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ABSTRACT

Accurate prediction of human behavior is essential for robust and safe
human-AT collaboration. However, existing approaches for modeling peo-
ple are often data-hungry and brittle because they either make unrealistic
assumptions about rationality or are too computationally demanding to
adapt rapidly. Our key insight is that many everyday social interactions may
follow predictable patterns; efficient “scripts” that minimize cognitive load
for actors and observers, e.g., “wait for the green light, then go.” We propose
modeling these routines as behavioral programs instantiated in computer
code rather than policies conditioned on beliefs and desires. We introduce
ROTE, a novel algorithm that leverages both large language models (LLMs)
for synthesizing a hypothesis space of behavioral programs, and probabilistic
inference for reasoning about uncertainty over that space. We test ROTE
in a suite of gridworld tasks and a large-scale embodied household simu-
lator. ROTE predicts human and AI behaviors from sparse observations,
outperforming competitive baselines—including behavior cloning and LLM-
based methods—by as much as 50% in terms of in-sample accuracy and
out-of-sample generalization. By treating action understanding as a program
synthesis problem, ROTE opens a path for Al systems to efficiently and
effectively predict human behavior in the real-world.

1 INTRODUCTION

Predicting the behavior of others (Theory of Mind) is a core challenge for building intelligent
social agents. Whether anticipating a pedestrian’s movements, coordinating with teammates,
or interacting safely in public spaces, machines must infer what others are likely to do next.
Existing approaches such as behavior cloning (BC) and inverse reinforcement learning (IRL)
rely on learning models to predict low-level actions or infer latent reward functions |Abbeel
& Ng| (2004); Ng et al| (2000); Torabi et al| (2018); Wulfmeier et al.| (2016). However, these
methods are often data-hungry and brittle because they try to learn what an agent might do
in every possible state, frequently overfitting to specific environments or overcomplicating
behaviors that are surprisingly routine for humans (Skalse & Abate, 2024; |Yildirim et al.,
2024). Alternatively, probabilistic methods for goal inference (Fuchs et al. 2023 |Zhi-
Xuan et al. 2020; 2024) are more sample efficient but demand computationally intensive
online reasoning about potential intentions and beliefs, alongside human-specified priors
and hypothesis spaces. Thus, conventional methods for modeling others present a trade-
off illustrated in Figure [I} data-intensive and brittle, or compute-intensive and manually
constructed for each new domain.

Recent work in cognitive science shows that when humans interact with one another, we do
not always imbue others with deeply held mental states such as goals or beliefs. Instead we
often perceive others as following a script or mindlessly applying a set of rules (Ullman &
Bass, [2024; [Bass et al., |2024)). For example, when someone steps into a crosswalk, we do
not need to infer their ultimate destination, their complex mental states, or their opinion on
pineapple on pizza. It is enough to apply a commonly understood “crosswalk script” shaped
by social convention. While there are perspectives on how people adopt roles in societies or
prescribe agency to others (Dennett, [1972; [Field) [1978; |Dennett & Goreyl, [1981; |Dennett)
1987} [2017; |[Jara-Ettinger & Dunhaml 2024), to the best of our knowledge, there are currently
no computational models that adequately describe how machines can represent and reason
about other agents acting in a script-like manner.
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Figure 1: Comparison of action prediction methods: Behavior cloning requires large datasets
and has limited generalization, while inverse planning is computationally expensive at
test time. Our approach, ROTE, uses LLMs to generate efficient and interpretable code
representations of observed behavior, providing a superior balance of efficiency and accuracy.

The notion of representing an intelligent agent through logical rules and predetermined
decision-making processes is a foundational idea in computer science (Newell & Simon), |1956;
Schank & Abelson, 2013; |[Newell & Simon, [1976)), influencing fields from planning (Campbell
et al., 2002; |Zhu et al.l [2025) to game theory (Axelrod, 1980). Finite State Machines (FSMs),
for instance, are still used in video games to efficiently simulate large numbers of agents.
By defining a sequence of states and transitions (e.g., patrol border — find agents — chase
agents), code can flexibly model the causal behaviors underpinning social norms and routines.

Here we develop ROTE — Representing Others’ Trajectories as Executables — a novel
algorithm that leverages LLMSs as code synthesis tools to predict others’ actions. We prompt
LLMs to generate computer programs explaining observed behavioral traces, then perform
Bayesian inference to reason about which programs are most likely. This gives us a dynamic
representation that can be analyzed, modified, and composed across agents and environments.

ROTE significantly improves generalization and efficiency in predicting complex agent
behavior, showing up to a 50% increase in accuracy across multiple challenging embodied
domains. Our results in gridworlds and the scaled-up Partnr household robotics simulator
demonstrate that code is a highly effective representation for modeling and predicting
behavior. To validate its applicability to real-world complexity, we collected human gameplay
data and found that our method achieves human-level accuracy in predicting human actions,
outperforming all baselines. This offers a promising new path for creating scalable, adaptable,
and interpretable socially intelligent Al systems. Concretely, our contributions are:

1. Modeling Agentic Behavior via Program Synthesis: We develop ROTE, a novel
algorithm that combines LLMs with Sequential Monte Carlo to model other agents’
behavior as programs from sparse observations.

2. Superior, Scalable Action Prediction: Across two embodied domains, we show
that ROTE offers superior generalization for predicting others’ behaviors, outperforming
alternative methods by as much as 50%. Our method generates executable code that is
reusable across environments, bypassing costly reasoning over goals and beliefs. These
code-based representations scale more efficiently than behavior cloning or inverse planning
alternatives, even when the ground truth behavior does not come from a known program.

3. Human Studies Validation: We recruit real human participants to generate behavior
and predict others’ actions. We find that ROTE outperforms baselines and achieves human-
level performance in predicting human behaviors, even for noisy and sparse trajectories.

2 RELATED WORK

Action Prediction. Prior work developing AT for action prediction follows two dominant
categories: symbolic methods and neural networks. Symbolic methods, such as Bayesian
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Inverse Planning (BIP), infer an agent’s goals and beliefs by calculating their probabilities
based on observed actions (Ullman et al., [2009; Baker et al., 2017; [Shum et al., 2019
Netanyahu et all, 2021} [Kleiman-Weiner et al., [2016; [Wang et al., [2020}; [Kleiman-Weiner et al.
2020; [Serrino et al., [2019; Kleiman-Weiner et al., [2025). While robust, these methods are not
scalable due to the exponential complexity of a multi-agent environment (Rathnasabapathy|
let al.l 2006; Doshi & Gmytrasiewicz, 2009; [Seaman et all 2018)). In contrast, neural
approaches like behavioral cloning (BC) and inverse reinforcement learning (IRL) train
models to directly mimic actions (Torabi et al., 2018} Ng et al., [2000; |Abbeel & Ngl 2004;
Wulfmeier et al., [2016; Wang et al.l 2021} |Christiano et al.,[2023), but are often data-intensive,
fragile, and prone to overfitting. Recent work has tried modeling reward functions as finite-
state automatons, a concept known as “reward machines” (Icarte et al., [2018} [Toro Icarte|
let all |2022; |Li et al., |2025). This method, which does not use LLMs, allows for structured
representation of reward and can provide non-Markovian feedback to agents. While primarily
used for training agents to solve compositional tasks, there has been work on inferring
reward machines from expert demonstrations (Zhou & Li, [2022) or learning safety constraints
(Malik et al., 2021} [Lindner et al. 2024} Liu et al.,|2025). Despite these advances, neural
models still struggle with generalization, particularly in social reasoning, as they often fail to
capture the causal structure of behavior (de Haan et al., |2019; |Codevilla et al., 2019; Bain &
Sammut} [1995). This brittleness persists even with advanced techniques that learn contextual
representations (Rabinowitz et all, 2018} [Chuang et al. 2020} [Jha et all, 2024) and does not
disappear at scale under an assumption of imperfect rationality (Poddar et al., 2024). In
contrast, our approach, which uses an LLM to generate open-ended code describing observed
behavior, makes fewer assumptions about the nature of the agents being modeled. This
allows it to capture everyday decision-making processes that may not be reward-maximizing.

Large Language Models (LLMs) for Behavior Modeling. LLMs may be a more
effective bridge between the neural and symbolic paradigms. They enable enumerative
inference for social reasoning (Wilf et al., 2023} |[Jung et al. |2024; Huang et al., 2024}
let al. [2024; Kim et al.| |2025; [Zhang et al.,|2025)), while neuro-symbolic frameworks (e.g.,
BIP + LLMs) improve robustness in embodied cooperation (Ying et all [2024; Ding et al.
[2024; [Ying et al. 2025; [Wan et al. [2025). However, existing implementations remain
computationally intensive, often generating thousands of tokens for each prediction. In
realistic settings, we need methods capable of rapid inference that still capture the structure
of culturally shaped conventions and behaviors performed without deep cognitive processing
(Barghl, 1994} [Wood, 2024). By learning a code-based agent representation, ROTE avoids
the high computational cost that BIP must incur to enumerate every possible goal.

Program Induction. Program synthesis has proven effective for world modeling (Guan
et all 2023} Wong et al [2023bja} [Zhu & Simmons| [2024)), action selection (Verma et al.|
2021} [Wang et al.| 2023} [Yao et al.l 2023)), and has even achieved near-expert performance on
mathematical reasoning tasks such as International Math Olympiad problems (Trinh et al.
. Neurosymbolic approaches, which combine LLMs or domain-specific neural networks
with probabilistic program inference, have enabled agents to learn environment dynamics
(Das et al., [2023)) and master complex games like Sokoban and Frostbite with impressive
sample efficiency (Tang et al., [2024; [Tsividis et al., [2021; Tomov et al., [2023)). Code-like
representations have been used to infer reward functions from state-action transitions
let all 2023} Davidson et al., 2025)), and LLMs have been harnessed to synthesize policies
or planning strategies in domain-specific contexts (Liang et al. [2023} [Sun et al., [2023}
[Trivedi et al., 2022). However, these prior approaches typically rely on well-defined rewards,
domain-specific constraints, or focus on partial aspects of agent behavior, such as reward
inference or demonstration summarization. In contrast, ROTE aims to infer an agent’s
causal decision-making process directly from observed behavior and assumes no access to
reward signals or domain-specific structure.

3 REPRESENTING OTHERS’ TRAJECTORIES AS EXECUTABLES

Drawing upon recent conceptualizations of “agents” in reinforcement learning and theoretical
computer science |Abel et al.| (2023a); [Dong et al. (2021); |[Lu et al.| (2023); [Leike| (2016);
[Lattimore et al.| (2013); [Majeed & Hutter| (2018)); Majeed| (2021)); |(Cohen et al.| (2019)), we
represent computationally bounded agents as programs with internal states, which can be
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class ToyChair:

def act(self, obs):
if found_toy(obs):
move_to_chair(obs)
else: find_toy(obs)

class ToyBedroom:

def act(self, obs):
if found_toy(obs):
move_to_room(obs)
else: find_toy(obs)

a. Toys to the Chairs

b. Toys to the Bedroom

class CleanKitchen:
def act(self, obs):
if in_kitchen(obs):
scrub_dishes(obs)
else: go_kitchen(obs)

class WanderHouse:

def act(self, obs):
t = obs.timestep
rID = t % len(rooms)
visitRoom(rID, obs)

c. Clean dishes
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Figure 2: Overview of ROTE. ROTE predicts an agent’s next action by generating and
weighting Python programs that explain its observed behavior. From t =0 to t = 7, ROTE
observes a blue robot’s trajectory. Initially, at ¢ = 1, programs related to moving to the
dining room are up-weighted. However, at ¢t = 3, the robot picks up a toy, and ROTE
remains uncertain if the goal is to clean up toys in the bedroom or place them on chairs
in the living room. After the robot places the toy on a chair at t = 5, ROTE confidently
updates its program weights to reflect the “bringing toys to chairs” script. By t =7, ROTE
can use this inferred script to rapidly and accurately predict future actions.

conceptualized as Finite State Machines. This is formally represented using the notation
A = (8, s0, m,u) from |Abel et al|(2023b)), where finite internal states s; € S used for decision-
making in the policy 7 : S — AA evolve via a transition function u(s;—1,ai—1,0t) — s¢,
which maps the observations from the external world to the agent’s next internal decision-
making state. In the following section, we will demonstrate how we can search for the minimal
program in the space of agents A € A that best explains observed history of (observation
o € O, action a € A) pairs, h € H. For the rest of this section, we use the notation hg.; to
indicate the history of pairs from time 0 to ¢.

3.1 AGENT PROGRAM SYNTHESIS WITH LARGE LANGUAGE MODELS

Given a finite length history hg.;—1 € H, from time 0 to t — 1, our objective is to find an
agent A € A that both (1) takes the same action a; as the ground truth agent A* when
presented with observation o, and (2) minimizes its program size |5\| Encouraging concise
program synthesis is not just a matter of engineering preference but is theoretically grounded
in the foundations of algorithmic probability and inductive inference. Solomonoft’s theory of
inductive inference formalizes Occam’s razor, demonstrating that the best scientific model
for a given set of observations is the shortest algorithm (in terms of description length) that
generates the data in question Solomonoff| (1964; 1978;|1996). Under this framework, shorter
programs are assigned higher prior probability, providing a universal solution to the problem
of induction with strong convergence guarantees: the expected cumulative prediction error
is bounded by the Kolmogorov complexity of the true data-generating process
(1978} 11996). Thus, searching for minimal agent representations is not only computationally
desirable but also theoretically optimal for generalization, a bias also observed in human
programmatic reasoning (Bigelow & Ullman) 2025).

We operationalize our search through the space of agents A through a two-stage approach:
First, we optionally prompt an LLM to transform raw perceptual inputs into a natural
language description of an agent’s path. These percepts can be low-level observations like
object coordinates in gridworlds, or even natural language scene-graphs from datasets like
Partnr (Chang et al},[2025). Next, we have the LLM generate many possible Python programs
to obtain a distribution over possible code-based agent models which explain the observed
behavior, A(A). Python is chosen for its readability, widespread use in Al research, and its
power as a Turing-complete language, enabling the representation of arbitrarily complex
decision-making logic in the worst case where |S| = |O| for the ground-truth agent A*. Our
prompting strategy makes two key assumptions: (1) the observed agent follows deterministic
transitions between finite internal states S contingent on environmental/historical cues




Under review as a conference paper at ICLR 2026

rather than executing complex adaptive policies, and (2) generated code should produce
deterministic actions a € A. Importantly, we ask the LLM to assume these properties of the
observed trajectories even if the ground truth agent generating the behavior is probabilistic
and following sophisticated, goal-directed plans. While this assumes a deterministic agent, we
account for potential stochasticity in behavior with a noise model, allowing our approach
to best approximate the underlying deterministic policy. We instruct the LLM to generate
code that is efficient (low runtime complexity) and concise (minimize |A|).

3.2 REFINING GENERATIONS THROUGH BAYESIAN INFERENCE

To form a more robust estimate of the true underlying agent program A\*, we refine the
distribution over candidate programs A(A) obtained from the language model using Sequential
Monte Carlo. Specifically, we estimate the posterior probability of a candidate agent program
A given the observed history hg.;_1 using the relationship:

P(Aho:t—1) o< p(ho:t—1|A)p(N). (1)

This approach is related to inverse planning-based methods that infer latent goals given
observed behavior (Ullman et al. 2009; Baker et al., |2017; [Shum et al, [2019; Netanyahu
et al., |2021). However, instead of assuming a fixed, often complex, planner (like MCTS or
brute-force search) and performing inference over a space of goals, our method condenses
all behavioral conventions and scripts an agent might follow into a single programmatic
representation A. Since A is a deterministic program, we give the action d; it predicts the
ground-truth agent will take at observation o; a probability of (1 — €) and all other actions
a- € A—{d:} a probability of ‘Al%l. This effectively allows A to predict a distribution
over actions A(A) it might take at each step. Then, we can perform inference directly over
the space of likely decision-making processes encoded as Python programs by calculating
PAhoit—1) & o, qicho 1 P(@i]0i, A) - Dprior(A). With this refined posterior distribution, we
select the kK most likely agent programs, and execute the corresponding Python code for each
from the current observation o;. Then, ROTE performs a weighted combination of agent

programs to form our approximation \* ~ A = 2orea) PAlhoi—1) - A(-[oy).

The combination of LLM-based program synthesis with Bayesian Inference results in our
method for inferring others’ behaviors, ROTE. Pseudocode for our approach can be found
in Algorithm [I] and in Figure [2] we provide an overview of ROTE on an intuitive example
in the Partnr environment, an embodied robotics simulator where an agent tries to help a
human complete a variety of household chores (Chang et al., |2025)). We additionally include
examples of agent code inferred by ROTE in Construction and Partnr in Appendix

4 EXPERIMENTS

Environments. We evaluate ROTE across two distinct environments. First, we use
Construction (shown in Figure , a fully-observable 2D grid-world where agents actively
navigate obstacles like walls and other agents, and can transport colored blocks to different
locations on the map (Jha et all [2024]). Then, we explore the efficacy of our method on
Partnr (shown in Figure |5)), a large-scale embodied robotics simulator where an Al-assistant
perceives a realistic home or office space as a natural language scene-graph (Chang et al.
2025)). Built on the Habitat benchmark, this environment requires the agent to utilize tools
to help a human complete tasks in a partially observable world (Puig et al., |2023)).

Baselines. We compare ROTE against three baselines: Behavior Cloning (BC). In
the Construction environment, the BC model is a neural network with an LSTM trained
on pixel-based observations of agent trajectories (Rabinowitz et al., [2018)); for Partnr, we
fine-tuned Llama-3.1-8b to imitate a ground-truth LLM agent’s behaviors using a training
set of (scene-graph, action) pairs (Chang et al., [2025). Automated Theory of Mind
(AutoToM) (Zhang et al.| [2025). AutoToM is a neuro-symbolic approach which uses LLMs
to generate open-ended hypotheses about an agent’s beliefs, goals, and desires, then applies
Bayesian Inverse Planning to find the most likely action. Naive LLM (NLLM). NLLM
simply prompts an LLM with observed states and environment dynamics to predict the next
action directly. Our evaluation for all methods except for BC uses a suite of LLMs: Llama-3.1-
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8b Instruct, DeepSeek-V2-Lite (16b), DeepSeek-Coder-V2-Lite-Instruct (16b), and we report
the highest accuracy achieved for each baseline to ensure the most competitive comparison.
All results for ROTE were obtained using DeepSeek-Coder-V2-Lite-Instruct, while other
baselines show the highest-performing model for each environment. Appendix provides
a detailed breakdown of per-task and per-LLM accuracy for all methods, demonstrating our
approach’s consistent success across different LLM model types.

Dataset Generation. For the fully observable Construction environment, we hand-
designed 10 distinct Finite State Machines to generate 50,000 state-action pairs across 100
trajectories/agent x10 agents = 1000 trajectories. Behaviors ranged from simple tasks,
such as patrolling, where agents rely on planning heuristics, to complex goal-directed tasks
using A* search, like finding all green blocks. We have included some for illustration in
Figure [7] and the full list of behaviors in Appendix [A7T] For the partially observable Partnr
environment, we used the LLM agents defined in (Chang et al.l |2025)) to generate state-action
pairs for a robot assistant completing diverse tasks (i.e. “clean all toys in the bedroom”)
from their “train” and “validation” datasets. In these datasets, states are represented as
natural language scene graphs, and actions are high-level tools.

Evaluation Protocol. We evaluate using two protocols: (1) single-step prediction, where
given observations from timesteps 0 to ¢, the task is to predict the action a;; and (2) multi-step
prediction, where we iteratively predict actions ay, ..., G;10 conditioned on the ground-truth
observed states og, . ..,0;. For the BC model in Construction, we hold out 100 trajectories
for evaluation, training on the remaining data. All baselines are evaluated on these 100
held-out trajectories. For Partnr, we evaluate single-step prediction with ¢ = |H| — 2, since
varying trajectory lengths make multi-step evaluation inconsistent, and the final timestep
is always the terminal action. We evaluate all models on the entire “validation” dataset,
using the “train” dataset to finetune the BC model. We only predict high-level tools used by
agents in Partnr, since AutoToM requires static-sized action spaces (Zhang et al., 2025).

Human Studies. We conducted human studies in the single-agent Construction environment
to evaluate ROTE’s ability to predict human behavior and to benchmark its performance
against human predictions. For the first study, 10 participants were recruited to perform
their interpretation of each of the 10 handcrafted FSMs without observing the ground-truth
code, generating 30 state-action pairs/person/script. In a separate study, we recruited 25
humans to act as predictors. They were shown a human’s trajectory from ¢t =0 to t = 19
and the state at ¢t = 20, and asked to predict its next five actions, from ¢t = 20 to t = 24.
We use the same setup for a third study to explore how well people predict the behavior of
the ground-truth FSM’s next actions instead. We compared peoples’ prediction accuracy
to ROTE and the other baselines to benchmark different behavior modeling algorithms.
All studies were approved by our university’s Institutional Review Board (IRB) and were

0.66 L 0.66
u>f mmm Single-Step 3 mmm Single-Step I
EO 44 Multi-Step 80'44 Multi-Step I
S 5
90.22
<<

BC AutoToM NLLM ROTE Human BC AutoToM NLLM ROTE Human

(a) Single-step vs. multi-step prediction accuracy (b) Single-step vs. multi-step prediction accuracy
for Construction with scripted agents for Construction with human agents

Figure 3: ROTE outperforms all baselines in both single-step and multi-step action prediction
for scripted (a) and human agents (b). ROTE’s code-based representations, which treat
human actions as efficient scripts, enable it to generalize effectively from limited observations.
For single-step predictions, ROTE was significantly more accurate than all baselines for
both scripted (p < 0.05 for NLLM, p < 0.001 for BC and AutoToM) and human agents
(p < 0.05 for BC, p < 0.01 for NLLM, p < 0.001 for AutoToM). This superior performance
was maintained in multi-step predictions for both agent types (scripted: p < 0.001 for BC,
AutoToM, and NLLM; human: p < 0.01 for BC, p < 0.001 for NLLM and AutoToM). ROTE
achieved human-level predictive accuracy of human behavior.
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L Figure 4: ROTE demonstrates superior zero-
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30 44 Construction. Without any additional condi-
g ' tioning on an agent’s behavior, the programs
©0.22 ROTE infers from one environment transfer to
< novel settings more effectively than all other

0.00—""5C"" AutoToM  NLLM  ROTE baselines (p < 0.001 in a two-sided t-test).

designed using NiceWebRL (Carvalho et al.l |2025). We used Prolific for crowdsourcing data.
We plan to open-source the code for our baselines, datasets, and human evaluations.

5 RESuULTS

How well does ROTE model and predict scripted agent behavior? To evaluate
the effectiveness of ROTE, we first examined its predictive accuracy in a controlled setting
where agents in the Construction environment followed one of 10 handcrafted programs.
These programs were not provided to ROTE at any point during evaluation. Our results in
Figure [3a] demonstrate that ROTE consistently surpasses all baselines in both single-step and
multi-step prediction accuracy in this evaluation setting and does not statistically significantly
underperform human performance (p=0.3087 for single-step and p=0.1679 for multi-step in
a two-sided t-test). While these initial results were promising, a potential concern was that
ROTE might simply be exploiting repetitive patterns, rather than learning the underlying
policy. We investigated this by measuring how often an agent revisited a state or repeated
an action. We found an eztremely low correlation between ROTE’s accuracy and either of
these metrics (0.303 for matching states, 0.064 for matching actions), confirms that ROTE is
not exploiting simple data regularities. This finding, paired with ROTE’s strong multi-step
performance, suggests that code-based representations can be effective for learning the
underlying policies that enable robust, long-term predictions.

How well does ROTE model and predict human behavior? Having established that
ROTE’s code-based representations are effective in controlled, scripted environments, we next
wanted to test its ability to model more complex, nuanced behaviors. We began by evaluating
ROTE against human agents performing 10 tasks in the Construction environment. As
illustrated in Figure ROTE outperforms all baseline algorithms and achieves human-
level predictive accuracy of next-step human actions. A deeper per-task accuracy
analysis, shown in Figure [J] reveals that ROTE has greater accuracy than humans on some
tasks with repetitive patterns, such as “move up if possible, otherwise down” or “move in
an L-shape.” However, humans are still much better at anticipating scripts for tasks such
as “patrol the grid clockwise” and goal-directed tasks such as “move all pink blocks to the
corner of the grid.” This gap highlights that while the code produced by ROTE is expressive

Robot Observation Inferred Agent Code

in Partnr from ROTE
class FSMAgent:
30 . 66 def __init__(self): self.state = “IDLE”
© def act(self, obs):
o transitions = {“IDLE": (“Explore”, “SEARCHING"),
= “SEARCHING”: (“Navigate”, “MOVING”), “MOVING”
00.44 (“Place”, “IDLE”)}
O check_inventory (obs)
<< if self.has_firetruck:
o action, self.state = transitions[self.state]
else: action = “Navigate”
E G : 22 return action B
o
£0.00
au. Ground-Truth Task: “Put the fire truck on the chest”

BC AutoToM NLLM ROTE

(a) Action prediction accuracy in Partnr (b) Example Partnr task with ROTE’s inferred program

Figure 5: (a) Prediction accuracy in the large-scale, partially observable Partnr environment.
ROTE demonstrated a superior ability to anticipate the behavior of goal-directed, LLM-based
agents, with a two-sided t-test showing ROTE significantly outperformed all other models
(p < 0.001). (b) The pseudocode example illustrates how ROTE’s inferred programs capture
complex task logic using conditionals and state-tracking.
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enough to capture many behaviors, more powerful LLMs with enhanced reasoning may be
needed to achieve human-level prediction in all settings.

Generalizing to Novel Environments: A key advantage of modeling behavior with
scripts is the potential for rapid generalization to new, but similar, environments. We wanted
to know if ROTE’s inferred programs could transfer without needing to be relearned. To
test this, we first observed a scripted agent following a pattern like “patrol counterclockwise”
for 20 timesteps, and then showed the same agent in a distinct environment. We then asked
ROTE and the baselines to predict the next 10 actions of the same agent. For ROTE, this
was done by using the same set of programs inferred in the first environment for prediction
without updating their likelihoods. Figure [4 shows that ROTE can still predict the agent’s
behavior accurately in the new setting, outperforming all baselines without needing to
re-incur the cost of text generation, a necessary step for NLLM and AutoToM. Although
ROTE’s performance decreases compared to predicting behavior in the original environment
in Figure [3a] its ability to generalize makes it a more accurate and efficient alternative to
traditional Inverse Planning or purely neural methods.

Can ROTE’s code-based approach scale to model behavior in complex, realistic
environments? To further push the boundaries of ROTE’s capabilities, we tested it on the
embodied robotics benchmark Partnr, where the task is to predict the next tool utilized by
LLM-agents simulating a human or robot completing chores. This environment is particularly
challenging due to partial observability and long-horizon, compositional tasks such as “find a
plate and clean it in the kitchen” or “look for toys and organize them neatly in the bedroom.”
Despite this complexity, Figure [§] shows our approach significantly outperformed all baselines,
including inverse planning and behavior cloning methods, and those incorporating LLMs. To
better understand the types of problems ROTE excels at, we used Llama-3.1-8B-Instruct to
cluster the ground-truth tasks from our test set into three categories, as shown in Figure [I0]
While baselines like AutoToM and Behavior Cloning showed success with tasks involving
simple navigation, ROTE demonstrated a superior ability to handle more intricate problems,
such as turning items on/off and cleaning objects. This demonstrates its generalizability in
creating code for agents that face uncertainty and possess beliefs about their environment.

How does the computational efficiency of ROTE compare to other approaches?
Forming long-horizon plans in the presence of other agents requires predicting their behaviors
over time quickly and not just accurately. To understand whether ROTE scales effectively,
we plot the time in seconds required for different baselines to make predictions about agents’
behaviors multiple times into the future in Construction. As shown in Figure [} while ROTE
is initially slower for single-step predictions compared to BC and NLLM baselines due to the
need to generate and prune candidate programs, its test-time compute costs scale orders of
magnitude more efficiently with the number of predictions. This is because once ROTE’s
code-based representations are inferred, it can execute these programs rapidly for all future
steps. In contrast, other LLM-based methods must re-generate a response for every new
time step. We analyze additional factors contributing to this efficiency in Appendix and
Figure Taken together with the results from Figures and [f] this illustrates that
code-based representations can balance predictive power with prediction efficiency.

What is the relationship between ROTE’s core components and its predictive
performance? To understand how ROTE achieves its superior generalization and human-
level accuracy, we conducted a series of ablation studies on its core components. We found
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that ROTE’s two-stage observation parsing, which converts observations into a natural
language description before generating code, had a minimal effect on accuracy for the FSM
and human gameplay datasets in Construction (Figure. However, this process significantly
hurt performance in Partnr. This is likely because Partnr’s observations are already rich
scene graphs (Chang et al., |2025), and the abstraction step removes crucial details needed
for effective program generation. Additionally, we investigated the use of Sequential Monte
Carlo (SMC) with rejuvenation versus standard Importance Sampling. SMC, which replaces
low-likelihood programs with new ones, improved early-stage accuracy when the number of
sampled hypotheses was small (Figure [12). This benefit, however, diminished as the initial
set of candidate hypotheses increased, suggesting that the initial diversity provided by the
LLM is often sufficient.

Lastly, we analyzed the impact of imposing different degrees of structural constraints on
ROTE’s program generation, inspired by methods for inferring reward functions (Yu et al.|
2023). We evaluated three variants: “Light” (assuming agents are FSMs without providing
examples), “Moderate” (defining FSM states explicitly but allowing open-ended code), and
“Severe” (a two-stage process converting natural language predictions of FSMs into code).
Our previous results were based on the “Light” condition. The optimal level of structure,
however, varied by environment, as shown in Figure [[3] In the Construction environment,
where agents followed predictable FSMs, the Severe approach performed as well as others.
This suggests that for predictable, rote behaviors, an explicitly structured representation can
be just as effective while also being computationally efficient (Callaway et al.| [2018; |Lieder
& Griffiths| 2020; |Callaway et al., [2022; Icard |2023). Conversely, modeling human behavior
proved less suited for strict FSMs. The Moderate condition was superior for human gameplay,
highlighting the need for representational flexibility when agents are following a general script
but exhibiting inherent variability. In the partially observable Partnr environment, forcing
agents into a strict FSM representation performed significantly worse than open-ended code
generation, suggesting these scenarios might be better suited for traditional Inverse Planning
methods that can handle a wider range of states and tasks. These findings reveal a gradient of
agentic representations, from automatic to goal-directed, which allows for flexible prediction
across different scenarios. Future work could use meta-reinforcement learning to dynamically
select the appropriate level of representational structure based on the task.

6 DISCUSSION

In this work, we framed behavior inference as a program synthesis problem, showing that
our approach, ROTE, can accurately and efficiently predict the actions of machines and real
people in complex environments. ROTE offers a scalable alternative to traditional methods
that require extensive datasets or significant computational resources. This has immediate
implications for domains where real-time adaptability and interpretability are crucial, such
as with caregiver robots that could use ROTE’s representations to anticipate daily routines.
Limitations: While our results highlight the effectiveness of program synthesis for text-
based observations, we note the limitations of the applicability of our findings in Partnr since
we only predicted high-level tools used by agents, which was done to accommodate baselines
which required static action spaces. While our evaluation in Partnr still involved more
tools than our other experiments (19 actions in Partnr compared to 6 in the Construction),
future research should explore ROTE in high-dimensional, continuous control settings. In
those cases, ROTE might need to be integrated with vision-language models (VLMs) to
parse pixel-based inputs (e.g., raw video feeds for assistive robots) and neural control
mechanisms to execute plans, effectively operating at the level of option prediction (Sutton
et al.l [1999)). Another interesting direction would be to explore how the size of LLMs used
for behavioral program inference impacts prediction quality in more sophisticated scenarios,
such as modeling team coordination in workplaces or norm enforcement on social platforms.
Lastly, unlike traditional Theory of Mind approaches that predict beliefs and goals, our
work focuses solely on action prediction. If we view beliefs as dispositions to act (Ramsey &
Moore, 1927} Ryle, [1949), predicting a distribution over an agent’s internal decision-making
states and logic for transitioning between them is functionally equivalent to belief inference.
That said, further research is needed to empirically validate whether the structure of ROTE’s
inferred programs aligns with how humans intuitively reason about others’ mental states.
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A APPENDIX

A.1 GROUND TRUTH AGENT BEHAVIORS FOR CONSTRUCTION

For research question 1 in Section[5} we hand designed 10 agents, represented as Finite State
Machines, to engage in diverse behaviors. The agents varied in complexity, with some using
sophisticated A-star search to achieve a goal, and others using faster, less resource-intensive
planning heuristics, namely the Manhattan distance as an approximation of how valuable an
action is for an agent looking to move to a target location. We summarize the behaviors and
internal decision making states for all agents below:

1. Block Cycle: Using the manhattan distance as the planning heuristic, move from
the green block to the blue block to the purple block to the green block and so on.
If the agent ever has a block in its inventory, it will immediately drop it and resume
its cycling behavior.

2. Clockwise Patrol: If an agent is not along the outermost wall of the grid, it will
repeatedly alternate between moving left and moving up until it hits a wall. Then,
it will follow the wall clockwise: if there is a wall above it, the agent will move right
repeatedly until it hits a wall, then repeats this process for going down, left, up and
right again. If the agent ever has a block in its inventory, it will immediately drop it
and resume its cycling behavior.

3. Counter-clockwise Patrol: This agent is the same as Clockwise Patrol, except it
it will patrol the border wall in a counter-clockwise manner, moving left repeatedly
until it hits a wall, then doing the same for moving down, right, up and left again.

4. Left-Right Patrol: The agent will move left until it hits a wall, then will move
right until it hits a wall, and repeat this process. If the agent ever has a block in its
inventory, it will immediately drop it and resume its patrolling behavior.

5. Pair Blue Blocks: This agent uses A-star search for planning. If it does not have
a blue block in its inventory, it finds and executes the shortest path to a blue block.
Then, it uses the “interact” action to add the block to its inventory, and uses A-star
to find the shortest path to a different blue block.
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Figure 7: Example scripts from Construction.
We designed a suite of goal-directed (planner-
based) and automatic (heuristic-based) agentic

Cycle Between Move in an snake through the behaviors, from patrolling to transporting spe-
Purple > Green - Blue ‘L’-shape environment cific blocks to a location.

6. Patrol with A-Star: Here, the agent’s goal is to repeatedly cycle between the top
left, top right, bottom right, and bottom left corners of the grid. While Clockwise
Patrol has a behavior which on the surface may seem similar, for Patrol with A-star
we introduced addition complexity by having the agent believe it incurs a penalty for
touching any of the colored blocks. As such, it uses A-star with negative edge values
given to any action which leads an agent to landing on a colored block, thus resulting
in behavior which tries to patrol but frequently leaves and returns to the border to
avoid colored blocks. Again, if it ever picks up a colored block, it immediately drops
it.

7. L-shaped Patrol: This agent, initially at a coordinate (z,y), will move down until
it collides with a wall, then will move right until it collides with a wall. Then, it
will return to its original location, first moving left until its x-coordinate is x, and
up until its final coordinate is (z,y). It repeatedly does this process. The agent
immediately drops any blocks in its inventory.

8. Transport Green: Here, the agent uses A-star search to move towards a green
block and pick it up. Then, it uses A-star search to move the green block as close to
an empty corner grid cell.

9. Snake Patrol: This agent has four internal decision-making states: 1) Moving
down/right, where the agent moves right until it cannot any more, then moves down
one step; 2) Moving down/left, where the agent moves left until it cannot any more,
then moves down one step; 3) Moving up/right, where the agent moves right until
it cannot any more, then moves up one step; 4) Moving up/left, where the agent
moves left until it cannot any more, then moves up one step. The resulting pattern
appears like a snake moving throughout the grid.

10. Up/Down Patrol: The agent will move up until it hits a wall, then will move
down until it hits a wall, and repeat this process. If the agent ever has a block in its
inventory, it will immediately drop it and resume its patrolling behavior.

A.2 HuMAN RESULTS BREAKDOWN

In Figure [8] we show the accuracy for ROTE compared to humans when predicting FSM
behavior in Construction. An example of some of the task are shown in Figure[7] In Figure [0}
we show the accuracy for ROTE compared to humans when predicting Human behavior in
Construction. We find that humans excel at predicting goal-directed tasks while our method
performs better with repetitive tasks, although all of the variance in predictive accuracy
cannot be captured by this distinction. In subsequent followups, we plan to do a greater
exploration of the different error modes of humans and other models, as well as scale ROTE
to larger language models, to see whether ROTE is an accurate computational model of
human behavior.

A.3 CLUSTERED TASK BREAKDOWN IN PARTNR

To understand the types of tasks ROTE excels at compared to baselines in the Partnr
simulator, we used Llama-3.1-8B-Instruct to cluster the ground-truth tasks from our test
set into three categories. As shown in Figure [I0] we report the mean prediction accuracy
and standard error for each algorithm on a per-cluster basis. While AutoToM and Behavior
Cloning show some success on tasks involving simple actions like moving and rearranging
objects, they struggle significantly with more complex interactions, such as turning items
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Accuracy by FSM ID and Model
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Figure 8: Per-task accuracy comparison between different methods predicting ground truth
FSM gameplay.
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Accuracy by FSM ID and Model

Up and down
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Figure 9: Per-task accuracy comparison between different methods predicting human game-
play. While ROTE succeeds at more routine tasks, humans excel in predicting more goal
directed behaviors.
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Figure 10: Task-specific generalization in Partnr. We used Llama-3.1-8B-Instruct to cluster
our prediction tasks into three distinct categories. We report the mean accuracy and standard
error (SE bars) for each algorithm. While baselines like AutoToM and Behavior Cloning
perform adequately on tasks involving object manipulation, they struggle with more complex
interactions. ROTE, however, maintains performance on these more intricate problems.

on/off or cleaning. ROTE, in contrast, maintains a degree of accuracy in these more
challenging settings.

A.4 MobpeEL COMPONENT ANALYSIS

We show the effect of different model components. While the choice of observation parsing
did not have too much of an impact on the Construction evaluations, Figure indicates
it has a significant effect on predictive performance in Partnr. This is likely because the
observations, which are already in natural language, contain critical information on the data
structures they are represented as that abstraction removes.

Figure [I2] demonstrates the benefits of different inference algorithms in ROTE. While ROTE
is not very sensitive to the choice of probabilistic inference method used as it has more
candidate agent programs, if agents are constrained by the number of hypotheses they can
maintain, performing SMC with rejuvenation proves to be a more effective strategy, since
this effectively augments the number of programs considered.

Figure [I3| reveals an interesting gradient along which different degrees of structure influence
ROTE’s ability to predict behaviors. In controlled settings where agents are Finite State
Machines following deterministic transitions between behaviors, increasing the amount of
structure used to predict what they will do next does not significantly harm performance.
This can be a useful inductive bias that reduces cognitive load for agents interacting with
systems that require prediction in order to effectively interact with, such as a thermostat,
but are nevertheless simple enough to represent as a series of rules. In the human-behavior
setting, this does not hold as well. We find a moderate amount of structure, where providing
more detailed examples about what the internal mechanisms of the observed agent look like
without forcing ROTE to generate code following that structure, performs the best. These
settings are closest to realistic encounters with other people: when walking down the street
or ordering coffee, we may try to follow scripts or conventions for how to interact, but there
is inherent variability in our behaviors that more open-ended programs must account for.
Lastly, when predicting the behavior of agents that are goal-directed in a partially observable
world, imposing FSM structure greatly diminishes performance. These are scenarios where
prediction might best be performed by more complex reasoning processes about an agent’s
intentions and beliefs. Here, constraining code to be structured as an FSM might fail to
account for how agents react to the presence of unknown unknowns they encounter.

A.5 RELATIONSHIP BETWEEN PROGRAM SIZE (|A|) AND ACCURACY

As shown in Figure higher prediction accuracy in Construction and Partnr corresponds
to shorter programs (in characters). This occurs even though program length is not explicitly
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Figure 11: Ablating Observation Parsing
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Figure 12: Ablating Inference Algorithm
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Figure 13: Ablating Structure Enforced in Generated Code
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Figure 14: Average program length (in characters) versus prediction accuracy as a function
of the number of generated hypotheses for Construction and Partnr. Shorter programs yield
higher accuracy for scripted, human, and LLM agents.
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Figure 15: Top-k parameter analysis in Construction. No appreciable difference in accuracy
as a result of different parameters, suggesting the choice between uncertainty preservation
(maintaining a larger set of hypotheses from a larger k) and prediction speed (by executing
less programs with a smaller k) is up to the agent and agent designer.

factored into the likelihood computation, suggesting that the approach naturally favors a
simple, efficient representation of the agent’s behavior. This aligns with our hypothesis,
inspired by Solomonoff (Solomonoff, [1964; 1978} [1996), that shorter programs will generalize
more effectively due to Occam’s razor.

A.6 Topr-k EFFECT

In Figure [I5] we explore the impact of different & values for the top-k hypothesis pruning phase
after generation. We tried £ = 1, 10, and 30. We did not find any meaningful variation in
performance as a function of k. This suggest the choice of which hyperparameter to use may
be left to the agent designer. Whereas smaller k£ values enable faster inference, larger values
enable better uncertainty estimation. Moreover, because of the largely deterministic nature of
the generated programs, there can be an implicit top-k effect at higher hypothesis numbers,
wherein unlikely programs are assigned very low probabilities throughout a trajectory,
effectively leading to their pruning during policy selection for action prediction.

A.7 PER-LLM RESULTS

In Tables [T} 2] and [3} we report the raw accuracy of different LLM models using different
algorithms, as well as the standard error, on the Scripted, Human, and LLM-agent behavior
datasets in Construction and Partnr. For the results reported in the paper, we had to tune
the number of hypothesis and other hyperparameters, such as whether to use two-stage
observation parsing, on a dataset-by-dataset basis. We did this by running a sweep of
hyperparameters and comparing their performance on 20% of the data, then utilizing the
best performing hyperparameter from that subset, as the selected model configuration for
the remaining 80% of the data. The hyperparameters used for each environment can be
found in Section
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Algorithm DeepSeek-Coder-V2-  DeepSeek-V2-Lite Llama-3.1-8B-
Lite-Instruct (16B) (16B) Instruct
AutoToM 0.000 + 0.000 0.000 + 0.000 0.202 + 0.023
NLLM 0.310 £ 0.032 0.266 + 0.018 0.340 + 0.033
ROTE (light) 0.479 4+ 0.033 0.312 + 0.032 0.477 + 0.044
ROTE (moderate) 0.436 £+ 0.042 0.256 + 0.032 0.446 + 0.051
ROTE (severe) 0.457 £ 0.037 0.298 + 0.033 0.390 + 0.049
ROTE (two-stage) 0.522 + 0.046 0.271 £+ 0.028 0.468 + 0.052

Table 1: Multi-step LLM results (with standard error) for Ground-truth Scripted Gameplay
Data Prediction in Construction.

Algorithm DeepSeek-Coder-V2-  DeepSeek-V2-Lite Llama-3.1-8B-
Lite-Instruct (16B)  (16B) Instruct
AutoToM 0.000 £+ 0.000 0.000 £+ 0.000 0.156 £+ 0.011
NLLM 0.151 + 0.012 0.176 + 0.013 0.171 £ 0.016
ROTE (light) 0.296 £+ 0.019 0.199 £ 0.015 0.305 £ 0.022
ROTE (moderate) 0.310 4+ 0.018 0.204 + 0.021 0.266 £+ 0.024
ROTE (severe) 0.304 £+ 0.022 0.230 £ 0.018 0.245 £+ 0.026
ROTE (two-stage) 0.329 + 0.031 0.209 + 0.014 0.327 + 0.026

Table 2: Multi-step LLM results (with standard error) for Human Gameplay Data Prediction
in Construction.

A.8 HuMAN EXPERIMENT DETAILS

As described in Section [4] we conducted three separate human experiments: the first was
collecting human gameplay data, the second was having humans predict human behavioral
data, and the third was having humans predict scripted FSM agent behavior. We will
open-source all of the code and stimuli used for conducting all three human experiments.
For the gameplay collection, we gave participants a tutorial stage to learn the controls,
and randomized the order of the tasks they played to control for ordering effects. For the
behavior prediction experiments, the setup was virtually identical to that of the Al, albeit
with two small modifications. The first is that we only had humans predict five timesteps
into the future. This was done to make the experiment flow smoother and take less time
so that participants did not fatigue for later scripts, resulting in lower prediction quality.
The second change we made was we showed people 3 distinct trajectories generated by the
observed agent before giving them hsg = {(01,a1), (02,a2) ..., (019,a19),020} and having
them predict an agent’s behavior. This additional context was used to help participants
familiarize themselves with the dynamics of the gridworld and the space of potential agent
behaviors. In contrast, all of our baselines only saw the current trajectory hog. While this
was done due to the limited context window of the models we used, we feel that this is
still a fair comparison between humans and our baselines, since the training corpora for
LLMs is rich with gridworld implementations and agent programs, and the BC model had an
extended training period with the agent behavior it is predicting. In future work, we plan on
relaxing this constraint by exploring dynamically growing libraries of agent programs which
persist across multiple context windows, similar to an approach used in (Tang et al., [2024)).

A.9 BEHAVIOR CLONING MODEL IMPLEMENTATION DETAILS
We use an architecture and training methadology similar to the one in (Rabinowitz et al.

2018) for training a BC model with recurrence. The model uses a 2-layer ResNet to extract
features from the input observations. Each observation is an image of size 70x70 pixels. The
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Algorithm DeepSeek-Coder-V2-  DeepSeek-V2-Lite Llama-3.1-8B-
Lite-Instruct (16B) (16B) Instruct
AutoToM 0.000 + 0.000 0.000 + 0.000 0.050 + 0.015
NLLM 0.113 £ 0.018 0.333 £ 0.027 0.170 + 0.022
ROTE (light) 0.537 + 0.029 - 0.439 + 0.066
ROTE (moderate) 0.472 £+ 0.029 0.026 + 0.026 0.426 + 0.051
ROTE (severe) 0.440 + 0.029 - 0.510 £+ 0.072
ROTE (two-stage) 0.160 £ 0.021 0.114 + 0.055 0.112 + 0.034

Table 3: Single-step LLM results (with standard error) for LLM Agent Gameplay Data
Prediction in Partnr.

ResNet consists of two ResNet blocks, each containing two convolutional layers with batch
normalization and a ReLLU activation function. The first block uses a feature size of 64 while
the second uses a feature size of 32. All blocks use stride length of 1 for all convolutional
layersand a kernel size of 3.

The features extracted by the ResNet are then passed through a recurrent neural network.
The model uses an LSTM with a hidden size of 128. The output of the LSTM is processed by
several fully connected layers with ReLU activations. The final output is passed through a
softmax layer to produce a probability distribution over the possible actions. This probability
distribution represents the model’s prediction of the next action an agent will take. The
action space has a size of 6, corresponding to a set of discrete actions. The entire network is
designed to be fully differentiable, allowing for end-to-end training using cross-entropy as
the loss-function. We use the following hyperparameters for training:

Purpose Value
The number of agent scripts to | 1

sample per epoch.
# Datapoints per Agent | The number of trajectories per | 3
agent to sample from the dataset

Hyperparameter
# Agents to Sample

per epoch.
# Agents The total number of agents in the | 10
dataset.
# Steps The number of steps per trajec- | 50
tory in the dataset.
Environment Size The size of the environment. 10x10
Image Size The size of a single observation | 70x70 pixels
in a trajectory.
Num Epochs The number of training epochs. | 5000

A.10 ROTE IMPLEMENTATION DETAILS

We will fully open-source our code, including the prompts we used for generating programs
with ROTE across the various levels of structure. In Algorithm [I}, we show the full algorithm
for ROTE and subsequently discuss the implementation details.

A.10.1 ROTE HYPERPARAMETERS FOR CONSTRUCTION AND PARTNR

Across the prediction tasks for ground-truth scripted agents and humans in Construction, and
LLM agents in Partnr, we used the same set of hyperparameters, indicating the generality of
our method with minimal environment-specific finetuning. The only hyperparameter which
varied across environments was the use of two-stage observation parsing. We used two-stage
observation parsing for predicting scripted agent behavior in Construction and LLM-agent
behavior in Partnr. We did not use it for predicting human behavior. As mentioned in
Section all hyperparameters were fit by comparing their performance on 20% of the
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Algorithm 1 ROTE (Representing Others’ Trajectories as Executables)

Require: Observed history ho.t—1 = {(00,a0), ..., (01—1,a:—1)}, current observation o;, Environment
&, Initial set of candidate programs Acandidates (can be empty), Initial set of program priors Ppriors-
Ensure: Predicted action d;, Predicted programs Acandidates, Predicted program posterior Pyosteriors

1: procedure PREDICTACTION(ho:.t—1, 04, €, k, Acandidatess Ppriors)
for N — |Acandidates| generations do

> Number of programs to sample

3 Prompt LLM with hg.t—1, 0, €, and synthesize an FSM-like Python program A

4 Acandidates — Acandidates U {>\}

5 Pprior(A) HIVZ\:llpLLM(tokenn|h0:t,1, o, &, token,,_1, - -, tokeny)

6: Ppriors — Ppriors u {pprior(/\)}

7 end for

8 Prriors < normalize(Ppriors) > Renormalize priors to account for new hypotheses

9: Pposteriors = @
10: for A\ € Acandidates do

11: p()‘) X Hoz,aLEho;t,lp(ai‘Oi? )\) . pprior()\)

> Calculate likelihood p(H[o ¢—1j|A)

12: Ppostcriors — Ppostcriors U {p()‘)}

13: end for
14: Pyosteriors < normalize(top-k(

16: end procedure

osteriorss k))
15: Predicted action d; < argmax,c 4 >y
return lita Acandidate57 Pposteriors

> Subsample and Renormalize
pposteriors()\) ° A((l‘Ot)

candidates

data, then utilizing the best performing hyperparameter from that subset, as the selected
model configuration for the remaining 80% of the data.

Hyperparameter Purpose Value

Structure Enforcement How strictly we constrain gener- | Light
ated programs to adhere to FSM
structure

Rejuvenation Whether to use rejuvenation for | True

the FSM model.

Max rejuvenation attempts

Maximum number of times to re- | 2
sample a program during rejuve-
nation.

Rejuvenation threshold

The minimum number of cor- | 1
rect action predictions a program
must make over 20 timesteps to
avoid resampling.

Max number of retries

The number of times a hypoth- | 2
esis can be revised if it fails to
compile.

Number of hypotheses

The number of hypotheses to gen- | 30
erate for the thought trace.

Top K

The number of most likely hy- | 30
potheses to average over.

Minimum hypothesis probability | The minimum probability a hy- | 1e-6
pothesis can have.

Maximum number of tokens The maximum number of tokens | 2000
the large language model can gen-
erate.

Minimum action probability The minimum probability an ac- | 1e-8

tion can have.

For our execution speed comparisons

in Figure [6] all models ran on a single Nvidia GPU-L40.

Handling Errors in Program Generation. Given that we are generating programs from
smaller LLMs trying to adhere to a consistent Agent API, and that the observation space can
be challenging to operate on, there are several cases where the LLMs generate semantically
meaningful programs to describe observed behaviors that fail to compile or predict actions
given an observation. As such, we explored two different methods for dealing with erroneous
programs. The first was revision, where we prompted an LLM to fix the code it generated
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given the full error trace for a program’s prediction. We also gave it the original prompt and
observations. The second method was completely resampling a program given the original
prompt, discarding the erroneous program completely. From preliminary tests, we found
completely resampling was the more effective strategy given the LLMs we were using. Since
we paired this error correction process with methods like rejuvenation, we limited the number
of times we could resample or revise a program to be min(Max rejuvenation attempts, Max
number of retries), shared across the rejuvenation and error corrections steps. This increased
the likelihood of a good program which is executable being generated, without significantly
slowing our single-step inference speed.

A.10.2 EXAMPLES OF PROGRAMS GENERATED By ROTE

In Listings [[]and 2} we show sample agent programs inferred by ROTE for the Construction
and Partnr tasks, respectively. Using the same prompts and hyperparameters for both
settings, our approach can flexibly model agents as Finite State Machines when the underlying
agents are following scripts (Construction, Listing [1) or more open-ended decision makers
trying to accomplish goals such as move an item from one room to another (Partnr, Listing.

import numpy as np

class FSMAgent:

def __init__(self, num_agents: int, num_blocks: int, num_actions:
int=6) :

self .num_agents = num_agents

self .num_blocks = num_blocks

self .num_actions = num_actions

self.actions = [0, 1, 2, 3, 4, 5] # stay, right, left, down,
up, interact

self.action_to_name = ["stay", "right", "left", "down", "up",
"interact"]
self.state = "IDLE" # Initial state

def act(self, observation) -> int:
agent_id = observation[’agent_id’]
agent_location = observation[’agent_locations’][agent_id]
inventory = observation[’agent_inventory’][agent_id]

if self.state == "IDLE":
# Check if there is a block at the agent’s location and we
can interact with it
for block_location in observation[’block_locations’]:
if np.array_equal(block_location, agent_location):
if inventory == -1:
self .state = "INTERACT"
break
else:
# No block at the agent’s location, check for possible
movements

possible_actions = []
for action in self.actiomns[:-1]: # Exclude interact
new_location = self.apply_action(agent_location,

action)

if not self.is_wall(new_location, observationl[’
wall_locations’]) and not self.is_other_agent(new_location,
observation[’agent_locations’], agent_id):

possible_actions.append(action)
if possible_actions:

self.state = "MOVE"

self .target_action = np.random.choice(
possible_actions)

if self.state == "MOVE":
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self.state = "IDLE" # Transition back to IDLE after
moving
return self.target_action
if self.state == "INTERACT":

self.state = "IDLE" # Transition back to IDLE after
interacting
return 5 # Interact action

def apply_action(self, location, action):

if action == 1: # right

return [location[0], location[1] + 1]
elif action == 2: # left

return [location[0], location[1] - 1]
elif action == 3: # down

return [location[0] + 1, location[1]]
elif action == 4: # up

return [location[0] - 1, location[1]]
else:

return location # stay

def is_wall(self, location, wall_locations):
for wall in wall_locations:
if np.array_equal(wall, location):
return True
return False

def is_other_agent (self, location, agent_locations, agent_id):
for i, agent_loc in enumerate(agent_locations):
if i != agent_id and np.array_equal (agent_loc, location):
return True
return False

Listing 1: Sample Agent Codes Inferred by ROTE for Construction prediction task

import numpy as np

class FSMAgent:

def __init__(self, num_agents: int=1, num_blocks: int=1):
self .num_agents = num_agents
self .num_blocks = num_blocks # irrelevant, can ignore

def parse_scene_graph(self, observation):
for keys in observation[’scene_graph’]:
if keys == ’furniture’:
for room_name, furniture_list in observation[’
scene_graph’] [keys].items () :
for furniture_piece in furniture_list:
pass # each furniture_piece is a string

if keys == ’objects’:
if type(observation[’scene_graph’][keys]) == list and
len(observation[’scene_graph’] [keys]) == 0:

pass # no objects seen
else:

for object, object_holder_list in observation[’

scene_graph’] [keys].items () :
for object_holder in object_holder_list:
pass # each object is either on or in an
object holder
return # do whatever is most helpful here

def act(self, observation) -> int:

30

observation is a dictionary with the following keys:
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27 - tool_list: List of tools available to the agent

28 - tool_descriptions: Description of how each tool is used

29 - scene_graph: Scene graph of the environment, dictionary with
keys

30 - "furniture" which maps to a dictionary with the keys

31 - room description string (i.e. keys could be "
living_room_1", "bathroom_1", etc.) that maps to list of

32 - object_id string (i.e. table_21, chair_32, etc.)

33 - "objects" which maps to a dictionary of

34 - object_id string (i.e. keys could be "
plate_container_2", "vase_1" etc.) to list of

35 - object_base string (i.e "table_14", "table_21")

36 if type(observation[’scene_graph’][’objects’]) == list

, then you do not observe any objects

37 - agent_state: Dictionary mapping to

38 - string of agent id (i.e. "O") maps to string describing
what agent is doing

39 ’

7 elif ’Place’ in tool_list and ’Standing’ in agent_state:
8 tool = ’Place’

40 agent_id = list(observation[’agent_state’].keys()) [0]

41 agent_state = observation[’agent_state’][agent_id]

42 tool_list = observation[’tool_list’]

43

44 if ’Explore’ in tool_list:

45 tool = ’Explore’

46 target = list(observation[’scene_graph’][’furniture’].keys
() [o]

a7 elif ’Pick’ in tool_list and ’Standing’ in agent_state:

48 tool = ’Pick’

49 targets = []

50 for key in observation[’scene_graph’][’objects’]:

51 if ’agent_O’ in observation[’scene_graph’][’objects’][
key]:

52 targets.append (key)

53 if targets:

54 target = targets[0]

55 else:

56 target = None

59 target = None

60 for key in observation[’scene_graph’][’objects’]:

61 if agent_id in observation[’scene_graph’][’objects’][
key]:

62 target = key

63 break

64 if not target:

65 for key in observation[’scene_graph’][’furniture’]:

66 for furniture_piece in observation[’scene_graph’][
>furniture’] [key]:

67 if agent_id in observation[’scene_graph’][’
furniture’] [key]:

68 target = key

69 break

70 if not target:

71 target = list(observation[’scene_graph’][’objects’].
keys ()) [0]

2 else:

3 tool = ’Wait’

4 target = None

## DON’T CHANGE ANYTHING BELOW HERE
return (tool, target, None)

R TR N I |

~

Listing 2: Sample Agent Codes Inferred by ROTE for Partnr prediction task
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A.10.3 EXAMPLES OF HIGH LEVEL TRAJECTORY SUMMARIES GENERATED BY ROTE

In Listings [3| and 4l we show sample high-level trajectory summarizations from the optional
two-stage observation parsing step. While in [3] the model attributes the movements of the
ground truth patrolling agent as “exploring randomly,” it still is able to capture some aspects
of its movement, such as not interacting with blocks. In [4f ROTE can better summarize
the behavior of agents in Partnr, but without a clear guess as to which objects the agent is
trying to rearrange, it can be difficult to make a program which concisely narrows down the
hypothesis space.

1. The agent’s overall goal or strategy: The agent appears to be
exploring its environment, possibly looking for a specific block
or blocks.

It is not actively engaging with the environment in a goal-directed
way, as it does not seem to be collecting, storing, or moving
blocks in a strategic manner.

2. How the agent responds to different environmental features (blocks,
walls): The agent moves around the environment, avoiding walls
and seemingly indifferent to blocks.
It repeatedly moves left and right and up and down, indicating a
lack of strategy or goal-directed behavior.

3. Any patterns in movement or interaction: The agent moves in a
pattern that suggests exploration but does not show any indication
of avoiding walls or blocks,
indicating a lack of awareness of its environment or purpose in the
grid world.

The agent’s behavior is essentially random exploration, with no
apparent strategy or goal-directed behavior.

Listing 3: Sample Trajectory Summary Generated by ROTE for Construction prediction
task

1. The agent’s overall goal or strategy: The agent’s main goal seems
to be to rearrange objects in the environment, specifically
placing them on different surfaces according to its actions. The
actions are organized into sequences, each sequence aiming to move

an object from its initial position to a target position.

2. The agent responds to different environmental features: The agent
interacts with specific furniture and objects within the
environment , responding to their availability and positions. For
example, it navigates to the kitchen to interact with a chair and
rearrange an object on it.

3. Any patterns in movement or interaction: The agent tends to move
objects from one place to another, often towards the garage or
kitchen, and interacts with objects like chairs and benches. It
also arranges objects on benches and other surfaces when not
carrying them.

The agent’s behavior pattern emerges from a sequence of actions that
involve picking up and moving objects to rearrange them according
to its strategy.

Listing 4: Sample Trajectory Summary Generated by ROTE for Partnr prediction task

A.10.4 EXAMPLES OF ExXPLICIT FSMSs GENERATED BY ROTE IN THE “SEVERE”
STRUCTURE CONDITION

In Listings [6] and [f] we show sample FSMs predicted by ROTE which describe observed
behaviors in the Construction and Parntr environments, respectively. These are produced
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by an LLM as an intermediate step during the “Severe” structure condition, where ROTE
tries to generate agent programs implementing these high-level behavioral abstractions. As
indicated by Listing [6] sometimes the models will hallucinate internal states and actions
which are not within an agent’s capabilities (i.e. introducing a “charge” state). As a result,
the “Severe” condition is not always beneficial for model performance, especially when
predicting the behaviors of goal-directed agents in partially observable settings (Figure .

‘‘““‘python
class AgentFSM:
def __init__(self):
self .state = ’explore’

def transition(self, state, action, info):

if state == ’explore’:
if action == ’up’:
return ’move_up’, info
elif action == ’down’:
return ’move_down’, info
elif action == ’left’:

return ’move_left’, info
elif action == ’right’:
return ’move_right’, info

elif action ’interact ’:
return ’interact’, info
else:
return ’stay’, info
elif state == ’move_up’:
return ’stay’, info
elif state == ’move_down’:
return ’stay’, info
elif state == ’move_left’:
return ’stay’, info
elif state == ’move_right’:
return ’stay’, info
elif state == ’interact’:
return ’stay’, info

def get_action(self, info):
if self.state == ’explore’:
# Randomly choose an action from the available options
import random

actions = [’up’, ’down’, ’left’, ’right’, ’interact’]
action = random.choice(actions)
self.state, _ = self.transition(’explore’, action, info)
return action

else:
action = self.state
self.state, _ = self.transition(self.state, action, info)

return action

Let’s write the code for the agent’s behavior, taking into account the
experiences provided:

1. The agent’s overall goal or strategy: The agent appears to be
exploring its environment, possibly looking for a specific block
or blocks.

It is not actively engaging with the environment in a goal-directed
way, as it does not seem to be collecting, storing, or moving
blocks in a strategic manner.
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2. How the agent responds to different environmental features (blocks,
walls): The agent moves around the environment, avoiding walls
and seemingly indifferent to blocks.
It repeatedly moves left and right and up and down, indicating a
lack of

Listing 5: Sample FSM Transition Logic Generated by ROTE for Construction prediction
task (“Severe” Structure Condition)

To model the behavior of the agent in this environment, we can define
a finite state machine (FSM) with the following states and
transitions:

**States :x*

1. *xIDLE**: The agent is waiting or resting, possibly exploring its
surroundings to identify potential tasks or resources.

2. **SEARCH**: The agent is actively searching for specific objects or

locations of interest, such as a target object to collect or a

specific location to navigate to.

3. **COLLECT**: The agent is moving towards and collecting the target
object.

4. **xTRANSIT#**: The agent is on its way to a designated drop-off or
storage location after collecting an object.

5. **DROP_OFF**: The agent is depositing the collected object at its
destination.

6. **xCHARGE**: If the agent is a robot or uses a battery, it may need
to recharge. This state is triggered when the battery 1level
becomes critical.

**Transitions :**

- **xIDLE -> SEARCH**: When the agent identifies a task or a resource
to collect, it transitions from an idle state to a search state.

- **SEARCH -> COLLECT**: When the agent locates the target object, it
transitions from a search state to a collect state.

- **COLLECT -> TRANSITx**: After collecting the object, the agent
transitions to a transit state to move towards the drop-off
location.

- **TRANSIT -> DROP_OFFx**: Upon reaching the drop-off location, the
agent transitions to a drop-off state to deposit the object.

- **xDROP_OFF -> IDLEx**: After depositing the object, the agent returns

to an idle state, possibly searching for a new task or resource.

- **xCOLLECT -> CHARGEx**: If the agent is battery-operated and the
battery level becomes too low during collection, it transitions to

a charge state to recharge.

- *xTRANSIT -> CHARGEx**: Similarly, if the agent needs to recharge
while moving to the drop-off location, it transitions to the
charge state.

- *xDROP_OFF -> CHARGEx**: If the agent needs to recharge after
depositing an object, it transitions to the charge state.

This FSM design allows the agent to efficiently manage its activities,
transitioning smoothly between states based on its observations
and needs, such as searching for resources, collecting them,
moving to a drop-off location, and recharging when necessary.

Listing 6: Sample FSM Transition Logic Generated by ROTE for Partnr prediction task
(“Severe” Structure Condition)
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