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Abstract

Training agents that can coordinate zero-shot with humans is a key mission in
multi-agent reinforcement learning (MARL). Current algorithms focus on training
simulated human partner policies which are then used to train a Cooperator agent.
The simulated human is produced either through behavior cloning over a human
dataset, or by using MARL to create a population of simulated agents. However,
these approaches often struggle to produce an effective Cooperator since the sim-
ulated humans fail to cover the diverse strategies employed by people in the real
world. We show that learning a generative model of human partners can effectively
address this issue. Our model learns a latent variable representation of the human
that can be regarded as encoding the human’s unique strategy, intention, experience,
or style. This generative model can be flexibly trained from any (human or neural
policy) agent interaction data, unifying approaches proposed in prior work. By sam-
pling from the latent space, we can use the generative model to produce different
partners to train Cooperator agents. We evaluate our method—Generative Agent
Modeling for Multi-agent Adaptation (GAMMA)—on Overcooked, a challenging
cooperative cooking game that has become a standard benchmark for zero-shot
coordination. We conduct an evaluation with real human teammates, and the results
show that GAMMA consistently improves performance, whether the generative
model is trained on simulated populations or human datasets. Further, we propose
a method for posterior sampling from the generative model that is biased towards
the human data, enabling us to efficiently improve performance with only a small
amount of expensive human interaction data. 1

1 Introduction

While being cooperative is a notable characteristic of human intelligence [7, 25], training an artificial
agent that cooperates well with humans poses a significant challenge. Human behaviors are uncertain
and diverse, encompassing a wide range of preferences, abilities, and intentions. While humans can
rapidly adapt to different partners, AI agents are particularly poor at generalizing to working with a
novel human partner [1, 22].

There are two approaches to tackling this problem. The first is to use data of human-human interac-
tions [1]. However, in many situations the amount of human-human data available is far less than
the amount of data required by data-hungry sequential decision making algorithms. This suggests
using simulated training partners as a different approach. However traditional MARL approaches

1See our website for human-AI study videos and an interactive demo. The training code is also available.
2Points are the latent vectors. Taking the population of simulated agents (e.g., the FCP population with 8

FCP agents) as an example, a point is generated by: 1) sampling an agent in the FCP population; 2) using the
agent to generate an episode with self-play; 3) using the VAE encoder to encode the episode into a latent vector
and mapping the latent vector to the 2D space using t-SNE.
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(a) Simulated data. (b) Human data. (c) Adaptive sampling.

Figure 1: The latent space covered by different methods.2For either simulated data or human data, the generative
agents produced by GAMMA cover a larger strategy space. Generative models can provide novel agents by
interpolating the agents in the simulated population (a). On human data (b), the human proxy model only covers
a subset of all human behavior patterns, while the generative model can capture the diversity in the data. We can
also control the latent space sampling (c) to model a target population of agents (e.g., human coordinators).

like self-play may fail to coordinate effectively with novel humans [1, 22] because the self-play agent
merely follows a convention with a copy of itself [6] and fails to adapt to a human’s novel strategy.

To tackle these challenges, a popular approach to solving the distribution shift problem in human-AI
cooperation has become training a Cooperator agent against a population of simulated agents rather
than just itself [2, 12, 14, 18, 22, 28, 30]. However, the bottom line remains that truly covering the
space of strategies with discrete samples of strategies can quickly become untenable. As we move
towards more complex real-world tasks, representing every strategy by an individual agent in the
population becomes computationally difficult. The above two approaches point to the dual problems
of 1) human-only data being expensive, and 2) synthetic-only data lacking coverage over human
behaviors.

We propose our full method GAMMA: Generative Agent Modeling for Multi-agent Adaptation.
The idea is to learn a generative model to generate a diverse range of partners by interpolating on
the interaction data it has been trained on, as shown in Figure 1. We propose to leverage variational
autoencoder (VAE) [11] techniques to train the model. The latent variable z is designed to capture
human diversity by encoding information about that partner’s unique style or skill levels. By sampling
z, the decoder can be used to generate the different partners, which are used to train the Cooperator.
With the availability of a controllable latent encoder, we further propose a human-adaptive sampling
method that enables training Cooperators that are more targeted to cooperate with real human
coordinators. Thus we can incorporate a small amount of human-provided data in a economical way.

We test our method using Overcooked [1], a collaborative multiplayer cooking game requiring close
coordination between two partners to successfully prepare recipes. We conducted our evaluation
through real human experiments. By having the train agents play in real-time against real human
players on a simplified simulated Overcooked platform, we find that GAMMA improves the per-
formance of state-of-the-art coordination methods which rely on simulated populations of agents
[18, 22], or on human data [1]. We also find that humans can adapt very quickly and learn through
playing (see Appendix ??).

2 Related Work

Zero-shot coordination. Building cooperative agents for novel partners is a long-standing problem
of AI [21], known as zero-shot coordination [10]. One approach to this problem relies on collecting
and learning from human-human data [1], but this is challenging due to limited scale, and the
heterogeneity, uncertainty and suboptimality [8, 16] of humans. Instead, another line of work focuses
on training a simulated population of partner policies which can be used to train a single robust
Cooperator agent (e.g. [22]). As such, many papers have focused on strategies for making this
population more diverse [2, 3, 14, 17, 18, 23, 24, 26, 28, 30]. In contrast, we propose a novel
approach to modeling this population with a generative model.

Inferring the partner type. Our work is also related to the many works (e.g. [5, 9, 15, 20, 27]),
which train a latent variable model to learn agent representations from interaction data of different
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agents, and then infer a cooperation partner’s latent vector and use it to condition a multi-agent RL
policy. While our work also infers hidden context about partner type, our aims are different; we use a
generative model to simulate novel partners during training time as a way to train a Cooperator to be
robust enough for zero-shot coordination with real humans.

3 GAMMA: Generative Agent Modeling for Multi-agent Adaptation

Figure 2: Overview of the method for GAMMA. The gener-
ative model learns a latent distribution from either simulated
or human data. Sampling partners from the generative model
enables training a robust Cooperator that can coordinate with
a variety of different humans.

Learning Generative Models of
Partner Behavior. We assume
access to a dataset of trajectories
Dcoordination = {τi}Ni=1, where each
trajectory τ = {(st, at, bt)}Tt=0
(here st, at, bt represent the state, the
agent’s own action, and the other
agent’s action, respectively) is a se-
quence of multi-agent coordination
behaviors, derived from either human
playing records or paired simulated
agents. We develop a seq-to-seq vari-
ant of the Variational Autoencoder
(VAE) [5, 11] to model the dataset D.
An approximate posterior (encoder) q(z | τ ;ϕ) identifies the agent style from the trajectory. The
decoder p(at | z, τ0..t−1; θ) uses the agent’s own past experience and the latent variable z to predict
the agent’s next action. The generative model is trained using an evidence lower bound (ELBO)
loss ??.

Training a Cooperator with Generative Coordination Models. The trained generative agent model
p(at | z, τ0..t−1; θ) can now be used as a generator of partner policies µz to train our Cooperator
agent. Notably, the generative model can sample a landscape of agents going beyond the quantity and
diversity of the training data. Then we use PPO [19] to optimize πC against these training partners,
following the objective J(πC) = Ez∼p(z) [V (π, µz)] . Importantly, the Cooperator πC is not trained
with imitation learning, but is rather trained with reinforcement learning. The generative model from
Section 3 is simply used to provide the quantity and diversity of agents.

Targeted GAMMA using Human-Adaptive Sampling and Fine-tuning. The above approach does
not make use of human specific data if available. The key insight is that the latent space afforded by
our generative model provides the ability to do controllable sampling from any latent distribution.
In particular, when coordinating with real human partners, a human-centered latent distribution
ph(z) can be estimated by ph(z) = N (z̄, I) where z̄ = Eτh∈Dh

[
Ez∈q(·|τh)[z]

]
. Then a targeted

Cooperator can be trained by maximizing J(πC) = Ez∼ph(z) [V (π, µz)] .

Human-adaptive sampling makes the model focus less on adaptation to irrelevant synthetic partners
and more on “human-centric" partners. As our experiments will show, this approach Human-
Adapative (HA) outperforms training a partner simulator using only human data. To better capture
human data, we also perform some fine-tuning on the encoder and decoder using human data.

4 Experiments

We use the Overcooked environment [1] as a popular benchmark for prior work on human-AI
cooperation [1, 18, 22, 27, 28]. A detailed description of Overcooked can be found in Appendix ??.

Hypothesis: Generalizing to novel humans. Will GAMMA generalize to playing with novel human
partners more effectively than prior work, as measured by the score in the cooperative game? What
will humans’ self-reported ratings reveal about their preferences over different methods?

Baselines and Data We include two state-of-the-art approaches for creating a population of simulated
agents, Fictitious Co-Play (FCP) [22] and Cross-play Optimized, Mixed-play Enforced Diversity
(CoMeDi) [18]. We then train the generative models FCP+GAMMA and CoMeDi+GAMMA on
the simulated agent population of both FCP and CoMeDi. We also use PPO-BC [1] as the baseline
which incorporates human data, by training a BC partner and an RL Cooperator. In this work, we
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(a) Counter circuit layout (b) Multi-strategy Counter

Figure 3: Performance of different agents when played with real humans. Error bars [4] use the Standard Error
of the Mean (SE) for statistical significance (p < 0.05). Methods trained on human data are shown in green.
Whether training with simulated or human data, GAMMA shows consistent, statistically significant advantages
over the baselines. GAMMA-HA is able to efficiently use the real human dataset to learn a better sampling of
its latent space, achieving the best performance when cooperating with real humans.

assume the human dataset contains 20 to 50 trajectories. We will test whether replacing the BC
agent with our generative model (PPO-BC-GAMMA) trained on the human data provides better
performance. Since we assume the amount of human data is limited, we also fine-tune a generative
model pretrained from the simulated agent population with human data, and apply Human-Adaptive
(HA) to train the Cooperator (GAMMA-HA).

Human Evaluation. We run a user study with real human players in order to determine which
method can most effectively coordinate with humans, and which method is preferred in human ratings
(Hypothesis). We conducted a study with 80 users recruited via online crowdsourcing from Prolific.
Our study follows guidelines set by an IRB protocol. During the study, each user is instructed to play
multiple rounds of Overcooked with a partner via a web interface, where in each round the partner is
an agent following one of the 8 policies, in randomized order. We trained 5 random seeds per agent,
and used a different randomly-selected seed for each of the 8 game rounds. Each game lasts for 60
seconds. After each round, the user answers Likert scale survey questions [13] to rate their experience
playing with the agent. At the end of the 8 rounds, humans also answer qualitative questions about
the performance of the agents. We conduct a qualitative analysis to understand which factors most
heavily influence overall performance and users’ preferences when playing with real humans.

5 Results

As described in Section 4, we evaluate all agents described before in Section 4 against the novel
human players, and plot the cooperative scores achieved by each agent-human team in Figure 3.

We find that GAMMA offers consistent, significant performance improvements over prior techniques
for training against simulated populations (FCP, CoMeDi). GAMMA does not perform strongly
when training on the CoMeDi population in the second layout, but this is because the CoMeDi
method failed to generate a robust population that covered the diversity of strategies in the second
layout. Comparing methods that make use of human data reveals some interesting findings. Model-
ing the human data with the generative model (PPO+BC+GAMMA) only provides performance
improvements half the time. However, combining simulated and human data with Human Adaptive
GAMMA provides significantly higher performance in both layouts, surpassing state-of-the-art
zero-shot coordination techniques.

In the human study, we find that adaptation to the human partner was a core theme distinguishing
agents that humans liked. Participants reported that the FCP + GAMMA agent demonstrated an
ability to learn from the user’s actions, such as mimicking the user’s strategy of placing onions on the
table to save time. This adaptive behavior was positively received by a study participant: "I noticed
that once I started to put back onions on the table that it did the same as I wanted to save time rather
than going back for onions 3 times for soup. I thought it was interesting that it learned about my
behavior." We provide more subjective ratings from the human players as well in Appendix G.2.
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6 Conclusion

In this work, we propose GAMMA, a novel approach to training a coordinator agent by using
generative models to produce training partner agents. We conduct a comprehensive analysis using
data from a study with real human cooperation partners, and show GAMMA outperforms baselines
over both subjective human ratings and quantitative measurements of cooperation performance. We
also provide a new perspective to compare different populations under the latent space of a generative
model, showing how the simulated populations may not provide sufficient coverage of the range of
human players.

Limitations. As shown by the performance of GAMMA+CoMeDi on Multi-Strategy Counter,
obtaining good performance with our approach depends on having a reasonably diverse amount of
cooperation data to train the model. If the quality of the simulated population data is too low, the
approach can fail to provide significant benefits.

In this work, our human studies recruit participants from Prolific, which may not be representative of
broader populations. Additionally, our human dataset is limited, which could reduce the diversity of
strategies and force participants to adapt to strategies that the Cooperators are already familiar with.

We focus on the two-player setting in this study following prior work [22, 28, 30] because it is a first
step toward enabling an AI assistant that could help a human with a particular task. Scaling up to
more agents would exponentially increase the dataset size with our current techniques. Therefore,
better sampling techniques are needed to address this issue.

Future work. Several potential directions are interesting for future work: 1) In this work, the amount
of human data is limited, which restricts the performance of the generative model that learns human
data from scratch. 2) An orthogonal direction is to condition the policy of the Cooperator on the
embedding of the partner policy. We provide some preliminary results in Figure 12.

Social impact. Our work focuses on how to train AI agents that can effectively cooperate with diverse
humans to assist them with tasks. We believe this is a critical component of eventually enabling
assistive robots that could operate in human environments to assist the elderly or disabled to live
more comfortably, or reduce the burden of domestic labour for all people.
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A Reproducibility

Our demo website is https://sites.google.com/view/human-ai-gamma-2024/ and contains the code
and more experiment results. We also provide information about the implementation details B and
hyperparameters used in our experiments D to help reproduce our results.

B Implementation details

Generative models. The dataset used to train the VAE model contains the joint trajectories of two
players. For the simulated agent population {π1, ..., πN}, we create this dataset by evenly sampling
πi × πj to generate the trajectories. A simulated dataset contains 100K joint trajectories. To train a
VAE on it, the dataset is split into a training dataset with 70% data and a validation dataset with the
rest of 30% data. To compute the ELBO loss ??, the trajectories are truncated to length 100 for better
optimization for the recurrent module. A linear scheduling of the KL penalty coefficient β is adopted
to control a target value for the KL divergence of the posterior distribution. The target KL value is
set to 7 for the layout Forced Coordination over the CoMeDi population. All other VAE models are
chosen by a target KL value of 32.

Train Cooperator agents. On Overcooked, the Cooperator is trained by PPO [19]. We based our
implementations on HSP [28]. Reward shaping for dish and soup pick-up is used for the first 100M
steps to encourage exploration. All results are reported with averaged episode reward and the standard
error of at least 5 seeds.

Simulated agent populations. We use MAPPO [29] to create the FCP [22] agent populations. Eight
self-play agents are trained and three checkpoints for each agent are added to the population, making
the population size 8 × 3. For the CoMeDi agent population [18], we download the population
proposed by the authors 3 for the original five layouts [1]. The population size is 8 for CoMeDi. For
our custom layout Multi-strategy Counter, we use CoMeDi’s official implementation and keep the
population size the same.

C Human Dataset

For the human dataset in the original Overcooked paper [1], their open-sourced dataset contains “16
joint human-human trajectories for Cramped Room environment, 17 for Asymmetric Advantages,
16 for Coordination Ring, 12 for Forced Coordination, and 15 for Counter Circuit..” with length of
T ≈ 1200. In Multi-strategy Counter, we collect 38 trajectories with length T ≈ 400 which is closer
to the actual episode length during training.

D Hyperparameters

We use MAPPO to train our Cooperator agent. The architectures and hyperparamers are fixed
throughout all layouts. All policy networks follow the same structure where an RNN (we use GRU)
is followed by a CNN.

The generative model follows a similar architecture to the policy model. An encoder head and a
decoder head are used to produce variational posterior and action reconstruction predictions from the
representations.

E Computational Resources

We conducted our main experiments on clusters of AMD EPYC 64-Core Processor and NVIDIA
A40/L40. It takes about one day to train one Cooperator agent. The main experiments takes about
3600 GPU hours. We do some preliminary experiments to search for the best hyperparameters and
training frameworks.

3https://github.com/Stanford-ILIAD/Diverse-Conventions/tree/master
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hyperparameter value
CNN kernels [3, 3], [3, 3], [3, 3]

CNN channels [32, 64, 32]
hidden layer size [64]

recurrent layer size 64
activation function ReLU

weight decay 0
environment steps 100M (simulated data) or 150M (human data)

parallel environments 200
episode length 400
PPO batch size 2× 200× 400

PPO epoch 15
PPO learning rate 0.0005

Generalized Advantage Estimator (GAE) λ 0.95
discounting factor γ 0.99

Table 1: Hyperparameters for policy models

hyperparameter value
CNN kernels [3, 3], [3, 3], [3, 3]

CNN channels [32, 64, 32]
hidden layer size [256]

recurrent layer size 256
activation function ReLU

weight decay 0.0001
parallel environments 200

episode length 400
epoch 500

chunk length 100
learning rate 0.0005

KL penalty coefficient β 0 → 1
latent variable dimension 16

Table 2: Hyperparameters for VAE models

F Human Evaluation

Since diversity of humans is a key component in our approach, in this section we report the demo-
graphics of our participants. The study demographics include a population of 54% female and 46%
male participants. The user demographics skewed towards younger ages, with 39% of participants
between ages 18− 26, 44% of participants between 27− 37, 11% of participants between 38− 48,
and 6% of participants ages 49 and above. The game experiences of the participants are shown in
Figure 4.

Figure 4: Percent of participants who agree with the statement “I have experience playing the game
Overcooked”.
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Figure 5: Human performance improves with the number of trials, indicating that the humans learn,
change, and adapt their gameplay during the course of the evaluation.

F.1 Humans are adapting during evaluation

As shown by Fig 5, human performance improves with the number of trials, indicating that the humans
learn, change, and adapt their gameplay during the course of the evaluation. In our evaluation with
real humans, each user can change their strategy at any point in the game. A significant proportion
of our users self-identify as novice players, both for video games and for Overcooked (17.9% and
49.5%, respectively, Figure 5, thus often exhibiting improved performance over the course of an
increased number of trials. Figure 5 provides evidence of this pattern, demonstrating that humans
change their gameplay style over the course of the evaluation.

G Additional Human Study Results

G.1 Human-AI team scores

Agent Training data source Counter circuit Multi-strategy Counter
FCP FCP-generated population 26.24 ± 0.96 34.35 ± 1.47

FCP + GAMMA 57.87 ± 1.35 65.36 ± 1.24
CoMeDi CoMeDi-generated population 56.87 ± 1.43 27.11 ± 1.46

CoMeDi + GAMMA 72.17 ± 1.61 34.72 ± 1.65
MEP MEP-generated population 76.19 ± 1.89 64.02 ± 2.07

MEP + GAMMA 81.10 ± 2.03 88.30 ± 2.51
PPO + BC human data 53.51 ± 1.37 85.26 ± 2.28

PPO + BC + GAMMA 59.67 ± 1.35 77.53 ± 2.00
GAMMA HA MEP pop. + human data 91.11 ± 2.96 93.09 ± 3.19

Table 3: Human evaluation results. Our methods (GAMMA) show significant improvements.

We conducted statistical significance tests and computed the p-value using the Holm-Bonferroni
correction. See Table 4.

Hypothesis Counter circuit (p-value) Multi-(p-value)
FCP + GAMMA > FCP 1.27× 10−69 1.43× 10−50

CoMeDi + GAMMA > CoMeDi 7.31× 10−12 3.25× 10−3

MEP + GAMMA > MEP 0.639 2.04× 10−12

PPO + BC + GAMMA > PPO + BC 9.80× 10−3 7.48× 10−2

GAMMA HA > FCP 4.21× 10−113 1.10× 10−63

GAMMA HA > CoMeDi 1.55× 10−23 3.43× 10−77

GAMMA HA > MEP 1.43× 10−4 2.92× 10−13

GAMMA HA > PPO + BC 3.14× 10−32 0.426

Table 4: Statistical significance (p < 0.05) is achieved for the majority of the results.
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G.2 Qualitative analysis

We include additional analyses of users self-reported responses for qualitative questions from our
user study. Figure 6 shows the results for users’ response to the agents’ ability to adapt. The
results indicate that two of our methods, FCP + GAMMA and GAMMA-HA-DFT, consistently
receive higher ratings indicating better ability to adapt than their respective baseline agents, across
both layouts. Figure 7 displays users’ ratings for whether the agents demonstrated human-like
behavior. The responses show that FCP + GAMMA, CoMeDi + GAMMA, and GAMMA-HA-
DFT exhibit the most human-like gameplay in both layouts. Figure 8 includes responses for whether
the agents’ behavior was frustrating. Individuals consistently reported that FCP + GAMMA and
GAMMA-HA-DFT demonstrated the least frustrating behavior.

Furthermore, we provide additional participant feedback for our agents from the user study as follows,
starting with feedback for agents using our methods:

Feedback for FCP + GAMMA:

• "It was very coordinated."
• "This agent figured things out the fastest and worked with me well."
• "When it was in my way, it moved out of the way instead of blocking the path, which was

an issue with other agents."
• "Much better cooperation by comparison."

Feedback for CoMeDi + GAMMA:

• "He was the best teammate."
• "This one did well, it moved around me enough to complete tasks and we were relatively

efficient passing items around."
• "The agent figured out the next step I would have done."

Feedback for PPO + BC + GAMMA:

• "It was very efficient and placed things down so I could grab it on the other side."
• "This agent was very collaborative. All I did was put onions out and he did the rest of the

work - super smooth."
• "It behaved smoothly and intentionally. It responded to my moves and helped rather than

getting in the way."

In contrast, the feedback for the baseline agents is overall more negative, including themes such as
frustration, inefficiency, and lack of cooperation.

Feedback for FCP (baseline):

• "Frustrating."
• "He got in the way and didn’t help at all."
• "Just seemed to lack coordination and felt less intelligent."

Feedback for CoMeDi (baseline):

• "The agent was helpful, but still did not fully cooperate as well as I thought it should have."
• "The agent was executing some random move actions before actually cooperating."

Feedback for PPO + BC (baseline):

• "The agent was not helping much, it was doing its own thing, which meant we were not
coordinating well."

• "Agent did everything by himself; didn’t see the onions on the counter that I had placed; got
in my way a bunch."

• "Very inefficient and lacking intelligence."
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(a) Counter circuit layout (b) Multi-strategy Counter

Figure 6: Human ratings for different agents. Individuals were asked to respond to the following question: "The
agent adapted to me when making decisions: {Strongly Disagree, Disagree, Neutral, Agree, Strongly Agree}".
FCP + GAMMA and GAMMA-HA-DFT consistently receive higher ratings for ability to adapt compared to
their respective baselines.

(a) Counter circuit layout (b) Multi-strategy Counter

Figure 7: Human ratings for different agents. Individuals were asked to respond to the following question:
"The agent’s actions were human-like: {Strongly Disagree, Disagree, Neutral, Agree, Strongly Agree}". FCP +
GAMMA, CoMeDi + GAMMA, and GAMMA-HA-DFT consistently receive ratings for more human-like
behavior compared to their respective baselines.

(a) Counter circuit layout (b) Multi-strategy Counter

Figure 8: Human ratings for different agents. Individuals were asked to respond to the following question:
"The agent’s behavior was frustrating: {Strongly Disagree, Disagree, Neutral, Agree, Strongly Agree}". FCP
+ GAMMA and GAMMA-HA consistently receive ratings for less frustrating behavior compared to their
respective baselines.
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Figure 9: Learning curves for methods using simulated data across six layouts. Error bars are the
Standard Error of the Mean (SE). All methods are evaluated using a held-out human proxy model as
the partner player. GAMMA consistently shows better or equal performance on all layouts for both
simulated data-generation methods (FCP, CoMeDi, MEP) when evaluated against the human-proxy
model.
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(a) Evaluation against human proxy agent.
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(b) Evaluation against held-out self-play agents.

Figure 10: Learning curves for methods using human data. When evaluated with a held-out human
proxy agent (a), human adaptive sampling learns faster on Counter Circuit, but does not reach better
final performance since PPO-BC is trained to exploit a human-proxy agent. With simulated self-play
partners (b), Human-Adaptive GAMMA with DFT shows better performance.

H Additional simulated results

Figure 9 provides the original data for the performance on simulated data.

In addition to training the generative model on the human dataset (PPO-BC-GAMMA, we can also
leverage Human Adaptive (HA) sampling on the generative model: (GAMMA-HA). The learning
curves of these methods and the baseline PPO-BC [1] are shown in Figure 10. When evaluated
with a held-out human proxy agent, our methods do not show a great advantage. This is expected,
because PPO-BC is trained to exploit a human proxy agent. However, in the human study, we show
that this hurts its adaptation to more diverse real human players. On the other hand, we note that
GAMMA-HA shows much faster learning in both layouts. Figure 10b shows that GAMMA-HA
also adapts better to held-out self-play agents compared to PPO-BC.

I Compare decoder-only fine-tuning and full fine-tuning

I.1 Full fine-tuning can suffer from insufficient human data

In some early experiments, we find that only fine-tuning the decoder with human data (GAMMA-HA-
DFT) provides consistently strong performance on both layouts, whereas full fine-tuning (GAMMA-
HA-FFT) provides the strongest performance on the first layout, but weaker performance on the
second layout. At first, we hypothesize this is because the second layout is more complex, but the
number of human coordination trajectories available for training (N = 11) is significantly less than
the first layout (N = 37). With more diverse potential strategies and less human data, we find the
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Figure 11: With larger KL Divergence penalty coefficient (β in Eq [1]), the new full-model fine-tuning
(FFT) largely improves the original FFT and achieves a comparable performance with the original
best decoder-only fine-tuning (DFT) method.

data is insufficient to fully fine-tune the generative model for the second layout. Since the entire
model is fully fine-tuned, there is a higher chance that the model overfits the training human samples
when the amount of human data is extremely small. Therefore, we believe the results of the FFT
model could be improved were we to collect more data. However, it is realistic to test the scenario
where limited human data is available, since human data can be quite expensive and difficult to
collect. We find that in this low data regime, GAMMA HA DFT still provides excellent performance.
Whether to fine-tune the encoder is a design choice that can be tuned for a particular domain based
on the available data and the performance against simulated agents (since Figure 10 shows that FFT
performed poorly here as well).

Agent Training data source Counter circuit Multi-strategy Counter
FCP FCP-generated population 32.11 ± 1.50 44.22 ± 2.15

FCP + GAMMA 77.75 ± 2.09 74.44 ± 2.12
CoMeDi CoMeDi-generated population 69.62 ± 3.31 32.02 ± 1.89

CoMeDi + GAMMA 77.77 ± 2.34 32.34 ± 1.79
PPO + BC human data 61.77 ± 2.53 97.73 ± 1.90

PPO + BC + GAMMA 72.32 ± 1.71 95.72 ± 1.75
GAMMA HA DFT human data + 82.82 ± 1.84 103.76 ± 1.96
GAMMA HA FFT FCP-generated population 91.84 ± 2.91 34.05 ± 2.01

Table 5: Human evaluation results (outdated). Our methods (GAMMA) show significant improve-
ments. However, GAMMA HA FFT is not stable on “Multi-strategy Counter”.

I.2 Large regularization mitigates the problem of insufficient human data

Given the hypothesis that the human dataset is too small compared to the complexity of the Multi-
strategy Counter environment, we find out that with a larger regularization over the fine-tuned model
on the original model, we can mitigate this issue. See Figure 11.

J Can we condition the Cooperator policy on z?

One potential future work to improve the efficiency of online adaptation is to condition the policy on
z. During testing with novel humans, the Cooperator can then infer the z of the human player and
adapt to that z.

This method is orthogonal to our contributions where we focus on sampling partners with different
z to train the Cooperator. We did some preliminary work to test the z-conditioned Cooperator. As
shown in Figure 12, the performance of the z-conditioned Cooperator is not stable, it learns faster but
the performance decreases when it is trained longer. Therefore, we do not include this method in
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Figure 12: Performance of z-conditioned Cooperator. The z-conditioned Cooperator reaches a
higher reward in the Multi-strategy Counter. The performance decreases after the peak since the
z-conditioned policy overfits the encoder.

our main experiment, but future work about how to better train the z− conditioned Cooperator is
promising.

15


	Introduction
	Related Work
	GAMMA: Generative Agent Modeling for Multi-agent Adaptation
	Experiments
	Results
	Conclusion
	Reproducibility
	Implementation details
	Human Dataset
	Hyperparameters
	Computational Resources
	Human Evaluation
	Humans are adapting during evaluation

	Additional Human Study Results
	Human-AI team scores
	Qualitative analysis

	Additional simulated results
	Compare decoder-only fine-tuning and full fine-tuning
	Full fine-tuning can suffer from insufficient human data
	Large regularization mitigates the problem of insufficient human data

	Can we condition the Cooperator policy on z?

