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Abstract

Federated learning (FL) involves multiple heterogeneous clients collaboratively
training a global model via iterative local updates and model fusion. The generaliza-
tion of FL’s global model has a large gap compared with centralized training, which
is its bottleneck for broader applications. In this paper, we study and improve FL’s
generalization through a fundamental “connectivity” perspective, which means how
the local models are connected in the parameter region and fused into a generalized
global model. The term “connectivity” is derived from linear mode connectivity
(LMC), studying the interpolated loss landscape of two different solutions (e.g.,
modes) of neural networks. Bridging the gap between LMC and FL, in this pa-
per, we leverage fixed anchor models to empirically and theoretically study the
transitivity property of connectivity from two models (LMC) to a group of models
(model fusion in FL). Based on the findings, we propose FedGuCci(+), improving
group connectivity for better generalization. It is shown that our methods can boost
the generalization of FL under client heterogeneity across various tasks (4 CV
datasets and 6 NLP datasets), models (both convolutional and transformer-based),
and training paradigms (both from-scratch and pretrain-finetune).

1 Introduction

Federated learning (FL) is a privacy-preserving and communication-efficient distributed training
paradigm that enables multiple data owners to collaboratively train a global model without sharing
their data [1]. However, clients always have heterogeneous data [2, 3], and in each round, they conduct
local training of multiple epochs based on the data, causing model drifts of local models [4, 5], further
resulting in generalization degradation of the fused global model [6, 7]. Previous works improve the
generalization by seeking flatter minima [8, 9] or using local proximal regularization [2] to remedy
the model drifts. While in this paper, we take a more fundamental perspective on how the local
models are connected with each other under model drifts (group connectivity) and how they are
fused into a generalized global model based on such connectivity.
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The notion of group connectivity is inspired by linear mode connectivity (LMC), which studies
the interpolated loss landscape of two SGD solutions (e.g., modes) [10, 11, 12]. It is found that
two trained models with different random seeds of batch orders (depicted by SGD noise), even if
have the same initialization, may cause a barrier along their linear interpolation path (i.e., the
LMC path), indicating the two SGD solutions are not in the same loss landscape basin [10, 13,
14]. This observation is quite analogous to model drift in FL, where multiple local models are
initialized the same, but due to SGD noise and bias [2, 4] caused by heterogeneous data and
asynchronous training, local models drift from each other and have inferior generalization after
linear model fusion. This analogy inspires us to think about whether we can leverage the insights
and techniques from LMC to improve the generalization of FL through the lens of connectivity.
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where “↔” means improved LMC.

Figure 1: Illustration on transitivity of linear
mode connectivity. Left: vanilla training, where
models have high barriers in LMC. Right: transitiv-
ity of LMC. Models w1 and w2 are independently
trained, and they are all learned to have good LMC
with anchor model w∗

anc. At the end of the training,
models w1 and w2 have improved LMC, showing
the transitivity of LMC.

Previous works propose to learn neural network sub-
spaces for increasing LMC between two models when
simultaneously training them [15, 13]. They use the
midpoints of the improved LMC for ensembling. In
this paper, we aim to leverage the idea of increasing
LMC to improve the connectivity among the local
models in FL. However, there is a crucial gap be-
tween LMC and FL. In [15], they can retain and train
two models simultaneously, while in each round of
FL, every local model is independently trained for
several epochs. In addition, LMC only considers
two models, while FL requires the connectivity of
multiple models.
Therefore, we utilize a fixed anchor model to study
the transitivity property of LMC and hypothesize that:
if LMC between model w1 and anchor model w∗

anc,
as well as between model w2 and anchor model w∗

anc,
is independently enhanced, then the LMC between
models w1 and w2 will also improve (an illustration
of the transitivity is in Figure 1). Through theoretical
and empirical analyses, we verify the transitivity of
LMC and then extend it to the group connectivity of
multiple models.
Based on the above findings, we propose Federated Learning with Improved Group Connectivity
(FedGuCci), which leverage the global models as the anchor models for improving group connec-
tivity of local models. Further, due to data heterogeneity in FL, clients’ local loss landscapes are
different and shifted. Thus, we propose a strengthened version, FedGuCci+, by incorporating some
heterogeneity-resistant modules for aligning local loss landscapes. Our contributions are listed below.
• We study FL from the connectivity perspective, which is novel and fundamental to understanding

the generalization of FL’s global model.
• We theoretically and empirically verify the transitivity of LMC and the group connectivity of

multiple models.
• We propose FedGuCci and FedGuCci+. Extensive experiments show that our methods can improve

the generalization of FL across various settings.
The rest of the paper is organized as follows. In section 2, we provide the preliminaries of FL and
LMC and the most related works. In section 3, we give the hypothesis about the transitivity of
connectivity and the theoretical and empirical analyses. Based on the findings, in section 4, we
propose FedGuCci(+) in FL, and then the experimental results are in section 5. Lastly, we conclude
the paper in section 6.

2 Preliminaries and Related Works
In this section, we present the preliminaries of FL and LMC and the most relevant works to this paper.

2.1 Preliminary of Federated Learning
FL includes a server and M clients to collaboratively learn a global model without data sharing [1].
Denote the set of clients by S , the local dataset of client i by Di = {(xj , yj)}|Di|

j=1 , the sum of clients’
data by D =

⋃
i∈S Di. The IID data distributions of clients refer to each client’s distribution Di is

IID sampled from D. However, in practical FL scenarios, heterogeneity exists among clients whose
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data are non-IID with each other, causing model drifts. During FL training, clients iteratively conduct
local updates and communicate with the server for model fusion. In the local updates, the number
of local epochs is E; when E is larger, the communication is more efficient, but the updates are more
asynchronous, also the model drifts are more severe. The total number of communication rounds is T .
Denote the global model and the client i’s local model in communication round t ∈ [T ] by wt

g and
wt

i . In each round, clients’ local models are initialized as the global model that wt
i ← wt

g , and clients
conduct local training in parallel. In each local training epoch, clients conduct SGD update with a
local learning rate ηl, and each SGD iteration shows as

wt
i ← wt

i − ηl∇ℓ(Bb,w
t
i), for b = 1, 2, · · · , B, (1)

where ℓ is the batch-level loss function and Bb is the mini-batch sampled from Di at the b-th iteration.
After local updates, the server samples a set St of K clients and conducts linear model fusion to
generate a new global model. The participation ratio is ρ = K

M . The model fusion process is as

wt+1
g =

∑
i∈St

µiwt
i, s.t. µi ≥ 0, (2)

where µ = [µi]i∈St is the fusion weights. For vanilla FedAvg, it adopts normalized weights
proportional to the data sizes, µi =

|Di|
|Dt| ,D =

⋃
i∈St Di. A recent study shows that the sum of fusion

weights can be smaller than 1 to improve generalization by global weight decay regularization [6].

2.2 Preliminary of Linear Mode Connectivity
Linear mode connectivity (LMC). LMC refers to the loss landscape where two models w1 and
w2 are linearly interpolated by w = αw1 + (1 − α)w2, for α ∈ [0, 1]. Usually, there are three
forms of LMC regarding different w1 and w2. (1) LMC between two SGD solutions with the same
initialization but different random seeds (batch orders) [14]; (2) LMC between two SGD solutions
with different initializations [12]; (3) LMC from the initialization and the trained model [16]. LMC
is depicted by the barriers in the landscape, the lower the barriers, the better the LMC. We present the
definitions of loss and accuracy barriers below.
Definition 2.1 Loss and accuracy barriers. Let fw(·) be a function represented by a neural network
with parameter vector w that includes all parameters. L(w) is the given loss (e.g., train or test
error) of fw(·) and A(w) is its accuracy function. Given two independently trained networks w1

and w2, let L(αw1 + (1 − α)w2) be the averaged loss of the linearly interpolated network and
A(αw1 + (1− α)w2) be its accuracy, for α ∈ [0, 1]. The loss barrier Bloss(w1,w2) and accuracy
barrier Bacc(w1,w2) along the linear path between w1 and w2 are defined as:Bloss(w1,w2) = sup

α
{[L(αw1 + (1− α)w2)] −[αL(w1) + (1− α)L(w2)]} . (3)

Bacc(w1,w2) = sup
α

[
1− A(αw1 + (1− α)w2)

αA(w1) + (1− α)A(w2)

]
. (4)

The loss barrier is not bounded, while the accuracy barrier is bounded within [0, 1].
Reducing the barriers in LMC. In [15], the authors train two SGD solutions simultaneously while
also learning a line of connected subspace between the two models. It also adds a regularization loss
to make the two solutions orthogonal so that the midpoints of the LMC path can have diversity for
ensembling. While in our paper, we also use similar techniques for improving LMC, but we do not
require orthogonality. Also, instead of simultaneously training two models, we individually train
models, improve their LMC with a fixed anchor model, and verify the LMC’s transitivity.

2.3 Most Related Works
LMC and FL. In [17], the authors propose to train two models (one for personalization and another
for generalization) at clients and learn a connected subspace between the two models for better
personalization. Recently, a concurrent work [18] empirically and theoretically verifies that when
clients’ data are more heterogeneous, the local loss landscapes will be more shifted, causing worse
LMC. However, they haven’t proposed an effective algorithm in FL based on LMC insights, where
our contributions lie. To the best of our knowledge, our paper may be the first paper to study and
improve the generalization of FL from the connectivity perspective.
Comparison with FedProx. FedProx [2] adopts the current round’s global model as a regularization
term for tackling heterogeneity. Instead, we utilize the historical global models as the anchor models
and learn to improve the connectivity between the local model with these anchor models. Thus,
our methods and FedProx have fundamental differences in leveraging the global models regarding
motivation and implementations. Due to space limits, we include more related works in Appendix D,
e.g., generalization of FL and LMC basics.
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3 Towards the Transitivity of Connectivity
In this section, we verify the transitivity of LMC and group connectivity by leveraging fixed anchor
models, paving the way for improving generalization in FL.

3.1 Transitivity of Linear Mode Connectivity
We first give the hypothesis on the transitivity of LMC.

Hypothesis 3.1 Transitivity of linear mode connectivity (informal). There are three models
{w1,w2,w

∗
anc}. If the linear mode connectivity between w1 and w∗

anc, as well as the one be-
tween w2 and w∗

anc, are independently improved, then, the linear mode connectivity between w1 and
w2 is also improved.

We make a theoretical analysis to prove the transitivity of LMC. We make the assumption below,
following Assumption 7 in [19] and Assumption 1 in [20].
Assumption 3.2 ∀y ∈ Y, the loss function L(·, y) is convex and 1-Lipschitz for each y and the loss
L(·) is γ-smooth, where L(w) = E[L(fw(x), y)] and the expectation E is taken over the dataset.

Lemma 3.3 Set the uniform and bounded domain for network w as Eϵ = {w ∈ Ω|L(w) < ϵ}.
Define a random event Dϵ(w

∗
anc) as Dϵ(w

∗
anc) = {∃w ∈ Eϵ|∀α ∈ [0, 1],L(αw∗

anc +(1−α)w) ≤ ϵ}.
Consider an anchor model w∗

anc and an arbitrary network w and for ϵ > 0. For ∥w −w∗
anc∥∞ ≤ d

2 ,

P (Dϵ(w
∗
anc)) ≤ (

dϵ
d
)S , (5)

where dϵ = |Eϵ|
1
S represents the average diameter of region Eϵ, S represents the number of parame-

ters of the neural network and the equality holds if and only if Eϵ ⊂ {w|∥w −w∗
anc∥∞ ≤ d} is a

star domain centered at w∗
anc. Thus, when P (Dϵ(w

∗
anc))) > 1− δ, it holds d < dϵ

(1−δ)
1
S

.

Remark 3.4 This lemma links the distance between parameters to LMC, describing that the greater
the probability of LMC (i.e., a small loss barrier) existing between the network w and the anchor
model w∗

anc, the smaller the distance should be between w and w∗
anc.

Then, we provide the following theorem.

Theorem 3.5 We define a two-layer neural network with ReLU activation, and the function is
fv,U(x) = v⊤σ(Ux) where σ(·) is the ReLU activation function. v ∈ Rh and U ∈ Rh×l are
parameters3 and x ∈ Rl is the input which is taken from X = {x ∈ Rl|∥x∥2 < b} uniformly.
Denote the deterministic anchor model as w∗

anc = {U∗
anc,v

∗
anc}, with ∥v∗

anc∥2 < danc and consider
two different networks w1,w2 parameterized with {U1,v1} and {U2,v2} respectively. Each
element of U1 and U2, v1 and v2 is sampled from a uniform distribution centered at U∗

anc and
v∗

anc with an interval length of d. If with probability 1 − δ, supα L(αw∗
anc + (1 − α)w1) < ϵ and

supα L(αw∗
anc + (1− α)w2) < ϵ, then with probability 1− δ, it has,

Bloss(w1,w2) ≤
√
2hb

2(1− δ)
2

hl+h

dϵ(dϵ + danc) log(12h/δ), (6)

where Bloss(w1,w2) is the loss barrier as Equation 3.

The proofs are in Appendix B. Theorem 3.5 proves the transitivity of LMC that when w1 and w2

have lower LMC barrier with w∗
anc (the barrier proxy is ϵ) then the barrier between w1 and w2 is also

reduced and bounded.
Then, we will empirically validate the transitivity. We first present the connectivity loss given the
anchor model, which is similar to previous literature [15, 13]. The connectivity loss is as follows,

Lconnect(w,w∗
anc) = Eα∼[0,1]L(αw + (1− α)w∗

anc) =

∫ 1

0

L(αw + (1− α)w∗
anc) dα, (7)

where w∗
anc is the fixed anchor model and w is the model for training. Then, we incorporate the

connectivity loss into the vanilla cross entropy (CE) loss, formulated into the following overall
learning objective,

w∗ = argmin
w

L(w) + βLconnect(w,w∗
anc), (8)

3For simplicity and without loss of generality, we omit the bias terms.
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Figure 2: Linear mode connectivity landscapes of test accuracy, showcasing the transitivity. The accuracy
barrier is shown as the maximal accuracy drop along the landscape. (a) and (c): LMC between one trained
model and the anchor model, and the barrier is eliminated for connectivity loss. (b) and (d): LMC between two
trained models, connectivity loss has the lower barriers, showing the transitivity of LMC. CIFAR-10 is used.

where L(w) is the vanilla CE loss and β is the hyperparameter controlling the strength of the
connectivity loss.
We let w∗

anc be the fixed trained anchor model and independently train two models w∗
1 and w∗

2
according to Equation 8. According to Theorem 3.5, the w∗

1 and w∗
2’s LMC barriers will be reduced

if the transitivity holds. Note that w1 and w2 can have the same or different initializations, and
the transitivity still holds; in the experiments, we make stricter verifications by setting different
initializations.

Table 1: Test accuracies and barriers of two
trained models w/ and w/o connectivity loss.
“Ind. Acc.” refers to 0.5 ∗ A(w1) + 0.5 ∗ A(w2),
and “Fused Acc.” refers to A(0.5∗w1+0.5∗w2).
It validates the transitivity of LMC, stating that by
leveraging the anchor model, the barriers of LMC
are largely reduced. CIFAR-10.
Models Metrics Vanilla CE Loss w/ Connectivity Loss

CNN

Ind. Acc. 64.0± 0.5 63.9± 1.4
Fused Acc. 11.5± 0.9 32.1± 9.0

Acc. Barrier 0.821 0.495 (39.7% ↓)

ResNet 20

Ind. Acc. 66.7± 0.9 69.1± 2.4
Fused Acc. 13.0± 3.8 40.5± 3.5

Acc. Barrier 0.805 0.415 (44.1% ↓)

Pretrained
ResNet18

Ind. Acc. 55.8± 6.6 64.5± 0.3
Fused Acc. 10.0± 0.0 62.1± 0.4

Acc. Barrier 0.819 0.038 (95.4% ↓)

Empirical results. We conduct experiments in Ta-
ble 1 and Figure 2. The anchor model is a mode
independently trained with vanilla CE loss using a
different random seed. In Table 1, training with the
connectivity loss can largely reduce the barriers of
LMC by utilizing the anchor model, even if two mod-
els have different initializations and never commu-
nicate with each other. More intuitive landscape vi-
sualizations are in Figure 2. It can be seen that the
connectivity loss can eliminate the barrier between
the anchor model and the trained model, and due to
the transitivity of LMC, the barrier between the two
independent models is also reduced. The experiments
verify the transitivity of LMC between two models,
and we will show that this transitivity can be extended
to the connectivity of multiple models.
Notes: Our Theorem 3.5 requires no assumptions on the anchor models. Though our empirical
verification in Table 1 and Figure 2 uses trained minima as anchor models, it is validated in Table 6
that the transitivity of connectivity also holds when the anchor models are less performed, e.g.,
random initialization.

3.2 Transitivity of Group Connectivity

We study the group connectivity among multiple models and propose the barrier of group connectivity
akin to Definition 2.1 of LMC. For brevity, we only present the definition of accuracy barriers.

Definition 3.6 Group connectivity. The group connectivity of model set {wi}Ki=1 is depicted by the
loss and accuracy barrier defined as:

Bloss({wi}Ki=1) = L( 1
K

K∑
i=1

wi)−
1

K

K∑
i=1

L(wi), Bacc({wi}Ki=1) =

[
1−

A( 1
K

∑K
i=1 wi)

1
K

∑K
i=1 A(wi)

]
, (9)

where L is the loss andA is the accuracy function. A lower barrier refers to better group connectivity.

We prove the transitivity of group connectivity that individually training several models and improving
the LMC between one common anchor model will result in better group connectivity among the
trained ones. In addition, we consider the data heterogeneity of practical FL in group connectivity by
giving the following definition.

Definition 3.7 Data heterogeneity. Similar to [20], we use the minimum to measure the degree of
heterogeneity among the group of individual workers (e.g., clients in FL and modes in LMC). Let w∗

be a global minimum of all workers and w∗
i is the minimum value of worker i closest to w∗. We use

the term Γ = maxi ∥w∗
i −w∗∥2, i ∈ [K] for quantifying the degree of data heterogeneity.
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Figure 3: Test loss landscapes of three trained mod-
els w/ and w/o connectivity loss. Visualization as in
[13] with w∗

1 at the origin. w∗
1 ,w

∗
2 ,w

∗
3 are marked

as the black dots. Left: vanilla CE loss. Right: inde-
pendently training three models with improved LMC
between the same anchor model. From the right figure,
group connectivity is improved, and the three models
fall into a more connected low-loss region.
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Figure 4: Accuracy barriers (the lower, the better)
of group connectivity by varying numbers of trained
models K. There is only one anchor model for all
settings. It can be seen that generally, larger K will
cause larger barriers, but connectivity loss can still
reduce them, reflecting that the transitivity of LMC can
improve group connectivity. CIFAR-10 is used.

Theorem 3.8 We define a two-layer neural network with ReLU activation, and the function is
fv,U(x) = v⊤σ(Ux) where σ(·) is the ReLU activation function. v ∈ Rh and U ∈ Rh×l are
parameters and x ∈ Rl is the input which is taken from X = {x ∈ Rl|∥x∥2 < b} uniformly.
Denote the deterministic anchor model as w∗

anc = {U∗
anc,v

∗
anc}, with ∥v∗

anc∥2 < danc and consider K
different networks wi parameterized with {Ui,vi} located on K clients respectively. Each element
of Ui and vi is sampled from a uniform distribution centered at U∗

anc and v∗
anc with an interval length

of d. If with probability 1− δ, supα Li(αw
∗
anc + (1− α)wi) < ϵ, then with probability 1− δ, it has,

Bloss({wi}Ki=1) ≤
√
2hb

2(1− δ)
2

hl+h

dϵ+γΓ2(dϵ+γΓ2 + danc) log(4hK
2/δ). (10)

Landscape visualization. We empirically study whether the transitivity of LMC can be generalized
to group connectivity of multiple models. We let w∗

anc be the anchor model and independently
train three models w∗

1,w
∗
2,w

∗
3 according to Equation 8. Also, training the three models without

connectivity loss is conducted for comparison. Then, we visualize the loss landscapes of w∗
1,w

∗
2,w

∗
3

in Figure 3. For vanilla CE loss, the trained models are scattered in different loss basins with high
barriers between them. However, with the connectivity loss, the LMC between each model and the
anchor model is improved, and as a result of transitivity, the three models fall into a more connected
low-loss region, and the barriers are largely eliminated.
Group connectivity when vary K. We study the transitivity of group connectivity by scaling up
the number of trained models K, which is critical for federated learning with numerous clients.
The results are in Figure 4; note that the number of anchor models is still one. We observe that by
increasing K for the connectivity loss, the barrier in group connectivity will go up but still lower than
the vanilla training. Also, the increase of barriers may converge to a point lower than vanilla training.
It indicates that the transitivity of group connectivity may be weakened for larger K but still effective,
and when K is relatively large (e.g., >8), increasing K will cause little loss of group connectivity.
Furthermore, we will show in Table 4 that our FedGuCci, which incorporates the connectivity loss,
can improve the generalization under different large numbers of clients.

4 Methods

4.1 FedGuCci: FL with Improved Group Connectivity

In section 3, we have verified the transitivity of group connectivity by using an anchor model. In this
section, we will present FedGuCci, incorporating this property in FL to improve generalization.
Global models as anchor models. We refer to subsection 2.1 for the settings and notations. In our
FedGuCci, we use the global models as the anchor models for connectivity loss with local clients.
Instead of solely using the current round global model as the anchor, we find using several previous
rounds’ global models can form the clients into a more connected region, so we use N previous
global models as the anchors. Specifically, in round t ∈ [T ], the set of anchor models Wt

anc∗ is:

Wt
anc∗ =

{
{wj

g}tj=t−N+1 if t ≥ N,

{wj
g}tj=1 if t < N,

(11)

where wj
g refers to the global model at round j.

FedGuCci local updates. FedGuCci is a client-side algorithm that utilizes the global models as the
anchor and improves the group connectivity of clients, without additional communication overhead.
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Table 2: Results in terms of generalization accuracy (%) of global models on four datasets under different
data heterogeneity. The best two methods in each setting are highlighted in bold fonts. M = 50, E = 3.

Dataset Fashion-MNIST CIFAR-10 CIFAR-100 Tiny-ImageNet

Non-IID hyper. 100 0.5 100 0.5 100 0.5 100 0.5

Local 76.22±0.16 62.24±0.35 36.69±0.10 29.73±0.36 7.36±0.14 6.97±0.08 6.47±0.12 6.09±0.02

FedAvg 87.94±0.34 86.99±0.04 63.55±0.16 63.99±0.32 27.21±0.96 25.60±0.62 27.43±1.39 25.11±1.82

FedProx 10.00±0.00 10.00±0.00 61.81±0.47 61.45±0.43 27.78±0.41 28.58±0.28 24.58±0.28 25.02±0.19
FedDyn 88.26±0.17 88.18±0.36 64.99±0.64 65.73±0.31 29.90±7.13 28.49±0.55 30.89±0.03 24.63±2.68
SCAFFOLD 87.95±0.31 86.47±0.14 63.20±0.32 63.96±0.41 1.07±0.09 1.25±0.07 0.529±0.05 0.517±0.02
MOON 86.95±0.09 86.02±0.29 64.24±0.65 63.41±0.31 28.97±1.69 27.36±0.71 27.88±1.08 25.34±0.66
FedRoD 87.97±0.40 87.56±0.60 62.64±0.20 62.56±0.46 26.94±0.78 25.90±1.20 27.67±1.64 25.55±1.56
FedLC 87.90±0.36 86.79±0.29 63.49±0.17 63.97±0.35 27.23±0.69 25.36±0.65 27.63±1.62 25.47±1.84
FedSAM 88.41±0.49 87.62±0.30 65.10±0.41 65.02±0.15 28.11±0.61 26.75±0.74 31.23±0.16 30.44±0.97

FedGuCci 88.85±0.11 88.30±0.39 65.11±0.11 65.80±0.22 30.55±0.67 29.33±0.41 36.46±0.40 33.61±0.60
FedGuCci+ 89.38±0.14 88.61±0.40 68.11±0.27 66.44±0.69 36.20±1.06 35.34±0.68 37.42±0.52 34.80±0.35

FedGuCci has the following update rules. In each round t, client i ∈ [M ] conducts local training
according to the following objective:

wt∗
i = argmin

wt
i

Li(w
t
i) + β

1

|Wt
anc∗ |

|Wt
anc∗ |∑

j=1

Lconnecti(w
t
i ,W

t
anc∗,j), (12)

where Wt
anc∗,j refers to the j-th model in the anchor model set, β is the hyperparameter for connec-

tivity loss, Li is the client’s local CE loss, and Lconnecti is the connectivity loss regarding Equation 7.
Clients conduct SGD as Equation 1 to update the local models.
By learning to connect with the global anchor models, FedGuCci will improve the group connectivity
and achieve better generalization as we will elaborate in section 5. The pseudo-code is in 1.
Notes: We note that our method FedGuCci doesn’t require additional communication costs compared
with FedAvg. FedGuCci uses historical global models, which are communicated in previous rounds
and stored at the clients. Instead, FedGuCci may require additional storage at the clients for historical
global models when N > 1, but the storage is lightweight and acceptable.

4.2 FedGuCci+: Aligning Local Loss Landscapes
In the study of LMC, different modes are trained on the same dataset but with different random
seeds or initializations [12]. However, in FL, clients have heterogeneous data, and it is found that
data heterogeneity of clients will cause different curvatures of local loss landscapes [18], making the
connectivity worse. Therefore, aligning local loss landscapes is essential for better performances of
the connectivity loss. In this subsection, we incorporate previous techniques in FedGuCci to align
local loss landscapes and propose FedGuCci+.
Bias reduction. In FL, class imbalance (a.k.a. label skew) is a main cause of data heterogeneity, and
previous works propose logit calibration [21], balanced softmax [22], and other techniques [23, 7]
for reducing the bias caused by class imbalance. Here, we introduce the logit calibration technique
used in FedLC [21] for bias reduction. The main idea of logit calibration is to add additional terms
to the logits to balance the overall class distributions. From Figure 5 (b), it demonstrates that logit
calibration and other bias reduction methods can align the landscapes by making the local objectives
more consistent.

(c)

Aligning local landscapes

 via flatter minima

Parameter

Loss

Parameter

(a)

Client 1’s local 

loss landscape

Client 2’s local

loss landscape

Loss

(b)

Aligning local landscapes

 via bias reduction

Parameter

Loss

Figure 5: Illustration of how FedGuCci+ aligns
the local loss landscapes. (a): Vanilla FedGuCci.
Due to data heterogeneity, clients have different
local loss landscapes. (b): FedGuCci+Bias Re-
duction. Introducing logit calibration or other FL
bias reduction techniques can align the learning
objectives. (c): FedGuCci+Flatter Minima. Intro-
ducing sharpness-aware minimization can make
the landscapes flatter, and as a result, the overlap-
ping regions increase.

Flatter minima. Sharpness-aware minimization [24,
25] (SAM) find flatter minima to improve generaliza-
tion. SAM has also been introduced in FL for better
generalization [8, 9]. In our paper, we find SAM
can be used to align local loss landscapes by making
the landscapes flatter, so we also incorporate it in
FedGuCci+. From Figure 5 (c), if the landscapes are
flatter, the overlap regions between two clients will
increase. Therefore, it will have more aligned land-
scapes. Also, for FedGuCci, SAM makes the connec-
tivity loss to learn a cylinder connected with the an-
chor model instead of a line [26], improving connec-
tivity robustness and generalization. FedGuCci+ in-
corporates logit calibration and SAM into FedGuCci,
achieving better generalization. We note that
FedGuCci+ is a showcase of how FedGucCci is com-
patible with other existing techniques for better results, and more techniques can be integrated.
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Table 3: Results of pretrained language models on natural language processing (GLUE benchmark).
Methods/Tasks SST-2 MRPC CoLA QNLI RTE STS-B AVG

Local 92.55±0.19 78.38±0.37 47.98±1.01 84.66±0.10 55.69±1.03 87.11±0.36 75.40±0.51

FedAvg 92.79±0.24 84.17±0.38 53.86±0.70 84.52±0.14 68.63±1.53 88.61±0.34 78.76±0.56

FedProx 50.88±0.00 67.26±0.75 00.00±0.00 50.55±0.98 49.39±3.42 00.00±0.00 54.52±1.71
FedDyn 91.19±0.85 84.80±0.41 55.49±1.02 85.51±0.54 61.40±3.89 24.75±9.38 67.19±2.68
SCAFFOLD 92.75±0.12 84.11±0.65 54.28±0.31 84.73±0.16 69.24±2.76 88.31±0.31 78.90±0.72
FedSAM 92.79±0.14 84.81±0.08 53.25±0.43 82.13±0.34 68.14±2.09 87.71±0.42 78.14±0.58

FedGuCci 93.22±0.20 85.77±0.44 55.38±0.44 89.40±0.40 70.96±1.60 89.25±0.44 80.66±0.59

Table 4: Results on different numbers of clients and
participation ratios. Non-IID hyper. is 1.0, and the
dataset is CIFAR-10.
M 100 200

ρ 0.3 0.6 0.3 0.6

Local 27.91±0.24 27.53±0.10 23.39±0.18 23.20±0.22

FedAvg 63.98±0.84 63.41±0.55 61.37±0.79 61.15±1.01

FedProx 52.43±0.66 52.79±0.73 44.63±0.95 44.96±0.78
FedRoD 61.15±0.05 60.30±0.02 58.01±0.92 57.63±1.44
FedLC 63.70±0.69 63.24±0.70 60.99±0.66 60.67±0.81
FedSAM 64.87±0.58 64.45±0.22 62.33±0.56 61.93±0.90

FedGuCci 65.02±0.41 64.54±0.41 62.37±0.83 62.13±0.63
FedGuCci+ 65.34±0.21 65.50±0.35 63.29±0.71 63.93±0.81

Table 5: Results of global models under pretrain-
finetune vision models. Non-IID hyper. is 10.

Dataset CIFAR-10 CIFAR-100

Models ResNet-18 ViT ResNet-18 ViT

Local 65.33±0.35 87.04±0.43 31.01±0.34 64.38±0.47

FedAvg 74.89±0.16 96.16±0.19 45.24±0.57 83.61±0.69

FedProx 50.61±0.81 96.32±0.21 4.29±0.38 78.49±1.92
FedRoD 74.91±0.17 96.18±0.18 45.19±0.76 83.64±0.35
FedLC 74.94±0.13 96.21±0.17 45.18±0.65 83.38±0.64
FedSAM 74.79±0.49 96.27±0.01 45.05±0.44 83.13±0.82

FedGuCci 75.22±0.12 96.38±0.11 45.62±0.61 83.71±0.48
FedGuCci+ 75.30±0.53 96.73±0.13 46.09±0.55 83.96±0.67

5 Experiments
In this section, we conduct extensive experiments to validate how FedGuCci and FedGuCci+ improve
the generalization of FL under various settings and datasets.

5.1 Settings
Datasets and models. Following previous works [23, 3, 6], we use 4 vision datasets to conduct
experiments: Fashion-MNIST [27], CIFAR-10 [28], CIFAR-100 [28], and Tiny-ImageNet [29].
Tiny-ImageNet is a subset of ImageNet [30] with 100k samples of 200 classes. We use different
models for the datasets as follows: {Fashion-MNIST: VGG11 [31], CIFAR-10: SimpleCNN [6],
CIFAR-100: ResNet20 [32, 33], Tiny-ImageNet: ResNet18 [33]}. We also conduct experiments of
pretrained language models on 6 datasets are from GLUE [34], and the model is RoBERTa-base [35].
For the detailed settings, please refer to Appendix A.
Compared methods. We take the most relevant and the most state-of-the-art FL algorithms as the
baselines. (1) FedAvg [1] with vanilla local training, a simple but strong baseline; (2) FedProx
[2], which uses the current round’s global model as local regularization term; (3) FedDyn [7],
FL based on dynamic regularization; (4) SCAFFOLD [4], using control variates for variance
reduction; (5) MOON [36] with model-contrastive learning; (6) FedRoD [22], generalization through
decoupling and balanced softmax loss; (7) FedLC [21], FL with logit calibration for bias reduction;
(8) FedSAM [9, 8], incorporating sharpness-aware minimization into FL.
Client Settings. We adopt the Dirichlet sampling to craft IID and heterogeneous data for clients,
which is widely used in FL literature [3, 22, 23]. It considers a class-imbalanced data heterogeneity,
controlled by non-IID hyperparameter, and smaller value refers to more heterogeneous data of clients.
We vary the hyperparameter ∈ {100, 10, 1.0, 0.5, 0.4, 0.1} with a spectrum from IID to non-IID
(heterogeneous). The hyperparameters are shown in the captions or in Appendix A. Except from
Table 4, we use full client participation.
Evaluation and implementation. We test the generalization performance, which is validated on the
balanced testset after the global model is generated on the server. For all the experiments, we conduct
three trials for each setting and present the mean accuracy and the standard deviation in the tables.
More implementation details, e.g., hyperparameters, in Appendix A.

5.2 Main Results
Results under various datasets and models. In Table 2, our methods can reach state-of-the-art
results across four datasets under both IID (α = 100) and heterogeneous (α = 0.5) settings4.

4It’s important to mention that certain methods might fail in specific settings, exhibiting accuracy levels close
to random guessing, e.g., FedProx in Fashion-MNIST.
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Figure 6: Results under different epochs E. M =
60 for CIFAR-10, and M = 20 for CIFAR-100. T is
200 for both datasets. The non-IID hyper. is 0.4.
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Figure 7: Sensitivity analysis for hyperparameters
N and β for FedGuCci(+). M = 60 and non-IID
hyperparameter is 0.4.

Generally, FedGuCci can reach the best performances over current FL methods, and FedGuCci+
can strengthen FedGuCci in most cases. Also, the performance gains of our approaches are more
dominant under more complicated datasets, like Tiny-ImageNet. While FedSAM stands as the most
robust baseline for generalization, our connectivity loss not only yields better results but is also
compatible with it (FedGuCci+).
Results on different M and ρ. We conduct experiments by varying the number of clients M and
participation ratios of clients ρ in Table 4. It demonstrates that FedGuCci and FedGuCci+ can
also excel when the number of clients is large and partial participation exists, indicating their great
potential under cross-device settings [37].
Results of different local epochs E. In Figure 6, FedGuCci is consistently leading under different
E, while FedGuCci+ is not robust on CIFAR-10. For CIFAR-100, FedGuCci has a more obvious
advantage when E is large, and this is rationale since the connectivity and model drift issues are more
severe under large local updates.

5.3 Experiments under Pretrained Models
We conduct experiments under pretrain-finetune paradigm for both vision and language tasks.
Results under pretrained language models. We use 6 datasets from GLUE [34] benchmark
for finetuning pretrained language models. For each dataset, we randomly split the data into
several clients and conduct finetuning using low-rank adaption (LoRA), and the pretrained model
is RoBERTa-base [35]. It is notable that some language tasks are not classifications, so FedRoD,
FedLC, and FedGuCci+, which rely on classification loss, are not applicable. The results are in
Table 3, where our FedGuCci reaches promising performances over existing methods. It is observed
that some methods that are superior in Table 2 have worse performances in pretrained language
models, e.g., FedDyn, while our FedGuCci keeps steady advantages.
Results under pretrained vision models. We conduct experiments under pretrained vision models,
namely, ResNet18 [33] pretrained on ImageNet [30] and Vision Transformer (ViT-B/32) [38] pre-
trained on CLIP [39]. Table 5 presents the finetuning results of FL methods on CIFAR-10 and CIFAR-
100. It seems that FedAvg is a strong baseline when it comes to pretrained vision backbones, especially
for the ViT. However, it is illustrated that FedGuCci is also improving generalization over FedAvg.
In this subsection, we showcase the applicability of FedGuCci under the pretrain-finetune paradigm,
and it reveals FedGuCci’s great potential in collaboratively finetuning foundation models, such as
large language models [40, 41].

5.4 More Results
Sensitivity analyses of hyperparameters. As illustrated in Figure 7, we vary the FedGuCci(+)’s
hyperparameters N and β of Equation 11 and Equation 12. It reveals that FedGuCci and FedGuCci+
have a wide range of effective hyperparameters, outperforming FedAvg. We find FedGuCci+ is more
sensitive than FedGuCci, that high N and β may degrade the performances. For β, there may exist
an optimization-connectivity tradeoff at the clients. If β is too high, the connectivity loss may hurt
the local optimization steps, causing generalization declines of local models, further detrimental to
the fused global model.
More results: Please refer to Appendix C for more results, including ablation study, test accu-
racy curve visualization, experiments under more heterogeneous data, experiments under smaller
participation ratios, and comparison of computation costs.

6 Conclusion
In this paper, we study the transitivity of linear mode connectivity (LMC) and use this property to
improve the generalization of federated learning (FL). We first empirically and theoretically verify
the transitivity of LMC between two models by leveraging a fixed anchor model, and we extend
it to group connectivity among multiple models. Then, we propose FedGuCci and FedGuCci+ in
FL. Extensive experiments demonstrate our proposed methods can improve the generalization of FL
under various settings.

9



References
[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.

Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[2] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine Learning
and Systems, 2:429–450, 2020.

[3] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust
model fusion in federated learning. Advances in Neural Information Processing Systems,
33:2351–2363, 2020.

[4] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

[5] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020.

[6] Zexi Li, Tao Lin, Xinyi Shang, and Chao Wu. Revisiting weighted aggregation in federated
learning with neural networks. In Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages 19767–19788.
PMLR, 23–29 Jul 2023.

[7] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and
Venkatesh Saligrama. Federated learning based on dynamic regularization. In International
Conference on Learning Representations, 2020.

[8] Debora Caldarola, Barbara Caputo, and Marco Ciccone. Improving generalization in federated
learning by seeking flat minima. In European Conference on Computer Vision, pages 654–672.
Springer, 2022.

[9] Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning
via sharpness aware minimization. In International Conference on Machine Learning, pages
18250–18280. PMLR, 2022.

[10] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no
barriers in neural network energy landscape. In International conference on machine learning,
pages 1309–1318. PMLR, 2018.

[11] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

[12] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. In International Conference on
Learning Representations, 2022.

[13] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

[14] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. In The Eleventh International Conference on Learning
Representations, 2022.

[15] Mitchell Wortsman, Maxwell C Horton, Carlos Guestrin, Ali Farhadi, and Mohammad Rastegari.
Learning neural network subspaces. In International Conference on Machine Learning, pages
11217–11227. PMLR, 2021.

10



[16] Tiffany J Vlaar and Jonathan Frankle. What can linear interpolation of neural network loss
landscapes tell us? In International Conference on Machine Learning, pages 22325–22341.
PMLR, 2022.

[17] Seok-Ju Hahn, Minwoo Jeong, and Junghye Lee. Connecting low-loss subspace for personalized
federated learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 505–515, 2022.

[18] Tailin Zhou, Jun Zhang, and Danny HK Tsang. Mode connectivity and data heterogeneity of
federated learning. arXiv preprint arXiv:2309.16923, 2023.

[19] Damien Ferbach, Baptiste Goujaud, Gauthier Gidel, and Aymeric Dieuleveut. Proving linear
mode connectivity of neural networks via optimal transport. arXiv preprint arXiv:2310.19103,
2023.

[20] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence
of fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

[21] Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, and Chao Wu. Federated
learning with label distribution skew via logits calibration. In International Conference on
Machine Learning, pages 26311–26329. PMLR, 2022.

[22] Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized federated learning
for image classification. In International Conference on Learning Representations, 2022.

[23] Zexi Li, Xinyi Shang, Rui He, Tao Lin, and Chao Wu. No fear of classifier biases: Neural
collapse inspired federated learning with synthetic and fixed classifier. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pages 5319–5329, October
2023.

[24] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware min-
imization for efficiently improving generalization. In International Conference on Learning
Representations, 2021.

[25] Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In International
Conference on Machine Learning, pages 5905–5914. PMLR, 2021.

[26] Haitao Wen, Haoyang Cheng, Heqian Qiu, Lanxiao Wang, Lili Pan, and Hongliang Li. Optimiz-
ing mode connectivity for class incremental learning. In International Conference on Machine
Learning, pages 36940–36957. PMLR, 2023.

[27] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[28] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. Citeseer, 2009.

[29] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[30] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255, 2009.

[31] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In Proceedings of the 3rd International Conference on Learning Representa-
tions (ICLR), 2015.

[32] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. Advances in neural information processing systems, 31, 2018.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

11



[34] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the International Conference on Learning Representations (ICLR), 2019.

[35] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[36] Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
10713–10722, June 2021.

[37] Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. On
large-cohort training for federated learning. Advances in neural information processing systems,
34:20461–20475, 2021.

[38] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2021.

[39] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 8748–8763. PMLR,
18–24 Jul 2021.

[40] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018.

[41] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[42] Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

[43] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[44] Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Third International Workshop on Paraphrasing (IWP2005), 2005.

[45] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability
judgments. Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

[46] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for squad. arXiv preprint arXiv:1806.03822, 2018.

[47] Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017
task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv
preprint arXiv:1708.00055, 2017.

[48] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2021.

[49] Xiaoxiao Li, Meirui JIANG, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated
learning on non-iid features via local batch normalization. In International Conference on
Learning Representations, 2020.

12



[50] Linara Adilova, Asja Fischer, and Martin Jaggi. Layerwise linear mode connectivity. arXiv
preprint arXiv:2307.06966, 2023.

[51] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[52] Yan Sun, Li Shen, Shixiang Chen, Liang Ding, and Dacheng Tao. Dynamic regularized
sharpness aware minimization in federated learning: Approaching global consistency and
smooth landscape. In International Conference on Machine Learning, pages 32991–33013.
PMLR, 2023.

[53] Rong Dai, Xun Yang, Yan Sun, Li Shen, Xinmei Tian, Meng Wang, and Yongdong Zhang.
Fedgamma: Federated learning with global sharpness-aware minimization. IEEE Transactions
on Neural Networks and Learning Systems, 2023.

[54] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pages 3259–3269. PMLR, 2020.

[55] Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, and Xue Lin. Bridging
mode connectivity in loss landscapes and adversarial robustness. In International Conference
on Learning Representations (ICLR 2020), 2020.

[56] Ekdeep Singh Lubana, Eric J Bigelow, Robert P Dick, David Krueger, and Hidenori Tanaka.
Mechanistic mode connectivity. In International Conference on Machine Learning, pages
22965–23004. PMLR, 2023.

[57] Honglin Yuan, Warren Richard Morningstar, Lin Ning, and Karan Singhal. What do we mean by
generalization in federated learning? In International Conference on Learning Representations,
2022.

[58] Rui Ye, Mingkai Xu, Jianyu Wang, Chenxin Xu, Siheng Chen, and Yanfeng Wang. Feddisco:
Federated learning with discrepancy-aware collaboration. arXiv preprint arXiv:2305.19229,
2023.

13



Appendix
In this appendix, we provide the details omitted in the main paper and more analyses and discussions.

• Appendix A: details of experimental setups (cf. section 3 and section 5 of the main paper).
• Appendix B: detailed proofs of Lemma 3.3, Theorem 3.5, and Theorem 3.8 (cf. section 3 of

the main paper).
• Appendix C: additional results and analyses (cf. section 3 and section 5 of the main paper).
• Appendix D: more discussions about the related works (cf. section 2 of the main paper).

A Implementation Details

Algorithm 1 FedGuCci: Federated Learning with Improved Group Connectivity

Input: M clients, communication round T , local epoch E, participation ratio ρ = K
M ; number of

anchor models N ; initial global model w1
g;

Output: final global model wT
g ;

1: for each round t = 1, . . . , T do
2: # Client updates
3: for each client i, i ∈ [M ] in parallel do
4: Set local model wt

i ← wt
g;

5: Replay N historical global models as the anchor models Wt
anc∗ by Equation 11;

6: Compute E epochs of client local training with connectivity loss by Equation 12;
7: end for
8: # Server updates
9: The server samples a set St of K clients and receive their models {wt

i}i∈St ;
10: The server obtains the global model wt+1

g via aggregation by Equation 2;
11: end for
12: Obtain the final global model wT

g .

In this section, we present the implementation details omitted from the main paper.

A.1 Implementation Environment
All experiments were conducted on Intel Xeon Silver 4108 CPU, and NVIDIA Tesla V100 GPU with
32GB of graphics memory, using Python 3.9.18 and PyTorch 2.1.0.

A.2 Datasets
CIFAR-10 [28] consists of 60,000 32x32 color images, evenly distributed among 10 different classes,
including airplanes, automobiles, birds, cats, etc., each represented by 6,000 images. The dataset
is split into 50,000 training images and 10,000 test images. FashionMNIST [27] is designed as an
advanced replacement for the MNIST dataset, suitable for benchmarking machine learning models. It
comprises 70,000 images divided into 60,000 training samples and 10,000 test samples. Each image
is a 28x28 grayscale representation of fashion items from 10 different classes, such as shirts, trousers,
sneakers, etc. The CIFAR-100 dataset [28] is similar to CIFAR-10 but more challenging, containing
100 different classes grouped into 20 superclasses. It includes 60,000 32x32 color images, with 600
images per class, divided into 50,000 training images and 10,000 test images. This dataset is primarily
used for developing and evaluating more sophisticated image classification models. TinyImageNet
TinyImageNet is a reduced-scale version of the renowned ImageNet dataset, which comprises a
total of 200 classes. The dataset is structured into training, validation, and test sets, with 200,000
training images, 20,000 validation images, and 20,000 test images. The GLUE benchmark is a
compilation of 9 datasets for evaluating natural language understanding systems. Tasks are framed
as either single-sentence classification or sentence-pair classification tasks. GLUE includes MNLI
(inference, [42]), MRPC (paraphrase detection, [43]), MRPC (paraphrase detection, [44]), CoLA
(linguistic acceptability, [45]), QNLI (inference, [46]), QQP (question-answering), RTE (inference),
WNLI (inference), and STS-B (textual similarity, [47]). Due to high computation costs, we only used
SST2, MRPC, CoLA, QNLI, RTE, and STS-B for evaluation. For the replication in Table 3, we
report results on the development sets after fine-tuning the pretrained models on the corresponding
single-task training data. Our fine-tuning approach is LoRA[48].
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A.3 Models
SimpleCNN. The simple CNN for CIFAR-10 is a convolutional neural network model with ReLU
activations, consisting of 3 convolutional layers followed by 2 fully connected layers. The first
convolutional layer has a size of (3, 32, 3), followed by a max-pooling layer of size (2, 2). The second
and third convolutional layers have sizes of (32, 64, 3) and (64, 64, 3), respectively. The last two fully
connected layers have sizes of (6444, 64) and (64, num_classes), respectively.
ResNets. We followed the model architectures used in [32]. The number in the model names indicates
the number of layers in the models, whereas a larger number indicates a deeper network. We used
ResNet18 and ResNet20 for CIFAR-10 and CIFAR-100, respectively. Notably, to mitigate abnormal
effects introduced by batch normalization layers [49, 3], followed by [50], we removed all batch
normalization layers from the ResNets.
VGG. VGG [31] is a convolutional neural network (CNN) architecture that gained prominence in the
field of computer vision. Among its variants, we used VGG11.
RoBERTa. RoBERTa is a natural language processing (NLP) model that builds upon the foundation
laid by BERT, which was introduced by [35] to address some limitations and improve the performance
of BERT on various NLP tasks. It comes in various sizes, and we used RoBERTa-base considering to
high computational costs.
ViT. ViT [51] is a deep learning model for visual tasks that adopts the Transformer structure proposed
in NLP. ViT divides a picture into several patches, treats the patch as a word, and then uses a self-
attention mechanism to capture the relationship between patches. When ViT is pre-trained with a
large amount of data, it will perform particularly well on downstream tasks.

A.4 Randomness
In all experiments, we conducted each experiment three times with different random seeds and
reported the averaged results along with standard deviations.
We ensured consistency by setting torch, numpy, and random functions with the same random seed,
thereby making the data partitions and other settings identical. To ensure all algorithms started with
the same initial model, we saved an initial model for each architecture and loaded it at the beginning
of each experiment. Additionally, for experiments involving partial participation, the selection of
participating clients in each round significantly influenced the model’s performance. To maintain
fairness, we saved the sequences of participating clients in each round and loaded these sequences for
all experiments. This procedure guaranteed that, given a random seed and participation ratio, every
algorithm had the same set of sampled clients in each round.

A.5 Evaluation
CIFAR-10, CIFAR-100, FashionMNIST and Tiny-ImageNet. We evaluate the global model
performance on the test dataset of each dataset. The test dataset is mostly class-balanced and can
reflect the global learning objective of a federated learning system. Therefore, the performance of the
model on the test set can indicate the generalization performance of global models [6, 3]. In each
experiment, we take the average test accuracy of the last 5 rounds as the final test accuracy.
GLUE. For GLUE, we used the validation dataset for evaluation. Following by [48], we chose the
best accuracy as the final test accuracy.

A.6 Hyperparameter
Table 2: For Fashion-MNIST, T is 400, batch size is 64 and learning rate is 0.08. For CIFAR-10,
T is 150, batch size is 64 and learning rate is 0.04. For CIFAR-100, T is 200, batch size is 64 and
learning rate is 0.03. For Tiny-ImageNet, learning rate is 0.01 and T is 50. Optimzier is ADAM for
Fashion-MNIST and others are SGD.
Table 3: Optimizer is Adam for all datasets. For CoLA and STSB, T is 25, batch size is 16 and
learning rate is 2e-5. For SST-2, T is 50, batch size is 16, and learning rate is 2e-6. For QNLI, T
is 20, batch size is 32 and learning rate is 2e-6. For RTE and MRPC, T is 80, batch size is 16 and
learning rate is 2e-5.
Table 4: T is 150, E is 3, batch size is 64 and learning rate is 0.04.
Table 5: ResNet-18 and MobileViT are pretrained on ImageNet. E is 3 for both models. For ViT, T is
15, batch size is 16 and learning rate is 0.001. For ResNet, T is 50, batch size is 64 and learning rate
1e-4.
Table 10: For CIFAR-10, T is 150, batch size is 64 and learning rate is 0.04. For CIFAR-100, T is
200, batch size is 64, and learning rate is 0.03.
Figure 6: M = 60 for CIFAR-10, and M = 20 for CIFAR-100. T is 200 for both datasets. Learning
rate is 0.03 for CIFAR-10, and 0.04 for CIFAR-100.
Figure 7: T is 150, E is 3, M is 60, learning rate is 0.02, and batch size is 64.
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B Proof
In this section, we give the proofs of the lemma and theorem in section 3.

Lemma B.1 (Lemma 3.3) Set the uniform and bounded domain for network w as Eϵ = {w ∈
Ω|L(w) < ϵ}. Define a random event Dϵ(w

∗
anc) as Dϵ(w

∗
anc) = {∃w ∈ Eϵ|∀α ∈ [0, 1],L(αw∗

anc +
(1− α)w) ≤ ϵ}. Consider an anchor model w∗

anc and an arbitrary network w and for ϵ > 0. Then
for ∥w −w∗

anc∥∞ ≤ d
2 ,

P (Dϵ(w
∗
anc)) ≤ (

dϵ
d
)S , (13)

where dϵ = |Eϵ|
1
S represents the average diameter of region Eϵ, S represents the number of parame-

ters of the neural network and the equality holds if and only if Eϵ ⊂ {w|∥w −w∗
anc∥∞ ≤ d} is a

star domain centered at w∗
anc. Thus, when P (Dϵ(w

∗
anc))) > 1− δ, it holds d < dϵ

(1−δ)
1
S

.

Proof: In the following proof, we denote the region as Vd = {w|∥w −w∗
anc∥∞ ≤ d

2} with volume
|Vd| = dS and denote the segment between w and w∗

anc as l(w∗
anc,w) = {αw∗

anc + (1− α)w, α ∈
[0, 1]}.
First we prove if Eϵ ⊂ Vd is a star domain centered at w∗

anc, P (Dϵ(w
∗
anc)) = |Eϵ|

dS . Select a
parameter point w0 in Vd arbitrarily. If w0 ∈ Eϵ, then because Eϵ is a star domain centered at w∗

anc,
l(w∗

anc,w) ⊂ Eϵ and thus w0 ∈ Dϵ(w
∗
anc). If w0 /∈ Eϵ, then w0 /∈ Dϵ(w

∗
anc) by the definition of

Dϵ(w
∗
anc). Therefore, Eϵ = Dϵ(w

∗
anc) and we have P (Dϵ(w

∗
anc)) = P (Eϵ) = |Eϵ|

|Vd| =
|Eϵ|
dS .

The next step we prove that if Eϵ ̸⊂ Vd, or Eϵ is not a star domain centered at w∗
anc, then

P (Dϵ(w
∗
anc)) <

|Eϵ|
dS .

If Eϵ ̸⊂ Vd, then |Dϵ(w
∗
anc)| ≤ |Eϵ ∩ Vd| < |Eϵ| and P (Dϵ(w

∗
anc)) =

|Dϵ(w
∗
anc)|

|Vd| < |Eϵ|
|Vd| . Here, the

first inequality |Dϵ(w
∗
anc)| ≤ |Eϵ ∩ Vd| holds, because Dϵ(w

∗
anc) ⊂ Eϵ ∩Vd and the second inequality

|Eϵ ∩ Vd| < |Eϵ| holds, because ∃w0 ∈ Eϵ/Vd, ϵ0 > 0 st. {w|∥w −w0∥ < ϵ0} ⊂ Ω/Vd ∩ Eϵ for
Ω/Vd and Eϵ are open sets and |Eϵ ∩ Vd| ≤ |Eϵ| − |{w|∥w −w0∥ < ϵ0}| < |Eϵ|.
If Eϵ is not a star domain centered at w∗

anc, then there exists w0 ∈ Eϵ such that l(w∗
anc,w0) ̸⊂ Eϵ. Then

∃α1 ∈ (0, 1) st. w1
∆
= α1w

∗
anc + (1− α1)w0 satisfies L(w1) > ϵ. For L(·) is smooth, there exists

ϵ1 > 0 st. ∀w ∈ Uϵ1(w1)
∆
= {w|∥w1 −w∥2 < ϵ1}, L(w) ≥ ϵ + L(w1)−ϵ

2 > ϵ. Then for Eϵ is an
open set, choose ϵ2 < ϵ1 st. Uϵ2(w0) ⊂ Eϵ. ∀w2 ∈ Uϵ2(w0), w3 = α1w

∗
anc + (1− α1)w2 satisfies

∥w3 − w1∥2 = (1 − α1)∥w0 − w2∥2 < (1 − α1)ϵ2 < ϵ1. Thus w3 ∈ Uϵ1(w1), which leads to

L(w3) > ϵ. Therefore, Uϵ2(w0)∩Dϵ(w
∗
anc) = ∅ and P (Dϵ(w

∗
anc)) =

|Dϵ(w
∗
anc)|

dS ≤ |Eϵ|−|Uϵ2 (w0)|
dS <

|Eϵ|
dS . □

Theorem B.2 (Theorem 3.5) We define a two-layer neural network with ReLU activation, and
the function is fv,U(x) = v⊤σ(Ux) where σ(·) is the ReLU activation function. v ∈ Rh and
U ∈ Rh×l are parameters5 and x ∈ Rl is the input which is taken from X = {x ∈ Rl|∥x∥2 < b}
uniformly. Denote the deterministic anchor model as w∗

anc = {U∗
anc,v

∗
anc}, with ∥v∗

anc∥2 < danc and
consider two different networks w1,w2 parameterized with {U1,v1} and {U2,v2} respectively.
Each element of U1 and U2, v1 and v2 is sampled from a uniform distribution centered at U∗

anc and
vanc with an interval length of d. If with probability 1 − δ, supα L(αw∗

anc + (1 − α)w1) < ϵ and
supα L(αw∗

anc + (1− α)w2) < ϵ, then with probability 1− δ, it has,

Bloss(w1,w2) ≤
√
2hb

2(1− δ)
2

hl+h

dϵ(dϵ + danc) log(12h/δ), (14)

where Bloss(w1,w2) is the loss barrier as Equation 3.

Proof: Let’s first define gα(x) = (αU1+(1−α)U2)x and zx(α) = (αv1+(1−α)v2)
⊤σ((αU1+

(1− α)U2)x)− αv⊤
1 σ(U1x)− (1− α)v2

⊤σ(U2x), α ∈ [0, 1]. Then we can express zx(α) as:

zx(α) = (αv1 + (1− α)v2)
⊤σ(gα(x))− αv⊤

1 σ(U1x)− (1− α)v2
⊤σ(U2x). (15)

For each element of U1 and U2, v1 and v2 is sampled from a uniform distribution centered at U∗
anc

and v∗
anc with an interval length of d, U1, U2, v1 and v2 can be represented as U1 = U∗

anc + Ũ1,
5For simplicity and without loss of generality, we omit the bias terms.
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U2 = U∗
anc + Ũ2, v1 = v∗

anc + ṽ1 and v2 = v∗
anc + ṽ2 respectively, where each element of Ũ1, Ũ2,

ṽ1 and ṽ2 follows distribution U [−d
2 ,

d
2 ]. Using ṽ1 and ṽ2, zx(α) can be represented as

zx(α) = (αv1 + (1− α)v2)
⊤σ(gα(x))− αv⊤

1 σ(U1x)− (1− α)v2
⊤σ(U2x)

= (αṽ1 + (1− α)ṽ2 + v∗
anc)

⊤σ(gα(x))− α(ṽ⊤
1 + v∗

anc
⊤)σ(U1x)− (1− α)(ṽ⊤

2 + v∗
anc

⊤)σ(U2x)

= [(αṽ1 + (1− α)ṽ2)
⊤σ(gα(x))− αṽ⊤

1 σ(U1x)− (1− α)ṽ⊤
2 σ(U2x)]

+ v∗
anc

⊤[σ(gα(x))− ασ(U1x)− (1− α)σ(U2x)].
(16)

We also assume that the number of hidden neurons h is sufficiently large for the convenience of
analysis as [12]. In the following proof, we will make use of Hoeffding’s inequality for sub-Gaussian
distributions (especially, uniform distribution). Here, we state it for reference: Let X1, . . . , Xn be n
independent random variables such that Xi ∼ U(−d

2 ,−
d
2 ). Then for any a = (a1, ..., an) ∈ Rn, we

have

P

[
|

n∑
i=1

aiXi| > t

]
≤ 2 exp

(
− 2t2

d2∥a∥22

)
.

To bound zx(α), we have

|zx(α)| ≤|[(αṽ1 + (1− α)ṽ2)
⊤σ(gα(x))− αṽ⊤

1 σ(U1x)− (1− α)ṽ⊤
2 σ(U2x)]|

+ |v∗
anc

⊤[σ(gα(x))− ασ(U1x)− (1− α)σ(U2x)]|
≤α|ṽ⊤

1 (σ(gα(x))− σ(U1x))|+ (1− α)|ṽ⊤
2 (σ(gα(x))− σ(U2x))|

+ α|v∗
anc

⊤(σ(gα(x))− σ(U1x))|+ (1− α)|v∗
anc

⊤(σ(gα(x))− σ(U2x))|.

(17)

Then we bound the first term and the third term, and the second term and the fourth term are bounded
similarly due to symmetry. For the concentration upper bound of the first term of Equation 17, we
use the Hoeffding’s inequality for elements of ṽ1, with probability 1− δ

k

α
∣∣ṽ⊤

1 [(σ(gα(x))− σ(U1x)]
∣∣ ≤ αd

√
1

2
log(2k/δ)∥σ(gα(x))− σ(U1x)∥2 (18)

≤ αd

√
1

2
log(2k/δ)∥gα(x)−U1x∥2 (19)

= α(1− α)d

√
1

2
log(2k/δ)∥(U2 −U1)x∥2. (20)

Equation 19 is due to the fact that the ReLU activation function satisfies the Lipschitz continuous
condition with constant 1. For the bound of the third term of Equation 17, we have

α
∣∣∣v∗

anc
⊤ [(σ(gα(x))− σ(U1x)]

∣∣∣ ≤ αdanc∥σ(gα(x))− σ(U1x)∥2 (21)

≤ αdanc∥gα(x)−U1x∥2 (22)
= α(1− α)danc∥(U2 −U1)x∥2. (23)

Equation 22 is due to the fact that the ReLU activation function satisfies the Lipschitz continuous
condition with constant 1. For the term ∥(U2 −U1)x∥2 in Equation 20 and Equation 23, taking a
union bound, with probability 1− δ

k , we have

∥(U2 −U1)x∥2 ≤

√√√√ h∑
i=1

|(UB;i,: −UA;i,:)x|2 (24)

=

√√√√ h∑
i=1

|(UB;i,: −UA;i,:)x|2 (25)

≤ d∥x∥2
√
h log(2hk/δ) (26)

= db
√

h log(2hk/δ). (27)
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Then take a union bound choosing k = 6 (because the union bound is taken for 6 equations,
Equation 20 and Equation 27 for the first and the second terms in Equation 17 respectively, and
Equation 27 for the third and the fourth terms in Equation 17 respectively.), with probability 1− δ
we have

|zx(α)| ≤α
∣∣ṽ⊤

1 (σ(gα(x))− σ(U1x))
∣∣+ (1− α)

∣∣ṽ⊤
2 (σ(gα(x))− σ(U2x))

∣∣ (28)

+ α
∣∣∣v∗

anc
⊤(σ(gα(x))− σ(U1x))

∣∣∣+ (1− α)
∣∣∣v∗

anc
⊤(σ(gα(x))− σ(U2x))

∣∣∣ (29)

≤2α(1− α)d

√
1

2
log(12/δ) · db

√
h log(12h/δ) + 2α(1− α)danc · db

√
h log(12h/δ)

(30)

≤2
√
2α(1− α)

√
hb(d2 + ddanc) log(12h/δ) (31)

≤
√
2

2

√
hb(d2 + ddanc) log(12h/δ). (32)

For supα L(αw∗
anc+(1−α)w) < ϵ holds with probability 1−δ, by Lemma 3.3, we have d < dϵ

(1−δ)
1
S

with S = hl + h. Then |zx(α)| can be bounded as

|zx(α)| ≤
√
2hb

2(1− δ)
2

hl+h

dϵ(dϵ + danc) log(12h/δ). (33)

Now we turn to calculate the bound of the loss barrier Bloss(w1,w2). For the loss function L(·, y) is
convex and 1-Lipschitz, we have:

Bloss(w1,w2) =E[L(fαv1+(1−α)v2,αU1+(1−α)U2
(x), y)− αL(fv1,U1

(x), y)− (1− α)L(fv2,U2
(x), y)]

(34)
≤E[L(fαv1+(1−α)v2,αU1+(1−α)U2

(x), y)− L(αfv1,U1
(x) + (1− α)fv2,U2

(x), y)]
(35)

≤E[
∣∣fαv1+(1−α)v2,αU1+(1−α)U2

(x)− (αfv1,U1
(x) + (1− α)fv2,U2

(x))
∣∣], (36)

where the expectation is with respect to the dataset. Equation 35 is due to the convexity of L(·, y),
while Equation 36 is due to the assumption that L(·, y) is 1-Lipschitz. Then use the bound of zx(α),
with probability 1− δ, we have

Bloss(w1,w2) ≤
√
2hb

2(1− δ)
2

hl+h

dϵ(dϵ + danc) log(12h/δ). (37)

□

Theorem B.3 (Theorem 3.8) We define a two-layer neural network with ReLU activation, and the
function is fv,U(x) = v⊤σ(Ux) where σ(·) is the ReLU activation function. v ∈ Rh and U ∈ Rh×l

are parameters and x ∈ Rl is the input which is taken from X = {x ∈ Rl|∥x∥2 < b} uniformly.
Denote the deterministic anchor model as w∗

anc = {U∗
anc,v

∗
anc}, with ∥v∗

anc∥2 < danc and consider K
different networks wi parameterized with {Ui,vi} located on K clients respectively. Each element
of Ui and vi is sampled from a uniform distribution centered at U∗

anc and v∗
anc with an interval length

of d. If with probability 1− δ, supα Li(αw
∗
anc + (1− α)wi) < ϵ, then with probability 1− δ, it has,

Bloss({wi}Ki=1) ≤ (38)
√
2hb

2(1− δ)
2

hl+h

dϵ+Γ(dϵ+Γ + danc) log(4hK
2/δ).

Proof: Similar to Theorem 3.5, we first define g(x) = ( 1
K

∑K
i=1 Ui)x and z(x) =

( 1
K

∑K
i=1 vi)

⊤σ(( 1
K

∑K
i=1 Ui)x)− 1

K

∑K
i=1 viσ(Uix). Then we can express z(x) as:

z(x) = (
1

K

K∑
i=1

vi)
⊤σ(g(x))− 1

K

K∑
i=1

v⊤
i σ(Uix). (39)
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For each element of Ui and vi is sampled from a uniform distribution centered at U∗
anc and v∗

anc
with an interval length of d, Ui and vi can be represented as Ui = U∗

anc + Ũi and vi = v∗
anc + ṽi

respectively, where each element of Ũi and ṽi follows distribution U [−d
2 ,

d
2 ]. Using ṽi, zx(α) can

be represented as

z(x) = (
1

K

K∑
i=1

vi)
⊤σ(g(x))− 1

K

K∑
i=1

v⊤
i σ(Uix) (40)

= (v∗
anc +

1

K

K∑
i=1

ṽi)
⊤σ(g(x))− 1

K

K∑
i=1

(v∗
anc + ṽi)

⊤σ(Uix) (41)

=
1

K

K∑
i=1

ṽ⊤
i (σ(g(x))− σ(Uix)) +

1

K

K∑
i=1

v∗
anc

⊤(σ(g(x))− σ(Uix)). (42)

Similar to Equation 17 and Equation 20, with probability 1− δ
2 , Equation 42 can be bound with

|z(x)| ≤ 1

K

K∑
i=1

|ṽ⊤
i (σ(g(x))− σ(Uix))|+

1

K

K∑
i=1

|v∗
anc

⊤(σ(g(x))− σ(Uix))| (43)

≤
d
√

1
2 log(4K/δ)

K

K∑
i=1

|(σ(g(x))− σ(Uix))|+
danc

√
1
2 log(4K/δ)

K

K∑
i=1

|(σ(g(x))− σ(Uix))|

(44)

≤
d
√

1
2 log(4K/δ)

K

K∑
i=1

|g(x)−Uix|+
danc

√
1
2 log(4K/δ)

K

K∑
i=1

|g(x)−Uix| (45)

≤
(d+ danc)

√
1
2 log(4K/δ)

K

K∑
i=1

|g(x)−Uix|. (46)

Then similar to Equation 27, with probability 1− δ
2 , Equation 46 can be bound with

|z(x)| ≤
(d+ danc)

√
1
2 log(4K/δ)

K2

K∑
i=1

∑
j ̸=i

|(Uj −Ui)x| (47)

≤
(d+ danc)

√
1
2 log(4K/δ)

K2

K∑
i=1

∑
j ̸=i

|(Uj −Ui)x| (48)

≤
(d+ danc)

√
1
2 log(4K/δ)

K2

K∑
i=1

∑
j ̸=i

d∥x∥2
√

h log(4hK2/δ) (49)

≤
√
2

2
d(d+ danc)b

√
h log(4hK2/δ). (50)

Set the minimum of Li closest to w∗
anc is w∗

anc,i. For supα Li(αwi + (1− α)w∗
anc) < ϵ holds with

probability 1− δ, then with probability 1− δ we have,

sup
α
L(αwi + (1− α)w∗

anc,i) ≤ sup
α
L(αwi + (1− α)w∗

anc) + γ∥w∗
anc −w∗

anc,i∥22 (51)

≤ϵ+ γΓ2. (52)

Equation 51 is due to the assumption that L(·) is γ-smooth. By Lemma 3.3, we have d <
dϵ+γΓ2

(1−δ)
1
S

with S = hl + h. Then |zx(α)| can be bounded as

|zx(α)| ≤
√
2hb

2(1− δ)
2

hl+h

dϵ+γΓ2(dϵ+γΓ2 + danc) log(4hK
2/δ). (53)
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Table 6: Verification of transitivity of linear mode connectivity with less performed anchor
models. CIFAR-10. "Random init. Anchors" refers to that anchor models are randomly initialized
models whose initializations are also different from the trained models. "Semi-trained Anchors"
refers to that anchor models are trained for one epoch with less performed accuracy. It can be seen
that when the anchor models are less performed (A(wanc)s are low), the transitivity still holds that
connectivity loss to the same anchor model can reduce connectivity barrier.

Models Metrics Vanilla CE Loss Connectivity Loss w/ Random Init. Anchors Connectivity Loss w/ Semi-trained Anchors

CNN A(w1)+A(w2)
2 64.0±0.5 63.0±0.8 63.8±0.9

CNN A(wanc) 9.9±0.0 45.6±0.0

CNN A(wanc+w1

2 ) 56.0±2.7 54.2±0.8

CNN A(w1+w2

2 ) 11.5±0.9 23.5±5.4 19.0±4.4

CNN Acc. Barrier 0.821 0.626 (23.8%↓) 0.702 (14.5%↓)

ResNet20 A(w1)+A(w2)
2 66.7±0.9 67.4±1.3 69.0±0.2

ResNet20 A(wanc) 7.1±0.0 29.9±0.0

ResNet20 A(wanc+w1

2 ) 38.3±4.1 42.4±1.2

ResNet20 A(w1+w2

2 ) 13.0±3.8 19.5±0.7 21.0±5.4

ResNet20 Acc. Barrier 0.805 0.710 (11.8%↓) 0.696 (13.5%↓)

Table 7: Comparison of computation cost to reach the target accuracies. The computation cost
is measured by the wall-clock time (minutes) during the implementation, and the less time, the less
computation overhead. Settings: Tiny-ImageNet, non-IID hyper.=0.5, M = 50 , E = 3. It can be
seen that FedGuCci require less computation to reach the target accuracies.

Methods FedAvg FedProx FedDyn FedRoD MOON FedLC FedSAM FedGuCci
Target Acc: 20% 798m (×1.00) 872m (×1.09) 1091m (×1.37) 759m (×0.95) 848m (×1.06) 652m (×0.82) 748m (×0.94) 578m (×0.72)
Target Acc: 23% / 1173m (×1.00) 1181m (×1.01) 1337m (×1.14) 2376m (×2.0267m (×1.08) 752m (×0.64)
Target Acc: 25% / 1413m (×1.00) 1363m (×0.96) / 3649m (×2.58) / 1497m (×1.06) 926m (×0.66)

Now we turn to calculate the bound of the loss barrier Bloss({wi}Ki=1). For the loss function L(·, y)
is convex and 1-Lipschitz, similar to Equation 36, we have:

Bloss({wi}Ki=1) =L(
1

K

K∑
i=1

wi)−
1

K

K∑
i=1

L(wi) (54)
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K

∑K
i=1 vi,

1
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∑K
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(x), y)] (56)

≤E[|f 1
K
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1
K

∑K
i=1 Ui

(x)− 1

K

K∑
i=1

fvi,Ui
(x)|], (57)

where the expectation is with respect to the server dataset. Then use the bound of z(α), with
probability 1− δ, we have

Bloss({wi}Ki=1) ≤
√
2hb

2(1− δ)
2

hl+h

dϵ+γΓ2(dϵ+γΓ2 + danc) log(4hK
2/δ). (58)

□

C More Results
In Table 6, we verify the transitivity of LMC under less performed anchor models, such as random
initialization and semi-trained models. It can be seen that the transitivity stills holds regardless of the
properties of anchor models. Though a better trained anchor model may lead to better transtivitiy.
In Table 7, we compare the computation costs of methods in terms of reaching a targeted accuracy.
In Table 8, we test our methods under more non-IID data, when in Table 9, we test our methods under
smaller participation ratios. The results all show our methods are effective under these settings.
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Table 8: Results under more heterogeneous set-
tings. Tinyimagnet, ResNet-18, T = 50,M =
50, E = 3.

Methods non-IID hyper.=0.1 non-IID hyper.=0.05

FedAvg 22.92±0.42 20.03±0.87

FedDyn 21.40±1.13 18.28±1.59

FedSAM 28.53±0.86 25.53±0.96

FedGuCci 30.33±0.35 26.39±0.41
FedGuCci+ 31.26±0.53 27.21±0.56

Table 9: Experiments with smaller partic-
ipation ratios. Setting: K=100, CIFAR-10,
non-IID α = 0.1.

Methods Ratio = 5% Ratio = 10%
Local 21.80±1.49 26.82±0.09

FedAvg 62.54±0.28 64.15±0.11

FedProx 49.43±0.73 50.45±0.56

FedRoD 62.73±0.27 62.38±0.46

FedLC 62.47±0.57 63.57±0.13

FedSAM 61.92±0.44 63.99±0.41

FedGuCci 63.12±1.04 65.10±0.46
FedGuCci+ 63.61±0.24 64.57±0.44

Table 10: Ablation study of FedGuCci+. M =
50, non-IID: 1.0.

Methods/Datasets CIFAR-10 CIFAR-100

FedAvg 64.14±0.38 20.81±0.52

FedGuCci 65.45±0.19 22.74±0.42

FedGuCci + only logit calibration 65.51±0.15 22.99±0.58

FedGuCci + only SAM 65.93±0.38 25.81±1.02

FedGuCci+ (with both) 66.05±0.35 25.97±0.49

Ablation study. Table 10 shows that FedGuCci
already has obvious generalization gains over
FedAvg; further, SAM and the bias reduction method
(logit calibration) can reach higher generalization on
FedGuCci. SAM has a more dominant improvement
on FedGuCci. We note that FedGuCci is general and
flexible and may be compatible with more existing
FL algorithms [52, 53], and FedGuCci+ is just one
showcase.

D More Related Works
Linear Mode Connectivity. Linear mode connectivity (LMC) refers to the phenomenon that
there exists a loss (energy) barrier along the linear interpolation path of two networks, in the cases
where i) the two networks have the same initialization and are trained on the same dataset but with
different random seeds (data shuffles) or augmentations [14]; ii) the two networks are with different
initializations but are trained on the same dataset [12]; iii) the two networks are the initial network
and the final trained network [16]. In our paper, the transitivity of LMC can be applied to i), ii),
and iii), and especially, the two trained models can have different initializations. Specifically, [50]
examines layer-wise LMC, and finds that there may be no barriers in the layer-wise manner. [54]
connects linear mode connectivity with the lottery ticket hypothesis and finds better connectivity can
result in better pruning performances. [16] studies the relationship between generalization and the
initial-to-final linear mode connectivity. [55] bridges mode connectivity and adversarial robustness.
Some works try to extend mode connectivity beyond “linear”, e.g., searching for a non-linear low-loss
path [10] or studying mode connectivity under spurious attributes [56].
Studying the barriers in LMC is an important direction of LMC. Previous works find that there may
be no barriers between different modes, but the connected regions may be non-linear [10, 13]. In
[13], the authors propose to find paths along modes by learning Polygonal chain and Bezier curve.
Also, Nudged Elastic Band can also be used to find that connected paths [10]. In [15], the authors
propose to learn connected but diverse low-loss subspaces for efficient ensembling. Our work about
the transitivity of LMC is inspired by the previous works of learning connected paths. However,
instead of learning diverse modes for ensembling, we aim to use the anchor model to improve the
linear connectivity between two independent modes.
Generalization of Federated Learning. Generalization and personalization are two important goals
of federated learning systems [22, 6, 23, 57]. Previous works study and understand the property and
nature of generalization in FL. In [57], the authors rethink the previous definition of generalization
by considering the data distributions of non-participated clients as the participation gap and propose
a new data split method based on the insight. In the paper of FedRoD [22], the authors claim that
generalization and personalization are not conflicted; instead, improving generalization is the basis
for better personalization.
Some works aim to improve generalization from both the server and client sides. For the clients,
sharpness-aware minimization methods are introduced at the local to find a flatter minimum of local
solvers for better generalization [8, 9]. Global sharpness-aware minimization is also considered [53].
In addition, previous literature seeks to tackle local heterogeneity to improve generalization, and
methods like proximal terms [2], dynamic regularization [7], variance reduction [4], logit calibra-
tion [21], fixed classifier [23], and balanced loss [22] are devised. For the server, weighted aggregation
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approaches to de-bias local updates [5] or heterogeneity [58] can improve generalization. Recently,
global weight shrinking that sets smaller aggregation weights has been studied for unleashing the
potential of weight regularization in boosting the generalization of FL [6].

E Limitations and Broader Impacts
Limitations. Though our methods are effective for improving the generalization of federated
learning, they has limitations that it will introduce more computations than FedAvg. The introduced
computations may cause more overhead of computing resources at the edge devices.

Broader impacts. The connectivity perspective of improving the generalization of federated will
inspire more future works about model fusion. Model fusion has broad applications in large language
models and other fields, and it can merge the abilities of multiple models and data resources. As far
as we are concerned, our methods have no obvious negative impacts.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See the paper for details.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the main paper, Lines 255-258, the "Note" for FedGuCci about the commu-
nication and storage.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: As it is.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the implementation details and the hyperparameters in
Appendix A and the corresponding captions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The datasets we used are all public datasets that are available to anyone. We
have uploaded the codes as supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided the implementation details and the hyperparameters in
Appendix A and the corresponding captions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have reported the standard deviations and error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See subsection A.1 for implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: As it is.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts can be found Appendix E.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: As it is.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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