are B(d1...dn)2 = ⟨V(d1...dn)2Q, V(d1...dn)2T ⟩,
where d1, ..., dn ∈ {0, 1}. For i ∈ {1, 2, ..., n}, The nodes in B(d1...dn)2 satisfy:

di = 1 ⇐⇒ ∀v ∈ V(d1...dn)2Q,∃e = (v, vsQi) ∈ E(GQ)

di = 0 ⇐⇒ ∀v ∈ V(d1...dn)2Q,∄e = (v, vsQi) ∈ E(GQ)

di = 1 ⇐⇒ ∀v ∈ V(d1...dn)2T ,∃e = (v, vsT i) ∈ E(GT )

di = 0 ⇐⇒ ∀v ∈ V(d1...dn)2T ,∄e = (v, vsT i) ∈ E(GT )

(29)
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(a) Query Graph (b) Target Graph

(c) Bidomains of Query Graph (d) Bidomains of Target Graph
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Figure 4: Examples of subgraph isomorphism and bidomains. (a) Query graph GQ, (b) Target graph
GT , (c-d) Bidomains of GQ and GT .

Figure 4 presents an example of subgraph isomorphism and bidomains. Figure 4(a) shows the query
graph GQ, while Figure 4(b) displays the target graph GQ. Figures 4(c) and 4(d) illustrate the
bidomains when the currently matched nodes are ⟨vQ1, vT1⟩, ⟨vQ2, vT2⟩, and ⟨vQ3, vT3⟩. As shown
in Figures 4(c), the nodes vQ5 and vQ6 are in the set V(010)2Q, and the node vQ4 is in the set V(110)2Q.
As shown in Figures 4(d), the nodes vT5 and vT6 are in the set V(010)2T , the node vT4 is in the set
V(110)2T . vT7 and vT8 are in V(100)2T . vT9, vT10 and vT11 are in V(001)2T . vT12 and vT13 are in
V(000)2T .

To estimate the upperbound, note that each bidomain can contribute at most min(|VkQ|, |VkT |) nodes
to the future best solution. Therefore, the upperbound can be estimated as:∑

Bk∈B
min(|VkQ|, |VkT |) (30)

which is the bound() function in Algorithm 3.

We also incorporate the bidomain information as node labels into our partial-order-aware GNN. The
resulting embeddings are used to enhance the input to our DQN model.

A.9 EXAMPLE OF THE SUBGRAPH ISOMORPHISM

Below, we give an example of the subgraph isomorphism in real applications of loop mapping in
coarse-grained reconfigurable architectures (CGRAs).

Example 1 (Loop mapping): In CGRA loop mapping, Figure 5 illustrates a 2 × 2 processing
element (PE) array case where subgraph isomorphism verifies if the compiler-generated data flow
graph (DFG) (Figure 5(a)) embeds into the time-extended CGRA (TEC) model (Figure 5(b)) under a
target initiation interval (II). This spatiotemporal mapping solution (Figure 5(c)) explicitly defines
PE operations per cycle and inter-PE routing, systematically optimizing parallelism and resource
utilization through isomorphic correspondence between DFG and TEC structures.

A.10 STATISTICS OF REAL-WORLD GRAPH DATASETS

In Section 4.4, we selected the same datasets as GNN-PE Ye et al. (2024b) from TUDataset Morris
et al. (2020) for testing, i.e., Yeast, Human, HPRD, WordNet, DBLP, Youtube, and US Patents.
Statistics of these real graphs are summarized in Table 4.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

(a) DFG of Auto Regression Filter (b) Time-extended CGRA 
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Figure 5: Example of loop mapping on CGRA with subgraph isomorphism. (a) DFG of Auto
Regression Filter, (b) Time-extended CGRA of a 2× 2 PEA, (c) mapping result, II = 2.

Table 4: Statistics of Real-World Graph Datasets.

Datasets |V (G)| |E(G)| |Σ| deg(G)

Yeast 3112 12519 71 8.0
Human 4674 86282 44 36.9
HPRD 9460 34998 307 7.4
WordNet 76853 120399 5 3.1
DBLP 317080 1049866 15 6.6
Youtube 1134890 2987624 25 5.3
US Patents 3774768 16518947 20 8.8

A.11 RL FRAMEWORK ABLATION STUDY AND SCALABILITY BENCHMARKING

To analyze the impact of different reinforcement learning paradigms, we conducted comparisons
between Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO) Schulman et al. (2017).
Our baseline DQN implementation follows the parametrization:

Qθ(st, at) =F
(

GNNenc(GQ, GT , st)︸ ︷︷ ︸
state embedding hst∈Rd

⊕ Waϕ(at)︸ ︷︷ ︸
action embedding hat∈Rd

)
=MLP

(
hst ∥ hGQ

∥ hGT
∥ hat

) (31)

where ⊕ denotes vector concatenation. For comparison, we adapt the PPO framework with dual-
network architecture:

πθ(at|st) =Softmax
(
Wπ · GNNenc(GQ, GT , st)

)
Vϕ(st) =w⊤

v · GNNenc(GQ, GT , st)
(32)

Remark A.13. The key difference lies in DQN’s action-conditioned Q-function versus PPO’s state-
conditioned policy distribution. Our GNN encoder maintains identical architecture across frameworks
to isolate RL algorithm effects.

We validate scalability on a million-scale graph from the US Patent dataset (|V | = 3,774,768).
Through random bipartition, we generate query-target pairs with matched cardinality (|VQ| = |VT |).
The MCS identification time complexity is measured for four methods: GLSearch Bai et al. (2021),
GNN-PE Ye et al. (2024b), SIREN and PPO-based SIREN (SIREN-PPO). The results are detailed in
5.

Despite being optimized for subgraph isomorphism, SIREN achieves 3.83× speedup over GLSearch
at 5K-node scale. The performance gap widens exponentially with graph size (R2 = 0.98 for
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Table 5: Time cost (seconds) for MCS identification across graph sizes. Bold: best performance.
Method Graph Size (Nodes)

1K 2K 3K 4K 5K

GLSEARCH 364.5 664.6 1820.2 2163.2 21507.2
GNN-PE > 105 > 105 > 105 > 105 > 105

SIREN 165.4 357.3 639.8 939.8 5612.3
SIREN-PPO 245.8 518.1 888.6 1119.6 7241.6

quadratic fit), demonstrating our method’s superior asymptotic complexity. The GNN-PE’s failure
highlights the necessity of partial-order-preserving architectures for structural tasks.

Assumption A.14 (RL Framework Efficacy). The superior empirical performance of our DQN-based
framework compared to the PPO variant (Table 5) stems from two synergistic factors:

• Partial-Order Preservation: The ⪯-preserving GNN embeddings intrinsically capture
subgraph containment relationships through the lens of order embeddings hG ∈ RD

+ (Theo-
rem A.12)

• Compatibility with Value Iteration: The subgraph isomorphism search dynamics are
naturally expressible through Q-learning’s state-action value formulation:

Q(s, a) = E

R(s, a) + γmax
a′
⟨hs′ ,hGT

⟩︸ ︷︷ ︸
order alignment

 (33)

where R(s, a) encodes topological validity rewards

Assumption A.15 (Policy Gradient Limitations). The relative underperformance of policy-based
methods suggests:

∇θJ (πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st)Ât

]
(34)

suffers from high variance in credit assignment for structural actions. Future work will develop
SIREN-PPO+ with:

• Action space decomposition leveraging partial order constraints

• GNN-based advantage estimation Ât = fϕ(hst ,hGT
)

A.12 COMPLEXITY ANALYSIS

The time complexity of our GNN-based query processing is approximatelyO(k|VT ||VQ|), where k de-
notes the number of GNN layers. The per-iteration computational complexity remains O(k|VT ||VQ|).
Although the theoretical worst-case time complexity suggests exponential scaling, experimental
results reveal a practical polynomial-time behavior within O((|VT ||VQ|)4) to O((|VT ||VQ|)5).

A.13 LIMITATIONS

While SIREN performs well on moderately sized graphs, we acknowledge the scalability limitations
inherent in RL-driven search and GNN embedding generation when applied to massive graphs.
However, our systematic benchmarking reveals a critical industry-wide challenge: When confronted
with ultra-dense, large-scale graphs typical of real-world applications, neither traditional heuristic
approaches (VF3 Carletti et al. (2017), RI Bonnici et al. (2013), GraphQL He & Singh (2008), ...)
nor modern neural network-based solutions (GNN-PE Ye et al. (2024b), GLSearch Bai et al. (2021))
demonstrate viable computational tractability. Specifically, as benchmarked on graphs exceeding 104

nodes with density ρ > 0.3, all existing methods exhibit exponential time complexity growth beyond
practical feasibility thresholds.
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A.14 ETHICS STATEMENT

All authors have read and will adhere to the ICLR Code of Ethics throughout the submission process.
To the best of our knowledge, this work does not present any potential ethical concerns.

A.15 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work and welcome discussions with reviewers
regarding any reproducibility concerns during the review process. The supplementary material
includes the core implementation of SIREN. Upon acceptance of the paper, we will release the
full source code, trained models, datasets, checkpoints, and related resources to ensure complete
reproducibility.

A.16 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The use of Large Language Models (LLMs) in this work was solely restricted to polishing and
refining the linguistic expression of the manuscript. LLMs were not employed in any other aspect of
the research, including but not limited to: related work survey, code development, model training and
testing, or conducting proofs.
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