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Abstract—This paper investigates fixed-time (FT) Nash equi-
librium (NE) seeking problem for non-cooperative games. A
novel second-order NE seeking neurodynamic system is proposed
to accelerate the convergence. It is proved that the proposed
neurodynamic system’s trajectory converges to NE within fixed-
time under a function called potential function and strongly
monotone potential function respectively. It is shown that the
upper bounds are independent of the initial conditions. The ro-
bustness of the proposed NE seeking neurodynamic system under
bounded perturbations is further studied. The effectiveness and
practicability of the proposed NE seeking system are illustrated
via a simulation example and an analog circuit implementation
on Multisim 14.3.

Index Terms—Non-cooperative games, Nash Equilibrium,
fixed-time, neurodynamic system

I. INTRODUCTION

Non-cooperative games are invaluable for modeling and an-
alyzing interactive decision-making processes [1], [2]. In non-
cooperative games, players aim to minimize their individual
cost functions to ultimately achieve a stable state identified
as the Nash equilibrium. The study of Nash equilibrium in
non-cooperative games has become a crucial area of research
with significant potential in recent years, which is particularly
evident in applications across economics, resource allocation,
optimization problems, and energy control [3]–[5].

Neurodynamic systems based on Lyapunov function are
well-developed in NE seeking problems, and have appealed
a lot of interest in [6]–[11]. To obtain a faster convergence, a
variety of accelerated neurodynamics have been investigated
and proposed [12]–[15]. A generalized framework for design-
ing accelerated algorithms with strongest convergence was
proposed in [16]. Ye [17] considered the bounded inputs and
further proposed the first-order and second-order NE seeking
dynamics. As a matter of fact, most of the neurodynamic
systems in the literature have only established asymptotic con-
vergence, or exponential convergence [18]–[21] while many
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practical Nash equilibrium seeking problems are expected to
be completed within a finite time rather than an infinite one.

Thus recently finite-time (FIT) convergence and fixed-time
(FT) convergence have been investigated frequently. An algo-
rithm was proposed to achieve finite-time Nash equilibrium
seeking in [22]. While in finite-time NE seeking systems, NE
can be guaranteed to realize in finite-time, the upper bound is
highly related to the initial conditions. If the initial information
of the system is unknown, the convergence time can not be
estimated, which will limit the practical application range of
the finite-time NE seeking systems. To address the mentioned
limitations of finite-time NE seeking neurodynamic systems,
fixed-time NE seeking systems have been hence developed and
investigated in [23], [24]. Fixed-time NE seeking system can
converge to NE within fixed-time and the upper bound does
not depend on the initial conditions of the players. Therefore,
investigating fixed-time NE seeking system holds significant
research value. To be specific, Li et al. [23] investigated a
finite-time and a fixed-time NE seeking algorithm within pre-
dictable time respectively, which is independent of the initial
states. For NE seeking under both constant and time-varying
delays, Ai [24] proposed the gradient play technique with FT
differentiator. Moreover, the implementations of neurodynamic
system have attracted the attention and well developed in
recent years. Wu et al. [25] presented two novel analog circuit
frameworks in presence of a non-smooth term, formed by
integrator, gradient estimate, proximal operator and other basic
operation models. While the analog circuit implementations of
fixed-time NE seeking neurodynamic systems have not been
well developed.

Literature review above reveals that most works achieve NE
seeking either with asymptotic or exponential convergence and
the second-order neurodynamic system have not been well
developed in fixed-time NE seeking problems. Motivated by
the literature reviews above, in this paper we focus on de-
signing a novel second-order neurodynamic system for fixed-
time NE seeking with strong robustness, and its analog circuit
implementation. The main contributions and innovations are
summarized as follows.

We propose a novel second-order neurodynamic system
to achieve FT convergence for NE seeking problems under



strongly monotone function and potential function respec-
tively. The upper bounds are explicitly given, which are
independent of the initial conditions of the players. Then, we
show that the proposed FT convergence of the neurodynamic
system is preserved when it is subject to some bounded noise.
To validate the physical realizability of designed system, we
implement the proposed NE seeking neurodynamic system on
the analog circuit.

The rest of the paper is organized as follows. In Section
II, the problem formulation and some lemmas are given. In
Section III, a novel second-order neurodynamic system for
fixed-time NE seeking is proposed as well as its convergence
and robustness analysis. Further, in Section IV, a numerical
simulation and circuit experiment are provided to illustrate
effectiveness and advantages of the proposed system, which is
followed by some concluding remarks in Section V.

Notations: The paper adopts R, Rn to denote the set of
real numbers and vectors respectively. ∥ · ∥ and |x| denotes 2-
norm and component-wise absolute value of the vector x ∈ Rn

respectively.

II. PRELIMINARIES

A. Problem fomulation

Consider N players in the non-cooperative game with two
or more participants. The set of players is denoted as : N =
{1, 2, . . . , N} ∈ RN . The strategy function that consists of all
the players’ actions is described as x = [x1, x2, . . . , xN ] ∈
RN , where xi represents the actions that player i can take.
x−i = [x1, . . . , xi−1, xi+1, . . . , xN ] ∈ RN−1 denotes the
function consisting of all other players’ actions except xi.
Thus, x can be represented as x = (xi, x−i). The cost function
for player i is denoted as fi, representing the cost for each
player. When the strategy profile x∗ satisfies the NE condition,
the cost is minimized for each player.

For notation convenience, we get that fi = fi(xi, x−i).
Then the pseudogradient is defined as: G(x) =
[∇1f1(x),∇2f2(x), ...,∇NfN (x)]⊤, where each element
∇ifi is defined as ∇ifi(x) =

∂fi(x)
∂xi

, for all i ∈ N . And we
define r(x) as

r(x) =


∂2f1(x)
∂2x1

∂2f1(x)
∂x1∂x2

· · · ∂2f1(x)
∂x1∂xN

∂2f2(x)
∂x2∂x1

∂2f2(x)
∂2x2

· · · ∂2f2(x)
∂x2∂xN

· · · · · ·
· · · · · ·

∂2fN (x)
∂xN∂x1

∂2fN (x)
∂xN∂x2

· · · ∂2f2(x)
∂2xN


.

The NE for a non-cooperative game is defined as x∗ =
(x∗

i , x
∗
−i) such that

fi(x
∗
i , x

∗
−i) ≤ fi(xi, x

∗
−i). (1)

NE means that no player can further reduce its associated
cost function by unilaterally changing its own action.

B. Lemmas

Lemma 1. [26] Consider the general differential equation

ẋ = f(x(t)), x(0) = x0 ∈ Rn, (2)

where x∈ Rn and f : R × Rn → Rn is a time-continuous
non-linear function, there exists a x∗ ∈ Rn is an equilibrium
point of system (1) such that f(x∗) = 0 for all t ≥ 0.

Consider system (2). If there exists a continuous radially
unbounded function V : Rn → R+

∪
{0} such that

• V (x(t)) = 0 ⇔ x(t) = 0.
• any solution x(t) of (2) satisfies the inequality

V̇ (x(t)) ≤ −µV (x(t))− αkV pk(x(t))− βkV qk(x(t))

for some µ, α, β, p, q, k > 0 : pk < 1, qk > 1.
Then the origin of the system (2) is globally fixed-time

stable, and the following estimate of the settling time T (x0)
holds

T (x0) ≤ T̂ =
ln(1 + µ

αk )

µ(1− pk)
+

ln(1 + µ
βk )

µ(qk − 1)
. (3)

Lemma 2. [27] Let ξi ≥ 0 for all i ∈ N and a, β > 1, it
holds that,

(
N∑
i=1

ξi)
1
a ≤

N∑
i=1

ξ
1
a
i , N1−β(

N∑
i=1

ξi)
β ≤

N∑
i=1

ξβi . (4)

Note that if the unbounded function V satisfies the inequal-
ity in Lemma 1, the estimation of the settling time bound can
be achieved as T̂ . Therefore, the estimation of the settling time
bound is independent of the initial state x(0).

III. MAIN RESULTS

A. FT Nash equilibrium seeking neurodynamic system

To achieve fixed-time convergence for NE seeking, we
consider the following second-order neurodynamic system,

żi = ∇ifi(x)− zi

(
mi

∥zi∥a
+

ni

∥zi∥−b
+ li

)
, (5a)

ẋi = −zi −∇ifi(x)

(
gi

∥∇ifi(x)∥a
+

qi
∥∇ifi(x)∥−b

+ hi

)
, (5b)

where mi, ni, gi, qi > 0 are tunable gains, a ∈ (0, 1) and
b > 0 are tunable parameters.

The diagram framework of neurodynamic system (5) is
simply depicted in Fig. 1 with basic electronic components
including operational amplifier, resisitor, capacitor and a bunch
of other components.

To achieve fixed-time convergence of neurodynamic system
(5), we make the following assumptions.

Assumption 1. The pesudogradient G(x) is strongly mono-
tone and Lipschitz continuous with α > 0 that α∥x − y∥2 ≤
⟨G(x)−G(y), x− y⟩.



Fig. 1: Circuit frame of neurodynamic system (5).

Assumption 2. There exists a unbounded function F and
w > 0. And the function F satisfies the follows equalities
and inequality, which is called potential function,

∇iF (x) = ∇ifi(x), (6)

x∗ = argmin F (x), (7)

F (x)− F (x∗) ≤ 1

2w
∥G(x)∥2. (8)

Remark 1. Under Assumption 1, r(x) satisfies r(x) +
r(x)⊤ ≥ 2λI , I is identity matrix and x ∈ Rn. Note that
any potential game with a strongly convex potential function
satisfies Assumption 2. In this condition, we can relax the
strongly-convex function. The existence of NE is guaranteed
under these assumptions.

Theorem 1. Suppose that Assumption 1 holds. Let g0 =
min{gi}, q0 = min{qi}, m0 = min{mi}, n0 = min{ni},
h0 = min{hi} and l0 = min{li} for all i ∈ N . Then the
trajectory x(t) of neurodynamic system (5) converges to NE
x∗ in FT with the settling time given as follows,

T̂ ≤
2ln(1 + y3

y1
)

y3a
+

2ln(1 + y3

y2
)

y3b
, (9)

where y1 = min{21− a
2 λg0, (2λ)

1− a
2 m0}, y2 =

min{21+ b
2λq0N

−b, (2λ)1+
b
2n0N

−b}, y3 = min{2λh0, 2λl0}
are positive constants.

Proof. Consider the Lyapunov function

V (x) =
1

2
∥G(x)∥2 + λ

2

N∑
i=1

z2i , (10)

which is positive definite with respect to x∗, and also radially
unbounded. The time derivative of V (x) satisfies

V̇ (x) = − [∇ifi(x)]
⊤
vecr(x)[

gi∇ifi(x)

∥∇ifi(x)∥a
]vec

− [∇ifi(x)]
⊤
vecr(x)[

qi∇ifi(x)

∥∇ifi(x)∥b
]vec

− [∇ifi(x)]
⊤
vecr(x)[hi∇ifi(x)]vec

− λmi

N∑
i=1

z2−a
i − λni

N∑
i=1

z2+b
i − λli

N∑
i=1

z2i .

It follows from Lemma 2 that

V̇ (x) ≤ − λ[∇ifi(x)]
⊤
vecI(x)[

gi∇ifi(x)

∥∇ifi(x)∥a
]vec

− λ[∇ifi(x)]
⊤
vecI(x)[

qi∇ifi(x)

∥∇ifi(x)∥b
]vec

− λ[∇ifi(x)]
⊤
vecI(x)[hi∇ifi(x)]vec

− λm0

N∑
i=1

z2−a
i − λn0

N∑
i=1

z2+b
i − λli

N∑
i=1

z2i

≤ − λg0

( N∑
i=1

∥∇ifi(x)∥2
)1− a

2

− λq0N
− b

2

( N∑
i=1

∥∇ifi(x)∥2
)1+ b

2

− λh0

N∑
i=1

∥∇ifi(x)∥2 − λm0

( N∑
i=1

z2i

)1− a
2

− λn0N
− b

2

( N∑
i=1

z2i

)1+ b
2

− λli

N∑
i=1

z2i .

Under Assumption 1, we get

V̇ (x) ≤ − 21−
a
2 λg0

(
1

2
∥G(x)∥2

)1− a
2

− 21+
b
2λq0N

− b
2

(
1

2
∥G(x)∥2

)1+ b
2

− 2λh0

(
1

2
∥G(x)∥2

)
− (2λ)1−

a
2 m0

(
λ

2

N∑
i=1

z2i

)1− a
2

− (2λ)1+
b
2n0N

− b
2

(
λ

2

N∑
i=1

z2i

)1+ b
2

− 2λl0

(
λ

2

N∑
i=1

z2i

)
.

Combining the Lyapunov function in eq. (10), we can further
express the time derivative of V (x) as follows

V̇ (x) ≤ − y1V (x)1−
a
2 − y2V (x)1+

b
2 − y3V (x),

where the exponential terms (1 − a
2 ) < 1, (1 +

b
2 ) > 1 and y1 = min{21− a

2 λg0, (2λ)
1− a

2 m0} > 0,
y2 = min{21+ b

2λq0N
−b, (2λ)1+

b
2n0N

−b} > 0, y3 =
min{2λh0, 2λl0} > 0. Combining Lemma 1, the settling time
can be easily obtained as (9). This also implies that x∗ is
an equilibrium point of the neurodynamic. The proof is thus
completed.



Remark 2. Note that novel bound inequality (9) depends on
the designed parameters a, b, gi,mi, ni, hi, qi and the number
of players N , which can all be pre-set. Thus, the settling time
bound T̂ > 0 can calculated via the assignment of the gains
above.

We now consider the neurodynamic system (5) with the
potential function as shown in Assumption 2.

Theorem 2. Suppose that Assumption 2 holds. Let g0 =
min{gi}, q0 = min{qi}, m0 = min{mi}, n0 = min{ni},
h0 = min{hi} and l0 = min{li} for all i ∈ N . Then the
trajectory x(t) of neurodynamic system (5) converges to NE
x∗ in FT with the settling time given as follows,

T̂ ≤
2ln(1 + u3

u1
)

u3a
+

2ln(1 + u3

u2
)

u3b
, (11)

where u1 = min{(2w)1− a
2 g0, 2

1− a
2 m0}, u2 =

min{(2w)1+ b
2 q0N

−b, 21+
b
2n0N

−b}, u3 = min{2wh0, 2l0}
are positive constants.

Proof. Consider the Lyapunov function

V (x) = F (x)− F (x∗) +
1

2

n∑
i=1

z2i , (12)

which is also positive definite with respect to x∗, and also
radially unbounded due to Assumption 2. The time derivative
of V (x) satisfies

V̇ (x) =
N∑
i=1

∇ifi(x)ẋi +
N∑
i=1

ziżi. (13)

It follows from Lemma 2 that

V̇ (x) =gi

N∑
i=1

(
∥∇ifi(x)∥2

)1− a
2

− qi

N∑
i=1

(
∥∇ifi(x)∥2

)1+ b
2

− h0

N∑
i=1

∥∇ifi(x)∥2 −mi

N∑
i=1

(
z2i

)1− a
2

− ni

N∑
i=1

(
z2i

)1+ b
2

− li

N∑
i=1

z2i

≤ − g0

( N∑
i=1

∥∇ifi(x)∥2
)1− a

2

− q0N
− b

2

( N∑
i=1

∥∇ifi(x)∥
)1+ b

2

− h0

N∑
i=1

∥∇ifi(x)∥ −m0

( N∑
i=1

z2i

)1− a
2

− n0N
− b

2

( N∑
i=1

z2i

)1+ b
2

− li

N∑
i=1

z2i .

Using the property of Assumption 2, we can get

V̇ (x) ≤ − g0∥G(x)∥2−a − q0N
− b

2 ∥G(x)∥2+b

− h0∥G(x)∥2 −m0

( N∑
i=1

z2i

)1− a
2

− n0N
− b

2

( N∑
i=1

z2i

)1+ b
2

− l0

N∑
i=1

z2i

≤ − (2w)1−
a
2 g0

(
F (x)− F (x∗)

)1− a
2

− (2w)1+
b
2 q0N

− b
2

(
F (x)− F (x∗)

)1+ b
2

− 2wh0

(
F (x)− F (x∗)

)
−m0

( N∑
i=1

z2i

)1− a
2

− n0N
− b

2

( N∑
i=1

z2i

)1+ b
2

− l0

N∑
i=1

z2i .

Combining the Lyapunov function in eq. (12), we can further
express the upper bound of the time derivative of V (x) as
follows,

V̇ (x) ≤ − u1V (x)1−
a
2 − u2V (x)1+

b
2 − u3V (x),

where the exponential terms (1 − a
2 ) < 1, (1 +

b
2 ) > 1 and u1 = min{(2w)1− a

2 g0, 2
1− a

2 m0} > 0,
u2 = min{(2w)1+ b

2 q0N
−b, 21+

b
2n0N

−b} > 0, u3 =
min{2wh0, 2l0} > 0. It follows from Lemma 1 that the
trajectory x(t) of system (5) converges to NE x∗ in FT with
the settling time given as in (11). It implies that x∗ is an
equilibrium point of the neurodynamic system. The proof is
thus completed.

Remark 3. It can be observed that the proposed neurodynamic
system either under Assumption 1 or Assumption 2 can
guarantee the existence and uniqueness of NE. Moreover, dif-
ferent from the literature work with asymptotic or exponential
convergence [18]–[21], we propose accelerated and explicit
fixed-time upper bounds.

B. Robustness analysis

We now investigate the robustness of neurodynamic system
(5), the FT convergence is maintained when it is exposed to
the following perturbations,

żi = ∇ifi(x)− zi

(
mi

∥zi∥a
+

ni

∥zi∥−b
+ li

)
+ ζi(z), (14a)

ẋi =zi −∇ifi(x)

(
gi

∥∇ifi(x)∥a
+

qi
∥∇ifi(x)∥−b

+ hi

)
+ ωi(x),

(14b)

where ζi(z), ωi(x) : Rn → R are two perturbation terms,
satisfy the following assumption.



Assumption 3. There exist constants L1 > 0 and L2 > 0
such that those perturbations above ∥ζi(z)∥ < L1∥z∥ and
∥ωi(x)∥ < L2∥∇ifi(x)∥ for all i ∈ N .

Theorem 3. Suppose Assumption 1 and Assumption 3 hold.
Let h0 ≥ L1, l0 ≥ L2, g0 = min{gi}, q0 = min{qi}, m0 =
min{mi}, n0 = min{ni}, h0 = min{hi} and l0 = min{li}
for all i ∈ N . Then the trajectory x(t) of the neurodynamic
system (14) converges to NE x∗ in FT with the settling time
given as follows,

T̂ ≤
2ln(1 +

y∗
3

y∗
1
)

y∗3a
+

2ln(1 +
y∗
3

y∗
2
)

y∗3b
, (15)

where y∗1 = min{21− a
2 λg0, (2λ)

1− a
2 m0}, y∗2 =

min{21+ b
2λq0N

−b, (2λ)1+
b
2n0N

−b}, y∗3 = min{2λ(h0 −
L1), 2λ(l0 − L2)} are some positive constants.

Proof. Consider the Lyapunov function in eq. (10), the time
derivative of V (x) satisfies

V̇ (x) = − [∇ifi(x)]
⊤
vecr(x)[

gi∇ifi(x)

∥∇ifi(x)∥a
]vec

− [∇ifi(x)]
⊤
vecr(x)[

qi∇ifi(x)

∥∇ifi(x)∥b
]vec

− [∇ifi(x)]
⊤
vecr(x)[hi∇ifi(x)]vec

+ [∇ifi(x)]
⊤
vecr(x)[L1∇ifi(x)]vec

− λmi

N∑
i=1

z2−a
i − λni

N∑
i=1

z2+b
i

− λli

N∑
i=1

z2i + λL2

N∑
i=1

z2i .

It follows from Lemma 2 that

V̇ (x) ≤ − λ[∇ifi(x)]
⊤
vecI(x)[

gi∇ifi(x)

∥∇ifi(x)∥a
]vec

− λ[∇ifi(x)]
⊤
vecI(x)[

qi∇ifi(x)

∥∇ifi(x)∥b
]vec

− λ[∇ifi(x)]
⊤
vecI(x)[hi∇ifi(x)]vec

+ λ[∇ifi(x)]
⊤
vecI(x)[L1∇ifi(x)]vec

− λm0

N∑
i=1

z2−a
i − λn0

N∑
i=1

z2+b
i

− λli

N∑
i=1

z2i + λL2

N∑
i=1

z2i

≤ − λg0

( N∑
i=1

∥∇ifi(x)∥2
)1− a

2

− λq0N
− b

2

( N∑
i=1

∥∇ifi(x)∥2
)1+ b

2

− λ(h0 − L1)

N∑
i=1

∥∇ifi(x)∥2 − λm0

( N∑
i=1

z2i

)1− a
2

− λn0N
− b

2

( N∑
i=1

z2i

)1+ b
2

− λ(l0 − L2)
N∑
i=1

z2i .

Combining Assumption 1, we get

V̇ (x) ≤ − 21−
a
2 λg0

(
1

2
∥G(x)∥2

)1− a
2

− 21+
b
2λq0N

− b
2

(
1

2
∥G(x)∥2

)1+ b
2

− 2λ(h0 − L1)

(
1

2
∥G(x)∥2

)
− (2λ)1−

a
2 m0

(
λ

2

N∑
i=1

z2i

)1− a
2

− (2λ)1+
b
2n0N

− b
2

(
λ

2

N∑
i=1

z2i

)1+ b
2

− 2λ(l0 − L2)

(
λ

2

N∑
i=1

z2i

)
.

Under Assumption 3, h0 − L1, l0 − L2 > 0 and combine the
Lyapunov function in eq. (10), we can get

V̇ (x) ≤ − y∗1V (x)1−
a
2 − y∗2V (x)1+

b
2 − y∗3V (x),

where the exponential terms (1 − a
2 ) < 1, (1 +

b
2 ) > 1 and y∗1 = min{21− a

2 λg0, (2λ)
1− a

2 m0} > 0,
y∗2 = min{21+ b

2λq0N
−b, (2λ)1+

b
2n0N

−b} > 0, y∗3 =
min{2λ(h0−L1), 2λ(l0−L2)} > 0. It follows from Lemma 1
that the trajectory x(t) of neurodynamic system (14) converges
to NE x∗ in FT with the settling time given as in (15). It
implies that x∗ is an equilibrium point of the neurodynamic
system when it is subject to the above perturbations. The proof
is thus completed.

Theorem 4. Suppose Assumption 2 and Assumption 3 hold.
Let that h0 ≥ L1, l0 ≥ L2, g0 = min{gi}, q0 = min{qi},
m0 = min{mi}, n0 = min{ni}, h0 = min{hi} and l0 =
min{li} for all i ∈ N . Then the trajectory x(t) of system
(14) converges to NE x∗ in FT with the settling time given as
follows,

T̂ ≤
2ln(1 +

u∗
3

u∗
1
)

u∗
3a

+
2ln(1 +

u∗
3

u∗
2
)

u∗
3b

, (16)

where u∗
1 = min{(2w)1− a

2 g0, 2
1− a

2 m0}, u∗
2 =

min{(2w)1+ b
2 q0N

−b, 21+
b
2n0N

−b}, u∗
3 = min{2w(h0 −

L1), 2(l0 − L2)} are some positive constants.

Proof. Take the Lyapunov function in eq. (12). Combining
Lemma 2, by differentiating V (x) with respect to time, we



get

V̇ (x) = − gi

N∑
i=1

(
∥∇ifi(x)∥2

)1− a
2

i

− qi

N∑
i=1

(
∥∇ifi(x)∥2

)1+ b
2

i

− h0

N∑
i=1

∥∇ifi(x)∥2i + L1

N∑
i=1

∥∇ifi(x)∥2

−mi

N∑
i=1

(
z2i

)1− a
2

− ni

N∑
i=1

(
z2i

)1+ b
2

− li

N∑
i=1

z2i + L2

N∑
i=1

z2i

≤ − g0

( N∑
i=1

∥∇ifi(x)∥2
)1− a

2

+ L1

N∑
i=1

∥∇ifi(x)∥2

− h0

N∑
i=1

∥∇ifi(x)∥2 − q0N
− b

2

( N∑
i=1

∥∇ifi(x)∥2
)1+ b

2

−m0

( N∑
i=1

z2i

)1− a
2

− n0N
− b

2

( N∑
i=1

z2i

)1+ b
2

− li

N∑
i=1

z2i + L2

N∑
i=1

z2i .

It follows from Assumption 2 that

V̇ (x) ≤ − g0∥G(x)∥2−a − q0N
− b

2 ∥G(x)∥2+b

− (h0 − L1)∥G(x)∥2 −m0

( N∑
i=1

z2i

)1− a
2

− n0N
− b

2

( N∑
i=1

z2i

)1+ b
2

− (l0 − L2)
N∑
i=1

z2i

≤ − (2w)1−
a
2 g0

(
F (x)− F (x∗)

)1− a
2

− (2w)1+
b
2 q0N

− b
2

(
F (x)− F (x∗)

)1+ b
2

− 2w(h0 − L1)

(
F (x)− F (x∗)

)
−m0

( N∑
i=1

z2i

)1− a
2

− n0N
− b

2

( N∑
i=1

z2i

)1+ b
2

− (l0 − L2)
N∑
i=1

z2i .

Under Assumption 3, h0 − L1, l0 − L2 > 0 and combine the
Lyapunov function in eq. (12), we can get

V̇ (x) ≤ − u∗
1V (x)1−

a
2 − u∗

2V (x)1+
b
2 − u∗

3V (x),

where the exponential terms (1 − a
2 ) < 1, (1 + b

2 ) >
1 and u∗

1 = min{(2w)1− a
2 g0, 2

1− a
2 m0} > 0, u∗

2 =
min{(2w)1+ b

2 q0N
−b, 21+

b
2n0N

−b} > 0, u∗
3 = min{2w(h0−

L1), 2(l0 − L2)} > 0. It follows from Lemma 1 that the
trajectory x(t) of the neurodynamic system (14) converges
to NE x∗ in FT with the settling time given as in (16) when it
is subject to perturbations above. The proof is completed.
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Fig. 2: (a) Transient responses of neurodynamic system (5);
(b) Convergence error responses of neurodynamic system (5)
(c) Transient responses of neurodynamic system (14); (d)
Convergence error responses of neurodynamic system (14);

IV. NUMERICAL SIMULATION AND CIRCUIT EXPERIMENT

In this section, We validate the effectiveness of the proposed
second-order NE seeking neurodynamic system according to
a duopoly game by numerical simulation and analog circuit
implementation.

Fig. 4: Circuit implementation results.

We consider N(N = 6) firms producing the same products
in a duopoly market. The game is played under the assumption
that N players involved in the game are trying to seek NE
x∗ = (x∗

i , x
∗
−i) such that

fi(x
∗
i , x

∗
−i) ≤ fi(xi, x

∗
−i),

where the profit of each company is expressed as fi(xi, x−i) =
pi(xi − qi)

2 + (c
∑N

j=1 xj + d)xi, with c
∑N

j=1 xj + d being
the pricing function.



Fig. 3: Circuit implementation of neurodynamic system (5).

TABLE I: Parameters and results of the experiment

Player i qi hi li x∗
i in numerical simulation x∗

i in circuit experiment

1 8.5 10 1 2.64 2.60

2 1.5 5 1 -2.0 -2.03

3 5.5 6 0.1 0.65 0.595

4 0.25 0.1 6 -2.55 -2.49

5 6 1 5 0.78 0.71

6 4 1 10 -0.3 -0.21

Without losing generality, for the proposed second-order NE
seeking neurodynamic system, we consider a special case that
we suppose c = pi = 1 and d = 10, gi = qi = mi = ni = 1
for all i ∈ N and a = 0.5, b = 1. The detailed parameters
and results achieved by the numerical simulation are shown
in Table I.

Fig. 2 (a) shows the changes in participants’ behavior in
neurodynamic system (5). Fig. 2 (b) indicates that the devia-
tion of participants’ actual behavior from the Nash Equilibrium
can significantly converges within 0.8 seconds.

It can be seen that participants’ behavior quickly approaches
the NE under neurodynamic system (14), which has been
demonstrated that the neurodynamic system exhibits good ro-
bustness. Fig. 2 (d) indicates that the deviation of participants’
actual behavior from the Nash Equilibrium can significantly
converge within 1 seconds.

The analog circuit framework is designed firstly. The circuit

framework is shown in Fig. 1, which contains multipliers,
operational amplifiers, capacitors, and resistors as well as a
power supply and some other electronics. Fig. 3 shows the
whole analog circuit with modularised devices and the results
achieved by analog circuits are also shown in Table I.

In Fig. 3, the output of ∇fi module is the derivative of fi.
After the modules for two-norm and exponentiation, we can
get that gi

∥∇ifi(x)∥a , qi
∥∇ifi(x)∥−b , mi

∥zi∥a and ni

∥zi∥−b . Then after
the adder and integrator, we can get the neurodynamic system
as in (5).

By analyzing the experimental results, it can be concluded
that the proposed neurodynamic system (5) can converge to
NE point x∗ quickly and remain the stable values, which are
almost the same as the numerical simulation calculations. The
fixed-time convergence is guaranteed and once the parameters
of the neurodynamic system are given, the explicit upper
bound can be estimated.



V. CONCLUSION

This paper proposes a novel second-order NE seeking
neurodynamic system. It has been proved that the fixed-
time convergence of the proposed neurodynamic system is
independent of the initial states of the players. The explicit
upper bound can be calculated according to the designed
parameters and the circuit implementation can basically satisfy
the practical requirements of applications. Future work will
be focused on studying the accelerated distributed NE seeking
neurodynamic system.
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