
Published as a conference paper at ICLR 2022

RETHINKING NETWORK DESIGN AND LOCAL GEOM-
ETRY IN POINT CLOUD: A SIMPLE RESIDUAL MLP
FRAMEWORK

Xu Ma1, Can Qin1, Haoxuan You2, Haoxi Ran1, Yun Fu1

1Northeastern University, Boston, MA, USA
2Columbia University, New York, NY, USA
{ma.xu1,qin.ca,ran.h}@northeastern.edu
{haoxuanyou,ranhaoxi}@gmail.com
yunfu@ece.neu.edu

ABSTRACT

Point cloud analysis is challenging due to irregularity and unordered data struc-
ture. To capture the 3D geometries, prior works mainly rely on exploring sophis-
ticated local geometric extractors using convolution, graph, or attention mecha-
nisms. These methods, however, incur unfavorable latency during inference, and
the performance saturates over the past few years. In this paper, we present a
novel perspective on this task. We notice that detailed local geometrical infor-
mation probably is not the key to point cloud analysis – we introduce a pure
residual MLP network, called PointMLP, which integrates no “sophisticated” lo-
cal geometrical extractors but still performs very competitively. Equipped with a
proposed lightweight geometric affine module, PointMLP delivers the new state-
of-the-art on multiple datasets. On the real-world ScanObjectNN dataset, our
method even surpasses the prior best method by 3.3% accuracy. We emphasize
that PointMLP achieves this strong performance without any sophisticated oper-
ations, hence leading to a superior inference speed. Compared to most recent
CurveNet, PointMLP trains 2× faster, tests 7× faster, and is more accurate on
ModelNet40 benchmark. We hope our PointMLP may help the community to-
wards a better understanding of point cloud analysis. The code is available at
https://github.com/ma-xu/pointMLP-pytorch.

1 INTRODUCTION

Lately, point cloud analysis has emerged as a popular topic in 3D understanding, attracting attention
from academia and industry (Qi et al., 2017a; Shi et al., 2019; Xu et al., 2020). Different from 2D
images represented by regular dense pixels, point clouds are composed of unordered and irregular
sets of points P ∈ RN×3, making it infeasible to apply image processing methods to point cloud
analysis directly. Meanwhile, the nature of sparseness and the presence of noises further restrict the
performance. In the past few years, endowing with neural networks, point cloud analysis has seen
a great improvement in various applications, including 3D shape classification (Qi et al., 2017a),
semantic segmentation (Hu et al., 2020) and object detection (Shi & Rajkumar, 2020), etc.

Recent efforts have shown promising results for point cloud analysis by exploring local geometric in-
formation, using convolution (Li et al., 2021a), graph (Li et al., 2021a), or attention mechanism (Guo
et al., 2021) (see Section 2 for details). These methods, despite their gratifying results, have mainly
relied on the premise that an elaborate local extractor is essential for point cloud analysis, leading
to the competition for careful designs that explore fine local geometric properties. Nevertheless,
sophisticated extractors are not without drawbacks. On the one hand, due to prohibitive computa-
tions and the overhead of memory access, these sophisticated extractors hamper the efficiency of
applications in natural scenes. As an example, until now, most 3D point cloud applications are still
based on the simple PointNet (and PointNet++) or the voxel-based methods (Liu et al., 2021; Li
et al., 2021b; Zhang et al., 2021). However, applications that employ the aforementioned advanced
methods are rare in literature. On the other hand, the booming sophisticated extractors saturate the

1

https://github.com/ma-xu/pointMLP-pytorch

Published as a conference paper at ICLR 2022

performance since they already describe the local geometric properties well. A more complicated
design is no longer to improve the performance further. These phenomena suggest that we may
need to stop the race of local feature extraction designing, rethinking the necessity of elaborate local
feature extractors and further revisiting the succinct design philosophy in point cloud analysis.

PointConv
(2019)

KPConv
(2019)

GBNet
(2021)

GDANet
(2021)

CurveNet
(2021)

PointMLP

PointMLP-
elite

92.3

92.8

93.3

93.8

94.3

0 30 60 90 120 150 180

O
ve

ra
ll

ac
cu

ra
cy

Inference speed (samples/second)

Figure 1: Accuracy-speed tradeoff on Model-
Net40. Our PointMLP performs best. Please
refer to Section 4 for details.

In this paper, we aim at the ambitious goal of build-
ing a deep network for point cloud analysis using
only residual feed-forward MLPs, without any del-
icate local feature explorations. By doing so, we
eschew the prohibitive computations and continued
memory access caused by the sophisticated local
geometric extractors and enjoy the advantage of ef-
ficiency from the highly-optimized MLPs. To fur-
ther improve the performance and generalization
ability, We introduce a lightweight local geometric
affine module that adaptively transforms the point
feature in a local region. We term our new network
architecture as PointMLP. In the sense of MLP-
based design philosophy, our PointMLP is similar
to PointNet and PointNet++ (Qi et al., 2017a;b).
However, our model is more generic and exhibits
promising performance. Different from the models
with sophisticated local geometric extractors (e.g.,
DeepGCNs (Li et al., 2019), RSCNN (Liu et al.,
2019b), RPNet (Ran et al., 2021).), our PointMLP is conceptually simpler and achieves results on
par or even better than these state-of-the-art methods (see Figure 1). Keep in mind that we did not
challenge the advantages of these local geometric extractors and we acknowledge their contribu-
tions; however, a more succinct framework should be studied considering both the efficiency and
accuracy. In Table 1, we systemically compare our PointMLP with some representative methods.

Even though the design philosophy is simple, PointMLP (as well as the elite version) exhibits su-
perior performance on 3D point cloud analysis. Specifically, we achieve the state-of-the-art classi-
fication performance, 94.5%, on the ModelNet40 benchmark, and we outperform related works by
3.3% accuracy on the real-world ScanObjectNN dataset, with a significantly higher inference speed.

2 RELATED WORK

Point cloud analysis. There are mainly two streams to process point cloud. Since the point cloud
data structure is irregular and unordered, some works consider projecting the original point clouds
to intermediate voxels (Maturana & Scherer, 2015; Shi et al., 2020) or images (You et al., 2018;
Li et al., 2020), translating the challenging 3D task into a well-explored 2D image problem. In
this regime, point clouds understanding is largely boosted and enjoys the fast processing speed
from 2D images or voxels. Albeit efficient, information loss caused by projection degrades the
representational quality of details for point clouds (Yang et al., 2019). To this end, some methods are
proposed to process the original point cloud sets directly. PointNet (Qi et al., 2017a) is a pioneering
work that directly consumes unordered point sets as inputs using shared MLPs. Based on PointNet,
PointNet++ (Qi et al., 2017b) further introduced a hierarchical feature learning paradigm to capture
the local geometric structures recursively. Owing to the local point representation (and multi-scale
information), PointNet++ exhibits promising results and has been the cornerstone of modern point
cloud methods (Wang et al., 2019; Fan et al., 2021; Xu et al., 2021a). Our PointMLP also follows
the design philosophy of PointNet++ but explores a simpler yet much deeper network architecture.

Local geometry exploration. As PointNet++ built the generic point cloud analysis network
framework, the recent research focus is shifted to how to generate better regional points repre-
sentation. Predominantly, the explorations of local points representation can be divided into three
categories: convolution-, graph-, and attention-based methods. One of the most distinguished
convolution-based methods is PointConv (Wu et al., 2019). By approximating continuous weight
and density functions in convolutional filters using an MLP, PointConv is able to extend the dynamic
filter to a new convolution operation. Also, PAConv (Xu et al., 2021a) constructs the convolution

2

Published as a conference paper at ICLR 2022

kernel by dynamically assembling basic weight matrices stored in a weight bank. Without modifying
network configurations, PAConv can be seamlessly integrated into classical MLP-based pipelines.
Unlike convolution-based methods, Graph-based methods investigate mutually correlated relation-
ships among points with a graph. In Wang et al. (2019), an EdgeConv is proposed to generate edge
features that describe the relationships between a point and its neighbors. By doing so, a local graph
is built, and the point relationships are well preserved. In 3D-GCN (Lin et al., 2021), authors aim at
deriving deformable 3D kernels using a 3D Graph Convolution Network. Closely related to graph-
based methods, the attention-based methods exhibit excellent ability on relationship exploration as
well, like PCT (Guo et al., 2021) and Point Transformer (Zhao et al., 2021; Engel et al., 2020).
With the development of local geometry exploration, the performances on various tasks appear to
be saturated. Continuing on this track would bring minimal improvements. In this paper, we show-
case that even without the carefully designed operations for local geometry exploration, a pure deep
hierarchical MLP architecture is able to exhibit gratifying performances and even better results.

Table 1: Systematic comparison among some representa-
tive methods. “Deep” indicates that a model is expand-
able along depth. “Opt.” stands for the principal operator.

Method hierarchy locality deep opt.

PointNet 7 7 7 MLP
PointNet++ 3 3 7 MLP
DGCNN 7 3 7 GCN
DeepGCNs 3 3 3 GCN
PointConv 3 3 7 Conv.
Point Trans. 3 3 3 Atten.

PointMLP 3 3 3 MLP

Deep network architecture for point
cloud. Interestingly, the development
of point cloud analysis is closely related
to the evolution of the image process-
ing network. In the early era, works in
the image processing field simply stack
several learning layers to probe the per-
formance limitations (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2015;
Dong et al., 2014). Then, the great
success of deep learning was signif-
icantly promoted by deep neural ar-
chitectures like ResNet (He et al.,
2016), which brings a profound impact
to various research fields. Recently,
attention-based models, including atten-
tion blocks (Wang et al., 2018) and Transformer architectures (Dosovitskiy et al., 2021), further flesh
out the community. Most recently, the succinct deep MLP architectures have attracted a lot of atten-
tion due to their efficiency and generality. Point cloud analysis follows the same develop history as
well, from MLP-based PointNet (Qi et al., 2017a), deep hierarchical PointNet++ (Qi et al., 2017b),
convolution-/graph-/relation- based methods (Wu et al., 2019; Wang et al., 2019; Ran et al., 2021),
to state-of-the-art Transformer-based models (Guo et al., 2021; Zhao et al., 2021). In this paper,
we abandon sophisticated details and present a simple yet effective deep residual MLP network for
point cloud analysis. Instead of following the tendency in the vision community deliberately, we are
in pursuit of an inherently simple and empirically powerful architecture for point cloud analysis.

3 DEEP RESIDUAL MLP FOR POINT CLOUD

We propose to learn the point cloud representation by a simple feed-forward residual MLP network
(named PointMLP), which hierarchically aggregates the local features extracted by MLPs, and aban-
dons the use of delicate local geometric extractors. To further improve the robustness and improve
the performance, we also introduce a lightweight geometric affine module to transform the local
points to a normal distribution. The detailed framework of our method is illustrated in Figure 2.

3.1 REVISITING POINT-BASED METHODS

The design of point-based methods for point cloud analysis dates back to the PointNet and Point-
Net++ papers (Qi et al., 2017a;b), if not earlier. The motivation behind this direction is to directly
consume point clouds from the beginning and avoid unnecessary rendering processes.

Given a set of points P = {pi|i = 1, · · · , N} ∈ RN×3, where N indicates the number of points in
a (x, y, z) Cartesian space, point-based methods aims to directly learn the underlying representation
f of P using neural networks. One of the most pioneering works is PointNet++, which learns
hierarchical features by stacking multiple learning stages. In each stage,Ns points are re-sampled by

3

Published as a conference paper at ICLR 2022

Geometric
Affine

R
es

P
 B

lo
ck

R
es

P
 B

lo
ck

R
es

P
 B

lo
ck

R
es

P
 B

lo
ck

R
es

P
 B

lo
ck

R
es

P
 B

lo
ck

R

Geometric Affine Module

R
eL
U

M
LP

B
N

M
LP

B
N

R
eL
U

Residual Point (ResP) Block

R Repeat

Subtraction

Product

Had. Product

Summation

Figure 2: Overview of one stage in PointMLP. Given an input point cloud, PointMLP progressively
extracts local features using residual point MLP blocks. In each stage, we first transform the local
points using a geometric affine module, then they are extracted before and after the aggregation
operation, respectively. PointMLP progressively enlarges the receptive field and models complete
point cloud geometric information by repeating multiple stages.

the farthest point sampling (FPS) algorithm where s indexes the stage andK neighbors are employed
for each sampled point and aggregated by max-pooling to capture local structures. Conceptually, the
kernel operation of PointNet++ can be formulated as:

gi = A (Φ (fi,j) |j = 1, · · · ,K) , (1)

where A (·) means aggregation function (max-pooling in PointNet++), Φ (·) denotes the local fea-
ture extraction function (MLP in PointNet++), and fi,j is the j-th neighbor point feature of i-th
sampled point. By doing so, PointNet++ is able to effectively capture local geometric information
and progressively enlarge the receptive fields by repeating the operation.

In the sense of network architecture design, PointNet++ exhibits a universal pipeline for point cloud
analysis. Following this pipeline, some plug-and-play methods have been proposed, mainly focus-
ing on the local feature extractor Φ (·) (Xu et al., 2021a; Liu et al., 2019b; Thomas et al., 2019;
Zhao et al., 2021). Generally, these local feature extractors thoroughly explore the local geometric
information using convolution, graph, or self-attention mechanisms. In RSCNN (Liu et al., 2019b),
the extractor is mainly achieved by exploring point relations as follow:

Φ (fi,j) = MLP
([
‖xi,j − xi‖2 , xi,j − xi, xi,j , xi

])
∗ fi,j ,∀j ∈ {1, · · · ,K} , (2)

where [·] is the concatenation operation and MLP is a small network composed of a Fully-connected
(FC) layer, Batch Normalization layer, and activation function. Unlike RSCNN, Point Transformer
introduces the self-attention mechanism into point cloud analysis and considers the similarities be-
tween pair-wise points in a local region. To this end, it re-formulates the extractor as:

Φ (fi) =

k∑
j=1

ρ (γ (ϕ (fi)− ψ (fi,j) + δ))� (α (fi,j + δ)) , (3)

where γ, ϕ, ψ and α are linear mapping function, “�” is a Hadamard product, and ρ is a soft-
max normalization. In particular, Point Transformer introduces a relative position encoding,
δ = θ (xi − xi,j), where the relative position is encoded by two FC layers with a ReLU non-
linearity layer, into both attention weights and features. The lightweight positional encoder largely
improves the performance of Point Transformer.

While these methods can easily take the advantage of detailed local geometric information and usu-
ally exhibit promising results, two issues limit their development. First, with the introduction of
delicate extractors, the computational complexity is largely increased, leading to prohibitive infer-

4

Published as a conference paper at ICLR 2022

ence latency 1. For example, the FLOPs of Equation 3 in Point Transformer would be 14Kd2,
ignoring the summation and subtraction operations. Compared with the conventional FC layer that
enjoys 2Kd2 FLOPs, it increases the computations by times. Notice that the memory access cost is
not considered yet. Second, with the development of local feature extractors, the performance gain
has started to saturate on popular benchmarks. Moreover, empirical analysis in Liu et al. (2020) re-
veals that most sophisticated local extractors make surprisingly similar contributions to the network
performance under the same network input. Both limitations encourage us to develop a new method
that circumvents the employment of sophisticated local extractors, and provides gratifying results.

3.2 FRAMEWORK OF POINTMLP

In order to get rid of the restrictions mentioned above, we present a simple yet effective MLP-based
network for point cloud analysis that no sophisticated or heavy operations are introduced. The key
operation of our PointMLP can be formulated as:

gi = Φpos (A (Φpre (fi,j) , |j = 1, · · · ,K)) , (4)
where Φpre (·) and Φpos (·) are residual point MLP blocks: the shared Φpre (·) is designed to learn
shared weights from a local region while the Φpos (·) is leveraged to extract deep aggregated fea-
tures. In detail, the mapping function can be written as a series of homogeneous residual MLP
blocks, MLP (x) + x, in which MLP is combined by FC, normalization and activation layers (re-
peated two times). Following Qi et al. (2017a), we consider the aggregation function A (·) as
max-pooling operation. Equation 4 describes one stage of of PointMLP. For a hierarchical and deep
network, we recursively repeat the operation by s stages. Albeit the framework of PointMLP is
succinct, it exhibits some prominent merits. 1) Since PointMLP only leverages MLPs, it is naturally
invariant to permutation, which perfectly fits the characteristic of point cloud. 2) By incorporat-
ing residual connections, PointMLP can be easily extended to dozens layers, resulting deep feature
representations. 3) In addition, since there is no sophisticated extractors included and the main op-
eration is only highly optimized feed-forward MLPs, even we introduce more layers, our PointMLP
still performs efficiently. Unless explicitly stated, the networks in our experiments use four stages,
and two residual blocks in both Φpre (·) and Φpos (·). We employ k-nearest neighbors algorithm
(kNN) to select the neighbors and set the number K to 24.

3.3 GEOMETRIC AFFINE MODULE

While it may be easy to simply increase the depth by considering more stages or stacking more
blocks in Φpre and Φpos, we notice that a simple deep MLP structure will decrease the accuracy and
stability, making the model less robust. This is perhaps caused by the sparse and irregular geometric
structures in local regions. Diverse geometric structures among different local regions may require
different extractors but shared residual MLPs struggle at achieving this. We flesh out this intuition
and develop a lightweight geometric affine module to tackle this problem. Let {fi,j}j=1,··· ,k ∈
Rk×d be the grouped local neighbors of fi ∈ Rd containing k points, and each neighbor point fi,j
is a d-dimensional vector. We transform the local neighbor points by the following formulation:

{fi,j} = α� {fi,j} − fi
σ + ε

+ β, σ =

√√√√ 1

k × n× d

n∑
i=1

k∑
j=1

(fi,j − fi)2, (5)

where α ∈ Rd and β ∈ Rd are learnable parameters, � indicates Hadamard production, and ε =
1e−5 is a small number for numerical stability (Ioffe & Szegedy, 2015; Wu & He, 2018; Dixon &
Massey Jr, 1951). Note that σ is a scalar describes the feature deviation across all local groups and
channels. By doing so, we transform the local points to a normal distribution while maintaining
original geometric properties.

3.4 COMPUTATIONAL COMPLEXITY AND ELITE VERSION

Although the FC layer is highly optimized by mainstream deep learning framework, the theoretical
number of parameters and computational complexity are still high. To further improve the efficiency,

1We emphasize that the model complexity could not be simply revealed by FLOPs or parameters, other
metrics like memory access cost (MAC) and the degree of parallelism also significantly affect the speed (Ma
et al., 2018; Zhang et al., 2020). However, these important metrics are always ignored in point clouds analysis.

5

Published as a conference paper at ICLR 2022

Table 2: Classification results on ModelNet40 dataset. With only 1k points, our method achieves
state-of-the-art results on both class mean accuracy (mAcc) and overall accuracy (OA) metrics. We
also report the speed of some open-sourced methods by samples/second tested on one Tesla V100-
pcie GPU and four cores AMD EPYC 7351@2.60GHz CPU. * For KPConv, we take the results
from the original paper. The best is marked in bold and second best is in blue.

Method Inputs mAcc(%) OA(%) Param. Train
speed

Test
speed

PointNet (Qi et al., 2017a) 1k P 86.0 89.2
PointNet++ (Qi et al., 2017b) 1k P - 90.7 1.41M 223.8 308.5
PointNet++ (Qi et al., 2017b) 5k P+N - 91.9 1.41M

PointCNN (Li et al., 2018b) 1k P 88.1 92.5
PointConv (Wu et al., 2019) 1k P+N - 92.5 18.6M 17.9 10.2
KPConv (Thomas et al., 2019) 7k P - 92.9 15.2M 31.0* 80.0*
DGCNN (Wang et al., 2019) 1k P 90.2 92.9
RS-CNN (Liu et al., 2019b) 1k P - 92.9
DensePoint (Liu et al., 2019a) 1k P - 93.2
PointASNL (Yan et al., 2020) 1k P - 92.9
PosPool (Liu et al., 2020) 5k P - 93.2
Point Trans. (Engel et al., 2020) 1k P - 92.8
GBNet (Qiu et al., 2021b) 1k P 91.0 93.8 8.39M 16.3 112
GDANet (Xu et al., 2021b) 1k P - 93.8 0.93M 26.3 14.0
PA-DGC (Xu et al., 2021a) 1k P - 93.9
MLMSPT (Han et al., 2021) 1k P - 92.9
PCT (Guo et al., 2021) 1k P - 93.2
Point Trans. (Zhao et al., 2021) 1k P 90.6 93.7
CurveNet (Xiang et al., 2021) 1k P - 94.2 2.04M 20.8 15.0

PointMLP w/o vot. 1k P 91.3 94.1 12.6M 47.1 112
PointMLP w/ vot. 1k P 91.4 94.5 12.6M 47.1 112
PointMLP-elite w/o vot. 1k P 90.9 93.6 0.68M 116 176
PointMLP-elite w/ vot. 1k P 90.7 94.0 0.68M 116 176

we introduce a lightweight version of PointMLP named as pointMLP-elite, with less than 0.7M
parameters and prominent inference speed (176 samples/second on ModelNet40 benchmark).

Inspired by He et al. (2016); Hu et al. (2018), we present a bottleneck structure for the mapping
function Φpre and Φpos. We opt to reduce the channel number of the intermediate FC layer by a
factor of r and increase the channel number as the original feature map. This strategy is opposite to
the design in Vaswani et al. (2017); Touvron et al. (2021) which increases the intermediate feature
dimensions. Empirically, we do not observe a significant performance drop. This method reduce
the parameters of residual MLP blocks from 2d2 to 2

rd
2. By default, we set r to 4 in PointMLP-

elite. Besides, we also slightly adjust the network architecture, reducing both the MLP blocks and
embedding dimension number (see appendix for details). Inspired by Xie et al. (2017), we also
investigated a grouped FC operation in the network that divides one FC layer into g groups of sub-
FC layers, like group convolution layer. However, we empirically found that this strategy would
largely hamper the performance. As a result, we did not consider it in our implementation.

4 EXPERIMENTS

In this section, we comprehensively evaluate PointMLP on several benchmarks. Detailed ablation
studies demonstrate the effectiveness of PointMLP with both quantitative and qualitative analysis.

4.1 SHAPE CLASSIFICATION ON MODELNET40

We first evaluate PointMLP on the ModelNet40 (Wu et al., 2015) benchmark, which contains 9,843
training and 2,468 testing meshed CAD models belonging to 40 categories. Following the standard
practice in the community, we report the class-average accuracy (mAcc) and overall accuracy (OA)
on the testing set. We train all models for 300 epochs using SGD optimizer.

6

Published as a conference paper at ICLR 2022

0 25 50 75 100 125 150 175 200
Training epoch

30

40

50

60

70

80

O
ve

ra
ll

ac
cu

ra
cy

 (O
A

)

w/ Affine
w/o Affine

(a) PointMLP 24-Layers

0 25 50 75 100 125 150 175 200
Training epoch

30

40

50

60

70

80

O
ve

ra
ll

ac
cu

ra
cy

 (O
A

)

w/ Affine
w/o Affine

(b) PointMLP 40-Layers

0 25 50 75 100 125 150 175 200
Training epoch

30

40

50

60

70

80

O
ve

ra
ll

ac
cu

ra
cy

 (O
A

)

w/ Affine
w/o Affine

(c) PointMLP 56-Layers

Figure 3: Four run results (mean ± std) of PointMLP with/without our geometric affine module on
ScanObjectNN test set. We zoom in on the details of PointMLP40 to show the stability difference.

Experimental results are presented in Table 2. Among these methods, our PointMLP clearly outper-
forms state-of-the-art method CurveNet by 0.3% (94.5% vs. 94.2%) overall accuracy with only 1k
points. Note that this improvement could be considered as a promising achievement since the results
on ModelNet40 recent methods have been saturated around 94% for a long time. Even without the
voting strategy (Liu et al., 2019b), our PointMLP still performs on par or even better than other
methods that are tested with voting strategy.

Despite having better accuracy, our method is much faster than the methods with sophisticated lo-
cal geometric extractors. We compare PointMLP to several open-sourced methods and report the
parameters, classification accuracy, training, and testing speed. As we stated previously, a key intu-
ition behind this experiment is that model complexity can not directly reflect efficiency. For exam-
ple, CurveNet is lightweight and delivers a strong result, whereas the inference cost is prohibitive
(15 samples/second). On the contrary, our PointMLP presents a high inference speed (112 sam-
ples/second). To further reduce the model size and speed up the inference, we present a lightweight
PointMLP-elite, which significantly reduces the number of parameters to 0.68M, while maintaining
high-performance 90.9% mAcc and 94.0% OA on ModelNet40. With PointMLP-elite, we further
speed up the inference to 176 samples/second.

4.2 SHAPE CLASSIFICATION ON SCANOBJECTNN

Table 3: Classification results on ScanObjectNN dataset.
We examine all methods on the most challenging variant
(PB T50 RS). For our pointMLP and PointMLP-elite, we train
and test for four runs and report mean ± std results.

Method mAcc(%) OA(%)

3DmFV 58.1 63
PointNet (Qi et al., 2017a) 63.4 68.2
SpiderCNN (Xu et al., 2018) 69.8 73.7
PointNet++ (Qi et al., 2017b) 75.4 77.9
DGCNN (Wang et al., 2019) 73.6 78.1
PointCNN (Li et al., 2018b) 75.1 78.5
BGA-DGCNN (Uy et al., 2019) 75.7 79.7
BGA-PN++ (Uy et al., 2019) 77.5 80.2
DRNet (Qiu et al., 2021a) 78.0 80.3
GBNet (Qiu et al., 2021b) 77.8 80.5
SimpleView (Goyal et al., 2021) - 80.5±0.3
PRANet (Cheng et al., 2021) 79.1 82.1
MVTN (Hamdi et al., 2021) - 82.8

PointMLP (ours) 83.9±0.5 85.4±0.3
PointMLP-elite (ours) 81.8±0.8 83.8±0.6

While ModelNet40 is the de-facto
canonical benchmark for point
cloud analysis, it may not meet
the requirement of modern meth-
ods due to its synthetic nature
and the fast development of point
cloud analysis. To this end, we
also conduct experiments on the
ScanObjectNN benchmark (Uy
et al., 2019).

ScanObjectNN is a recently re-
leased point cloud benchmark
that contains 15,000 objects that
are categorized into 15 classes
with 2,902 unique object in-
stances in the real world. Due
to the existence of background,
noise, and occlusions, this bench-
mark poses significant challenges
to existing point cloud analysis
methods. We consider the hard-
est perturbed variant (PB T50 RS) in our experiments. We train our model using an SGD optimizer
for 200 epochs with a batch size of 32. For a better illustration, we train and test our method for four
runs and report the mean ± standard deviation in Table 3.

7

Published as a conference paper at ICLR 2022

Table 4: Classification accuracy of
pointMLP on ScanObjectNN test set
using 24, 40, and 56 layers, respectively.

Depth mAcc(%) OA(%)

24 layers 83.4±0.4 84.8±0.5
40 layers 83.9±0.5 85.4±0.3
56 layers 83.2±0.2 85.0±0.1

Table 5: Component ablation studies on
ScanObjectNN test set.

Φpre Φpos Affine mAcc(%) OA(%)

7 3 3 80.8±0.4 82.8±0.0
3 7 3 83.3±0.3 84.7±0.2
3 3 7 79.1±1.7 81.5±1.4

3 3 3 83.9±0.5 85.4±0.3

Empirically, our PointMLP surpasses all methods by a significant improvement on both class
mean accuracy (mAcc) and the overall accuracy (OA). For example, we outperform PRANet by
4.8% mAcc and 3.3% OA. Even compared with the heavy multi-view projection method MVTN (12
views), our PointMLP still performs much better (85.39% 82.8%). Notice that we achieve this by
fewer training epochs and did not consider the voting strategy. Moreover, we notice that our method
achieves the smallest gap between class mean accuracy and overall accuracy. This phenomenon
indicates that PointMLP did not bias to a particular category, showing decent robustness.

4.3 ABLATION STUDIES

Network Depth. Network depth has been exploited in many tasks but is rare in point cloud anal-
ysis. We first investigate the performance of PointMLP with different depths in Table 4. We vary
the network depth by setting the number of homogeneous residual MLP blocks to 1, 2, and 3, re-
spectively, resulting in 24, 40, and 56-layers PointMLP variants. Detailed depth formulation can
be found in Appendix D. At first glance, we notice that simply increasing the depth would not al-
ways bring better performance; an appropriate depth would be a good solution. Additionally, the
model gets stable with more layers introduced, as demonstrated by the decreasing standard devi-
ation. When the depth is set to 40, we achieve the best tradeoff between accuracy and stability
(85.4% mean accuracy and 0.3 standard deviations). Remarkably, PointMLP consistently achieves
gratifying results that outperform recent methods, regardless of the depth.

Geometric Affine Module. Other work provides sophisticated local geometric extractors to ex-
plore geometric structures. Instead, our PointMLP discards these burdensome modules and intro-
duces a lightweight geometric affine module. Figure 3 presents the results of PointMLP with/without
the geometric affine module. By integrating the module, we systematically improve the performance
of PointMLP by about 3% for all variants. The reasons for this large improvement are two-fold.
First, the geometric affine module maps local input features to a normal distribution, which eases the
training of PointMLP. Second, the geometric affine module implicitly encodes the local geometrical
information by the channel-wise distance to local centroid and variance, remedying the deficiency
of geometric information. Besides the gratifying improvements, the geometric affine module also
largely boosts the stability of PointMLP, suggesting better robustness.

1.0
0.5

0.0
0.5

1.0 1.0

0.5

0.0

0.5
1.0

Te
st

in
g

lo
ss

1.5

2.0

2.5

3.0

3.5

4.0

(a) PointMLP w/o Res.

1.0
0.5

0.0
0.5

1.0 1.0

0.5

0.0

0.5
1.0

Te
st

in
g

lo
ss

1.5

2.0

2.5

3.0

3.5

4.0

(b) PointMLP

Figure 4: Loss landscape along two rand directions. By introduc-
ing residual connection, we ease the optimization of PointMLP and
achieve a flat landscape like a simple shallow network intuitively.

Component ablation
study. Table 5 reports
the results on ScanOb-
jectNN of removing each
individual component in
PointMLP. Consistent with
Figure 3, geometric affine
module plays an important
role in PointMLP, improv-
ing the base architecture
by 3.9%. Remarkably,
even without this module,
which is an unfair setting
for PointMLP, our base
network stills achieves

8

Published as a conference paper at ICLR 2022

Table 6: Part segmentation results on the ShapeNetPart dataset. Empirically, our method is much
faster than the best method KPConv, and presents a competitive performance.

Method Cls.
mIoU

Inst.
mIoU aero bag cap car chair aerp-

hone guitar knife lamp laptop motor-
bike mug pistol rocket skate-

board table

PointNet 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointNet++ 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
Kd-Net - 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
SO-Net - 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0
PCNN 81.8 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
DGCNN 82.3 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
P2Sequence - 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7 70.8 94.6 79.3 58.1 75.2 82.8
PointCNN 84.6 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.2 84.2 64.2 80.0 83.0
PointASNL - 86.1 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2
RS-CNN 84.0 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6
SynSpec 82.0 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1
SPLATNet 83.7 85.4 83.2 84.3 89.1 80.3 90.7 75.5 92.1 87.1 83.9 96.3 75.6 95.8 83.8 64.0 75.5 81.8
SpiderCNN 82.4 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
KPConv 85.1 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6
PA-DGC 84.6 86.1 84.3 85.0 90.4 79.7 90.6 80.8 92.0 88.7 82.2 95.9 73.9 94.7 84.7 65.9 81.4 84.0

PointMLP 84.6 86.1 83.5 83.4 87.5 80.54 90.3 78.2 92.2 88.1 82.6 96.2 77.5 95.8 85.4 64.6 83.3 84.3

81.5 ± 1.4% OA, outperforming most related methods (see Table 3). Removing Φpre function
(MLPs before aggregator A), the performance drops 2.6% overall accuracy. Combining all these
components together, we achieve the best result 85.4% OA. See Appendix C for more ablations.

Loss landscape. We depict the 3D loss landscape (Li et al., 2018a) in Figure 4. Simply increas-
ing the network depth may not achieve a better representation and even hamper the results. When
removing the residual connection in PointMLP, the loss landscape turns sharp, and the performance
plummets to 88.1% (6% drop) on ModelNet40. With residual connection, we greatly ease the opti-
mization course of PointMLP and make it possible to train a deep network.

4.4 PART SEGMENTATION

Figure 5: Part segmentation results on ShapeNetPart. Top
line is ground truth and bottom line is our prediction.

Our PointMLP can also be gen-
eralized to other 3D point cloud
tasks. We next test PointMLP for 3D
shape part segmentation task on the
ShapeNetPart benchmark (Yi et al.,
2016). The shapeNetPart dataset con-
sists of 16,881 shapes with 16 classes
belonging to 50 parts labels in total.
In each class, the number of parts is
between 2 and 6. We follow the set-
tings from Qi et al. (2017b) that ran-
domly select 2048 points as input for
a fair comparison. We compare our
methods with several recent works,
including SyncSpecCNN (Yi et al., 2017), SPLATNet (Su et al., 2018), etc. We also visualize the
segmentation ground truths and predictions in Figure 5. Intuitively, the predictions of our PointMLP
are close to the ground truth. Best viewed in color.

5 CONCLUSION

In this paper, we propose a simple yet powerful architecture named PointMLP for point cloud anal-
ysis. The key insight behind PointMLP is that a sophisticated local geometric extractor may not be
crucial for performance. We begin with representing local points with simple residual MLPs as they
are permutation-invariant and straightforward. Then we introduce a lightweight geometric affine
module to boost the performance. To improve efficiency further, we also introduce a lightweight
counterpart, dubbed as PointMLP-elite. Experimental results have shown that PointMLP outper-
forms related work on different benchmarks beyond simplicity and efficiency. We hope this novel
idea will inspire the community to rethink the network design and local geometry in point cloud.

9

Published as a conference paper at ICLR 2022

REFERENCES

Silin Cheng, Xiwu Chen, Xinwei He, Zhe Liu, and Xiang Bai. Pra-net: Point relation-aware network
for 3d point cloud analysis. IEEE Transactions on Image Processing, 30:4436–4448, 2021.

Wilfrid J Dixon and Frank J Massey Jr. Introduction to statistical analysis. 1951.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional
network for image super-resolution. In ECCV, pp. 184–199. Springer, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

Nico Engel, Vasileios Belagiannis, and Klaus Dietmayer. Point transformer. arXiv preprint
arXiv:2011.00931, 2020.

Siqi Fan, Qiulei Dong, Fenghua Zhu, Yisheng Lv, Peijun Ye, and Fei-Yue Wang. Scf-net: Learning
spatial contextual features for large-scale point cloud segmentation. In CVPR, pp. 14504–14513,
2021.

Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and Jia Deng. Revisiting point cloud shape
classification with a simple and effective baseline. ICML, 2021.

Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu.
Pct: Point cloud transformer. Computational Visual Media, 7(2):187–199, 2021.

Abdullah Hamdi, Silvio Giancola, and Bernard Ghanem. Mvtn: Multi-view transformation network
for 3d shape recognition. ICCV, 2021.

Xian-Feng Han, Yu-Jia Kuang, and Guo-Qiang Xiao. Point cloud learning with transformer. arXiv
preprint arXiv:2104.13636, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In CVPR, pp. 7132–7141, 2018.

Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and
Andrew Markham. Randla-net: Efficient semantic segmentation of large-scale point clouds. In
CVPR, pp. 11108–11117, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, pp. 448–456. PMLR, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (eds.),
NeurIPS, volume 25. Curran Associates, Inc., 2012.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as
cnns? In ICCV, pp. 9267–9276, 2019.

Guohao Li, Matthias Müller, Guocheng Qian, Itzel Carolina Delgadillo Perez, Abdulellah Abual-
shour, Ali Kassem Thabet, and Bernard Ghanem. Deepgcns: Making gcns go as deep as cnns.
TPAMI, 2021a.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. In NeurIPS, pp. 6391–6401, 2018a.

Lei Li, Siyu Zhu, Hongbo Fu, Ping Tan, and Chiew-Lan Tai. End-to-end learning local multi-view
descriptors for 3d point clouds. In CVPR, pp. 1919–1928, 2020.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolu-
tion on x-transformed points. NeurIPS, 31:820–830, 2018b.

10

Published as a conference paper at ICLR 2022

Zhichao Li, Feng Wang, and Naiyan Wang. Lidar r-cnn: An efficient and universal 3d object detec-
tor. In CVPR, pp. 7546–7555, 2021b.

Zhi-Hao Lin, Sheng Yu Huang, and Yu-Chiang Frank Wang. Learning of 3d graph convolution
networks for point cloud analysis. TPAMI, 2021.

Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming Xiang, and Chunhong Pan. Dense-
point: Learning densely contextual representation for efficient point cloud processing. In ICCV,
pp. 5239–5248, 2019a.

Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional neural
network for point cloud analysis. In CVPR, pp. 8895–8904, 2019b.

Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. A closer look at local aggregation operators
in point cloud analysis. In ECCV, pp. 326–342. Springer, 2020.

Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong. Group-free 3d object detection via trans-
formers. arXiv preprint arXiv:2104.00678, 2021.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. ICLR,
2017.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In ECCV, pp. 116–131, 2018.

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time
object recognition. In IROS, pp. 922–928. IEEE, 2015.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In CVPR, pp. 652–660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. NeurIPS, 30, 2017b.

Shi Qiu, Saeed Anwar, and Nick Barnes. Dense-resolution network for point cloud classification
and segmentation. In WACV, pp. 3813–3822, 2021a.

Shi Qiu, Saeed Anwar, and Nick Barnes. Geometric back-projection network for point cloud classi-
fication. IEEE Transactions on Multimedia, 2021b.

Haoxi Ran, Wei Zhuo, Jun Liu, and Li Lu. Learning inner-group relations on point clouds. In ICCV,
pp. 15477–15487, 2021.

Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal generation and
detection from point cloud. In CVPR, pp. 770–779, 2019.

Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang Wang, and Hongsheng Li.
Pv-rcnn: Point-voxel feature set abstraction for 3d object detection. In CVPR, pp. 10529–10538,
2020.

Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object detection in a point
cloud. In CVPR, pp. 1711–1719, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Yoshua Bengio and Yann LeCun (eds.), ICLR, 2015. URL http://arxiv.
org/abs/1409.1556.

Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang,
and Jan Kautz. Splatnet: Sparse lattice networks for point cloud processing. In CVPR, pp. 2530–
2539, 2018.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette,
and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In ICCV,
pp. 6411–6420, 2019.

11

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

Published as a conference paper at ICLR 2022

Hugo Touvron, Piotr Bojanowski, Mathilde Caron, Matthieu Cord, Alaaeldin El-Nouby, Edouard
Grave, Armand Joulin, Gabriel Synnaeve, Jakob Verbeek, and Hervé Jégou. Resmlp: Feedforward
networks for image classification with data-efficient training. arXiv preprint arXiv:2105.03404,
2021.

Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen, and Sai-Kit Yeung. Revis-
iting point cloud classification: A new benchmark dataset and classification model on real-world
data. In ICCV, pp. 1588–1597, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, pp. 5998–6008,
2017.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
CVPR, pp. 7794–7803, 2018.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):
1–12, 2019.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks on 3d point
clouds. In CVPR, pp. 9621–9630, 2019.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In CVPR, pp. 1912–1920,
2015.

Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and Weidong Cai. Walk in the cloud: Learning
curves for point clouds shape analysis. In ICCV, October 2021.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks. In CVPR, pp. 1492–1500, 2017.

Chenfeng Xu, Bichen Wu, Zining Wang, Wei Zhan, Peter Vajda, Kurt Keutzer, and Masayoshi
Tomizuka. Squeezesegv3: Spatially-adaptive convolution for efficient point-cloud segmentation.
In ECCV, pp. 1–19. Springer, 2020.

Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan Qi. Paconv: Position adaptive convolu-
tion with dynamic kernel assembling on point clouds. In CVPR, pp. 3173–3182, 2021a.

Mutian Xu, Junhao Zhang, Zhipeng Zhou, Mingye Xu, Xiaojuan Qi, and Yu Qiao. Learning
geometry-disentangled representation for complementary understanding of 3d object point cloud.
In AAAI, volume 35, pp. 3056–3064, 2021b.

Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. Spidercnn: Deep learning on point
sets with parameterized convolutional filters. In ECCV, pp. 87–102, 2018.

Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and Shuguang Cui. Pointasnl: Robust point clouds
processing using nonlocal neural networks with adaptive sampling. In CVPR, pp. 5589–5598,
2020.

Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Std: Sparse-to-dense 3d object
detector for point cloud. In ICCV, pp. 1951–1960, 2019.

Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in
3d shape collections. ACM Transactions on Graphics (ToG), 35(6):1–12, 2016.

Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. Syncspeccnn: Synchronized spectral cnn for
3d shape segmentation. In CVPR, pp. 2282–2290, 2017.

12

Published as a conference paper at ICLR 2022

Haoxuan You, Yifan Feng, Rongrong Ji, and Yue Gao. Pvnet: A joint convolutional network of
point cloud and multi-view for 3d shape recognition. In ACM MM, pp. 1310–1318, 2018.

Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue Sun, Tong
He, Jonas Mueller, R Manmatha, et al. Resnest: Split-attention networks. arXiv preprint
arXiv:2004.08955, 2020.

Zaiwei Zhang, Rohit Girdhar, Armand Joulin, and Ishan Misra. Self-supervised pretraining of 3d
features on any point-cloud. arXiv preprint arXiv:2101.02691, 2021.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and Vladlen Koltun. Point transformer. In ICCV,
2021.

13

Published as a conference paper at ICLR 2022

A POINTMLP DETAIL

We detail the architecture of PointMLP in Figure 6 (as well as PointMLP-elite in Figure 7) for a bet-
ter understanding. Compared with PointMLP, the elite version mainly adjusts three configurations:
1) it reduces the number of residual point (Resp) MLP blocks; 2) it reduces the embedding dimen-
sion from 64 to 32, hence the overall model overhead is significantly alleviated; 3) by introducing a
bottleneck structure, PointMLP further reduces the parameters by four times.

For part segmentation task, we use the framework presented in PointNet (Qi et al., 2017a) and
replace the backbone to our PointMLP. With the only modification, we improve the performance
from 85.1 to 86.1 Instance mIoU.

In
pu
t

Em
be
dd
in
g

A
gg

re
ga

tio
n

Φ
!"
#

R
es

p
M

LP

Φ
!$
%

R
es

p
M

LP

[1024,3]

[1024,64][512,24,64]
[512,128] [256,24,128]

[256,256] [128,24,256]
[128,512] [64,24,512]

[64,1024]

FC
 B

N
 R

eL
U

(5
12

)
D

ro
po

ut
 (0

.5
)

FC
 B

N
 R

eL
U

(2
56

)
D

ro
po

ut
 (0

.5
)

FC
(c

la
ss

_n
um

)

O
ut
pu
t

Stage 1 Stage 2 Stage 3 Stage 4 classifier

[class_num]

Figure 6: Detail architecture of PointMLP for classification.

In
pu
t

Em
be
dd
in
g

A
gg

re
ga

tio
n

Φ
!"
#

R
es

p
M

LP

Φ
!$
%

R
es

p
M

LP

[1024,3]

[1024,32][512,24,32]
[512,64] [256,24,64]

[256,128] [128,24,128]
[128,256] [64,24,256]

[64,256]
FC

 B
N

 R
eL

U
(5

12
)

D
ro

po
ut

 (0
.5

)
FC

 B
N

 R
eL

U
(2

56
)

D
ro

po
ut

 (0
.5

)
FC

(c
la

ss
_n

um
)

O
ut
pu
t

Stage 1 Stage 2 Stage 3 Stage 4 classifier

[class_num]
Bottleneck
Resp MLP

In elite

Figure 7: Detail architecture of PointMLP-elite for classification.

B DETAIL EXPERIMENTAL SETTING

B.1 MODELNET40 AND SCANOBJECTNN

Our implementations are based on PyTorch. For ModelNet40, we train models for 300 epochs on
one Tesla V100 GPU with a batch size of 32. All our models are trained using synchronous SGD
with a Nesterov momentum of 0.9 and a weight decay of 0.0002. The learning rate is set to 0.1
initially. We use the cosine annealing scheduler (Loshchilov & Hutter, 2017) to adjust the learning
rate. For each sample, we randomly select 1024 points and consider the same augmentation strategy
as Qi et al. (2017b). The setting for ScanObjectNN is similar to ModelNet40, except we train all
models for only 200 epochs.

For the reported speed in Table 2, we test the open-source code on a Tesla V100-pcie GPU. All the
source codes we used are listed2 in the footnote.

2all tested methods are listed bellow
PointNet++: https://github.com/erikwijmans/Pointnet2 PyTorch
CurveNet: https://github.com/tiangexiang/CurveNet
GBNet: https://github.com/ShiQiu0419/GBNet
GDANet: https://github.com/mutianxu/GDANet
PointConv: https://github.com/DylanWusee/pointconv
KPConv: https://github.com/HuguesTHOMAS/KPConv-PyTorch

14

Published as a conference paper at ICLR 2022

B.2 SHAPENETPART

Our setting for part segmentation task is following PointNet (Qi et al., 2017a). We randomly sample
2048 points for each sample and re-scale the input in a range of [0.67, 1.5]. Note that we did not test
the result using a multi-scale testing strategy, which could further improve the performance, but is
not realizable in real-world applications. Hence, we only report the single-scale results. Even the
comparison is unfair, we still achieve competitive performance.

C MORE DETAILED ABLATION STUDIES

Skip connection. Figure 4 shows the loss landscapes of our PointMLP with and without skip connec-
tions. We also consider adding skip connections to PointNet++ to validate the effectiveness of skip
connections. Due to the structure of PointNet++, only two skip connections could be added without
modifying the original architecture of PointNet++. By adding the skip connections, we achieve a
classification accuracy of 92.7% on ModelNet40 in our re-implementation.

Pre-MLP block vs. Pos-MLP block. we also modified the configuration of our PointMLP and re-
trained the model to investigate the importance of Pre-MLP and Pos-MLP blocks. In our origi-
nal implementation, we set the pre-MLP block list to [2, 2, 2, 2] and the pos-MLP blocks list to
[2, 2, 2, 2]. Here, we remove the pos-MLP blocks and change the pre-MLP blocks to [4, 4, 4, 4] to
match the block number. The 3-layer classifier can be considered as the MLP at the end of the last
stage. We trained the models two times and got an average OA of 84.13% (83.87% and 84.39%),
which is lower than vanilla PointMLP 85.4%, and even the result in Table 5 second-row 84.7%.
This result indicates that pos-MLP does benefit our PointMLP, and simply adding more pre-MLP
blocks does not help. We acknowledge that the effect of pos-MLP is not as strong as other com-
ponents and believe that a detailed fine-tuning of the configurations would deliver an even better
performance-efficiency balance.

Geometric Affine Module Applications. Geometric affine module plays an essential role in our
PointMLP, exhibiting promising performance improvements. While this module can be consid-
ered as a plug-and-play method, the overlap with some local geometric extractors in other methods
may limit its application. Here we integrate the module to two popular methods, PointNet++ and
DGCNN, for illustration and experiment on the ModelNet40 benchmark. By integrating the geomet-
ric affine module, we improve the performance of PointNet++ to 93.3%, achieving an improvement
of 1.4%. However, when integrating the module to DGCNN, we get a performance of 92.8%, which
is slightly lower than the original results (92.9%). Note that both results are tested without voting.

D POINTMLP DEPTH

Here we format the detailed formulation of layer number in our PointMLP. For the sake of clarity, we
ignore Batch Normalization layers and activation functions. Let Prei and Posi indicate the repeating
number of the Φpre block (which includes 3 layers) and Φpos block (which includes 2 layers) in i-th
stage, respectively. Note that we have one layer in feature embedding in the beginning, one layer for
channel number matching in each stage, and three layers in the classifier. Hence, the total number
of learnable layers L would be

L = 1 +

4∑
i=1

(1 + 2× Prei + 2× Posi) + 3.

As a result, the depth configuration of our network (24, 40, and 56) can be summarized as:

Depth [Pre1,Pre2,Pre3,Pre4] [Pos1,Pos2,Pos3,Pos4]

24 [1, 1, 1, 1] [1, 1, 1, 1]
40 [2, 2, 2, 2] [2, 2, 2, 2]
56 [3, 3, 3, 3] [3, 3, 3, 3]

15

	Introduction
	Related Work
	Deep Residual MLP for Point Cloud
	Revisiting Point-based Methods
	Framework of PointMLP
	Geometric Affine Module
	Computational Complexity and Elite Version

	Experiments
	Shape classification on ModelNet40
	Shape Classification on ScanObjectNN
	Ablation studies
	Part segmentation

	Conclusion
	PointMLP Detail
	Detail Experimental Setting
	ModelNet40 and ScanObjectNN
	ShapeNetPart

	More Detailed Ablation Studies
	PointMLP Depth

