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Abstract

Recent work in Bayesian Experiment Design (BED) has shown the value of us-
ing Deep Learning (DL) to obtain highly efficient adaptive experiment designs.
In this paper, we argue that a central bottleneck of DL training for BED is be-
lief explosion. Specifically, as an agent progresses deeper into an experiment, the
effective number of realisable beliefs grows enormously, placing significant sam-
pling burdens on offline training schemes in an effort to gather experience from
all regions of belief space. We argue that choosing an appropriate inductive bias
for actor/critic networks is a critical component in mitigating the effects of be-
lief explosion and has so far been overlooked in the BED literature. We show
how Graph Neural Networks are particularly well-suited for BED DL training due
to their domain permutation equivariance properties, resulting in multiple orders
of magnitude improvement to sample efficiency compared to naive parameteriza-
tions.

1 Introduction

Scientific inquiry depends on empirical observations to refine our understanding of the world. These
observations generate data that can be analyzed, interpreted, and used to test hypotheses and theo-
ries. However, conducting experiments comes with costs, including time, financial resources, and
logistical constraints. As a result, determining which observations are most valuable for a given line
of inquiry is a central concern in the Design of Experiments.

In particular, Bayesian Experiment Design, or BED, has emerged as an elegant formalism for un-
derstanding the value of different experiment designs [} 2]. Moreover, in recent years there has
been a growing interest in adopting Deep Learning (DL) and Deep Reinforcement Learning (DRL)
techniques to obtain effective experiment designs for BED tasks [3 4, 5} 6} [7, I8, 9L [10].

Principal among the motivations for the involvement of DL techniques is their potential to increase
the scope of problems that admit practical BED solutions [L1]. More specifically, practitioners
typically trade off decision-theoretic performance with online computational costs when deploying
BED policies in real-world tasks. Deep Learning can amortize computationally costly but high-
performing BED policies, allowing for improved decision-making, reduced compute burdens, or
both. For example, recent work has shown that multistep lookahead-based approaches for achieving
non-myopic experiment designs involve considerable online computation in the face of nested inte-
grals. Wu and Frazier [12] describe how these approaches can require up to an hour of compute for
a single decision in modest Bayesian Optimization (BO) problems. Although they propose a novel
method to reduce this compute overhead to at most several minutes, such online compute require-
ments are prohibitive in certain high-frequency or resource-constrained tasks, for example in remote
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Figure 1: Ilustration of Domain Transformation Equivariance The figure on the left of the dotted line
shows the posterior mean, p, and marginal standard deviation, o, of a 2D Gaussian Process, along with the
LogEI acquisition function used in Bayesian Optimization. This corresponds to the optimal 1-step lookahead
g« landscape when cast as an MDP, with the optimal action a. shown in red. The figure on the right shows
the same posterior belief state and acquisition function under a transformation ¢ that rotates the domain by
90°. Note that although these belief-action pairs appear different, they are related by the transformation ¢ and
represent equivalent decisions under an equivariant policy.
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sensing [10] or edge computing [13]]. In contrast, amortized policies trained using DRL can achieve
non-myopic designs while requiring several orders of magnitude less online computation [4} [T0].

Although the recent focus on amortizing expert policies for BED has shown great promise, a core
argument of this paper is that existing approaches have significantly high training compute burdens.
For example, we find that these approaches can take on the order of days to match the performance
of simple experts on modest BED tasks.

We trace this issue to an explosion of possible posterior beliefs as inference progresses through
an adaptive experiment, which we call “belief explosion”. We observe that existing approaches
struggle to learn in the presence of this large diversity of beliefs at deeper timesteps. We argue
that designing methods that can cope with this belief explosion efficiently should be a priority for
the BED community, and our work proposes to leverage the equivariant structures of optimal BED
policies to achieve this goal.

Specifically, we show how a large family of BED tasks admit optimal policies that are domain
permutation equivariant, and that exploiting this structure leads to significantly more efficient learn-
ing in the face of belief explosion. Moreover, as we show in this work, these structural properties
naturally suggest an inductive bias that is readily captured in Graph Neural Network (GNN) archi-
tectures.

In particular, our contributions are as follows:

» we show that a significant bottleneck when training policies for BED tasks is belief explo-
sion, and show how standard architectures commonly found in the literature are ill-suited
to address this challenge;

* we prove that a large family of BED tasks are domain permutation equivariant, which
suggests a natural inductive bias for policy and critic networks;

* we demonstrate the utility of leveraging this domain-permutation equivariance on two
prominent BED tasks, showing up to two orders of magnitude improvement in sample effi-
ciency compared to various architectures operating on both belief-state and information-set
representations;

» we show that GNNss trained on small BED tasks can be used to generalise to significantly
larger tasks, resulting in order of magnitude less online compute at test time;

» we show that these equivariances can be extended to information-set-based policies in con-
tinuous BED tasks, allowing us to efficiently train performant policies for higher dimen-
sional BO tasks.

2 Notation & Preliminaries

In order to provide a unified notation for our main theoretical and experimental results, we introduce
the Bayesian Experiment Design and Markov Decision Process formalisms in the following two
subsections, followed by a short overview of Graph Neural Networks.



2.1 Bayesian Experiment Design

Bayesian Experiment Design is a general framework that helps agents make intelligent decisions
to efficiently reduce their uncertainty over a set of hypotheses. More specifically, BED models a
sequential interaction process, or “experiment”’, between a decision-making agent and an environ-
ment containing some latent variable of interest, denoted #. A BED task is defined by the tuple
(©,X,Y,p0,p,r), where O defines a space of possible values for the latent variable, or “hypothe-
ses”, X defines a space of actions available to the agent, or “experiment designs”, and ) defines
a space of observations, or “experiment outcomes”. The probabilistic models po(#) and p(y|z, 0)
define a prior over the possible hypotheses and the observation model, respectively.

At each time step t = 0,1, ..., the agent chooses the experiment design x; based on the posterior
belief state p; := p(0|{ (-, y-)}._}). The environment then yields the observation y; ~ p(y|z:,6),
which the agent adds to its information set Z; = {(x, y,) tf_:lo. The agent is interested in choosing
informative experiment designs to reduce the uncertainty about 6 as measured by some functional
of the posterior 7 (p(6]Z;)).

The BED framework is flexible in its ability to model finite hypothesis classes as well as contin-
uous. For example, in this paper we focus on two tasks that feature prominently in the ML and
robotics literature as case studies for our experimental results: Bayesian Optimization (BO) and
Active Search (AS). BO can be thought of as an instance of a BED task where 6 represents some
unknown continuous black-box function that must be optimized. Similarly, AS can be thought of
as a BED task where 6 is a binary-valued vector representing the location of objects of interest in
a discredited real-world terrain. We return to more detailed descriptions of the BO and AS tasks in
their respective experimental sections.

2.2 Markov Decision Processes

For ease of analysis, we now describe how to view a BED task as an instance of a Markov Decision
Process (MDP).

We consider finite-horizon MDPs defined by the tuple (S, A, P, p,r,T), where the state space S
is continuous and the action space A is discrete, and the unknown state transition function P :
S x 8 x A — [0, 00) represents the probability density of the next state s;1 € S given the current
state s; € S and action a; € A. The environment generates a reward 7; € R based on the current
state s; and action a,. The environment generates trajectories of length 7' € N starting from an
initial state drawn from initial state distribution p : S — [0, 00). The standard MDP objective is to
find a policy 7, : S — A by optimizing policy parameters ¢ to maximize the expected discounted

return E[ZtT:_O1 r¢|m,]. Note that we use ¢ to denote the MDP timestep throughout this paper.

For the BED task, we define the MDP state as the posterior belief s; := p;, and the action as the
design a; := x;. The state definition satisfies Markovian dynamics assumptions by stochastically
transitioning to state p; 1 after incorporating (¢, y:) using the inference equations, with stochastic-
ity arising from the random variable y;. The reward is defined as a functional of p;, and can involve
a variety of application-specific quantities that incorporate information-theoretic terms derived from
the posterior belief state, as well as action costs and geometric quantities relating to the geometry of
the underlying domain. In the experiment section, we describe some example reward functions that
are commonly found in the BED and related literature for our case study environments.

We note that it is also possible to cast BED tasks in the MDP formalism by defining the state s; :=
T:. The advantage of choosing information set state representations over belief-state representations
is that it allows for the training of end-to-end networks that amortize over the inference process
mapping from Z; to p;, as well as the expected returns and optimal action. This may be attractive
in certain contexts, where inference itself is costly. Indeed, this is the approach adopted in [3. I8,
14, [15L [8]. Due to space constraints, in the main paper we present results that leverage discretized
belief state representations following previous work [7, [10, [16]. We include additional results on
non-discretized information set methods in the Appendix



2.3 Graph Neural Networks

Graph Neural Networks (GNNs) are a broad family of architectures designed to process data rep-
resented as graphs, where entities are modeled as nodes and their interactions as edges. Through
iterative message passing, GNNs enable each node to update its representation by aggregating infor-
mation from its neighbors, thereby capturing relational structure and inductive biases that standard
feedforward or convolutional architectures cannot. This makes them especially well-suited to do-
mains where the underlying structure is non-Euclidean or relational.

Over the past several years, GNNs have been successfully applied across a wide range of machine
learning and robotics subfields. In representation learning, GNNs underpin molecular property pre-
diction [17], and structure-aware scene understanding [[18]]. In reinforcement learning and control,
GNNs have been used to model multi-agent interactions [19], physical dynamics [20], and robotic
manipulation [21]], leveraging their ability to encode symmetry and compositional structure. More
broadly, GNNs have become a unifying framework for exploiting invariances and equivariances
inherent in structured decision-making problems.

In our experiments, we build on these insights by leveraging GNNs to capture important equivari-
ances in Bayesian Experiment Design (BED) tasks. As described in Section[d] our model architec-
ture exploits the graph structure of the belief representation and design space to improve generaliza-
tion across environments and hypothesis classes.

3 Belief Explosion as a Policy Optimization Bottleneck in BED

In this section, we identify the belief explosion issue and identify how it affects policy optimization
for BED tasks. More specifically, belief explosion refers to the phenomenon in which the number
of possible beliefs an agent must consider becomes intractably large as the search progresses. This
is a well-known problem in the POMDP planning literature [22| [23]], but has received little attention
in the contemporary BED and deep learning communities.

Figure [2| visualizes the belief explosion for a 1D BO task. The figure on the left shows four belief
state trajectories, illustrating the increasing diversity of beliefs with time. The figure on the right
illustrates this more precisely: As the agent progresses further into the trial, the average divergence
between two realizable beliefs increases. This is shown by the blue curve, which measures the
KL divergence between canonical representations of the beliefs—the posterior mean vector and
covariance matrix—in discretized Gaussian Process prior BO tasks. The orange curve shows that
much of this growth is overstated: for each pair of realizable beliefs (s, §), there exists a transformed
belief in the set of all permuted beliefs B(S) which can have significantly lower divergence with s
compared to its original untransformed representation.
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Figure 2: Belief Explosion

Next, we show that this rapid increase in S; with ¢ renders current policy optimization methods for
BED highly sample inefficient when using standard belief representations and network architecture
choices. We consider a simple offline learning problem in a small 10-bin discretized 1D BO task.
The goal here is to imitate the 1-step greedy expected information gain expert using behavior cloning
with a fully connected network trained on concatenate(u;, flatten(X;)) discretized belief-state
representations. Figure [3| shows cross entropy train-test loss curves with an expert data set of 10*
expert environment transition samples.

Mild overfitting is evident in the left plot of Figure[3|and is perhaps otherwise unremarkable. The fig-
ure on the right in Figure[3]shows the same test loss curve but is decomposed over various timesteps.
As an example, the green curve shows the test loss when using test beliefs {p%} as input to 7.
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Figure 3: Test Loss Temporal Decomposition Note that each curve is averaged over 10 seeds. The shaded
region shows £2 standard errors.

We make the following observations about Figure 3}

1. The best test loss achieved by 7, increases monotonically as a function of ¢ until timestep
t = 6, after which the best test loss stagnates. That is, for “shallow” beliefs, 7, general-
izes well, while for “deep” beliefs, generalization performance plummets. Given that each
timestep is associated with the same number of training samples, as is common in stan-
dard rollout-based DRL data collection strategies, Figure [3is a clear illustration of belief
explosion in full effect;

2. While the aggregate test curve in left plot of Figure [3]shows mild overfitting, decomposing
the test loss over the timesteps tells a very different story: namely, that for shallow beliefs,
our network hasn’t yet converged to the best test loss, while for deep beliefs, we experience
drastic overfitting.

The key issue is that a fully connected network fails to incorporate the structural properties of the
BED task, and as a result, it struggles to generalize to unseen belief states at test time. This limitation
poses challenges even in very small BO instances, such as this task with only 10 discrete bins.

We argue that embedding BED-specific inductive biases into the model architecture is essential
for efficient learning. Our key insight is that naive network parameterizations experience belief
explosion along the blue curve of Figure [2] while networks that leverage a property we call domain
permutation equivariance (introduced in the next section) experience a significantly tamer growth
of belief diversity according to the orange curve.

4 Domain-permutation equivariance in BED and GNNs

In this section, we present some intuition about the structural properties of BED tasks that can be
exploited for efficient learning. Figure T]illustrates how we might intuitively expect the acquisition
values of belief p; to be equivariant with respect to a simple transformation of the domain X'. We
formalize this intuition in our main theoretical result below about the domain-permutation equiv-
ariance of optimal policies in BED tasks and use it to motivate the use of GNNs as an appropriate
inductive bias.

Specifically, for ease of exposition, we focus our attention on BED tasks in which the posterior
belief over the unknown function is fully characterized by the first two moments, as is the case in
Bayesian Optimization and Active Search.

Let f : R? — R be the unknown function which the active sensing agent is querying. We consider
BED tasks over a discretised space Xgise = {x',22,...,2M}. The posterior distribution over f
(belief-state) given the information set Z; is therefore a tuple of finite dimensional moments s; =
(,Ltt, Zt) with:

= (E[f(@)T]),L, € RM and 3y = (B[(f(a") — ) (F(27) — pd)|T]),,_, € S

Consider a set of permutations ¢, where each permutation ¢ € ® permutes the belief state s;. More
specifically, each permutation is a bijection ¢ : {1,2,..., M} — {1,2,..., M} that reorders the
indices of the M input points in Xgisc. Thus, ¢(s;) = (g, Xg,c) Where:

Mot = (E[f(x¢(i))|zt])i1 B ('uf(i))jif



and M M

Soa = (E[(f@*D) = ufD) x (f@*D) = V) [z]) = (20040)

ij=1 ij=1
We overload the notation ¢ to also map actions to permuted actions. In our active sensing setup, each
action a senses some subset of Xy, i.e., a = Xa C Xyise, and we define ¢(a) = {$¢(2) cxt € Xat

Theorem 1 (Domain Permutation Equivariance). Let ® be a set of permutations. Suppose a
Bayesian Experiment Design (BED) task satisfies, for all ¢ € ® and all state-action-next-state
transitions s,s' € S, a € A:

(i) Reward invariance: r(s,a) = r(¢(s), #(a))
(ii) Transition invariance: p(s’ |s,a) = p(p(s’) | #(s), p(a))

Then, forallp € @, alls € S, a € A, andy € [0,1]:

7 (#(s)) = ¢(7}(s)) (optimal policy equivariance)

Q5 (#(s), p(a)) = Q5 (s,a) (optimal Q-value invariance).

This reward and transition equivariance property holds for a wide range of BED tasks. For example,
with the BO task, a practitioner might choose the reward as the negative posterior argmax entropy.
Since the transition is the GP inference, both reward and transition invariance hold, since neither
depend explicitly on the ordering of states in the domain. These conditions also hold for the AS task
with a more constrained set of permutations, which is described in detail in the appendix.

One way to interpret this result is that using mean vectors and covariance matrices as belief repre-
sentations during learning implicitly imposes a fixed ordering on the underlying random variables.
This is problematic, as the BED task ultimately requires reasoning about sets of jointly distributed
random variables, which are inherently unordered. By designing policies that are equivariant to per-
mutations of these variables, we enable agents to generalize optimal behaviors across a broader class
of decision-theoretically equivalent belief states, thereby substantially improving sample efficiency.

We emphasize that this theorem is complementary to Theorem 3 by Foster et al. in [3], which
concerns observation-set permutations. Whereas observation-set permutation invariance focuses on
temporal structure, domain-permutation equivariance is concerned with the geometric structure of
the belief state itself.

The significance of this result is that we can easily generalize between permuted belief states during
policy optimization. We use a straightforward way of doing so: using graph representations of the
posterior belief as our state, with Graph Neural Networks as our policy class, which are permutation
equivariant by design.
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Figure 4: Dense Network & GNN Comparison: Input Representations Note that although the graph input
to ﬂ'gNN is a complete graph, we omit all edges from the figure for ease of illustration.

We use a complete undirected graph to represent our belief, with M nodes representing the un-
known function value at points in the discretized domain Xy, and M (M — 1)/2 edges rep-
resenting our joint uncertainty between points in Xgs.. For example, in the Bayesian Optimi-
sation setting, each node in the graph is labeled with a 2d vector containing posterior statistics
(e(z) = E(f(2)|Ty) , o} (z) = V(f(x)|Z;)) € R% Each edge of the graph is labeled with the
posterior covariance Cov(f(z), f(2')|Z;) € RT. We then use a TransformerConv architecture
[24] for the GNN which transforms labels on the nodes by combining information from the labels
in neighboring nodes and edges using learned soft attention. Figure [ illustrates the input represen-
tation to the GNN and the MLP.



5 Experiments

Our experiments aim to answer the following questions:

1. Do GNNS offer an effective inductive bias for efficiently learning BED policies using data
from an expensive oracle?

2. Can GNNs be used to learn non-myopic BED policies using reinforcement learning?

3. How well do GNN-based policies transfer across BED problems, and do they scale to larger
search problems?

Note that due to space constraints, we leave our reinforcement learning, generalization, and contin-
uous BO experiments in Appendix [E.2]

5.1 Setup
Tasks: We use two BED tasks: Bayesian Optimization (BO) and Active Search (AS).

Bayesian Optimization models the problem of efficiently locating the argmax of an unknown func-
tion using black-box queries. Our latent variable of interest 6 is an unknown function f : X — R
defined on the domain X C R?. The action space A consists of point locations in the domain
x € X, and the observation model p(y|z, ) is a black-box evaluation at the detection location with
Gaussian noise pyoise = N (0,02.:.). The prior p(f) is defined using a zero-mean Gaussian prior
with a chosen kernel.

|2
For our experiments, we use a Squared-Exponential kernel k(x,z’) = o2 exp (—%) We
Mo _
i=1 =

M
i=

also discretize the domain X into a finite set of points {2
closed-form inference over the set of random variables { f(x*)
ence equations [25]. We also restrict the agent’s actions to Xjjgc-

Xiise C X, allowing for exact
1 using standard Gaussian infer-

There are several candidate choices for the MDP reward function, but a natural choice [26, 27| for
BO tasks is to define r, = —7H(p}). Here we define p; as the posterior over the arg max of f, and
we use H to denote the Shannon entropy. With this reward definition, we incentivize designs that
improve the agent’s understanding of the location of the maximum of f, or equivalently, designs
that reduce the agent’s posterior uncertainty about the location of an optimal function value. We
note that, unlike posterior inference, there are no closed-form expressions available for H(p;). We
therefore use Monte Carlo sampling to approximate p;(x*) with the following estimator:

N
ila?) = S argmax fi(e) = ']
i=1

where f; ~ p;(f) and then use r, = —H (p;(z*)).

We use a 1D domain with M = 32 grid points in region length = 8 with £ = 1, 02, . = 0.1 and
02 = 1. These parameters were chosen such that draws f ~ pq typically have 3-4 local optima, and
the smoothness is qualitatively discernible. We set the episode length to 7' = 8. As we shall see,
although this toy problem instance may seem trivial, it poses significant challenges when training
with standard dense neural networks. In the appendix we explore fully continuous non-discretized
BO tasks.

Bayesian Optimisation Active Search
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Figure 5: Overview of the Bayesian Optimization and Active Search Tasks



Active Search models the problem of efficiently locating sparse objects in an unknown environment
by actively taking sensing actions given all observations thus far [28| 29} 30, 31, 32]. Figure 5]
illustrates an Active Search problem using an aerial remote sensing agent. We adopt the environment
model from [10].

The Active Search problem can be thought of as an instance of the standard Bayesian Optimization
problem with some modifications, the key differences being:

1. BO: f smooth; AS: f sparse
2. BO: pointwise sensing of f; AS: contiguous interval sensing of f

3. BO: homoskedastic noise; AS: heteroskedastic noise based on sensed interval X;.

Here, f : X — {0, 1} denotes object presence, with X representing a 1D, 2D, or 3D search space.
The prior p(#) assumes sparsity. Instead of selecting single points, the agent senses contiguous
intervals X; C X, receiving a noisy observation f(X;). Wider intervals yield more noise, reflecting
the trade-off between resolution and coverage (e.g., higher altitudes capture more area but with less
precision).

We adopt the recovery reward, which selects actions to maximize expected detections under the
posterior [33, 10} 34]].

Experiments use a 1D grid with M = 32 and episode length 7" = 32. Actions span up to [ =
4 points, with noise increasing with interval size—inducing a trade-off between exploration and
precision.

Learning-based baselines: We compare GNNs against three standard parameterizations of the pol-
icy and critic networks used in previous work: FCNs, CNNs, and Transformers on the information
set.

FCN or Dense networks are a naive, but common choice in the DRL literature [35) 36]. Multiple
BED DRL papers have used similar architectures while focusing primarily on other dimensions of
the BED problem [7, [10].

CNNs, on the other hand, provide a stronger inductive bias for BED tasks [7]. They are set up to
predict the Q value or the action probability for each point in the domain using marginal statistics
at that point. Although this architecture can be efficient at learning certain functions, it completely
ignores the correlations between different points in the domain and, therefore, is insufficient for
representing the multistep value function or optimal policy for BED tasks.

Transformers are another promising alternative [37]], capable of processing entire information sets
directly. Though there is some similarity in transformers and GNNs, they operate on different state
representation and offer distinct invariances: transformers directly operate on the information set
and provide information set permutation invariance, while the GNNs operate on the belief state and
additionally provide domain permutation-set equivariance. Note that in the appendix we include
more experiments comparing Transformers and information-set-based GNNs without requiring any
discretization strategies.

Non-amortized baselines: For Bayesian Optimization, we compare our learned policies with the
greedy policies w.r.t. the Expected Improvement [38] and UCB [39] acquisition functions, as well
as Thompson Sampling [40]]. For Active Search, we compare with random waypoint selection and
a linear sweeping of the search domain [28]].

5.2 Behavior Cloning Experiments

We begin our experiments by comparing different policy architectures for behavior cloning an ex-
pensive oracle and validating that GNN s offer a helpful inductive bias.

Our goal is to train policies to clone the 1-step greedy expert my.gep = arg max, E{riy1|pe, ar = al,
with a negative posterior argmax entropy reward function. We use Monte Carlo rollouts to generate
an offline dataset of beliefs encountered by the 1-step greedy expert, along with the expert actions:
D = {(p},a})} where p; denotes the posterior belief state at timestep ¢ in trial ¢ when following
policy 7i_gep. In other words, D is a dataset of (state, actions-of-1-step-expert) collected from the
1-step lookahead policy. The Active Search task uses 32 timesteps per rollout, and the Bayesian
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Figure 6: Comparison of Inductive Biases for Behavior Cloning at 5,000 samples: Training (solid) and
test (dotted) behavior-cloning loss, and expected return for various networks on the Active Search (left) and
Bayesian Optimization (right) tasks. The dotted black line denotes the oracle’s expected return. During training,
we keep track of the best-performing policy on the validation set using the behavior cloning loss (i.e., the rolling
best policy). The expected return is then computed by evaluating this best-val policy. Note that each curve is
averaged over 5 seeds. The shaded region shows +2 standard errors.

Optimisation task uses 8. We note that we include behavior cloning results on BO instances for
higher dimensional continuous BO tasks using 32 timesteps in the appendix.

Figure [6] shows the standard train-test loss curves and online performance for different pol-
icy networks trained using behavior cloning on AS and BO respectively. We train these net-
works on an 80:20 train:test split of data from D using Adam, with varying dataset size |D| €
{50, 500, 5000, 50000} (full results presented in the appendix). The dotted black lines on the right
subfigures show the online performance of 7y gep.

Across both tasks and all dataset sizes, we observe that the GNN shows excellent generalization on
the test set, while the other networks overfit and perform poorly on the test set. Moreover, the GNN
is able to match the expert’s rollout performance using 5,000 samples on both tasks.

Looking at the baselines, we see that the FCN and Transformer are very data-hungry and require a
prohibitive number of samples even for small tasks. CNNs improve upon FCNs and Transformers
and can learn much more efficiently. However, they are limited by their inability to use cross-
correlation terms in the belief state, which is essential for doing well on many BED tasks.
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Figure 7: Comparison with Non-Amortized baselines on BO

Figure [7] compares the trained GNN with non-learning based baselines: Upper Confidence Bound
(UCB), Thompsons Sampling (TS), Expected Improvement (EI) and Expected Information Gain
(EIG). We report inference time and performance, as measured by the terminal posterior argmax
entropy, that is, the entropy of the posterior argmax implied by the belief state at the final timestep
of the rollout (t = 7" = 8). We see that the GNN can match the oracle’s performance while being
significantly faster. Acquisition functions such as EI and UCB are faster to compute, but don’t
perform as well.

Our experiments in this section validate our claim that the choice of inductive bias is a bottleneck
for efficiently learning BED policies. We show that GNNs are more sample efficient than other
networks by at least an order of magnitude on all tasks, confirming the benefit of exploiting the
domain-permutation equivariance structure for BED tasks.



5.3 Reinforcement Learning Experiments

In this section we provide results on learning non-myopic policies using reinforcement learning. We
use DDQN with nonstationary Q-values, integrated Bellman targets and various critic architectures
to learn policies described in Section[2] As with the behavior cloning experiments, we compare the
performance of the Graph Neural Networks with the Dense Networks, CNNs, and Transformers.

For the BO enviornment, we use the negative posterior argmax entropy as the reward function. For
the AS environment, we use the full recovery rate reward [10]].

Figure [§] shows the training curves for our reinforcement learning experiments. The black dotted
line shows the performance of the greedy policy. As in the offline training setting, we see significant
improvements in training efficiency when using GNNs. In fact, the GNNs are the only policy that
can learn non-myopic policies in either task. All other networks train very slowly and we expect
them to require at least an order of magnitude more training steps to even reach the myopic policy’s
performance.

Active Search Bayesian Optimization
-12
3.01
—-141
£ 25 £
2 =
& & ~161
= 2.0 =
o] o]
5] ]
= S —181 - - - Greedy Policy
1.54 —— FCN
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Figure 8: Comparison of Inductive Biases for Reinforcement Learning: RL training curves for various
architecture on the AS (left) and BO (right) tasks. The dotted black line denotes the oracle’s expected return.
Note that each curve is averaged over 5 seeds. The shaded region shows +2 standard errors.

6 Conclusion

In this work, we identified belief explosion as a bottleneck in policy optimization for BED tasks, and
demonstrated that designing networks with the right equivariance structure is an effective strategy
at taming this issue. We empirically show that our method can amortize expensive oracles, learn
non-myopic policies, and generalize to larger scale BED tasks at test time. We also showed how
GNNs can be leveraged in both discrete and continuous contexts, with significantly increased sample
efficiency gains in higher-dimensional BO tasks. An exciting future direction involves discovering
® for a broader range of BED tasks such as SIR parameter identification, as well as expanding our
approach to misspecified BED tasks.
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A Limitations

This work has several limitations. First, all experiments are conducted on synthetic Bayesian ex-
periment design task instances. While these are widely used benchmarks, they do not capture the
full complexity of real-world applications. Second, we assume well-specified models throughout,
which may not hold in practice. Finally, our framework presumes access to exact posterior moments
(e.g., means and covariances), which is appropriate under fixed priors. However, many practical
BED settings involve hyperpriors (such as distributions over kernel lengthscales) that induce pos-
terior distributions over parameters for which first- and second-order moments may no longer be
sufficient. This complicates the construction of GNN input representations and poses a challenge
for generalizing our approach.

B Compute Resources

All experiments in this paper were conducted on a cluster of § NVIDIA 2080 Ti GPUs. The longest-
running experiments involved training the 10 Transformer model seeds on the 8D Bayesian Opti-
mization continuous behavior cloning task, which took approximately one week.

C Proof of Theorem [1]

Theorem 1 (Domain Permutation Equivariance). If our BED task has the following two proper-
ties for all permutations ¢ € ®:

1. r(s,a) = r(p(s), d(a)) (reward invariance)
2. p(s'|s,a) = p(p(s)|p(s), p(a)) (transition invariance)

then, for all permutations ¢ € ® for all beliefs s for all discounts v, 73 (¢(s)) = ¢(73(s)) (optimal
policy equivariance)

Proof: We’d like to prove that 7% (s) = ¢! (7% (4(s))) Vs. This is equivalent to showing that
1

argmaxq’ (s, ) = ¢ (wgmaxq (§(s), @) Vs n

We will also show that

q*(s7a) = q*(¢(8)7¢(a))) VS,V(I 2
We will prove both Eq[T]and Eq[2using induction.

Let’s start with the last timestep T'. Eq[2|directly holds from reward equivariance.
Proof for Eq/[] at the last timestep:

¢~ (argmax, g7 (6(s),a)) = ¢~ (arg maxy r(¢(s), a))
(the action-value function at timestep 7" is equal to the reward)

= ¢~ !(argmax, g7 (¢(s), a)) = argmax, r(¢(s), ¢(a))
(using arg max, f(¢(z)) = ¢~ (arg max, f(z)) Vf, ¢)

= ¢ (argmax, ¢;(4(s),a)) = argmax, r(s,a)
(using reward invariance)

= ¢~ !(argmax, ¢5(4(s),a)) = arg max, ¢ (s, a).

Now we’d like to show that if Eq[T]and Eq[2] holds for timestep ¢ + 1, it is also true for timestep .
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=

This completes our proof by induction.

¢~ (argmax q; (¢(s), a)) = ¢ (arg maxr(¢(s), a) + VEujg(s).amax g7y (s',a)])
(Bellman equation)
¢~ (argmax q; (¢(s), a)) = argmaxr(¢(s), $(a)) + VB |4 (s) (a) [MaX G711 (5, 0)]
(using arg max f(¢(x)) = ¢~ (arg max f(z)))
¢~ (argmax g; (¢(s), a)) = argmax (s, a) + By |4(s).0(a) (Max 471 (5", a')]
(reward invariance)
6~ (arg max g} (6(s),a)) = argmaxr(s,a) + 1By, o [max iy, (6(5'), a')]
(transition invariance)
¢~ (argmax g; (¢(s), a)) = argmaxr(s, a) + VEy(s1) g(s).0(a) [MaX GF41 (67 (5), &(a))]
(change of variables: Ey,)[f(2)] = E,[f(¢™" (2))])
¢~ (argmax g; (¢(s), a)) = argmaxr(s, a) + By o[max g7y, (67 (s"), a)]
(transition invariance)
o~ (arg ma g; (6(s), @) = argmax r(s, a) + 1B o o[max gl (671(5), 67 (a))]
(invariance of max under ¢)
6~ (argmax g7 (9(5), 0)) = argmax r(s, 0) + VEa o[max giy, (5, )]
(inductive assumption: Eq.[2holds for ¢ + 1)

o™ (argmax g} (6(s),a)) = argmax g; (5,0) = ¢ (5,a)
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D Discrete Belief Representations and Policy Inputs

E Further Experiments

E.1 Full Behavior Cloning Experements

In this section, we present the full results from our behavior cloning experiments described in section
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Figure 9: Comparison of Inductive Biases for Behavior Cloning: We plot the (i) train (solid lines) and test
(dotted lines) behavior-cloning loss and (ii) expected return for various networks on the Active Search (left)
and Bayesian Optimization (right) tasks using increasing dataset size (top to bottom). The dotted black line
denotes the oracle’s expected return. Note that each curve is averaged over 5 seeds. The shaded region shows
the 95% confidence interval for the mean.
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E.2 Generalization and Scaling Experiments

In this section, we evaluate whether GNN-based policies can scale to large search domains where
established acquisition functions are prohibitively expensive to compute. We show results on three
transfer setups in Table 2-4, training the GNN policy on a smaller problem and evaluating transfer
performance on larger versions of the problem in each setup.

For example, Table [T} [2] show the performance of a GNN trained using behavior cloning a greedy
expert on a 8 x 8 active search environment, and evaluated on a 32 x 32 environment. The GNN
almost matches the performance of the expert on the 8 x 8 grid, and allows us to scale to 32 x 32
grid. In contrast, it’s computationally intractable to run the greedy search on the larger grid because
it requires us to estimate the expected information gain for each candidate action, which in turn
involves nested integrals. Tabled|and [5]similarly show that GNN-based policies can scale to higher-
dimensional tasks and larger grids, and match or outperform expert performance.

Table 1: Active Search Scaling Table 2: Active Search Scaling

(Train: 8 x 8 grid) (Test: 32 x 32 grid)
Method \ Performance Time (ms) Method \ Performance  Time (ms)
Random 15.28 + 0.32 < 0.01 Random 3.72 1+ 0.08 < 0.01
Simple Search | 12.67 +0.27 < 0.01 Simple Search | 3.16 +0.07 < 0.01
Greedy Search | 35.72 4+ 0.40 265.4 Greedy Search N.A. > led
GNN 34.13 £0.49 3.34 GNN 7.15 + 0.12 67.50

F Continuous BO Experiments

Here we present results of experiments comparing the simple regret performance of Transformer
and GNN models trained to clone the behavior of the LogEI policy acting on various continuous BO
tasks (2D, 4D, 8D), each rollout using 7' = 32 timesteps. In these experiments, no discretization is
used: both the Transformer and GNN take the information set Z; as input and output a point directly
in continuous design space, a; € X C R? This is desirable for contexts where discretization
is inappropriate for the level of precision demanded by the application or where it is necessary to
additionally amortize inference as well as acquisition estimation and optimization.

We use the BoTorch [41] implementation of LogEI as our expert oracle with default hyperparameters
as recommended in their documentation [} This oracle is a numerically robust implementation of
the canonical Expected Improvement acquisition function, as described in [42]]. We use a zero mean
Gaussian noise assumption with noise variance of 1076,

We train both the Transformer and the GNN models on expert trajectories using standard behaviour
cloning losses. Table[3|shows the key architectural details of both models.

Table 3: Transformer and GNN hyperparameters for continuous BO experiments

Model Trainable Params Hidden Dim # Heads # Layers
Transformer ~1x107 40 8 10
GNN ~1x107 64 8 10

As in the discrete case, the GNN input is a graph constructed from the information set Z;. Specifi-
cally, we use the same basic architecture as in the discrete experiments, but here our graph contains
t — 1 nodes at timestep ¢ instead of a fixed number of nodes for all timesteps to match a desired
level of discretization. The nodal features are the observed values {y, tT_:lo, and the edge feature for
edge i, j is the kernel evaluation k(z;, z;). In the discrete experiments, the GNN output logits for
the discrete set of actions. This allowed the network to naturally take advantage of domain transfor-
mation equivariance. In these continuous experiments, we transform the nodal features to a final set

“https://botorch.org/
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of linear weights {w, }"“_{) which are used to combine the points in the information set to define an
action distribution for the next timestep:

a; ~ N(Zt;:lo W, T, 02> where {w,} = f§"N(T;).

This parameterization is equivariant to the same set of transformations & that the kernel % is invariant
to. Note that in the discrete context, ® 5 ¢ : [N] — [N] is a permutation of the discretized domain,
while in this continuous setting we abuse notation and use ® > ¢ : R? — R to denote pointwise
invertible transformations of the domain. In our experimental results below, we again use an RBF
kernel with a lengthscale of 0.2, 0.3, 0.4, for d = 2,4, 8, over an optimization domain refined to the
disk ¥ = {z € R?| ||z||2 < 0.5}. This results in ® = O(d), where O(d) denotes the orthogonal
group, the group of distance-preserving transformations of d-dimensional Euclidean space. We
use a fixed variance actor while training both the GNN and Transformer, and during simple-regret
rollouts we act deterministically by following the mean policy a; = Zt;:lo w,z,. Finally, note that
we warm-start the information sets in every rollout with d + 1 uniformly at random chosen points
in & for all methods. Timestep O in the figure below refers to the first meaningful decision after the
warm-start points have already been collected.

The figures below show that GNNs significantly outperform Transformers when trained with the
same dataset, with increased delta as BO task dimension increases. The GNN can come close to the
simple regret performance of the expert in each task with at least an order of magnitude less data
than the Transformer. Moreover, both GNN and Transformer save roughly 1 order of magnitude
test-time compute by amortizing the inference, acquisition evaluation and optimization necessary
for the BoTorch LogEI expert.

These results demonstrate that our primary equivariance insight is not just restricted to discrete
domains. This is important, since real-world BED tasks often involve continuous modeling choices
to enable precise experiment designs.
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Figure 10: Continuous BO experimental results. We use 1,000 rollouts to evaluate the terminal
best observed value. Note that optimizing this quantity is equivalent to optimizing simple regret.
Here we use median and 1,000-seed bootstrap confidence intervals as is standard in continuous BO
literature due to the heavy-tailed nature of simple regret curves in continuous BO, such as in [43]).
Both the GNN and Transformer models were trained until overfitting on the indicated number of
expert rollout trajectories, with 200 trajectories held out for validation. The simple performance is
then computed using the models that achieved the lowest behavior cloning validation loss.

G Additional Generalisation Results

In this section, we evaluate the generalization capabilities of our amortized BO policies across search
domain dimensions and sizes. Note that these results use discrete belief representations as in the
main paper.

Table [] reports results for a policy trained on a 2D BO task and then evaluated on a set of higher-
dimensional BO tasks. We use an adaptively discretized domain inspired by Volpp et al. (ex-
plained below) to keep the size of the belief state tractable. The GNN was trained by behavior
cloning the Expected Improvement (EI) policy using 5,000 samples, and was evaluated zero-shot
on the 3D and 5D tasks. We compare its performance with a random policy, Thompson Sampling
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Figure 11: Continuous BO timing results. We additionally include a MetaBO variant of the LogEI
expert that restricts the acqusition function optimisation to the adaptive discretisatino grid proposed
in MetaBO paper [/]. Note that amortized methods significantly outperform non-amortized methods
on wall clock time while maintaining comparable performance in terms of simple regret.

(TS), and the EI policy restricted to the discrete domain points. We note that the GNN matches the
EI policy’s performance on the 2D training task and generalizes well to the 3D and 5D domains.

Table [3] presents another generalization experiment: we train the GNN by behavior cloning the
Expected Information Gain (EIG) policy on a domain of [0, 4] discretized into 32 bins using 5,000
samples, and tested on a larger domain of [0, 128] discretized into 1,024 bins. Once again, the GNN
shows strong imitation and zero-shot generalization. Note that, due to the computational cost of the
EIG policy (exceeding 10 seconds per decision), direct evaluation on the large domain is infeasible.
This underscores the value of generalizable amortized policies.

Table 4: Scaling Amortized BO Policies with Search Dimension

Train: 2D Test: 3D Test: 5D
Method | Performance Time (ms) | Performance Time (ms) \ Performance  Time (ms)
Random | 1.07 +0.05 0.02 1.134+0.05 0.02 1.13£0.05 0.02
TS 1.25 +0.05 1.13 1.29 +0.05 1.86 1.23 £0.05 1.04
EI 1.31 4+ 0.05 0.29 1.48 + 0.06 0.30 1.48 4+ 0.05 1.94

GNN 1.28 + 0.05 67.01 1.49 £ 0.06 56.32 1.47 4 0.05 57.46

Table 5: Scaling Amortized BO Policies with Grid Size

Train: N = 32 Test: N = 1024
Method Performance Time (ms) Performance Time (ms)
Random | —15.43+£0.17 0.05 —33.79 £ 0.27 < 0.11
TS —13.44 +0.20 0.21 —29.21 +0.38 29.11
UCB —13.74 £ 0.17 0.15 —29.10 £0.33 0.24
EIG —11.95 £+ 0.20 1067.4 N.A. > led
GNN —11.60 £ 0.20 9.83 —27.94 4+ 0.36 70.63

Adaptive discretization method: Sample n points uniformly at random in the domain, choose the
top k using the EI acquisition function, and then sample m points near each of these & best points.
The candidate set consists of n + km points. We use n = 100, k = 5, m = 20.

Evaluation procedure: For all the experiments in this section, we evaluate the mean return of the
policy using a fixed episode length of 8, averaged over 200 trials, using the EI reward for Table {]
and EIG reward for Table[5] Since the EI reward requires a previous max-value, instead of assuming
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a fixed initial max value, we choose to initialize each trial with a single point chosen uniformly at
random in the domain. This point does not contribute to the timestep count in our experiments.

H Generalization through data augmentation

In this experiment, we compare two different strategies for leveraging the domain permutation equiv-
ariant structure in Bayesian Optimization policies for efficient behavior-cloning: (i) using a network
with a suitable inductive bias, i.e., the Graph Neural Network described in Section 4, and (ii) apply-
ing data augmentation during training. This data augmentation corresponds to the set of permuta-
tions the policy is equivariant to.

Figure [12] shows the behavior-cloning training and validation loss alongside the resulting policy
performance across several network architectures. Additionally, it shows outcomes from training a
fully connected network (FCN) using data augmentation. The results indicate that data augmentation
significantly improves the generalization capability of the FCN, as evidenced by the near-perfect
alignment of training and validation loss curves (depicted in purple). However, this improvement
comes at a substantial computational cost—training times are considerably prolonged. Notably,
the GNN achieves expert-level performance within approximately 30 epochs, whereas the FCN
augmented with permutation-based data augmentation fails to match this performance even after
7,000 epochs. This disparity is expected since the equivariant permutation set is very large, equal to
n! for a n-bin discrete BO task. This is the number of permutation the GNN is naturally equivariant
to, but the FCN needs explicit data augmentation for during training. For this particular experiment,
the number of permutations is n! = 32! ~ 2.6 x 103°.

Behavior Cloning for Bayesian Optimization with 5,000 samples
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Figure 12: Comparison of Inductive Biases and Data Augmentation for Behavior Cloning: We
plot the (i) train (solid lines) and test (dotted lines) behavior-cloning loss and (ii) expected return for
various networks on the Bayesian Optimization using a dataset size of 5,000 samples. The oracle’s
expected return is indicated by the dotted black line. Regular training was terminated at 1,000 epochs
after performance had stagnated. Note that each curve is averaged over 5 seeds. The shaded region
shows the 95% confidence interval for the mean.

I Generalization and Scalability for Bayesian Optimization

In this section, we discuss the generalizability and scalability of our amortized approach to Bayesian
Optimization (BO).

I.1 Generalizability

In all but the scaling experiments of section [Hl our experimental setup assumes a well-specified
prior: both training and test functions are sampled from a known Gaussian Process (GP) prior.
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While this assumption facilitates controlled evaluation, it does not always hold in practice. Real-
world applications of BO often involve misspecified priors, where the true function does not match
the assumed GP prior. In these cases, surrogate models are fit by estimating GP hyperparameters
from data.

To generalize our amortization approach beyond the well-specified regime, the learned policy should
(1) train on a distribution of BED tasks induced by our prior distribution over hyperparameters, and
(ii) condition on the posterior distribution over the full set of random variables in the BED task,
which now includes the hyperparameters.

L2 Scalability

Our approach can help with scalability by amortizing the computationally expensive BO methods
via a neural policy that maps belief states to actions, thereby reducing online computational burden.
However, special care is required in representing the belief state. Our method relies on an explicit
representation of the posterior over the search space, which can become prohibitively expensive in
high-dimensional settings. In particular, a naive uniform discretization leads to a grid whose size
grows exponentially with the number of input dimensions.

To mitigate this, we adopted a simple adaptive discretization strategy inspired by MetaBO [7] for
our higher dimensional BO experiments in section |G| By concentrating representational capacity in
high-mean or high-uncertainty regions, we retain a tractable belief representation. Nonetheless, the
choice of discretization remains a critical factor, and a more principled exploration of this design
choice is left to future work.

J Network Hyperparamters for Discrete Experiments

Table 6: Hyperparameters for FCN.
Hidden Layers | [512, 512, 512]

Table 7: Hyperparameters for CNN.

Number of Layers | 6
Kernel size 9

Table 8: Hyperparameters for GNN.

Hidden Dim 64
Number of Heads | 8
Number of Layers | 2

Table 9: Hyperparameters for Transformer.

Number of Layers | 5
Number of Heads | 16
Embedding Size | 64
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Training Hyperparamters

Table 10: Behavior Cloning Hyperparameters

Learning Rate | 3e-4
Batch Size 32
Optimizer Adam

Table 11: Reinforcement Learning Hyperparameters

Algorithm DDQN
Exploration e-greedy
Discount factor 0.95
Learning Rate 3e-4
Batch Size 32
Optimizer Adam

We also use non-stationary Q-functions with DDQN since we model our BED tasks as finite-horizon
MDPs. In addition, we use integrated Bellman targets to reduce noise in training.

L Visualisation of Evolution of GNN & FCN Critic
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Figure 13: Evolution of BO GNN policy through RL training. Each column illustrates a rollout
after a given number of collected MDP transitions (indicated in the column title). The left figure
in each column depicts the belief state p; and ground-truth hidden function, and the right figure
illustrates the estimated g-values. Note that the GNN quickly learns myopic search behavior (first
check both corners of the domain). After gathering more experience, it instead learns to first query
the internal point of the domain to act less greedy while maximizing return. Note also that the GNN
from initialisation captures symmetry and smoothness priors, and that after 8,192 transitions has
learned to represent both sharp discontinuities and smoothness, which is essential when modeling
the drop in value for re-sensing a previously queried point, but sharp increase in value for querying
neighboring points if the observed point is high.
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Figure 14: Evolution of BO FCN policy through RL training. Each column illustrates a rollout
after a given number of collected MDP transitions. The left figure in each column depicts the belief
state py, and the right figure illustrates the estimated g-values. Note that no qualitative improvement
to the g-values is visible after 4,096 MDP transitions, in contrast to the GNN which achieves high
rewards and clear structure in the g-estimates.

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction concern the belief explosion
problem as a bottleneck for sample efficient BED DL training, the role of domain permu-
tation equivariance as an exploitable property of BED tasks, and the role of GNNs as an
inductive bias to leverage this.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

24



Justification: We have included a limitations section in the appendix of the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ”Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We include a full proof in the appendix for our theorem concerning optimal
policy equivariance.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: algorithmic and BED environment hyperparameter details, as well as model
references are provided in the paper and appendix.
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Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We have not provided a full codebase for this paper. However, our contribu-
tion is in articulating a specific problem independent of specific code implementation, and
our results rely on open source widely used GNN, Transformer, CNN and FCN models.

Guidelines:

The answer NA means that paper does not include experiments requiring code.
Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We have provided these details in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report standard errors in all figures and describe our approach in detail.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer “Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have described the compute resources used in all of our experiments in
the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
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9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and believe that we conform
in every respect.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

 The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper studies a specific bottleneck in a purely synthetic context that is of
broad interest to the BED community but which we believe is not directly related to any
clear broader social impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: Our paper studies a specific bottleneck in a purely synthetic context that is of
broad interest to the BED community but which we believe does not raise any significant
safety issues.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have credited all models, enviornments and libraries that we used in our
experiments.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: We have not provided any new assets in this paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
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Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]|
Justification: We have not used any crowdsurcing or human subjects in this research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We have not used any crowdsurcing or human subjects in this research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: This research does not concern LLMs.
Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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