Under review as a conference paper at ICLR 2026

SIREN: SUBGRAPH ISOMORPHISM VIA REINFORCE-
MENT ENHANCED GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The subgraph isomorphism problem comprises two distinct objectives: (a) Ex-
istence determination: Verifying whether an input graph contains a subgraph
isomorphic to another input graph; and (b) Complete solution enumeration: Out-
putting the exhaustive set of all isomorphic mappings when they exist. Solving this
problem serves as a fundamental requirement for numerous application domains.
However, as an NP-complete problem, existing mainstream solvers primarily rely
on heuristic techniques, demonstrating limited efficiency when handling large-
scale input graphs. To address this challenge, we propose SIREN - a graph neural
network enhanced with deep reinforcement learning for subgraph isomorphism res-
olution. SIREN establishes graph embeddings through partial order-aware GNNs,
while employing Deep Q-Networks with bidomain-based pruning to accelerate the
graph matching process. Experimental results on real-world datasets demonstrate
that SIREN achieves 100% precision with modest computational time, outperform-
ing Al-based approximate matching methods. Compared to state-of-the-art exact
solvers, SIREN delivers ~ 52% faster execution than leading AI approaches and
~ 21% acceleration over top heuristic methods.

1 INTRODUCTION

The representation of structured data using graphs has evolved over decades as a foundational
methodology in data modeling [West et al.| (2001). Meanwhile, graph-based algorithms have found
widespread adoption for analyzing complex relational patterns across scientific and industrial domains
Dijkstral (2022)); Kruskal| (1956). Within graph theory, the subgraph isomorphism problem represents
a core computational challenge |[Nguyen et al|(2022);|Zhang et al.|(2024). Specifically, it requires
determining whether a given graph contains a structurally isomorphic subgraph of another graph,
while also deriving the explicit node correspondence when such isomorphism exists.

The subgraph isomorphism problem has garnered significant attention across pivotal domains due
to its critical role in enabling structural pattern analysis. In biomolecular sciences, it underpins the
determination of structural compatibility between molecules and proteins for drug discovery and
protein interaction studies Balaban| (1985)); Bonnici et al.| (2013)). Within semantic web technologies,
it facilitates efficient Resource Description Framework (RDF) query processing to traverse complex
knowledge graphs Kim et al.|(2015). Social network analytics leverages subgraph isomorphism
detection to generate personalized recommendation systems through dynamic community subpattern
mining |[Rong et al.| (2018)). Furthermore, in domain-specific computing architectures, this capability
proves essential for optimizing loop mapping schemes in reconfigurable computing systems, where
topological constraints demand rigorous subgraph matching [Hamzeh et al.| (2012). These cross-
disciplinary applications collectively demonstrate the problem’s fundamental importance in modern
computational paradigms.

The subgraph isomorphism problem, known to be NP-complete |Conte et al.|(2004), is classically
tackled using heuristic methods, which can be broadly classified into three categories: (1) Tree search
algorithms, ranging from classical ones (Ullmann Ullmann| (1976)), VF-series [Carletti et al.[(2017))
to modern extensions (RM [Sun et al.| (2020), VEQ [Kim et al.|(2021), CaLiG |Yang et al.| (2023)),
that employ depth-first search combined with pruning techniques; (2) Constraint programming
frameworks, which model the problem as a constraint satisfaction problem (CSP) using integer
linear programming (ILP), SAT, or other formalisms (e.g., McGregor [McGregor| (1979), Solnon

Under review as a conference paper at ICLR 2026

Solnon|(2010), Zampelli Zampelli et al.| (2010)); (3) Graph indexing approaches, often inspired by
database systems (e.g., GraphQL He & Singh| (2008)), QuickSI|Shang et al. (2008)), GADDI|Zhang
et al.[(2009)), that use precomputed structural signatures and inverted indices to accelerate filtering.
Despite the use of advanced pruning strategies, state-of-the-art heuristic solvers still suffer from
exponential worst-case time complexity, which often limits their practicality on large real-world
graphs.

Recent advances in artificial intelligence, particularly graph neural networks (GNNs) designed for
graph isomorphism analysis Xu et al.| (2019), have spurred new learning-based approaches for
subgraph isomorphism. Representative methods include IsoNet Roy et al.|(2022), streaming models
Duong et al.|(2021]), GMN Li et al.| (2019), GNN-PE |Ye et al.| (2024b)), EinsMatch [Ramachandran
et al.| (2024), and SubMDSE [Raj et al.| (2025). Furthermore, Al techniques have been extended
to address related problems such as subgraph alignment Bainson et al.|(2024), graph edit distance
computation Piao et al.|(2023), and maximum common subgraph identification Bai et al.|(2021)).

However, current learning-based methods exhibit notable limitations: they often yield probabilistic
approximations rather than exact solutions Ramachandran et al.| (2024)), or are confined to very small
query graphs (e.g., < 10 nodes) |Ye et al.| (2024b). A more fundamental constraint is their heavy
reliance on solver-generated labels produced by traditional algorithms for supervised training, which
introduces computational bottlenecks and restricts practical deployment.

To address the limitations of existing approaches, we present SIREN (Subgraph Isomorphism via
Reinforcement-Enhanced Graph Neural Networks). Our framework integrates a Deep Q-Network
(DQN) [Volodymyr et al.| (2019) with bidomain-based pruning to autonomously discover optimal
node selection heuristics, which are critical components in state-of-the-art subgraph isomorphism
solvers. Complementing this, SIREN employs a pretrained graph neural network grounded in
partial order relation learning to hierarchically encode subgraph structural dependencies. While
maintaining provable completeness, experimental results demonstrate that SIREN outperforms all
machine learning-based methods in accuracy for approximate matching tasks. Simultaneously, it
achieves significant efficiency gains over both heuristic approaches and Al-based methods when
enumerating complete solution sets. The primary contributions of this paper are as follows:

1. DQN-GNN integration with provable completeness: We propose a novel DQN-GNN in-
tegration method with bidomain-based pruning that efficiently solves subgraph isomorphism
problems while guaranteeing provable completeness.

2. Partial-order-aware pretrained GNN: We introduce a partial-order-aware GNN pre-
training strategy that eliminates dependency on solver-generated labels while enhancing
substructure relationship understanding.

3. Unified framework: Our framework simultaneously addresses both existence determination
and complete solution enumeration for subgraph isomorphism.

4. Superior precision and efficiency: Experimental results on real-world datasets demonstrate
that SIREN achieves 100% precision with modest computational time, outperforming Al-
based approximate matching methods. Compared to state-of-the-art exact solvers, SIREN
delivers ~ 52% faster execution than leading AT approaches and ~ 21% acceleration over
top heuristic methods.

2 PRELIMINARIES

1) Graph: A graph can be formally defined as G = (V, E), where V' = {v1,...,v,} denotes the
finite set of vertices and &/ C V' x V denotes the edge set. Each edge ¢;; € E connects two vertices
v3,v;in V.

2) Graph Isomorphism: Two graphs G; = (V1, E1) and Gy = (Va, E2) are isomorphic (G1 &2 G3)
if there exists a bijective mapping f : V; — V4 such that:

V'Ui,'Uj S ‘/'1’ (’Ui,Uj) € El — (f(vl)7f(v.7)) € E2 (1)

3) Subgraph: Let G = (V, E) be a graph. A subgraph G’ = (V', E’) of G is defined as G’ C G,
which satisfies:
V'CV and E C{(u,v)€E|uveV'})

Under review as a conference paper at ICLR 2026

Partial Order-Aware GNN-Based
DQN Architecture

Learnable Action
Projection Weights

. Feature
X [Vector
Wiay
Wa

Action Embedding

Figure 1: Overview of the framework of SIREN. (a) NN Training Framework, (b) Reinforcement
Learning-Driven Search Framework, (c) Partial Order-Aware GNN-based DQN Architecture

4) Subgraph Isomorphism Problem: The subgraph isomorphism problem involves determining
whether there exists a subgraph G’ C G such that G = G’, where G, denotes the query graph
and G denotes the target graph. Formally:

3G =(V,E'Y)CGr st Go=G 3)
If such subgraphs exist, the solution set S comprises all valid subgraphs:

Se={G'CGr|Gy=G} 4)

3 THE SIREN METHOD

In this section, we provide a detailed description of the SIREN framework, which stands for Subgraph
Isomorphism via Reinforcement-Enhanced Graph Neural Networks. Section [3.1]presents our DQN-
based provably complete framework for subgraph isomorphism, and Section [3.2introduces our partial
order relation-aware GNN architecture.

3.1 PROVABLY COMPLETE FRAMEWORK FOR SUBGRAPH ISOMORPHISM

SIREN addresses the subgraph isomorphism problem by integrating graph neural networks with
reinforcement learning. This approach formulates the problem as a Markov Decision Process (MDP)
Puterman (1990) and employs a DQN-based framework|Volodymyr et al.|(2019)) to enhance traditional
tree-search heuristics [Carletti et al.|(2017). Our search framework guarantees the completeness of
SIREN, with a detailed proof provided in Section[A.4]

1) DQN-Enhanced Search Framework. The DQN-enhanced search framework of SIREN, depicted
in Figure[I(b), maintains a state heap ST to store feasible states. At each decision step, the state s;
with the maximal action space cardinality |.4;| is selected as the current state, prioritizing branches
with higher combinatorial potential. At each step, the agent either adds a new node pair to the
current partial matching or backtracks from a previous decision. The selection of candidate nodes
is optimized using a partial order-aware Graph Isomorphism Network (GIN) integrated within the
DQN. The search process terminates when all possible isomorphisms are found or non-existence is
proven. SIREN can also be configured to terminate upon discovering the first feasible solution, which
is suitable for applications requiring only a single valid subgraph matching.

2) DQN Framework. As illustrated in Figure|[Ifc), the framework utilizes continuous embedding
representations to encode states s; and actions a;. These representations are processed by a DQN
architecture that consists of a partial-order aware GNN encoder and learnable projection modules. The
DQN maps state-action pairs (s, a;) to Q-value estimates Q(s¢, a;), thereby enabling data-driven
policy optimization.

3) State Representation. A state s; comprises the node-node mapping M, between the selected
subgraphs, the input graphs themselves, and the bidomain information corresponding to the current
mapping M. The features provided to the GNN model for state s; include node types/labels, (k-hop)
local degree profiles, matching status indicators, and edge information of the graphs.

4) Action Space. At each step, the agent selects (1) a node pair (vg,v;) € C; that maintains
topological consistency with M, and (2) a special (terminate) action to prune unpromising branches,

Under review as a conference paper at ICLR 2026

where C; denotes the candidate node pairs for expansion. The action space size is dynamic: |C;| + 1
(including termination).

5) Action Embedding. SIREN incorporates an action embedding optimization mechanism. For each
feasible node pair (v, v;), the associated node features are projected into a low-dimensional embed-
ding space via a learnable matrix W . This embedding captures the essential value characteristics of
the action, which in turn refines the Q-value computation.

6) Reward Function. The reward function of SIREN is designed to guide the learning process
through a dense reward mechanism:

* A base reward of +c - 1/|Vg| for each valid node pair matching (default o« = 0.5), where
|V is the number of nodes in the query graph.

* An incremental structural reward of +/ - AE/|Er| for each newly matched edge (default
B8 = 0.5), where AE denotes the increase in the number of correctly matched edges and
| E7| is the total number of edges in the target graph.

* A sparse success reward of + - |V| (default v = 0.05) upon finding a complete isomor-
phism.

7) Bidomain-Based Embeddings and Pruning. SIREN leverages Bidomains Bai et al.|(2021) to
enhance its search process in two key ways: by providing additional graph embeddings that inform
the Q-value computation, and by facilitating efficient pruning through estimates of the exploration
upper bound. For state s, = M, = (Mg, Mr) with matched sets Mg C V(Gg), M1 C V(Gr),
the k-th bidomain By, is defined as:

Bi = (V& Vi) §)
where V,? C V(Gg) and V' C V(Gr) satisfy:
Yu € V,S,v e VI adj(u, Mg) = adj(v, Mr) (6)

denoting identical connectivity patterns to matched sets Mg C V(Gg) and My C V(Gr). A
detailed description of the bidomain technique is provided in Section[A.8]

8) Embedding Fusion. We perform embedding fusion on the embeddings h¢,, and h¢,. generated
by the GNN for the query graph and target graph, respectively. This alignment operation involves
processing each embedding through a 1D convolutional layer followed by a pooling layer, and
subsequently merging the resulting representations.

9) Action-Value Function. For state transition, candidate actions A, = {(u,v) € C,} are evaluated
by the DQN’s action value function Qg (s¢, a;), where h denotes the graph embeddings generated
with our trained GNN model:

Qo (st, ar) :]—"(GNNew(Go, G, 51, Bs,) & Wath(ay))
———
state embedding action embedding (7)
:.7:(1’13“ Fuse(hGQ 3 hGT), hBD7 at)

where 1(a;) is the feature vector of action a; , and W, denotes learnable action projection weights.

10) e-Greedy Action Selection. The agent selects an action a; at each timestep using an e-greedy
policy based on the current Q-value estimates:

a; =

« Jargmaxg,ca,(Qo(s¢,a¢)) with probability 1 — e
random action with probability e

The updated state s;y; = M, U aj is is then pushed back onto S7.

11) Action Space Partition. For large-scale graphs where the number of candidate matching actions
(node pairs) becomes prohibitively large, we partition the action space into chunks and compute Q-
values separately for each chunk. This approach prevents GPU memory overflow while maintaining
computational efficiency.

The training process of our DQN model consists of three consecutive phases: pretraining, imitation
learning, and reinforcement learning, which is detailed in Section[A.5] To analyze the impact of
different reinforcement learning paradigms, we conducted comparisons between DQN and Proximal
Policy Optimization (PPO) [Schulman et al.| (2017), as detailed in Section[A.T1]

Under review as a conference paper at ICLR 2026

3.2 PARTIAL ORDER-AWARE GNN ARCHITECTURE

The subgraph relationship satisfies the properties of reflexivity, transitivity, and antisymmetry, thereby
establishing it as a partial order on the set of graphs. Formally:

e Reflexivity: G C G, G = G.
¢ Transitivity: (G1 C G2) A (G2 £ G3) = G1 C Gs.
o Antisymmetry: (G; C G3) A (G2 E G1) < G1 =Go.

The formal proof of these properties is provided in Section [A.T} Moreover, The intersection of the
set of (G1’s subgraphs and the set of (G2’s subgraphs contains all common subgraphs of G; and
G> [Lou et al|(2020). Therefore, SIREN employs a partial order-aware GNN to enforce that the
learned graph embeddings preserve the isomorphic partial order relationships within the embedding
space. This geometric constraint ensures that for any two graphs G and Gt with embeddings
he, = (hg,,, - hg,) andhg, = (hg, ... hE):

Viel,..,Dhg, <hg, <= GICG (8)

The proof that our GNN model satisfies the partial order relationships described in Equation [§]is
provided in Section[A.3] To preserve the partial order relationship of the subgraphs, we use the max
margin loss to train our GNN model. Within each minibatch, we define P = {(¢,t) € MB | N(q) C
N (t)} as the set of positive pairs where the neighborhood subgraph of query node ¢ is isomorphic to
a subgraph of target node t’s neighborhood, and N = M3\ P as the negative pairs violating this
structural constraint. The loss function £ then operates on these sets to enforce geometric consistency
in the embedding space:

L(hg,hy) = Y E(hgh)+ > max(0,a— E(hg, hy)) ©)
h,,h,eP h,,h,eN
where
E(hg,hy) = || max(0, hy — hy)|[3 (10)

We employed an improved GIN model [Xu et al.| (2019)), incorporating multi-scale feature fusion
techniques to generate graph embedding vectors. For layer [€ {0, 1, ..., L — 1}, the embedding of
node v is computed as:

h(*) = MLPO((1+ D) b+ Y h) (11)
ueN (v)

where ¢ € R is a learnable scalar parameter, N (v) denotes the neighborhood of node v, and
MLP®) denotes the multi-layer perceptron with LeakyReLLU |[Maas et al.| (2013)) activation o. Let ;
be the learnable hierarchical weight coefficient, the graph embedding is obtained by concatenating
sum-pooled features across layers:

L

ha =Y w-y b (12)

=0 veV

The training protocol of our partial order-aware GNN model is detailed in Section [A.6]

4 EXPERIMENTS

To evaluate the effectiveness and efficiency of SIREN, we compared SIREN with 19 state-of-the-art
neural network-based methods and heuristic methods. The experiments are conducted real large
graph datasets from TUDataset Morris et al.|(2020) and on synthetic graph datasets.

4.1 BASELINE METHODS

We compared SIREN with 10 state-of-the-art neural network-based methods for subgraph isomor-
phism, including SimGNN [Bai et al.|(2019), GraphSim Bai et al.| (2020), GEDGNN [Piao et al.| (2023)),
GOTSim |Doan et al.|(2021), ERIC|[Zhuo & Tan|(2022), NeuroMatch |Lou et al.| (2020), GMN (L1 et al.

Under review as a conference paper at ICLR 2026

Table 1: Evaluation of Mean Average Precision (MAP) on real-world graph pairs. K = layers, [N D]
= node state dimensions. Each dataset contains 300 query graphs and 800 target graphs.

Method | K | IND| | AIDS | MUTAG | PICFM | PICFR | PICMM | PIC-MR
AVerage|VQ| 11.61 1291 11.73 11.81 11.80 11.87
Max | Vg | 15 15 15 15 15 15
Average |V | 18.50 1841 18.30 18.32 18.36 18.32
Max | V| 20 20 20 20 20 20
SIMGNN 3 10 0.326 + 0.019 0.303 + 0.012 0.416 &+ 0.015 0.355 + 0.015 0.358 + 0.015 0.308 & 0.017
GRAPHSIM 3 10 0.173 + 0.007 0.182 + 0.008 0.231 + 0.011 0.165 + 0.007 0.2 £ 0.009 0.216 &+ 0.013
GEDGNN 3 10 0.340 + 0.015 0.605 + 0.029 0.437 + 0.013 0.497 + 0.018 0.509 + 0.018 0.309 4 0.009
GOTSIM 5 10 0.336 + 0.017 0.387 £ 0.018 0.459 4+ 0.017 0.361 £ 0.013 0.417 £ 0.017 0.430 4 0.017
ERIC 5 10 0.512 + 0.022 0.558 + 0.027 0.624 4+ 0.019 0.572 + 0.021 0.573 4+ 0.02 0.639 + 0.018
GMN-MATCH 3 10 0.609 + 0.02 0.693 £ 0.026 0.686 + 0.018 0.667 + 0.021 0.627 + 0.02 0.683 + 0.017
NEUROMATCH 3 10 0.454 + 0.025 0.583 + 0.027 0.622 + 0.019 0.572 + 0.023 0.522 + 0.019 0.565 + 0.02
ISONET 3 10 0.704 + 0.021 0.733 + 0.023 0.782 + 0.017 0.734 + 0.02 0.758 £ 0.016 0.764 + 0.015
SUBMDSE-LATE 5 10 0.712 + 0.018 0.721 £ 0.025 0.793 + 0.016 0.744 + 0.019 0.758 + 0.015 0.782 + 0.014
SUBMDSE-EARLY 5 10 0.817 + 0.017 0.837 + 0.02 0.887 + 0.012 0.854 + 0.013 0.849 £ 0.012 0.864 + 0.011
SIREN-MINI 3 10 1.000 + 0.000 1.000 + 0.000 1.000 =+ 0.000 1.000 + 0.000 1.000 + 0.000 1.000 =+ 0.000
Avg. Runtime (ms) 41.3 334 355 43.7 34.8 44.2
SIREN 8 64 1.000 =+ 0.000 1.000 £ 0.000 1.000 £ 0.000 1.000 =+ 0.000 1.000 £ 0.000 1.000 £ 0.000
Avg. Runtime (ms) 50.5 473 42.5 56.3 524 52.7
Improvement | | | 18.3% | 16.3% | 11.3% | 14.6% | 15.1% | 13.6%

(2019), IsoNet|Roy et al.|(2022), SubMDSE Raj et al.| (2025) and GNN-PE|Ye et al.| (2024b)), as well
as 9 heuristic state-of-the-art methods for solving the subgraph isomorphism problem, including RI
Bonnici et al.| (2013)), VF2++ Jiittner & Madarasi (2018]), GraphQL |[He & Singhl (2008)), QuickSI
Shang et al.|(2008), VF3|Carletti et al.|(2017), RM Sun et al.[(2020), VEQ Kim et al.|(2021)), CaLiG
Yang et al.[(2023)), and DPIso|Han et al. (2019).

Existing neural network-based subgraph isomorphism methods can be divided into two categories:
exact matching and approximate prediction. Exact matching methods return the precise solution
set for the subgraph isomorphism problem, while approximate prediction methods provide a quick
assessment of whether two graphs satisfy the subgraph isomorphism relationship. Among these
methods, GNN-PE is an exact matching method, while the other 7 methods are approximate prediction
methods. To ensure a fair comparison, we evaluated the solving speed against GNN-PE and heuristic
methods, and compared the solving accuracy with the other 7 methods, using the same real-world
datasets and sampling settings as in the original papers.

4.2 EXPERIMENTAL SETTINGS

In SIREN, we utilize 8 layers of Graph Isomorphism Networks (GIN) |Xu et al.|(2019) each with 64
dimensions for the embeddings. For DQN, we use MLP layers to project concatenated embeddings
to a scalar. The discount factor v of the DQN is set to 1.0, and the learning rate of the DQN and
the GIN is set to 0.001. The models are trained using the Adam optimizer Kingma| (2014). The
learning rate is annealed with a cosine annealer with restarts every 100 epochs. The DQN is trained
by 10000 iterations. Prior to DQN training, we conduct a 50000-epochs supervised pre-training of
the GNN model to generate geometrically consistent partial order-preserving graph embeddings. The
training data is generated by randomly sampling neighborhoods from large real-world graph datasets
Morris et al.|(2020), while being regenerated every 50 epochs. To ensure fairness across diverse
tasks, we trained two distinct GNN configurations (in SIREN-Mini and SIREN). Detailed parameter
specifications are provided in Table[I] The experiments were conducted on a Ubuntu server equipped
with a 128-Core Intel(R) Xeon(R) Gold 5218 CPU running at 2.30 GHz and 256 GB of memory,
along with 4x Nvidia Tesla A800 GPU. SIREN were implemented with the PyTorch and PyTorch
Geometric libraries [Fey & Lenssen| (2019).

4.3 EFFECTIVENESS OF SIREN

To compare SIREN with approximate prediction deep learning methods, we selected the same datasets
as SubMDSE Raj et al.| (2025) from TUDataset Morris et al.| (2020) for testing, i.e., PTC-FR, PTC-
FM, PTC-MM, PTC-MR, MUTAG, and AIDS. We compared SIREN with 9 state-of-the-art neural
methods. The experimental results indicate that, without limiting the search time, SIREN achieved
correct solutions for all datasets, with the longest time not exceeding 2 seconds (~1.8s). Compared
to the most accurate neural method SubMDSE-Early Raj et al.| (2025), SIREN improved Mean

Under review as a conference paper at ICLR 2026

Table 2: Ablation Study of SIREN by Mean Average Precision (MAP) on Real-World Graph Pairs.

Method | PTC-FR | PTC-FM | PTC-MM | PTC-MR | MUTAG | AIDS
SIREN-DQN | 0.880 | 0.893 0.961 0.828 0952 | 0.904
v.s. IsoNet +23% | -08% | +55% 6.6% | +32% | +1.0%
SIREN-GNN | 0.766 | 0.796 0.886 0.738 0.861 | 0.842
v.s. IsoNet 9.1% | -105% | -20% | -156% | -59% | -52%
SIREN | 1000 | 1.000 | 1000 | 1.000 | 1.000 | 1.000

Table 3: Runtime on Large-Scale Dense Real-World Graphs (Unit: s), OOM: Out of Memory.

nodes of G 1000 2000 3000 4000 5000 10000
nodes of Gg 200 400 600 800 1000 2000
Edge density 0.4 0.3 0.2 0.2 0.2 0.2

VF3 12151.6 | 16351.2 | 4292.6 > 105 > 10° > 105
VE3p 1187.8 1923.6 636.2 | 24058.0 | 51020.4 | > 10°
VEQ 860.9 OOM OOM OOM OOM OOM
GNN-PE > 10° >10° | >10° | > 10° >10° | > 10°
GLSEARCH | 7534.5 > 10° | 4682.1 | > 10° >10° | > 10°
SIREN | 6424 | 9432 | 486.7 | 16842.4 | 347195 | > 10°

Average Precision by an average of 14.9%. The experimental results show that SIREN outperforms
approximate prediction deep learning methods in terms of effectiveness. These experimental results
align with the theory, as SIREN guarantees that, given enough time, it can obtain an exact solution
or prove that no valid solution exists. Furthermore, these results demonstrate that SIREN is a more
effective method for general real-world datasets, as it provides acceptable running times and more
accurate results.

4.4 EFFICIENCY AND THROUGHPUT RATE

To compare SIREN with exact matching deep learning methods and heuristic methods, we selected
the same datasets as GNN-PE [Roy et al.| (2022)) from TUDataset Morris et al.| (2020) for testing, i.e.,
Yeast, Human, HPRD, WordNet, DBLP, Youtube, and US Patents. Statistics of these real graphs
are summarized in Section[A.10] We divided the dataset according to the method used in GNN-PE
Roy et al.|(2022), where the size of |V (q)] is set to 8. Figure [2| shows the efficiency test results
on large-scale datasets, which indicate that our SIREN method outperforms all existing heuristic
methods across all test data, and it also surpasses GNN-PE in the majority of cases. Only for the
DBLP dataset does SIREN (~0.19s) perform slightly slower than GNN-PE (~0.17s), with almost
no difference. On average, compared to RI|Bonnici et al.| (2013), VF Jiittner & Madarasi| (2018)),
GraphQL He & Singh|(2008)), QuickSI|Shang et al.[(2008), GNN-PE Roy et al.|(2022), VF3 [Carletti
et al.| (2017), RM |Sun et al.[(2020), VEQ Kim et al.| (2021)), CaLiGYang et al.|(2023), and DPIsoHan
et al.| (2019), SIREN achieves speedups of 36.5x, 29.0x, 171.2x, 25.7x, 52.1%, 14.4x, 92.4%,
21.3%, 7.70x, and 55.3%, respectively.

Figure [3] compares the throughput, measured in generated matched embeddings per second (EPS), of
SIREN against other methods on large-scale datasets. As shown, SIREN achieves a higher throughput
than all baseline methods, outperforming the state-of-the-art approach VEQ by 1.046x.

4.5 SCALABILITY OF SIREN

To evaluate the scalability of SIREN, we compared SIREN with GNN-PE [Roy et al.[(2022), GLSearch
Bai et al.[(2021), VEQ Kim et al.|(2021)), and the state-of-the-art CPU-parallelized subgraph iso-
morphism method VF3p |Carletti et al.| (2017) on synthetic large adversarial dense graph dataset
by VF3 |Carletti et al.| (2017). As shown in Table [3 experimental results on large graphs demon-
strate that despite the server CPU’s higher theoretical FP32 compute capacity (CPU: 140 TFLOPS
vs. GPU: 40 TFLOPS), SIREN still outperforms traditional methods. On average, compared to
GNN-PE, GLSearch, VF3, VF3p and VEQ, SIREN achieves speedups of 8.32x, 4.82x, 3.34x,

Under review as a conference paper at ICLR 2026

Efficiency on Large Real Graphs Throughput Rate on Large Real Graphs

1000000.0 1.006407

HPRD WordNet DBLP Youtube USPatents Average

100000.0

Second

10000.0

100.0 5
| 1.00E+04
oo M AR 0 [
Human Yeast Human

10 1.00E403
Yeast HPRD WordNet DBLP Youtube USPatents Average

Execution Time (ms)
-
&

Embeddings Per

HRI =VF = GraphQL = QuickSl =GNN-PE mVF3 mRM HVEQ mCaliG HDPiso mSIREN HRI =VF = GraphQL =Quicksl =GNN-PE ®VF3 ERM HVEQ =CaliG HDPlso HSIREN

Figure 2: Efficiency of different methods. Figure 3: Throughput Rate of different methods.
47.0%, and 34.0%, respectively (excluding cases exceeding 10° seconds or OOM). Our experi-
ments further demonstrate that VEQ encounters out-of-memory failures under a 256GB memory
constraint—already substantial for graph processing—when handling graphs exceeding 2000 nodes
with edge density p > 0.3. This limitation stems from VEQ’s significantly higher space complexity
compared to SIREN, preventing it from scaling to large dense graphs.

4.6 ABLATION STUDY

Table 2] presents the ablation study results for two modules in SIREN: DQN and GNN. Here, SIREN-
DQN refers to the results obtained using only the DQN + GNN structure, where GNN is randomly
initialized without any pre-training method. SIREN-GNN indicates the scenario where the DQN
structure is not used, and the NeuralMatch method |[Lou et al.|(2020) is employed to directly output
estimates for the subgraph isomorphism problem. The experimental results demonstrate that both the
lack of GNN pre-training and the absence of the DQN model lead to a decline in solution quality.

5 RELATED WORK

5.1 TRADITIONAL APPROACHES

The subgraph isomorphism problem is known to be NP-complete and has traditionally been tackled
using heuristic methods. These approaches can be broadly categorized as follows:

1) Tree Search: Classical algorithms such as Ullmann’s algorithm [Ullmann| (1976)) and the VF-
series |Cordella et al.| (2001} 2004); |Carletti et al.| (2017)) employ depth-first search combined with
pruning heuristics (e.g., degree and label filters). VF3 Carletti et al.|(2017) introduces state-space
precomputation and look-ahead pruning to improve efficiency, particularly for large dense graphs.
More recent methods, including RM [Sun et al.|(2020), VEQ Kim et al.| (2021}, and CaLiG |Yang et al.
(2023)), further accelerate the resolution process.

2) Constraint Programming: These approaches model the problem as a Constraint Satisfaction
Problem (CSP), using integer linear programming (ILP), Boolean satisfiability (SAT), or related
formalisms. Variables typically represent query nodes, with domains consisting of candidate target
nodes, and constraints encode structural requirements. Methods by McGregor McGregor| (1979)),
Solnon [Solnon| (2010), and Zampelli Zampelli et al.| (2010) employ arc consistency techniques to
iteratively prune the solution space.

3) Graph Indexing: Methods inspired by database systems, such as GraphQL He & Singh| (2008)),
QuickSI [Shang et al.| (2008)), and GADDI Zhang et al.| (2009)), leverage precomputed structural
signatures and inverted indices to enable efficient pre-match filtering and early termination.

Limitations: Despite their practical utility, all these methods exhibit exponential worst-case time
complexity—typically O(n¥) for a query pattern of size k—and are sensitive to label noise and graph
density. Indexing techniques also involve significant memory overhead, often reaching O(m¢?) for
depth-d neighborhood features.

5.2 NEURAL APPROACHES FOR SUBGRAPH ISOMORPHISM
Recent neural network-based approaches for subgraph isomorphism can be divided into two main
categories:

1) Exact Solvers: These methods aim to provably determine the existence of subgraph isomorphisms
and recover corresponding node mappings. Representative techniques include subgraph index

Under review as a conference paper at ICLR 2026

embeddings Duong et al.|(2021) and path dominance embeddings |Ye et al.|(2024b), which encode
structural hierarchies to facilitate exact matching.

2) Approximate Heuristics: These methods prioritize scalability and efficiency at the cost of
completeness, often relying on probabilistic or learned similarity measures. Examples include
similarity-based networks Li et al.|(2019)), geometric embeddings |Lou et al.|(2020), and IsoNet Roy
et al.| (2022)). More recent advances include EinsMatch [Ramachandran et al.| (2024), which introduces
iterative alignment refinement, and SubMDSE Raj et al.|(2025), which explores multifaceted design
spaces for improved performance.

Limitations: Exact solvers typically depend on expensive solver-generated labels for supervised
training, leading to high annotation and computational costs. On the other hand, approximate
methods often lack theoretical guarantees and tend to exhibit reduced accuracy when applied to strict
isomorphism problems.

5.3 NEURAL APPROACHES FOR RELATED PROBLEMS

1) Graph Isomorphism: While graph isomorphism can be solved in quasi-polynomial time, i.e.,
O(e°8™)") Babai| (2016), it is often studied to characterize the expressive power of graph neural
networks. Methods such as GIN |Xu et al.| (2019)—which simulates the Weisfeiler-Leman (WL) test
Leman & Weisfeiler| (1968)—and Graph Transformers Yun et al.| (2019); [Lee et al.|(2024) have been
developed, but they generally lack the precision required for subgraph isomorphism tasks.

2) Maximum Common Subgraph (MCS): Subgraph isomorphism is a special case of MCS in which
the common subgraph must be isomorphic to the query graph G. Neural solvers such as GLSearch
Bai et al.[(2021)) and MCSP+RL [L1u et al.| (2019) have been proposed for MCS, but they often fail to
fully leverage the topological structure of the query graph, resulting in suboptimal efficiency.

3) Subgraph Alignment: This problem involves determining whether a query graph G is isomor-
phic to an induced subgraph of a target graph G. A recent spectral-based method Bainson et al.
(2024) has been proposed to address it. Although subgraph alignment is a special case of subgraph
isomorphism, the two are not identical; clarifying their distinctions is necessary to prevent confusion
arising from terminological overlap.

4) Graph Alignment: Graph alignment aims to find a bijective mapping between the nodes of two
graphs such that structural differences after mapping are minimized. FUGAL Bommakanti et al.
(2024) introduces a learning-based approach for this task, while a differentiable top-kmethod Wang
et al.[(2023) addresses partial graph matching, a related relaxation.

5) Graph Edit Distance (GED): Subgraph isomorphism can be reduced to GED by setting infinite
substitution costs. However, general neural solvers for GED |Raveaux| (2021); |Piao et al.| (2023)) are
not well-suited for exact isomorphism due to their flexible cost models and broader objective.

6) Large Language Model (LLM)-Based Methods: Recent efforts such as ThinkOnGraph [Sun
et al.| (2024) and GraphGPT [Tang et al.| (2024)) focus primarily on attributed graphs. Although
InstructGLM |Ye et al.| (2024a) encodes structural information through prompting, it—like other
LLM-based approaches—has not yet shown effectiveness for exact combinatorial isomorphism
problems.

6 CONCLUSION

The subgraph isomorphism problem is a challenging NP-complete problem with wide applications
across various fields. In this paper, we introduce SIREN, an RL-enhanced GNN for subgraph
isomorphism. Through our proposed DQN-based reinforcement learning framework and the GNN
model based on partial order relations, we can improve the candidate node selection process in solving
the subgraph isomorphism problem. Experiments on real datasets show that SIREN can effectively
accelerate the solving of the subgraph isomorphism problem and enhance solution quality. Future
work includes further improvements to the reinforcement learning framework and GNN, testing on
more large-scale real datasets, and extending similar methods to other NP problems, such as the
maximum clique problem.

Under review as a conference paper at ICLR 2026

REFERENCES

Laszl6 Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pp. 684—697, 2016.

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neural
network approach to fast graph similarity computation. In Proceedings of the twelfth ACM
international conference on web search and data mining, pp. 384-392, 2019.

Yunsheng Bai, Hao Ding, Ken Gu, Yizhou Sun, and Wei Wang. Learning-based efficient graph
similarity computation via multi-scale convolutional set matching. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 3219-3226, 2020.

Yunsheng Bai, Derek Xu, Yizhou Sun, and Wei Wang. Glsearch: Maximum common subgraph
detection via learning to search. In International Conference on Machine Learning, pp. 588-598.
PMLR, 2021.

Ama Bembua Bainson, Judith Hermanns, Petros Petsinis, Niklas Aavad, Casper Dam Larsen, Tiarnan
Swayne, Amit Boyarski, Davide Mottin, Alex M. Bronstein, and Panagiotis Karras. Spectral
subgraph localization. In Soledad Villar and Benjamin Chamberlain (eds.), Proceedings of the Sec-
ond Learning on Graphs Conference, volume 231 of Proceedings of Machine Learning Research,
pp. 7:1-7:11. PMLR, 27-30 Nov 2024. URL https://proceedings.mlr.press/v231/
bainsonz4a.htmll

Alexandru T Balaban. Applications of graph theory in chemistry. Journal of chemical information
and computer sciences, 25(3):334-343, 1985.

Luc Rey Bellet. Ergodic properties of markov processes. In Open Quantum Systems II: The Markovian
Approach, pp. 1-39. Springer, 2006.

Aditya Bommakanti, Harshith Reddy Vonteri, Konstantinos Skitsas, Sayan Ranu, Davide Mottin,
and Panagiotis Karras. Fugal: Feature-fortified unrestricted graph alignment. In A. Glober-
son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Ad-
vances in Neural Information Processing Systems, volume 37, pp. 19523—-19546. Curran Asso-
ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/f11e/22b111819¢c74453837899689166c4cf9-Paper—Conference.pdf.

Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and Alfredo Ferro. A
subgraph isomorphism algorithm and its application to biochemical data. BMC bioinformatics, 14:
1-13, 2013.

Vincenzo Carletti, Pasquale Foggia, Alessia Saggese, and Mario Vento. Challenging the time
complexity of exact subgraph isomorphism for huge and dense graphs with vf3. IEEE transactions
on pattern analysis and machine intelligence, 40(4):804-818, 2017.

Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of graph matching
in pattern recognition. International journal of pattern recognition and artificial intelligence, 18

(03):265-298, 2004.

Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub) graph isomorphism algo-
rithm for matching large graphs. IEEE transactions on pattern analysis and machine intelligence,
26(10):1367-1372, 2004.

Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento, et al. An improved algorithm
for matching large graphs. In 3rd IAPR-TC15 workshop on graph-based representations in pattern
recognition, pp. 149-159. Citeseer, 2001.

Edsger W Dijkstra. A note on two problems in connexion with graphs. In Edsger Wybe Dijkstra: his
life, work, and legacy, pp. 287-290. 2022.

Khoa D Doan, Saurav Manchanda, Suchismit Mahapatra, and Chandan K Reddy. Interpretable graph
similarity computation via differentiable optimal alignment of node embeddings. In Proceedings
of the 44th international ACM SIGIR conference on research and development in information
retrieval, pp. 665-674, 2021.

10

https://proceedings.mlr.press/v231/bainson24a.html
https://proceedings.mlr.press/v231/bainson24a.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/22b111819c74453837899689166c4cf9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/22b111819c74453837899689166c4cf9-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

Chi Thang Duong, Trung Dung Hoang, Hongzhi Yin, Matthias Weidlich, Quoc Viet Hung Nguyen,
and Karl Aberer. Efficient streaming subgraph isomorphism with graph neural networks. Proceed-
ings of the VLDB Endowment, 14(5):730-742, 2021.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula. Epimap: Using epimorphism to map
applications on cgras. In Proceedings of the 49th Annual Design Automation Conference, pp.
1284-1291, 2012.

Myoungji Han, Hyunjoon Kim, Geonmo Gu, Kunsoo Park, and Wook-Shin Han. Efficient subgraph
matching: Harmonizing dynamic programming, adaptive matching order, and failing set together.
In Proceedings of the 2019 international conference on management of data, pp. 1429-1446, 2019.

Huahai He and Ambuj K Singh. Graphs-at-a-time: query language and access methods for graph
databases. In Proceedings of the 2008 ACM SIGMOD international conference on Management of
data, pp. 405-418, 2008.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodology
and distribution, pp. 492-518. Springer, 1992.

Alpér Jiittner and Péter Madarasi. Vf2++—an improved subgraph isomorphism algorithm. Discrete
Applied Mathematics, 242:69-81, 2018.

Hyunjoon Kim, Yunyoung Choi, Kunsoo Park, Xuemin Lin, Seok-Hee Hong, and Wook-Shin
Han. Versatile equivalences: Speeding up subgraph query processing and subgraph matching. In
Proceedings of the 2021 international conference on management of data, pp. 925-937, 2021.

Jinha Kim, Hyungyu Shin, Wook-Shin Han, Sungpack Hong, and Hassan Chafi. Taming subgraph
isomorphism for rdf query processing. arXiv preprint arXiv:1506.01973, 2015.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical society, 7(1):48-50, 1956.

O-Joun Lee et al. Transitivity-preserving graph representation learning for bridging local connectivity
and role-based similarity. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 12456-12465, 2024.

Andrei Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12-16, 1968.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching networks
for learning the similarity of graph structured objects. In International conference on machine
learning, pp. 3835-3845. PMLR, 2019.

Yan-li Liu, Chu-min Li, Hua Jiang, and Kun He. A learning based branch and bound for maximum
common subgraph problems. arXiv preprint arXiv:1905.05840, 2019.

Zhaoyu Lou, Jiaxuan You, Chengtao Wen, Arquimedes Canedo, Jure Leskovec, et al. Neural subgraph
matching. arXiv preprint arXiv:2007.03092, 2020.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, pp. 3. Atlanta, GA, 2013.

James J McGregor. Relational consistency algorithms and their application in finding subgraph and
graph isomorphisms. Information Sciences, 19(3):229-250, 1979.

Volodymyr Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

11

Under review as a conference paper at ICLR 2026

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Lam BQ Nguyen, Ivan Zelinka, Vaclav Snasel, Loan TT Nguyen, and Bay Vo. Subgraph mining in a
large graph: A review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
12(4):e1454, 2022.

Chengzhi Piao, Tingyang Xu, Xiangguo Sun, Yu Rong, Kangfei Zhao, and Hong Cheng. Computing
graph edit distance via neural graph matching. Proc. VLDB Endow., 16(8):1817-1829, April 2023.
ISSN 2150-8097. doi: 10.14778/3594512.3594514. URL |https://doi.orqg/10.14778/
3594512.3594514.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331-434, 1990.

Vaibhav Raj, Indradyumna Roy, Ashwin Ramachandran, Soumen Chakrabarti, and Abir De. Charting
the design space of neural graph representations for subgraph matching. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview,
net/forum?id=5pd78GmXC6.

Ashwin Ramachandran, Vaibhav Raj, Indrayumna Roy, Soumen Chakrabarti, and Abir De. It-
eratively refined early interaction alignment for subgraph matching based graph retrieval. In
A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
Advances in Neural Information Processing Systems, volume 37, pp. 77593-77629. Curran Asso-
ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/fi1e/8dc8ad46£3981224217d32eb3f8362998-Paper—-Conference.pdfl.

Romain Raveaux. On the unification of the graph edit distance and graph matching problems.
Pattern Recognition Letters, 145:240-246, 2021. ISSN 0167-8655. doi: https://doi.org/10.1016/
j-patrec.2021.02.014. URL https://www.sciencedirect.com/science/article/
pii/S0167865521000763!

Huan Rong, Tinghuai Ma, Meili Tang, and Jie Cao. A novel subgraph k+-isomorphism method in
social network based on graph similarity detection. Soft Computing, 22(8):2583-2601, 2018.

Indradyumna Roy, Venkata Sai Baba Reddy Velugoti, Soumen Chakrabarti, and Abir De. Interpretable
neural subgraph matching for graph retrieval. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pp. 8115-8123, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism. Proceedings of the VLDB Endowment, 1(1):
364-375, 2008.

Christine Solnon. Alldifferent-based filtering for subgraph isomorphism. Artificial Intelligence, 174
(12-13):850-864, 2010.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel Ni,
Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
language model on knowledge graph. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=nnVO1PvbTv.

Shixuan Sun, Xibo Sun, Yulin Che, Qiong Luo, and Bingsheng He. Rapidmatch: A holistic approach
to subgraph query processing. Proceedings of the VLDB Endowment, 14(2):176-188, 2020.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR 24, pp. 491-500, New York, NY, USA, 2024. Association for Computing Machinery.
ISBN 9798400704314. doi: 10.1145/3626772.3657775. URL|https://doi.org/10.1145/
3626772.3657775.

12

https://doi.org/10.14778/3594512.3594514
https://doi.org/10.14778/3594512.3594514
https://openreview.net/forum?id=5pd78GmXC6
https://openreview.net/forum?id=5pd78GmXC6
https://proceedings.neurips.cc/paper_files/paper/2024/file/8dc8a46f3981224217d32eb3f8362998-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/8dc8a46f3981224217d32eb3f8362998-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S0167865521000763
https://www.sciencedirect.com/science/article/pii/S0167865521000763
https://openreview.net/forum?id=nnVO1PvbTv
https://doi.org/10.1145/3626772.3657775
https://doi.org/10.1145/3626772.3657775

Under review as a conference paper at ICLR 2026

Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM), 23(1):
31-42, 1976.

Mnih Volodymyr et al. Human-level control through deep reinforcement learning. Nature, 518(7540):
529-533, 2019.

Runzhong Wang, Ziao Guo, Shaofei Jiang, Xiaokang Yang, and Junchi Yan. Deep learning of partial
graph matching via differentiable top-k. In 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6272-6281, 2023. doi: 10.1109/CVPR52729.2023.00607.

Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River,
2001.

Keyulu Xu et al. How powerful are graph neural networks? In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, 2019. URL https://
openreview.net/forum?id=ryGs6iA5Kmn.

Rongjian Yang, Zhijie Zhang, Weiguo Zheng, and Jeffrey Xu Yu. Fast continuous subgraph matching
over streaming graphs via backtracking reduction. Proceedings of the ACM on Management of
Data, 1(1):1-26, 2023.

Ruosong Ye, Caiqi Zhang, Runhui Wang, Shuyuan Xu, and Yongfeng Zhang. Language is all a
graph needs. In Yvette Graham and Matthew Purver (eds.), Findings of the Association for
Computational Linguistics: EACL 2024, pp. 1955-1973, St. Julian’s, Malta, March 2024a.
Association for Computational Linguistics. URL https://aclanthology.org/2024/|
findings—-eacl.132/.

Yutong Ye, Xiang Lian, and Mingsong Chen. Efficient exact subgraph matching via gnn-based path
dominance embedding. Proceedings of the VLDB Endowment, 17(7):1628—1641, 2024b.

Seongjun Yun, Minbyul Jeong, Rachyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in neural information processing systems, 32, 2019.

Stéphane Zampelli, Yves Deville, and Christine Solnon. Solving subgraph isomorphism problems
with constraint programming. Constraints, 15:327-353, 2010.

Shijie Zhang, Shirong Li, and Jiong Yang. Gaddi: distance index based subgraph matching in
biological networks. In Proceedings of the 12th international conference on extending database
technology: advances in database technology, pp. 192-203, 2009.

Zhijie Zhang, Yujie Lu, Weiguo Zheng, and Xuemin Lin. A comprehensive survey and experimental
study of subgraph matching: trends, unbiasedness, and interaction. Proceedings of the ACM on
Management of Data, 2(1):1-29, 2024.

Wei Zhuo and Guang Tan. Efficient graph similarity computation with alignment regularization.
Advances in Neural Information Processing Systems, 35:30181-30193, 2022.

13

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://aclanthology.org/2024.findings-eacl.132/
https://aclanthology.org/2024.findings-eacl.132/

Under review as a conference paper at ICLR 2026

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A.1 PROOFS OF PROPERTIES OF SUBGRAPH RELATIONSHIP

We provide proofs for the properties related to the subgraph relationship below, including reflexivity,
transitivity, and antisymmetry.

Theorem A.1 (Reflexivity). G C G

Proof. LetG = (V,E). Since V C V, E C {(u,v) € E | u,v € V}, it follows from the definition
of the subgraph relationship that G C G. O

Theorem A.2 (Reflexivity of Graph Isomorphism). G = G

Proof. Consider a bijection f : V' =5 V defined by f(v) = v for all v € V. This satisfies
Vo, v; €V, (vi,v5) € E <= (f(vi), f(v))) = (vi,v5) € E.
By the definition of graph isomorphism, G and G are isomorphic, i.e., G = G. O

Theorem A.3 (Transitivity). (G C G2) A (G2 C G3) = G; C Gs.

Proof. Let G1 = (V1, Eq), Go = (Va, Es), and Gs = (V3, E3). From G; C Go, we have:

Vi CV, and E; C {(u,v) € By | u,v € Vi}.
Similarly, from G2 C G3, we have:

Vo CVs and E, C {(u,v) € E3 | u,v € Va}.
Since V; C V5 and Vo C V3, it follows that:

Vi CVs.
For edges, from E; C {(u,v) € Ey | u,v € V1} and Ey C {(u,v) € E3 | u,v € Va}, we deduce:
Y(u,v) € B1, (u,v) € B3 C E3 with u,veV; CVs.

Therefore, we conclude:
E, C{(u,v) € E3 | u,v € V1}.

Theorem A.4 (Antisymmetry). (G1 C G2) A (G2 C G1) < G; = Go.

Proof. Let G; = (V4, Eq) and G2 = (Va, Es). If G; C G4 and G5 C G4, we have:
ViCV, and E; C{(u,v) € By | u,veVi},

and
Vo CVy and E, C {(u,v) € E1 | u,v € Va}.

From V; C V5 and Vo C Vi, we conclude V; = V5. Similarly, Ey C Es and Fs C E; imply
E1 = E5. Therefore, we have G1 = Gs.

Conversely, if G; = G5, then we have:
Vi=V, and E; ={(u,v) € Es|u,veVi},

and
Vo=V1 and E;={(u,v) € E1|u,v € Va}.

Therefore, G; C G5 and Go C (5.]

14

Under review as a conference paper at ICLR 2026

A.2 COROLLARIES OF SUBGRAPH ISOMORPHISM RELATIONSHIP
Corollary A.5 (Subgraph Isomorphism Partial Order). Building upon the properties mentioned in
Section[3.2} the subgraph isomorphism relation <:

G R Gy — 3G = (V’,E,) CGy st G = el (13)
satisfies the fundamental characteristics of a partial ordering on the graph space G:

* Reflexivity: VG GG
€G,G=

¢ Transitivity:
(G1 2 Go) N (G2 2G3) = G1 2G3

* Antisymmetry:
(G1 = G2)/\ (G2 = Gl) — G1 =Gy

We provide proofs for the properties related to the subgraph isomorphism below, including reflexivity,
transitivity, and antisymmetry.

Theorem A.6 (Reflexivity). VG € G, G < G

Proof. By Theorem [A.T] we have G C G; by Theorem [A.2] we have G = G, then we have
G <G. O

Theorem A.7 (Transitivity). (G1 <X G2) A (G2 X G3) = G1 < G3

Proof. Let G1 = (V4, E1), Gy = (Va, Es), and G3 = (V3, E3). Given G1 < (3, there exists a
mapping f1 : V1 — V5 such that

V’Ui,Uj S ‘/1, (UZ‘,’U]‘) S E1 — (f1(’Ui),f1(Uj)) S EQ.
Similarly, from G5 < G3, there exists a mapping f5 : Vo — V3 satisfying

Vv, v; € Va, (vi,v5) € By = (f2(vi), f2(v))) € Es.
Define a composite mapping g : V4 — V5 = f1 o fa as g(v) = f2(f1(v)). Then:

Vi, v € Vi, (vi,v5) € BEr = (fi(wi), f1(v;)) € B2 = (g(vi), 9(v;)) € Es.
Construct G5 = ({g(v) | v € Vi}, {(g(vi), 9(v;)) | vi,v; € Vi}). This satisfies:
Gg C Gy with G & Gé

Therefore, G; < G5 holds. O
Theorem A.8 (Antisymmetry). (G1 <X G2) A (G2 X G1) <= G1 2 Gy

Proof. Let Gy = (V1, E1), and Go = (Va, E»). Given G1 < Go, there exists a mapping f; : V; —
V45 such that
Vvi,vj eV, (vi,vj) ek = (fl(vi),fl(vj)) € Fs.

Similarly, from G5 < G, there exists a mapping f5 : Vo — V; satisfying

Vi, vj € Vo, (v3,05) € B2 = (fa(vs), fa(vy)) € En.
The mappings f and f» induce a bijective correspondence f : V; — V; that preserves adjacency:

Yoi,v; € Vi, (vi,vg) € By <= (f'(vi), f'(v))) € E2 (14)
Therefore, G; = G5 holds.
Conversely, if G1 = G&, there exists a bijective mapping f : V; — V5 satisfying:

Vi, v; € Vi, (v5,v5) € Br <= (f(w), f(v;)) € B2 (15)
The inverse mapping f~' : Vo = V; consequently preserves:

Vg, v; € Va, (vi,v5) € By <= (fHw), f 1 (v))) € Ex

establishing G5 = G;.

Through constructive verification:

15

Under review as a conference paper at ICLR 2026

* Let G’ = G4. By definition:
G/EGQ and GlgG/ = G1 =2 Gy

e Let G’ = (1. Similarly:
G C Gy and G2 ~F = G2 <Gy

For isomorphic graphs G; =2 GG, the partial order relation becomes symmetric:
(G1 = GQ) A\ (G2 =< Gl) e Gl = G2
O

By Corollary[A.3] the subgraph isomorphism relation satisfies the partial order properties. Conse-
quently, the partial order-aware GNN proposed in this work demonstrates superior effectiveness in
solving subgraph isomorphism problems.

A.3 PROOF OF PARTIAL ORDER-AWARE GNN

We demonstrate that the order constraints in Equation |8| are preserved under the composition of
multiple message-passing layers in GNNs, particularly in simple models like the Graph Isomorphism
Network (GIN) Xu et al.|(2019).

Proof Strategy: By leveraging mathematical induction, we prove that GIN-style models inherently
maintain these properties. Consider a k-layer GNN encoding nodes u (in search graphs) and v (in
query graphs):

1. Base Case: For the trivial case of a single node v (i.e., 0—hop neighborhood where
No(v) = {v}), the partial ordering relation < trivially satisfies:
Yo eV, h® < h(®

This follows directly from the reflexive property of partial orders. The 0—hop neighborhood
contains only the node itself, making the order embedding comparison degenerate to self-
comparison.

2. Inductive Step: If the k-hop neighborhood of » forms a subgraph of v’s k-hop neighborhood
Wk (u) C N (v)), then:
Vs € N(v), 3t € N(u) s.t. Njy—1(s) T Ny—1(t)
The (k — 1)-hop neighborhoods of u’s neighbors are subgraphs of corresponding neigh-

borhoods of v’s neighbors. This inductive process guarantees the preservation of order
constraints through layer composition.

Order Embedding Guarantee: Suppose all GNN embeddings at layer (k — 1) satisfy order
constraints after transformation. Using sum-based neighborhood aggregation:

h) = foo, ({hgﬁ—U lue N(v)}) (16)
where fy,¢ is order-preserving under summation. Then:
h® < bW it vu e N(v), Fw € N(') with b~ < w1 (17)

Subgraph Composition Property: This corresponds to the fundamental property of subgraph
composition:

Theorem A.9 (Order Preservation). Given GIN’s update rule:

h(™) =MLPD [(1+€D)-h) + Y~ h (18)
u€eN (v)
and the graph embedding by concatenating sum-pooled features across layers:

L
ha=Y - h (19)
=0

veV
the GNN preserves partial order relationships between subgraphs.

16

Under review as a conference paper at ICLR 2026

Proof. The MLP’s universal approximation capability combined with sum aggregation maintains the
partial order structure through Lipschitz continuity. The loss function explicitly enforces:

h, =h; <= G,CG;
making the embedding space order-isomorphic to the subgraph lattice. O

Definition A.10 (Max-Margin Order Loss). The structural constraint is enforced through our margin-
based loss function:

Lh,h)= Y E(h,h)

(hg,h,)EP
+ Z max (0, — E(hg, hy)) (20)
(hy,h,)EN
where
E(hy,hy) = [max (0,h, —hy)]; @1)

Proposition A.11 (Learning Dynamics). The loss design induces asymmetric gradient signals:

* For positive pairs P = {(q,t) € MB | N(q) C N(t)}, gradients dominate in dimensions
where hy > hj

* For negative pairs N = MB\ P, gradients activate only when E(h,, h;) > o

This creates faster convergence for order-satisfying pairs compared to violating ones.

Theorem A.12 (Order-Preserving Embedding). After sufficient training iterations, the GIN embed-
dings satisfy the vector partial order:

Vie{1,..,D}, hy, <hy, <= G1C G, (22)

A.4 PROBABILISTIC COMPLETENESS

We establish that SIREN guarantees to either find an exact solution or prove the non-existence of a
solution given sufficient time. This probabilistic completeness relies on three fundamental properties:
a finite search space, persistent exploration, and Markov chain ergodicity.

1) Finite State Space: The search space forms a finite state transition graph where each state s
represents a partial isomorphism mapping M C Vg x Vp that satisfies the required topologi-
cal constraints. For [Vg| = n and |Vy| = m, the cardinality of the state space is bounded by
S (R)P(m,k) = O(m™), ensuring finiteness. Our state encoding scheme explicitly tracks
partial mappings to preserve this property.

2) Non-Zero Action Probabilities: SIREN employs an e-greedy policy with a non-decaying e,
ensuring that the probability of selecting any valid branch remains strictly positive. The DQN is
used solely to prioritize branch exploration (e.g., by favoring branches with higher Q-values) without
performing irreversible pruning; even branches with low Q-values remain explorable in subsequent
steps. Furthermore, the algorithm does not permanently exclude any branch due to state memorization.
Consequently, the probability of selecting any feasible path branch remains non-zero.

3) Ergodic Markov Chain: The search process constitutes a finite Markov chain (.S, P) with transi-
tion probabilities P(s'|s) = > ... mg(als). This chain is irreducible (enabled by backtracking
actions that permit state revisitation) and aperiodic (due to the existence of self-transitions). By the
ergodic theorem [Bellet| (2006), the chain visits all states with probability 1 over infinite time.

4) Robustness: Pathological cases are mitigated through the following mechanisms:

* Permanent availability of all valid actions (g (a|s) > 0 for any valid a);
* Explicit backtracking mechanisms;

» Absence of irreversible pruning, with the exception of Bidomain-based pruning that defini-
tively precludes solution existence.

17

Under review as a conference paper at ICLR 2026

These features ensure exhaustive exploration even for deceptive graph structures.

In summary, given the finite state space, persistent exploration via strictly positive transition proba-
bilities, ergodic properties, and robust backtracking mechanisms, SIREN guarantees probabilistic
completeness.

A.5 TRAINING PROCESS OF THE RL-ENHANCED SUBGRAPH ISOMORPHISM SOLVER

The training process consists of three consecutive phases: pretraining, imitation learning, and
reinforcement learning. Each phase follows the same core workflow of experience collection followed
by network updates.

Pretraining Phase (1250 iterations): Heuristic methods (specifically, the traditional subgraph
matching algorithm VF3 |Carletti et al.|(2017))) are used to generate search trajectories and populate
the experience replay buffer. This approach avoids the inefficiency of initial random exploration. The
objective is to provide the network with high-quality initial samples of effective matching patterns,
establishing a solid foundation for subsequent reinforcement learning.

Imitation Learning Phase (2500 iterations): The agent continues to use VF3 |Carletti et al.|(2017) to
generate demonstration trajectories. However, the DQN now begins to learn by imitating the Q-value
distribution of this heuristic policy. The goal is for the network to quickly converge to a performance
level comparable to that of the traditional algorithm, thereby reducing the cost of exploration.

Reinforcement Learning Phase (6250 iterations): The agent relies entirely on the DQN’s e-greedy
policy for exploration. The Q-values are optimized through environmental feedback (rewards),
allowing the policy to be progressively refined. The final objective is to enable the network to surpass
the performance of traditional heuristic methods by discovering more efficient matching paths.

Algorithm 1 Training Process of the RL-Enhanced Subgraph Isomorphism Solver

1: Initialize replay buffer D, policy network 7y, target network 7,
2: for episode = 1 to M do

3: Sample graph pair (G, Gr), initialize state s

4: fort =110 Ty do

5: Select action a; via e-greedy: a; ~ mo(sy)

6: Execute a;, observe s;1, reward 7

7: Store transition (s¢, at, r¢, S¢41) in D

8: Sample batch D ~ D, update 6 via DQN loss £
9: Update target network: 0~ <— 76 + (1 — 7)0~
10: end for
11: end for

SIREN learns via deep Q-learning with prioritized experience replay Mnih| (2013)), as outlined in
Algorithm|I| The framework maintains three core components: a replay buffer D storing transition
trajectories (s, at, ¢, St+1), a policy network 7y parameterized by 6 for action selection, and a target
network my— with delayed weight updates to stabilize training. The core training loop in each phase
consists of two main stages: experience collection (populating the replay buffer) and network update
(learning from the buffer).

The experience collection stage involves the following steps:

 Search initialization
* Action selection and search expansion

* Reward calculation and experience storage
The network update stage comprises the following steps:

» Experience sampling from the replay buffer
* Target Q-value computation

* Loss calculation and parameter optimization

18

Under review as a conference paper at ICLR 2026

* Periodic synchronization of the target network

At the start of each episode, a graph pair (G, Gr) is sampled from the training distribution Pyin,
and an initial state so = InitState(Gq, Gr) is constructed. The agent interacts with the environment
for Tiax timesteps using an e-greedy exploration strategy: with probability €, random actions are
selected from the available action space A;, otherwise the optimal action a; = arg max, Qs (s, a)
is chosen by the policy network. Executing action a; yields a new state s;;; and immediate reward
¢, with the transition tuple (s, at, ¢, ;1) stored in D for subsequent learning.

Parameter updates are performed through minimization of the Huber loss £(6) Huber|(1992):

2
E(s,a,r,s’)ND |:(T + /YH};}X Q@‘ (8/7 a/) - Q@(Sa a’)) :| (23)

where v denotes the discount factor, and » = +1 for the immediate reward. The target network
parameters 6~ are softly updated using the rule:

0" 70+ (1—7)0" with7t < 1 24)

A.6 TRAINING METHODOLOGY OF THE PARTIAL-ORDER-AWARE GNN

The training protocol for our partial-order-aware GNN comprises two coordinated phases: (1)
Training Data Generation and (2) Loss-Driven Optimization.

A.6.1 TRAINING DATA GENERATION

Algorithm 2 Contrastive Subgraph Sampling

1: Sample anchor node v € Vr from target graph G

2: Generate GG,, C G via randomized BFS with edge traversal probability p = 0.8

3: Construct query graph G, by reapplying same BFS protocol on G, anchored at u
Ensure: G, C G, (preserves subgraph isomorphism via construction)

4: Generate negative pairs:

5: Type I: Random anchor v’ # u with BFS-generated G,/

6: Type II: Perturb G, via edge deletions/additions violating G, C G

The data generation process ensures diverse yet controlled learning signals:

* Positive Pairs: For each target subgraph G,, C G, we systematically construct isomorphic
queries G, through duplicate randomized breadth-first search (BFS) traversals with edge
sampling probability p = 0.8. This procedural generation guarantees G, C G, by design.

* Negative Pairs: We implement two challenging negative sampling strategies:

1. Non-anchored Negatives: Random anchor selection with independent BFS generations
that break subgraph relationships

2. Structurally Damaged Negatives: Adversarial edge perturbations (15% edge flip proba-
bility) that invalidate subgraph isomorphism

A.6.2 Lo0sS COMPUTATION AND OPTIMIZATION

Let hy, h,, denote GNN embeddings of query G, and target subgraph G,. The contrastive loss from
Definition [A.T10]is computed as:

L= Y |lmax(0,h, —h,)|>+ > max(0,a— [hy—hy|?) (25)
(gu)eP (g,w')eN

Backpropagation updates both the GNN parameters 6 and the anchor-aware embedding space through:
0« 0—nVeLl (26)

where 7 is the learning rate.

19

Under review as a conference paper at ICLR 2026

Algorithm 3 SIREN’s RL-Enhanced Search Framework.
1: Input: Query Graph G, Target Graph G

2: Output: Solution Set S¢; = {G' T Gr | G = G'}
3: ST+ ¢, Sc+ ¢

4: ST .push(e)

5: while ST # ¢ do

6: s¢ < ST.pop()

7. curG < s;.getMCS()

8: if|V(curG)| =|V(Gg)| then

9: Sag «— Sg U curG

10: continue

11: endif

12: UB <+ |curG|+ bound(s;)

13: if [UB| < |V(Gg)| or |ss.actions| = 0 then
14: continue

15: end if

16: aj < Policy(s:)

17 Sgy1 < Action(sy, ay)

18: s;.actions < si.actions \ {a}}

19: ST .push(sy)

20: ST .push(sit1)

21: end while

A.7 REINFORCEMENT LEARNING-ENHANCED HEURISTIC SEARCH

In SIREN, we established a reinforcement learning-enhanced heuristic search framework for subgraph
isomorphism by augmenting a classical branch-and-bound maximum common subgraph search
paradigm. As formalized in Algorithm 3] SIREN maintains a state heap ST to track partial mapping
states during subgraph isomorphism search. At each iteration, the algorithm retrieves the top state
= My, where M, represents the current node mapping set between the pattern graph G g and the
target graph Gr. The subgraph curG corresponding to M; is then extracted which satisfies both
curG T Gt and curG T Gg. A critical pruning decision is made based on a bidomain-estimated
upper bound U B, as detalled in Sectlon- A8} If this bound falls below the number of nodes of GQ,
ie. |V(Go).
it is added to the solution set Sg.

A.8 ADDITIONAL EMBEDDINGS AND UPPERBOUND ESTIMATION VIA BIDOMAINS

In our methodology, inspired by GLSearch Bai et al.|(2021), bidomains are introduced to provide
more information for our partial-order aware GIN model, and facilitate pruning through estimating
the upper bound U B. For a given state s, = M, the k—th bidomain By, is defined as:

B = (Viq, Vir) 27

where Vo C V(Gg) and Vi C V(Gr) exhibit identical connectivity patterns with respect to the
already matched node sets M; = (V5, V), V5 C V(Gq) and Vi C V(Gr). For the state s; with
n matched node pairs, i.e.,
Vol =1Vel=n
V5 = {051,002 - Von (28)
VIS’ = {v%lv U%%) U%n}
there are a total of 2" bidomains. The 2" bidomains are Bq,..a,), = (Vid,...dn)s0> V(di...dp)aT)s
where dy, ..., d, € {0,1}. Fori € {1,2,...,n}, The nodes in B4, .4,), satisfy:

di =1 <= Yv € Vig,..4,),Q, Je = (v,v5;) € E(GQ)
di=0 <= Wve V(dl...dn)ngﬂe = (v,v9;) € E(Gg) 29)
di =1 <= Yv € Vg, a,),r,3e = (v,v7;) € E(Gr)
di =0 < Yv € Vi, _4,),1 Pe = (v,v};) € E(Gr)

20

Under review as a conference paper at ICLR 2026

(c) Bidomains of Query Graph (d) Bidomains of Target Graph

Figure 4: Examples of subgraph isomorphism and bidomains. (a) Query graph G, (b) Target graph
G, (c-d) Bidomains of G and Gr.

Figure [presents an example of subgraph isomorphism and bidomains. Figure (a) shows the query

graph G, while Figure b) displays the target graph Gq. Figures c) and d) illustrate the

bidomains when the currently matched nodes are (vg1, vr1), (g2, vre), and (vgs, vrs). As shown

in Figures|4{(c), the nodes vgs and vge are in the set V(g10),¢, and the node vy is in the set V(110),0-

As shown in Figures d), the nodes v75 and vrg are in the set V(010)2T, the node vr4 is in the set

“;(110)2% vr7 and vpg are in V(ig0),7- vr9, v710 and vy are in Vigory,7. vr12 and vri3 are in
(000)oT -

To estimate the upperbound, note that each bidomain can contribute at most min(|V;q|, |Vir|) nodes
to the future best solution. Therefore, the upperbound can be estimated as:

> min(|Vigl, [Vir]) (30)
BreB

which is the bound () function in Algorithm 3}

We also incorporate the bidomain information as node labels into our partial-order-aware GNN. The
resulting embeddings are used to enhance the input to our DQN model.

A.9 EXAMPLE OF THE SUBGRAPH ISOMORPHISM

Below, we give an example of the subgraph isomorphism in real applications of loop mapping in
coarse-grained reconfigurable architectures (CGRAs).

Example 1 (Loop mapping): In CGRA loop mapping, Figure [3 illustrates a 2 x 2 processing
element (PE) array case where subgraph isomorphism verifies if the compiler-generated data flow
graph (DFG) (Figure[5{a)) embeds into the time-extended CGRA (TEC) model (Figure[5{b)) under a
target initiation interval (II). This spatiotemporal mapping solution (Figure [5|c)) explicitly defines
PE operations per cycle and inter-PE routing, systematically optimizing parallelism and resource
utilization through isomorphic correspondence between DFG and TEC structures.

A.10 STATISTICS OF REAL-WORLD GRAPH DATASETS

In Section[4.4] we selected the same datasets as GNN-PE [Ye et al.| (2024b) from TUDatasetMorris
et al.| (2020) for testing, i.e., Yeast, Human, HPRD, WordNet, DBLP, Youtube, and US Patents.
Statistics of these real graphs are summarized in Table]

21

Under review as a conference paper at ICLR 2026

time time [PEL][PE2][PE3|[PE4]
OHCHOIOMI
(A\j n)i(a /\A\/
QHOHOHO
EO®m\ -7
(W) (A (AN (W)
@@ W IW
142 v
\ \4\4 Y/,
t“/ Wi

(a) DFG of Auto Regression Filter (b) Time-extended CGRA (c) Mapping result, 11=7

Figure 5: Example of loop mapping on CGRA with subgraph isomorphism. (a) DFG of Auto
Regression Filter, (b) Time-extended CGRA of a 2 x 2 PEA, (c) mapping result, IT = 2.

Table 4: Statistics of Real-World Graph Datasets.

Datasets | |[V(G)| | |E(@)| | 2| | deg(G)

Yeast 3112 12519 71 8.0
Human 4674 86282 44 36.9
HPRD 9460 34998 307 7.4
WordNet 76853 120399 5 3.1
DBLP 317080 1049866 15 6.6
Youtube 1134890 | 2987624 25 53
US Patents | 3774768 | 16518947 | 20 8.8

A.11 RL FRAMEWORK ABLATION STUDY AND SCALABILITY BENCHMARKING

To analyze the impact of different reinforcement learning paradigms, we conducted comparisons
between Deep Q-Networks (DQN) and Proximal Policy Optimization (PPO)[Schulman et al.| (2017).
Our baseline DQN implementation follows the parametrization:

Q6(3t7at) :]:(GNNenC(GQ7GT75t)@ W a(b(at))
———
state embedding h,, ER? action embedding h,, €Rd (3 1)

=MLP (hst H hGQ hGT H hat)

where @ denotes vector concatenation. For comparison, we adapt the PPO framework with dual-
network architecture:

mg(a¢]s:) =Softmax (W7T - GNNene(Gg, G, st)) 2)
Vi(st) =w, - GNNene(Gq, G, 5t)

Remark A.13. The key difference lies in DQN'’s action-conditioned Q-function versus PPO’s state-
conditioned policy distribution. Our GNN encoder maintains identical architecture across frameworks
to isolate RL algorithm effects.

We validate scalability on a million-scale graph from the US Patent dataset (|[V| = 3,774,768).
Through random bipartition, we generate query-target pairs with matched cardinality (|Vg| = |Vr|).
The MCS identification time complexity is measured for four methods: GLSearch [Bai et al.| (2021)),
GNN-PE |Ye et al.| (2024b)), SIREN and PPO-based SIREN (SIREN-PPO). The results are detailed in

Despite being optimized for subgraph isomorphism, SIREN achieves 3.83 x speedup over GLSearch
at 5K-node scale. The performance gap widens exponentially with graph size (R%? = 0.98 for

22

Under review as a conference paper at ICLR 2026

Table 5: Time cost (seconds) for MCS identification across graph sizes. Bold: best performance.

Method Graph Size (Nodes)

1K 2K 3K 4K 5K
GLSEARCH 3645 664.6 1820.2 2163.2 21507.2
GNN-PE >10° >10° >10° > 10° > 10°
SIREN 1654 357.3 639.8 939.8 5612.3

SIREN-PPO 2458 518.1 888.6 1119.6 7241.6

quadratic fit), demonstrating our method’s superior asymptotic complexity. The GNN-PE’s failure
highlights the necessity of partial-order-preserving architectures for structural tasks.

Assumption A.14 (RL Framework Efficacy). The superior empirical performance of our DQN-based
framework compared to the PPO variant (Table[5) stems from two synergistic factors:

 Partial-Order Preservation: The <-preserving GNN embeddings intrinsically capture
subgraph containment relationships through the lens of order embeddings hg € Rf (Theo-

rem|A.12)

¢ Compatibility with Value Iteration: The subgraph isomorphism search dynamics are
naturally expressible through Q-learning’s state-action value formulation:

Q(Sv a) =E R(S7 a) + max <h8” hGT> (33)
@/ ——

order alignment

where R(s, a) encodes topological validity rewards

Assumption A.15 (Policy Gradient Limitations). The relative underperformance of policy-based
methods suggests:
T
VoT(m9) = Errony Z Vo logmg(at|s:)As 34)
t=0

suffers from high variance in credit assignment for structural actions. Future work will develop
SIREN-PPO+ with:

* Action space decomposition leveraging partial order constraints

« GNN-based advantage estimation A, = f4(h,,, hg,)

A.12 COMPLEXITY ANALYSIS

The time complexity of our GNN-based query processing is approximately O(k|Vr||Vg|), where k de-
notes the number of GNN layers. The per-iteration computational complexity remains O(k|Vr||Vg|).
Although the theoretical worst-case time complexity suggests exponential scaling, experimental
results reveal a practical polynomial-time behavior within O((|Vr|[Vg|)*) to O((|Vr||Vol)?).

A.13 LIMITATIONS

While SIREN performs well on moderately sized graphs, we acknowledge the scalability limitations
inherent in RL-driven search and GNN embedding generation when applied to massive graphs.
However, our systematic benchmarking reveals a critical industry-wide challenge: When confronted
with ultra-dense, large-scale graphs typical of real-world applications, neither traditional heuristic
approaches (VF3|Carletti et al.|(2017), RI Bonnici et al.| (2013)), GraphQL He & Singh| (2008)), ...)
nor modern neural network-based solutions (GNN-PE |Ye et al.| (2024b), GLSearch Bai et al.|(2021))
demonstrate viable computational tractability. Specifically, as benchmarked on graphs exceeding 10*
nodes with density p > 0.3, all existing methods exhibit exponential time complexity growth beyond
practical feasibility thresholds.

23

Under review as a conference paper at ICLR 2026

A.14 ETHICS STATEMENT

All authors have read and will adhere to the ICLR Code of Ethics throughout the submission process.
To the best of our knowledge, this work does not present any potential ethical concerns.

A.15 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work and welcome discussions with reviewers
regarding any reproducibility concerns during the review process. The supplementary material
includes the core implementation of SIREN. Upon acceptance of the paper, we will release the
full source code, trained models, datasets, checkpoints, and related resources to ensure complete
reproducibility.

A.16 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The use of Large Language Models (LLMs) in this work was solely restricted to polishing and
refining the linguistic expression of the manuscript. LLMs were not employed in any other aspect of
the research, including but not limited to: related work survey, code development, model training and
testing, or conducting proofs.

24

	Introduction
	Preliminaries
	The SIREN Method
	Provably Complete Framework for Subgraph Isomorphism
	Partial Order-Aware GNN Architecture

	Experiments
	Baseline Methods
	Experimental Settings
	Effectiveness of SIREN
	Efficiency and Throughput Rate
	Scalability of SIREN
	Ablation Study

	Related Work
	Traditional Approaches
	Neural Approaches for Subgraph Isomorphism
	Neural Approaches for Related Problems

	Conclusion
	Technical Appendices and Supplementary Material
	Proofs of Properties of Subgraph Relationship
	Corollaries of Subgraph Isomorphism Relationship
	Proof of Partial Order-Aware GNN
	Probabilistic Completeness
	Training Process of the RL-Enhanced Subgraph Isomorphism Solver
	Training Methodology of the Partial-Order-Aware GNN
	Training Data Generation
	Loss Computation and Optimization

	Reinforcement Learning-Enhanced Heuristic Search
	Additional Embeddings and Upperbound Estimation via Bidomains
	Example of the Subgraph Isomorphism
	Statistics of Real-world Graph Datasets
	RL Framework Ablation Study and Scalability Benchmarking
	Complexity Analysis
	Limitations
	Ethics Statement
	Reproducibility statement
	The Use of Large Language Models (LLMs)

