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Abstract

Large Language Models (LLMs) have achieved001
remarkable success in code generation, yet002
their capabilities remain predominantly con-003
centrated in well-resourced programming lan-004
guages such as Python and Java. In contrast,005
low-resource programming languages present006
a significant challenge due to limited available007
data and unique syntax features. In this pa-008
per, we systematically implement and evalu-009
ate four core adaptation techniques (retrieval-010
augmented generation, agentic architectures,011
tool calling and feedback guided generation)012
to understand how these models can be better013
improved for underrepresented programming014
languages. Our findings reveal that tool call-015
ing is particularly effective for low-resource016
languages, outperforming its performance on017
high-resource counterparts. Conversely, high-018
resource languages show a stronger preference019
for agentic workflows and RAG, likely due to020
the models’ deeper familiarity and pretraining021
exposure to these languages.022

1 Introduction023

Recent years have seen a surge of significant ad-024

vancement in code-oriented LLMs across a vari-025

ety of languages. These efforts include Jetbrain026

Mellum (JetBrains, 2024), OpenCoder (Huang027

et al., 2024), Meta LLM Compiler (Cummins028

et al., 2024), StarCoder (Lozhkov et al., 2024),029

CodeGeeX (Zheng et al., 2023), CodeT5 (Wang030

et al., 2021, 2023), CodeBERT, PLBART and031

UniXcoder (Guo et al., 2022), AlphaCode (Li et al.,032

2022), InCoder (Fried et al., 2022), PolyCoder (Xu033

et al., 2022), CodeGen (Nijkamp et al., 2022), in-034

dustry systems such as GitHub Copilot, Meta Code035

Llama (Roziere et al., 2023), Google Codey, and036

BigCode StarCoder (Li et al., 2023).037

However, these successes have been skewed to-038

wards well-represented programming languages,039

such as Python and Java, where abundant training040

data is available. Low-resource programming lan-041

guages, i.e., those with relatively little public code 042

or documentation, remain a challenge. 043

Just as LLMs for natural language struggle with 044

low-resource human languages, e.g., languages 045

with limited text corpora, code-oriented LLMs 046

find it difficult to achieve proficiency in less com- 047

mon programming languages. Challenges for low- 048

resource natural languages include data scarcity, 049

vocabulary issues, tokenization issues, wrong func- 050

tion usage and domain mismatch. Solutions include 051

multilingual pretraining such as XLM-R (Conneau 052

et al., 2019)), transfer learning, data augmentation 053

and back-translation (Sennrich et al., 2015), unsu- 054

pervised or weakly supervised learning, and tok- 055

enizer adaptation. 056

Challenges for low-resource programming lan- 057

guages mirror those found in low-resource natu- 058

ral languages, including limited training data, di- 059

verse syntax and library support, and increased 060

evaluation difficulty. Addressing these issues in 061

code-focused LLMs has prompted several strate- 062

gies. Approaches include multilingual data sam- 063

pling and balanced training (Li et al., 2023), the use 064

of shared sub-word vocabularies to facilitate cross- 065

language generalization (Roziere et al., 2020)), 066

cross-language transfer learning, leveraging avail- 067

able documentation (Puri et al., 2021), and code 068

translation methods (Lu et al., 2021). 069

Through these advances, noteworthy trends have 070

emerged, such as the use of Retrieval-Augmented 071

Generation (RAG) (Yu et al., 2024), agentic archi- 072

tectures (Plaat et al., 2025), tool-calling and feed- 073

back guided generation methods for more efficient 074

code generation. 075

In this paper, we provide a systematic analy- 076

sis of core techniques driving the state-of-the-art 077

in code generation for low-resource programming 078

languages: RAG, agentic architectures, tool call- 079

ing and execution guided generation. To assess 080

their practical utility, we implemented each tech- 081

nique and conducted experiments to evaluate their 082
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Figure 1: Overview of adaptation methods evaluated
for code generation in low-resource programming lan-
guages.

effectiveness and limitations in extending LLM083

capabilities to underrepresented programming lan-084

guages. Our work situates these advancements085

within the broader landscape, providing empirical086

insights into their impact and areas for improve-087

ment.088

2 Adaptation Methods089

We investigate core adaptation techniques for en-090

abling effective code generation in low-resource091

programming languages. Each technique offers a092

different balance of scalability, cost, and language093

specificity. Below, we describe each method and094

how it applies to the context of low-resource pro-095

gramming languages.096

2.1 Agentic Architecture097

Agentic architectures structure systems around au-098

tonomous or semi-autonomous agents that coordi-099

nate decision-making through sequences of mod-100

ular, interpretable steps. This paradigm is espe-101

cially advantageous in low-resource programming102

language settings, where the limited availability103

of training data or task-specific expertise can be104

offset by dynamic planning and tool integration.105

Agentic systems decompose complex problems106

into smaller, solvable sub-tasks—such as documen-107

tation retrieval, code synthesis, or output valida-108

tion—and allow the system to adaptively choose109

appropriate strategies at runtime.110

In our implementation, we adopt a minimal agen-111

tic loop built on a reactive control flow, consisting112

of three cooperating agents:113

Answering Agent Responsible for generating can-114

didate answers to programming queries using a115

language model. It operates over the complete116

interaction history (turn-level memory) and incor- 117

porates relevant contextual cues from prior steps. 118

Documentation Lookup Agent Implements an 119

embedding-based retrieval system over the pro- 120

gramming language’s official documentation cor- 121

pus. Given a natural language query, it retrieves 122

semantically similar documentation passages using 123

a vector store (e.g., FAISS) and passes these to the 124

answering agent or reviewer. 125

Review and Feedback Agent: Evaluates the out- 126

put of the answering agent, optionally suggesting 127

corrections or improvements. If the answer is un- 128

satisfactory, it prompts the answering agent with 129

refined instructions or additional retrieved context. 130

This architecture allows for iterative refinement, 131

grounded code generation, and dynamic fallback 132

behavior—all critical for handling sparse or am- 133

biguous queries in under-documented language en- 134

vironments. 135

2.2 Tool Calling 136

Tool calling enables a language model to extend 137

its capabilities by invoking external programs or 138

APIs, allowing it to offload computation, verifica- 139

tion, or knowledge retrieval to specialized tools. In 140

low-resource language contexts, where pretrained 141

models lack deep syntactic or semantic fluency, 142

tool calling bridges the capability gap by enabling 143

real-time interaction with reliable resources. 144

We implement a tool calling framework with 145

access to two key utilities: 146

Documentation Tool: Accepts a natural language 147

query and returns the most relevant documentation 148

segment using an embedding-based retrieval mech- 149

anism. This tool interfaces with a preprocessed 150

documentation corpus indexed using sentence- 151

transformer embeddings. 152

Example Tool: Retrieves the closest matching 153

code example from an example bank, also using 154

dense vector similarity. These examples are man- 155

ually curated or programmatically extracted from 156

source repositories, and they support analogical 157

reasoning during code synthesis. 158

The system issues calls to these tools based on 159

confidence heuristics and query complexity. Re- 160

trieved results are integrated into the generation 161

pipeline either as grounding input to the model or 162

as structured prompts. 163

2.3 Retrieval-Augmented Generation (RAG) 164

Retrieval-Augmented Generation (RAG) is a hy- 165

brid approach that combines generative language 166
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modeling with non-parametric retrieval. It is partic-167

ularly effective for low-resource languages, where168

direct model supervision is limited. RAG leverages169

an external corpus to augment the model’s gener-170

ation capabilities with grounded, factual context171

retrieved on demand.172

In our setting, we implement a dual-retrieval173

RAG pipeline optimized for code-related tasks:174

(A) We maintain two separate corpora: (1) the offi-175

cial documentation and (2) a curated set of real-176

world code examples. Both are encoded using177

transformer-based embedding models and stored178

in efficient vector indices. (B) Given a user query,179

we first perform an initial round of embedding-180

based retrieval to identify top-k relevant entries181

from each corpus independently. (C) In the second182

stage, these retrieved items are re-ranked based183

on their contextual relevance to the input prompt184

(using cross-encoder scoring), and a final set of185

passages/examples is concatenated with the user186

query to form the model input.187

This approach allows the model to remain188

lightweight while being augmented with seman-189

tically relevant, high-precision content. By exter-190

nalizing domain knowledge, RAG improves inter-191

pretability and generalizability across previously192

unseen programming scenarios.193

2.4 Execution-Guided Generation194

Learning from failures is a well-established195

paradigm in language model research, where mod-196

els iteratively refine their outputs based on feedback197

from execution results. Several works in the litera-198

ture (Shinn et al., 2023; Gupta et al., 2024) employ199

reviewer agents to analyze model outputs against200

ground truth, providing feedback that guides subse-201

quent generations toward better problem-solving.202

In our setup, we implement a similar reviewer203

agent that consumes the model-generated code204

along with execution feedback and the output pro-205

duced by the code executor. The reviewer agent206

then generates actionable feedback-highlighting207

execution or syntax errors and suggesting improve-208

ments. This feedback is appended to the original209

prompt and passed back to the model. This itera-210

tive loop helps the model learn from its mistakes211

and progressively refine its output, ultimately gen-212

erating syntactically correct and executable code213

that solves the target task.214

3 Experimental Setup 215

3.1 Documentation and Example Extraction 216

Low-resource programming languages often lack 217

high-quality online documentation, making it diffi- 218

cult for off-the-shelf models to learn their syntax 219

and semantics. To mitigate this, we collect and 220

parse official documentation for six such languages: 221

Ada, Clojure, Dart, Elixir, Prolog, and Swift. Us- 222

ing custom scripts and the Python BeautifulSoup 223

library, we recursively crawl and extract structured 224

information–including classes, functions, methods, 225

APIs, and associated metadata such as descriptions, 226

signatures, and usage details and code examples. 227

3.2 Tasks 228

To cover a wide variety of code tasks covering (1) 229

generation, (2) understanding, and (3) repair, we 230

use a MCQA dataset over low resource languages 231

that constructs MCQ tasks over these. These tasks 232

are deterministically generated over the CodeNet 233

dataset. Other than MCQA, we also consider the 234

code generation task using the MultiPL-E (Cassano 235

et al., 2023) benchmark. 236

3.3 Metrics 237

To evaluate the effectiveness of various SOTA 238

adaption techniques for code-generation in low 239

resource programming language, we employ two 240

primary evaluation metrics. First, we measure ac- 241

curacy over the MCQA tasks. Second, we report 242

the pass@k (i.e., functional correctness) for the 243

MultiPL-E (Cassano et al., 2023) benchmark. 244

4 Results 245

4.1 Performance across various Techniques 246

Table 1 shows the performance of various adapta- 247

tion techniques on six low resource programming 248

languages for both (a) MCQA accuracy and (b) 249

MultiPL-E Pass@1. We find that using tool-calling 250

performs significantly better than any other ap- 251

proach for code-generation. Upon investigation, we 252

see a few emergent patterns, (1) the model prefers 253

requesting information (documentation tool) over 254

proactively being given information (RAG) and is 255

able to use the information better. We find that the 256

model is more likely to use information provided 257

when it request it rather than when it is included in 258

the original prompt; (2) the model is able to reason 259

better over new information when all the process- 260

ing happens in the same turn memory (single model 261

3



Table 1: Performance comparison of various adaption techniques across six low-resource programming languages
using GPT-4o

(a) MCQA Accuracy (%)

Domain Agentic Tool RAG Feedback

Ada 77.2 86.7 73.8 78.9
Swift 57.0 69.1 65.3 60.4
Prolog 44.5 55.4 51.7 56.2
Clojure 38.9 49.8 34.6 49.0
Dart 36.1 50.0 35.9 40.1
Elixir 38.0 48.5 33.4 42.6

(b) MultiPL-E Pass@1 (%)

Domain Agentic Tool RAG Feedback

Ada 69.8 77.2 62.3 66.1
Swift 42.5 49.0 45.1 48.5
Prolog 38.0 45.6 40.2 34.0
Clojure 48.1 48.1 43.5 37.2
Dart 43.2 42.3 45.7 39.3
Elixir 40.4 46.9 41.8 35.9

message history) as opposed to this process being262

split over multiple models (agentic architecture).263
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Figure 2: Performance variation of different language
models across various adaptation techniques. The scores
are averaged over six low-resource languages.

4.2 Do models have a preference?264

To investigate whether certain models exhibit a265

preference for specific adaptation techniques, we266

analyze six models: Phi-4, Mixtral-7B, DeepSeek-267

distill-Qwen-7B, GPT-4o, GPT-4.1, and GPT-o1.268

Figure 2 presents their performance across vari-269

ous setups, aggregated over all six low-resource270

programming languages. Our analysis reveals that271

tool calling generally yields the best results. How-272

ever, smaller models (fewer than 20B parameters)273

achieve performance comparable to tool calling274

when using retrieval-augmented generation (RAG).275

A closer examination of model traces indicates that276

these smaller models are less inclined to invoke277

tools, often opting to generate answers directly278

from the prompt. This behavior likely contributes279

to RAG’s relative effectiveness in such cases.280

4.3 Do low resource programming languages281

behave differently?282

We also investigate whether low-resource program-283

ming languages exhibit different behavior com-284

pared to high-resource ones. As shown in Figure 3,285

for high-resource languages such as Python and286

C++, tool-based approaches underperform com-287

pared to retrieval-augmented generation (RAG) and288
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Figure 3: Performance across various adaptation meth-
ods for high and low resource programming languages
using GPT-4o.

agentic methods. This trend is in stark contrast to 289

the patterns observed for low-resource languages. 290

One possible explanation is that language mod- 291

els, having been extensively trained on high- 292

resource languages, are more capable of handling 293

tasks in a standalone manner. Consequently, they 294

perform better in settings like the agentic workflow, 295

and RAG where the history of information may not 296

be shared. 297

Conclusion 298

Adapting LLMs to excel in low-resource pro- 299

gramming languages is a multi-faceted challenge 300

that has seen substantial progress. At a high 301

level, recent successes are built on: leverag- 302

ing transfer from high-resource languages, care- 303

ful balanced training, data synthesis strategies, 304

parameter-efficient adaptation, and robust bench- 305

marking. Open contributions and the synergy be- 306

tween academia and industry have accelerated ad- 307

vances. Trends include continued data synthesis, 308

integrating tool use, stronger parameter-adaptive 309

fine-tuning, evolving benchmarks, and striving for 310

not just syntactic but idiomatic, maintainable code. 311

With these foundations, we may soon reach parity 312

in LLM code generation across the broad diversity 313

of programming languages. 314
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Limitations315

As the field continues to evolve rapidly, several ef-316

forts have addressed the challenges of low-resource317

programming languages. Our work offers timely318

insights into the effectiveness of key adaptation319

techniques; retrieval-augmented generation (RAG),320

agentic architectures, tool calling, and feedback-321

guided generation—in this context. However,322

certain limitations remain. First, our evaluation323

spans only six low-resource and two high-resource324

languages. While diverse, this selection may325

not reflect the full range of language complex-326

ity or generalize to niche or domain-specific lan-327

guages. Second, we use SOTA adaptation tech-328

niques with tuned configurations to ensure consis-329

tency. This may underestimate the potential per-330

formance achievable with task-specific finetuning,331

particularly for agentic workflows and tool calling.332

Finally, we evaluate only a few open or accessible333

foundation models and adaptation techniques. This334

exclusion limits the completeness of our bench-335

marking relative to real-world usage scenarios. Fu-336

ture work could expand in these directions, as well337

as explore how user interaction patterns impact338

model performance in low-resource settings.339
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