Zero-shot World Models via Search in Memory

Federico Malato Ville Hautamiéki
School of Computing School of Computing
University of Eastern Finland University of Eastern Finland
Joensuu, FI 80101 Joensuu, FI 80101
federico.malatoQuef.fi ville.hautamaki®@uef.fi
Abstract

World Models have vastly permeated the field of Reinforcement Learning. Their
ability to model the transition dynamics of an environment have greatly improved
sample efficiency in online RL. Among them, the most notorious example is
Dreamer, a model that learns to act in a diverse set of image-based environments.
In this paper, we leverage similarity search and stochastic representations to approx-
imate a world model without a training procedure. We establish a comparison with
PlaNet, a well-established world model of the Dreamer family. We evaluate the
models on the quality of latent reconstruction and on the perceived similarity of the
reconstructed image, on both next-step and long horizon dynamics prediction. The
results of our study demonstrate that a search-based world model is comparable to a
training based one in both cases. Notably, our model show stronger performance in
long-horizon prediction with respect to the baseline on a range of visually different
environments.

1 Introduction

World Models (WMs) [[7] have played a fundamental role in the most recent advances in reinforcement
learning (RL) [[19]: their ability to predict future states of a process, along with the possibility to
enhance planning [3]] have led to tremendous achievements in autonomous agents. WMs have
demonstrated their impressive capabilities in a range of tasks, from playing small scope [9] and open
ended [10] video games, to autonomous driving [4]], up to robotic control [20]. Recently, WMs have
shown also to be adaptable to diverse domain [[10], enlarging the pool of their potential application
even further. Moreover, recent discussions hint a possible connection between world models and
Large Language Models (LLMs) [3]].

However, learning the dynamics of an environment is not a trivial task: modeling temporal dynamics
implies learning an underlying causal structure of the environment [5} [16]], which in turn implies
strong generalization and adaptability skills. As such, WMs typically require massive amounts
of data to construct a solid internal model. Moreover, they are subject to hallucinations and error
accumulation in long-term prediction [3]], which limit the effectiveness of the prediction. To ease this
limitation, more complex architectures are required [} 3], which in turn require more data and more
computational resources.

In this paper, we introduce an alternative formulation of World Models derived from similarity search
and probabilistic modeling, which we refer to as zero-shot World Models due to their independency
from a standard training procedure. The contributions our study are three-fold: first, we explore
the theoretical feasibility of a memory-based world model; second, we explore the capabilities and
compare it to a well-known, learning-based model; third, we determine a range of tasks for which
such models are applicable, and clearly state situations where they are unfeasible. We remark that
our aim is to explore a valid alternative to current world models, focusing on the task of dynamics
prediction and reconstruction, rather than action selection.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

2 Related Work

Our study draws its main inspirations from PlaNet [8]] and its evolution Dreamer [9[10]]. Moreover,
we base our study on previous work on similarity search, namely [13} 15} [12}[1]. In this Section, we
briefly revise and introduce the main concepts of each work.

In [8]], authors propose PlaNet, a model-based RL agents that learns to plan from pixels. In their study,
authors model the state of an environment as composed by a deterministic and a stochastic part. To
successfully predict future states, they define a recurrent state-space model (SSM) composed of a vari-
ational autoencoder (VAE) [[L1]], an observation model P(0;|s;), a transition model P(s¢|st—1,as—1),
a reward model P(r;|s;) and a recurrent, deterministic state model h; = f(hi—1, $¢—1, a;—1). While
leaving the general structure of the model substantially unaltered, evolutions of PlaNet introduce,
respectively, a discrete underlying distribution of the latent space [9] and an improved loss for more
stable predictions [10].

In [1]], authors define locally weighted learning (LWL), a framework to train a model for continuous
control by using an ensemble of local models. In particular, the dataset is projected into a metric state
space and divided into neighborhoods, hence producing subsets of closely related data. Then, a local
model is trained on each specialized dataset. Finally, an agent selects actions by querying each local
model and performing a weighted average over their answers.

In [15]], authors apply LWL in the context of robotic manipulation. In particular, they demonstrate
that separating representation and behavior learning improves robustness in robots. In their study,
they pre-train an encoder on a dataset of images to extrapolate a suitable latent dataset for their task;
then, they apply LWL to predict actions from an ensemble of local agents.

Zero-shot Imitation Policy (ZIP) [13] illustrates how an agent can be successfully controlled without
learning even in open-ended tasks: using tasks from Minecraft [6] as their benchmark, they encode
temporally extended latents in latent space using Video PreTraining (VPT) [2] and track the divergence
of the current state from a retrieved reference state in latent space. For each timestep, they copy the
action of the retrieved sequence. When the two states become too distant, a new search is repeated,
and a new sequence of actions is followed.

In [[12]], authors combine ideas from LWL and ZIP to adapt a learning-based agent online, leveraging
only Bayesian statistics. In detail, authors pair a pre-trained imitation learning agent with a search-
based policy. At each timestep, the search-based policy retrieves a batch of latents similar to
the current state, from which they build a probability distribution for the current state following
the "suggestions" of an expert. Then, authors combine the imitation policy and the expert policy
suggestions by building a posterior distribution over actions from the two.

3 Zero-shot World Models

We derive our approach by combining previous studies on similarity search [[13} [15) [12} [1]] with
probabilistic modeling, specifically Variational Autoencoders (VAEs) [11]. We state our problem as
follows: given a dataset D of state-action pairs (x4, a;) € D, where x; is an RGB image representing
the state of a system at timestep ¢ € [0, T'], can we predict the transition dynamics P(x41|x¢, at) of
an environment without learning them?

Initially, we train a VAE to reconstruct images x; from our dataset (z;,a;) ~ D. Importantly,
VAEs operate in two consecutive steps: first, given an image x;, a stochastic, latent representation
21 ~ q4(Z¢|x¢) is obtained. Then, an approximation of the initial image & ~ py(X¢|2:) is recovered
by passing z through the decoder. After training, we encode each x; to obtain a latent dataset
Z = {(z1, ar)|ze ~ q4(Zs|xt), (x4, ar) ~ D}. Similar to previous work [L1]], we choose g4 (Z¢|z:)
to be a multivariate Normal distribution N (114 (z¢), X (2¢))

Following previous work in similarity search [13[15]], given a latent z; at timestep ¢, we can easily
produce a batch of K relevant samples {(Z1 ;, aj)}, 7 € [0, T]. Moreover, assuming that the
retrieved latents are sufficiently close to each other, we could estimate gy (Z¢|x;). From this, a natural
question arises: what if, instead of approximating g, (Z;|z,) directly, we moved one step forward
in time from each of our retrieved latents? Namely, what would happen if we tried to approximate
4o(Zitalwia) from {(Zg 711, apri1) ey ?

Intuitively, if we could do that, then we could sample a general representation of the expected
next state in time, zi+1 ~ q¢(Zi4+1]xe+1). We point out that since the pairs (z,a;) represent
states and actions of a system, we could view them as trajectories 7 = { (x4, as,¥411)} - By
exploiting this simple trick, we can reshape also the latent dataset Z to store transitions (z¢, at, z¢41)
instead. Now, whenever we search for latents that are similar to z;, we retrieve a batch of relevant
transitions {(Zx -, @k r, Zk,-+1) }1<_;. In summary, given a reference latent z,.¢ ; and a latent dataset
of transitions Z, we can obtain a new latent 2,1 by leveraging similarity search and the stochastic
representation of a VAE. That is, we can predict an approximation of the next state 2,11 ~ P(z¢11|2¢)
from the current one.

Notably, the last statement is very similar to the transition dynamics P(s;y1|s¢, a;) of a Markov
Decision Process (MDP) [19]. Hence, we advance our theory in this direction: can we approximate
the transition dynamics by repeating the same procedure, but imposing a certain action? Following
from our previous remarks, the answer to this question is yes: given a reference pair (2yef,¢, Grer,t)
we can either perform an unconstrained search on zer ¢ to obtain a batch {(Zx », ak -, Zx.r+1) } 2,
and subsequently remove latents for which ay - # ayef ¢, Or directly restrict the search to Z,

{(ZTaaTvaJrl) € ZlaT = aref,t}-

Until now, we have established that given a pair (2;,a;) from a set of trajectories Z, we can
approximately predict how the state will evolve one step in the future by approximating P(z;11|z¢, at)
in latent space through similarity search and probabilistic modeling. In summary, we have effectively
recovered the functionality of a next-state predictor without learning. Still, an effective World Model
would ideally extend its prediction to a longer horizon h = ¢ + At, At > 1, as demonstrated
by PlaNet, Dreamer, and similar models [3]]. Therefore, how can we extend our idea to include
long-horizon predictions?

Qref,t —

Intuitively, we could apply the same "retrieve & reconstruct” procedure iteratively. More formally,
given an initial pair (z:,a:) ~ Z and the next predicted state 2,1 ~ P(z¢41|2t, at), we could
search a new batch {(Zx -, ak, -, 2k¢+1)}£(:1 using 2;11 and estimate P(z;42|2¢41, ary1), effectively
evolving the state for a second step in the future. We provide some implementation details of this
procedure in the supplementary material of this paper.

However, one problem arises: how do we select a;4;? From our latest search, we have retrieved
a batch of actions {a 41, ..., ak+1} which, in general, will not be all equal. One solution to
this includes estimating a probability distribution over actions P(a;y1|2:+1) and sampling from
it, similarly to [12] for the discrete case and [15] for continuous actions. Although this is a valid
alternative, it implies moving the focus towards the problem of action selection, which is outside the
scope of this paper. We solve the problem by making an additional assumption that highlights the
effects of dynamics prediction. To avoid the fuzziness that comes from sampling future actions, we
assume complete access to future actions. As such, given an initial latent z;, we retrieve a sequence
of deterministic actions {ay,...,a;+p} up to an horizon h = ¢t + At. We remark that, while this
assumption would make our approach unfeasible for an action selection process, we are interested in
assessing the quality of dynamics prediction over time.

Intuitively, searching constitutes a major factor in the success of our approach. As such, without
completeness, we propose three different structures for searching. In the following Subsections, we
highlight the unique traits of each and discuss their strengths and weaknesses. A visualization of
these modalities for retrieval, along with a visual representation of the different search procedures is
provided in Figure[I]

3.1 Rollout buffer

In a MDP, a trajectory can be loosely defined a succession of transitions (x¢, a;, 7¢+1, Tr41). In-
tuitively, consecutive transitions are temporally dependent on each other. To reflect this fact, we
propose to use a structured storage method for the encoded dataset Z. However, differently from a
MDP, our transitions are incomplete, as we lack information of the reward. As such, in our study we
refer to a transition as a tuple (2, a¢, 2e+1, fto,:(Te), 00,t(x¢)), where p1g ¢ (x;) and og +(z;) are the
output vectors of the encoder of a VAE used to sample Z, ~ N;(po,1(2), Xg ¢ (x)).

To reflect the temporal dependency across consecutive transitions and the substantial independence
across trajectories, we draw inspiration from the concept of rollout typically used in on-policy

Replay buffer Rollout buffer

™)
~ ~ N () Latent

_/ T
(—~ —~ Retrieved
O 0 \O-O-0-@ ©

r\ - AN

~~_ Distance

e
i1
).
“
Y,
™y
/
—~

C) 4 Y /“\.mf"\'i

e _\'u\“_// “_\ - | o N N
S|) N e em .
_/

Trajectory

Figure 1: A simple schematic of the different data structures and sampling procedures used in our
work. A replay buffer stores latents without a specific order; retrieving from it consists of computing
a suitable distance of all stored data points (grey) w.r.t. the query (yellow), and retrieve the k-closest
ones (blue). In a rollout buffer, latents are stored according to their temporal order; in this case, the
search procedure only selects the 1-most similar latent from each trajectory.

RL [19,117,118]]. In practice, we define a rollout buffer, specifically designed to keep each trajectory
temporally ordered and independent from the others.

Given N trajectories, a rollout buffer stores them in a way that generates N independent threads;
each thread has a specific order and, given a starting point in time, it can be explored only in
one direction. However, multiple threads can be explored independently. In a rollout buffer,
retrieval is operated as follows: given a reference latent z.ef;, we retrieve the 1-most simi-
lar latent from each trajectory 7 using L2 distance and combine them in a batch of transi-
tions { (24,1, as,1, 2e41,1, 1 (%1), 06,1(2t)), - -+ 5 (Bt yns Gt ons Ze41,m5 e (2t), 0t n(24)) }. Then, we
extract the next state and estimate the next latent distribution as previously discussed. Similarly, condi-
tioning the prediction of the action is immediate by restricting each search to T,, = {(z, a, 2, 1, 0) €
Tla = a;}. In the remainder of this paper, we will refer to this method as Rollout.

3.2 Replay buffer

While a rollout buffer heuristically gives structure to the search space, we propose an simpler
alternative inspired by off-policy RL [19} [14]. In detail, we convert each pair (z;,a;) € Z in a
transition (z¢, ar, ze+1, ftgt (), 0.+ (x)) and store them in a replay buffer, which impose no constraint
on ordering or temporal dependence. We propose two alternative formulations of this method, which
differ in the metric used for searching. From this, other differences follow, which we detail in the
next paragraphs.

L2 distance When searching, we retrieve the k-most similar transitions by computing the L2
distance between the reference latent z.r,; and each encoded z;. If conditioning, we restrict the
search to Z,,. This way we extract a batch of k transitions, from which we estimate Z;;1. We name
this method Replay-L2.

KL divergence Taking advantage of the vectors p4(z) and o4 (x), we propose to retrieve the
most similar distribution directly, rather than estimating it from a batch of latents. To do so, given
a transition (z¢, ar, 2441, et (), 04,1(z)), we build a reference distribution Nyef (g1 (), 04 1())
and compute the KL divergence with all the stored distributions, extracting the index of the closest
one. Then, we retrieve the subsequent transition and estimate ;.1 from it. Similarly to the other
methods, action conditioning simply restricts the search space by masking irrelevant transitions
according to their action. Perhaps unsurprisingly, we refer to this method as Replay-KL.

3.3 Comparing the methods

Intuitively, using a replay buffer gives more freedom for retrieval. However, conditioning on the action
might severely impact the process, as the average distance across retrieved samples will generally
increase. Hence, we expect some high variance in the retrieved batches, indicating uncertainty in

estimation. Nonetheless, each batch will produce a valid point for sampling, regardless of its semantic
meaningfulness.

Searching using KL divergence solves some of the previous problems: first, since the encoded p and
o are obtained from actual trajectories, they correspond to meaningful regions of the latent space.
Moreover, given that in this case we perform no batch estimation, we are guaranteed to sample a
meaningful z. However, action conditioning might still pose a threat: whenever we diverge too much
from the reference, we might get consistent, but unrelated samples.

Finally, using a rollout buffer constitutes a middle point between the other two alternatives: by
imposing independency between trajectories and by sampling from each of them, we intuitively reduce
the variance in the latents batch. However, if there are no similar transitions, or if a transition with
the imposed action is temporally too distant from the reference, we might still observe hallucinations.

4 Experiments

We test our approach against PlaNet [8]]. We justify the choice of using a legacy method from the
Dreamer family as comparison by highlighting the good properties of this model. First, PlaNet uses a
standard VAE modeled as a Normal distribution; conversely, other models of the family, starting from
DreamerV?2 [9], model the latent space after a discrete distribution, which may be harder to study. We
remark that in our study we assume a stochastic representation, but impose no condition on a specific
one. As such, using a Normal representation comes with no loss of generality. Second, PlaNet
includes less modules than its evolutions. As such, observing the isolated effect of the dynamics
predictor is easier.

In each experiment we compare four models, namely the baseline PlaNet along with the three
versions of our approach as detailed in Section [3] We test the models on a range of visually different,
image-based environments extracted from well-known benchmarks in RL. Specifically, we use five
tracks from SuperTuxKart, a racing game with complex visuals, to test the performance of WMs on
consistent visuals with very diverse features; two tasks from Minecraft [6], to benchmark tasks with a
seemingly limitless, diverse observation space; and two tasks from Atari [14], to study how WMs
predict the dynamics of small details. All our models are trained on consumer hardware, consisting
of a single RTX 4080 GPU.

For each experiment, we compare the models both in latent and image spaces, using KL divergence
for the first, and L1 distance and structural similarity (SSIM) for the decoded images. In particular,
we use the KL divergence to assess how well the dynamics of the tasks have been reconstructed;
conversely, we use MSE and SSIM to determine the visual relevance of the reconstructed dynamics.
We highlight that, despite our best efforts, a VAE-reconstructed image will inevitably lose quality
with respect to the original. Similarly, the KL divergence assesses the overall distance between a
pair of distributions, but does not consider positional differences. As such, we invite the reader to
consider the measures as correlated, and to consider the absolute values of one in light of the others.

We test our approach on both single-step and long-term predictions, using a horizon of ¢ = 20 as
reference for the latter. For single-step experiments, we refresh the hidden state of each model at
every timestep, using the actual observation. For long-term comparisons, we let the model evolve
independently until the horizon is reached, using the generated latents as intermediate representations.
In both cases, we extract 20 random starting samples from a separate batch of unseen trajectories and
average each measure over them.

Furthermore, since our approach uses a number of encoded trajectories for retrieval and prediction,
we conduct an ablations study on two track of SuperTuxKart. We test the performance of our model
for 5, 6, 7, 8,9, 10, 15, 20 & 30 encoded trajectories. To establish a fair comparison, we train a SSM
for each subset of data, using the same trajectories in both cases. Similarly to other experiments,
we extract 20 random samples from a disjoint set of test trajectories and report the average for each
measure.

Finally, we recall how our approach enables us to estimate P(s;ya¢|s:) with ¢t € N; At > 0 as well,
that is, how the state is expected to evolve from the current one with on restriction on the chosen
action. Since we deem this difference interesting, we compare our models when acting with and
without action conditioning.

Figure 2: Long-horizon reconstruction of 20 consecutive frames in SuperTuxKart. The first row
shows the real sampled sequence of frames. Each row from second to last corresponds to a model,
respectively, a SSM baseline, a search-based world model with each trajectory encoded as a separate
rollout, an L2-search-based world model with no constraint on trajectories, and a KL-search-based
world model without temporal constraints. To predict the next frame, each model can only use the
predicted context from the previous timestep.

Figure 3: Numerical comparison of the models on the SuperTuxKart reconstruction benchmark for
(A) one-step and (B) long-horizon predictions. Values are computed by averaging over five tracks,
selecting 20 random images from a disjoint set of test trajectories. For each value, we report mean
and variance at each timestep, up to the horizon fixed at ¢ = 20.

5 Results & Discussion

In this Section, we present the results of our study. The Section is organized in three subsections,
each dedicated to a specific experiment as described in Section[d] Due to page limit constraints, we
report only a small subset of the available results and present only a handful examples. However, we
report more details and examples in Appendices.

5.1 Prediction & reconstruction quality

Figure 2] shows an example of long-horizon dynamics prediction using each model. In the one-step
case, we see how re-initializing the hidden state of the model benefits their performance. We highlight
how PlaNet hallucinates after 10 timesteps, while Rollout and Replay-KL maintain consistency in
their prediction. In particular, Replay-KL shows an unmatched resemblance to the real sequence. In
both cases, Replay-L2 is affected by noticeable hallucinations, thus making it completely unreliable.
In the supplementary material, we include more examples from different tracks, and examples of
one-step predictions.

Figure 4: Cumulative benchmark for (A) one-step and (B) long-horizon predictions in Minecraft.
The values are averaged over two tasks, "Treechop-v0" and "Navigate-v0". For each task, we select
20 random transitions from the test dataset and report the evolution of KL divergence, L1 distance
and structural similarity over time.

Figure 5: Error measures over two tasks of the Atari benchmark, separated in (A) one-step and (B)
long-horizon. In our experiments, we use "Seaquest” and "Space Invaders" to explore the limitations
of our models in reconstructing small details. For each task, we average over 20 random transitions
of the test set and reconstruct for ¢ = 20 timesteps.

The numerical comparison reported in Figure [3|confirms our qualitative assessment: for one-step
predictions (Figure [3|A) the baseline, Rollout and Replay-KL are visually indistinguishable, while in
long-horizon regime Rollout and especially Replay-KL achieve remarkable performance over the
baseline. It is notable how all our models are generally closer in distribution to the real representation
than the baseline. We explain this mismatch by remarking that a VAE-reconstructed image will
necessarily carry some error. As such, comparison between latent reconstructions and decoded
images are not trivial.

Notably, Replay-L2 features a small KL error, but significantly higher L1 and lower SSIM values.
We explain this fact as follows: searching in a replay buffer while conditioning on an action may
lead to high variance in the retrieved batch. Hence, estimating the posterior from it could lead to an
unstable region of the latent space. Therefore, sampling in that point may produce visually incoherent
reconstructions. On the other hand, giving structure to the latent space through the separation
in rollouts appear to regularize the reconstruction of &1 ~ p(X¢y1|2t4+1). As for Replay-KL,
searching directly for the most similar prior greatly reduces this instability. Hence, in both cases we
have more coherent predictions.

Figure 6: Long-horizon reconstruction from Minecraft "Treechop"” task. First row reports the real
sequence; rows from second to last show the reconstruction of, respectively, baseline, Rollout, Replay-
L2, and Replay-KL.

We report the reconstruction results for Minecraft and Atari respectively in Figures ff] & [5} We
leverage these two environments to benchmark specific aspects of the compared models, namely
the ability to reconstruct in a seemingly infinite observation space, and the ability to focus on small
details. In both cases, we confirm the patterns discussed for SuperTuxKart: Rollout and Replay-KL
are generally better than the SSM baseline, while Replay-L2 is worse than any other model in terms
of actual reconstruction, while remaining overall competitive in latent space.

By comparing values in Figures [3] & [5] we conclude that, as expected, Minecraft represents a
challenging environment for reconstruction: despite the similar patterns, we see how values are
overall higher across all measures. In particular, Rollout and Replay-L2 behave similarly both in
terms of dynamics prediction and reconstruction. However, the example shown in Figure [6] shows
how both models produce a completely unreliable reconstruction.

Despite obtaining similar values in L1 and SSIM, the baseline and Replay-KL produce very dissimilar
results: on one hand, the SSM baseline produces blurry, incoherent images; on the other hand,
Replay-KL generates visually appealing sequences that recall the main elements of a scene, but
gradually diverges. By isually analyzing the samples, we notice a "hit-or-miss" pattern in both models,
with Replay-KL being generally sharper but more variable, and the baseline being much blurrier
but more accurate in overall structure. In the supplementary material of this study we report some
examples of this fact and offer a more detailed analysis to support this claim.

5.2 Ablation study: number of trajectories

We report the results of our ablation study on SuperTuxKart in Figure[/| and provide an additional
ablation on Minecraft in supplementary material. As expected, the SSM baseline benefits from
the greater availability of training data; on the other hand, increasing the dataset only marginally
improves our models, and only in some cases.

In detail, KL divergence (Figure [7) in the SSM baseline drops steadily from 339.48 to 169.46,
amounting to a total decrease of 50.08%, in the one-step case. In long-horizon predictions, the
decrease is less consistent (—26.56%). Similarly, Rollout benefits from more data and reduces the
average KL divergence from 311.89 to a mere 86.27 (—72.34%). In contrast, Replay-L2 and Replay-
KL are substantially unaffected by the increase in available data. We explain this fact by noting that
the result of an unconstrained search changes only if there is no meaningful data. As for Rollout, we
point out that introducing a temporal constraint on the encoded trajectories severely impacts search,
and adding more data seems relax this constraint. However, if we consider the absolute values for
each model, we see how the best baseline model (30 trajectories) still reports higher average KL than
Rollout and Replay-KL with only five encoded trajectories.

L1 distance and SSIM substantially confirm our previous discussion: decodings from the SSM
baseline improve with more data, while Replay-KL and Rollout remain substantially unaffected, and
perform either comparably or better than the baseline in all cases. In the Appendices we show some
image reconstructions directly related to these results.

Figure 7: Results of the ablation study on two tracks from SuperTuxKart. Each model uses an
increasing number of trajectories for either training (SSM) or retrieval (Rollout, Replay-L2, Replay-
KL). Top row shows results of one-step predictions, bottom row corresponds to long-horizon dynamics
reconstruction. Heatmaps analyze (from left to right) KL divergence, L1 distance, and structural
similarity.

Table 1: Performance for planning in SuperTuxKart. Results are reported using mean reward &
standard deviation, and a 95% confidence interval (parentheses).

Model fortmagma lighthouse snes_rainbowroad snowmountain volcano_island
PlaNet 0.0880 +0.1125 3.0780 &+ 1.5162 3.1600 £ 2.9678 5.3220 + 3.7877 0.9280 + 0.6440
¢ (0.0557,0.1203) (2.6427,3.5133) (2.3080, 4.0120) (4.2346, 6.4094) (0.7432, 1.1128)
Rollout 5.8100 + 3.4761 2.6400 =+ 2.5952 4.8220 £+ 1.1188 5.5560 + 6.5701 1.5300 + 0.5849
otlou (4.8121,6.8079) (1.8950,3.3850) (4.5008, 5.1432) (3.6698,7.4422) (1.3621, 1.6979)
Replay-1.2 4.3500 £ 1.4506 5.1140 + 9.5549 6.3360 + 5.2006 4.9560 + 6.5035 3.3480 + 6.1291
eplay- (3.9336,4.7664) (2.3709, 7.8571) (4.8430, 7.8290) (3.0890, 6.8230) (1.5885, 5.1075)
47740 £ 3.8107 0.3200 £ 0.7558 4.7140 £ 0.6515 15.6640 + 11.8248 4.4780 + 7.9652

Replay-KL

(3.6800, 5.8680) (0.1030, 0.5370) (4.5270, 4.9010) (12.2693, 19.0587)

5.3 Action selection

WDMs are typically embedded in more complex architectures to inform the state with future infor-
mation. For instance, our baseline model PlaNet [8]] is designed for planning, that is, selecting a
sequence of actions by evolving the environment dynamics from the current observation. Although
not the primary scope of this paper, we deemed it interesting to explore the planning capabilities of
our methods.

We test each model on the realized returns over 50 evaluation episodes using the SuperTuxKart
benchmark, as we believe that it represents the typical use case for our approach. Each model is
allowed to observe the first state of an episode. From this single observation, agents are asked to
evolve the dynamics according to their WM and plan the next 20 actions. Then, the planned actions
are executed with no room for corrections; finally, the model is allowed to observe a new state and
plan the next sequence of actions. The process repeats until the end of the episode.

Actions are selected deterministically using the mode of a retrieved action distribution. We report the
results in Table[I] highlighting the best model for each environment. For each track, we report mean,
standard deviation, and 95% confidence interval.

The results clearly show that our approaches perform generally better than the PlaNet baseline, thus
suggesting that search-based approaches can plan. In particular, replay buffer-based methods yield
significant improvements in 4 out of 5 environments. However, from our experiments, no specific
method clearly dominates on the others.

(2.1913, 6.7647)

EEE Rollout
Rollout - no act.

400 BN Replay-L2
T Replay L2 - no act.
300 T T T _ mmm Replay-KL

Replay-KL - no act.

KL Divergence
N
o
o

=
o
o

1 e e

(=]

1000
800

i @JJJJJJJJJJJJJJJJJJM

10 11 12 13 14 15 16 17 18 19
Timestep

o O o

KL Divergence

Figure 8: Evolution of KL divergence w.r.t. action conditioning for (Top) one-step and (Bottom)
long-horizon predictions. A reference model is reported using solid color; corresponding models
without action conditioning are characterized by a pastel tone of the same color.

5.4 Action conditioning

Figure 8] shows the results of our study on the effects of action conditioning. We remark that the
scope of this experiment is to assess the differences between predicting P(z¢41|2¢, a:) and P(z¢41]2¢).
Since an SSM can not compute the latter, we only compare Rollout, Replay-L.2, and Replay-KL.

The results confirm the generally poor performance of Replay-L2: both in one-step (Figure[SJA, top)
and long-term (Figure 8] bottom) predictions, KL divergence significantly decreases. This indicates a
reduction in variance over the batch of retrieved samples, consistently with our speculation. However,
by analyzing the decoded sequences related to this study (reported in Appendix [B)), results are still
too noisy to be considered reliable.

Rollout marginally benefits from the absence of actions in one-step predictions, while apparently
remains unaffected in the long-horizon regime. Analyzing the decoded sequences (in Appendix [B)
reveals no substantial difference. We explain this fact in conjunction with the result obtained
in Section intuitively, predicting P(z;1|2¢) rather than P(2;1|2¢, a;) enlarges the pool of
retrievable images.

In Replay-KL, one-step predictions are unaffected by action conditioning. Contrarily, long-term
reconstructions show a significant increase in KL divergence for conditioned retrieval. We explain
this effect by highlighting that Replay-KL recovers only one example for each search and, in the
long-term scenario, only retrieves the first latent. Forcing the model to take a specific action may
rarely result in planning on a very dissimilar sequence of latents.

However, by considering the one-step case, where the same retrieval produces virtually no effect, this
search failure appears to be a very rare occurrence. Moreover, we believe that the best use for our
method lies in the "no action conditioning" regime. Additionally, we do not deem this error to be a
serious limitation: intuitively, enlarging the data pool in memory is likely to mitigate this effect.

6 Conclusions

We have presented an alternative way to predict the transition dynamics on a number of image-based
environments. Our proposal explores similarity search on stochastic representations as a way to build
WDMs without training. Our results confirm that our proposed WM can act as a valid alternative in a
range of scenarios.

Our methods outperform the baseline while also being more immediate in implementation and
application. Despite showing acceptable performance in open-ended tasks such as Minecraft and
being comparable to the PlaNet baseline, our results suggest that the performance of zero-shot WMs
depends on latent space coverage of the encoded trajectories, limiting their effectiveness in tasks
with vast state spaces. However, they represent a valid, lightweight alternative to regular WMs in
small-scoped tasks, such as SuperTuxKart and Atari.

10

Acknowledgments. The authors wish to acknowledge CSC — IT Center for Science, Finland, for
computational resources. Additionally, Ville Hautamiki thanks the Jane and Aatos Erkko Foundation
for partial funding.

References

(1]

(2]

(3]

(4]

(3]

(6]

(71
(8]

(9]

(10]

(11]
[12]

(13]

(14]

(15]

(16]
(17]

(18]

[19]

[20]

Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally weighted learning, page 11-73.
Kluwer Academic Publishers, USA, 1997.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon Houghton,
Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching unlabeled online
videos, 2022.

Jingtao Ding, Yunke Zhang, Yu Shang, Yuheng Zhang, Zefang Zong, Jie Feng, Yuan Yuan, Hongyuan
Su, Nian Li, Nicholas Sukiennik, Fengli Xu, and Yong Li. Understanding world or predicting future? a
comprehensive survey of world models, 2024.

Yanchen Guan, Haicheng Liao, Zhenning Li, Jia Hu, Runze Yuan, Yunjian Li, Guohui Zhang, and
Chengzhong Xu. World models for autonomous driving: An initial survey, 2024.

Tarun Gupta, Wenbo Gong, Chao Ma, Nick Pawlowski, Agrin Hilmkil, Meyer Scetbon, Marc Rigter, Ade
Famoti, Ashley Juan Llorens, Jianfeng Gao, Stefan Bauer, Danica Kragic, Bernhard Scholkopf, and Cheng
Zhang. The essential role of causality in foundation world models for embodied ai, 2024.

William H. Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela Veloso, and
Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations, 2019.

David Ha and Jiirgen Schmidhuber. World models, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels, 2019.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models, 2022.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains through
world models, 2024.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

Federico Malato and Ville Hautaméki. Online adaptation for enhancing imitation learning policies. In
2024 IEEE Conference on Games (CoG), pages 1-8, 2024.

Federico Malato, Florian Leopold, Andrew Melnik, and Ville Hautaméki. Zero-shot imitation policy via
search in demonstration dataset. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 7590-7594, 2024.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

Jyothish Pari, Nur Muhammad Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto. The surprising
effectiveness of representation learning for visual imitation, 2021.

Jonathan Richens and Tom Everitt. Robust agents learn causal world models, 2024.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region policy
optimization, 2017.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second
edition, 2018.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and Pieter Abbeel. Daydreamer: World
models for physical robot learning, 2022.

11

NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Methods are described in Sections[2]and 3] experiments and results cited in the
abstract are discussed in Section

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations of our method are discussed in Sections[5|and[6] and in Appendices
using both text and figures.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Method builds on top of VAEs theory. Innovative theory is explained step-by-
step either in Section [3]or Appendices.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Every method used in the paper is extensively described. All the necessary
information is disclosed in Sections ?? and[3

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is provided to reproduce all trainings and experiments. Due to size, we
include links to the data used for training.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental procedure is described in Section[d} code includes scripts with
hyperparameters set as used during the study.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Each experiment has been repeated and reports error margins. Exception is
made for heatmaps where we report only the mean due to readability of the results.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

12

10.

11.

12.

13.

14.

15.

Answer: [Yes]

Justification: Resources used are cited in Section 4]

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our work adheres to the NeurIPS Code of Ethics with no deviation from it.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: To the best of our knowledge, our study represents a primer. While we consider
its impact to be highly relevant for its field, such relevance does not extend to a broader
context.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: To the best of our knowledge, the limited scope of our models and data do not
pose such risks.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Ground work for the present study is discussed and properly cited multiple
times in text, e.g. Sections |2} ??, and Sourced for external datasets are cited in Section

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release any new asset, aside from a set of collected human
demonstrations for the enviroment "SuperTuxKart".

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The study does not include research with human subjects, nor crowdsourcing
experiments.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The present study does not include studies where participants are needed.

13

https://neurips.cc/public/EthicsGuidelines

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Our study is disjoint from LLMs.

14

A Prediction & reconstruction - benchmark results

In this Appendix we report the evaluations for each environment we tested. We report the results
following the same template as Figure 3] f]and[5] Additionally, we discuss each result individually,
to better highlight environment-related strengths and weaknesses of each approach.

Figure 9: Numerical evaluation in SuperTuxKart "fortmagma" track. Results are reported in terms of
KL divergence for latent dynamics prediction, and L1 distance & SSIM index for (A) one-step and
(B) long-horizon predictions.

Results for the "fortmagma" (Figure [0 reflect the general behavior we have discussed in Section 3}
all our models achieve significantly lower error in KL divergence, meaning that they are closer to the
true dynamics in latent space. As for the reconstruction, which we remark could be affected also by
an error in decoding the latent, Rollout and Replay-KL show comparable reconstructions with the
baseline, while Replay-L2 is generally affected by hallucinations or inconsistencies.

Figure 10: Numerical evaluation in SuperTuxKart "snes_rainbowroad" track. Results are reported
in terms of KL divergence for latent dynamics prediction, and L1 distance & SSIM index for (A)
one-step and (B) long-horizon predictions.

The results of our benchmark on "snes_rainbowroad", reported in Figure[I0} show the importance
of interpreting the quantitative and qualitative results jointly. The general behavior of the models
is quite different from Figure[9} our models Rollout and Replay-KL perform either similarly (KL
divergence) or slightly worse (L1, SSIM) than the baseline for one-step predictions, while match or
improve in long-term dynamics prediction.

We attribute this difference to the visual complexity of the images from this specific environment, as
shown in Appendix [B} the sequence of colors in the track, along with the "falls" that the player might

15

experience heavily contribute to the divergence from the real sequence. However, we point out how
our models are generally more consistent in reconstructing visually coherent sequences, even though
they might be slightly more distant in terms of visual accuracy.

Figure 11: Numerical evaluation in SuperTuxKart "volcano_island" track. Results are reported
in terms of KL divergence for latent dynamics prediction, and L1 distance & SSIM index for (A)
one-step and (B) long-horizon predictions.

The results from track "volcano_island" (Figure[IT)) support the general results we have shown in the
main text. Our agents Rollout ad Replay-KL are generally closer to the real sequence in terms of
latent dynamics prediction, while either match or slightly improve the visual reconstructions. Notably,
the gap in difference is more pronounced in long-horizon predictions, where Rollout and Replay-KL
diverge from the real sequence much more slowly than the baseline.

Figure 12: Numerical evaluation in SuperTuxKart "snowmountain" track. Results are reported in
terms of KL divergence for latent dynamics prediction, and L1 distance & SSIM index for (A)
one-step and (B) long-horizon predictions.

In the "snowmountain" track, the overall trend is also confirmed: all our models improve latent
reconstructions, while either match or improve the baseline in decoded reconstructions. The only
exception is represented by Replay-L2 that, despite achieving a better latent prediction, systematically
fails to decode it. As reported in main text, we track this effect to the latent space learned by the
VAE: while estimating the generative distributions from a batch of similar samples correctly points
the model in the right direction, sampling from that distribution for the purpose of decoding usually
results in visually unpleasant images.

As can be seen from the examples in [B] "lighthouse" features a visually dark theme. As such,
differences in this track are generally smaller and harder to assess from quantitative measures.

16

Figure 13: Numerical evaluation in SuperTuxKart "lighthouse" track. Results are reported in terms of
KL divergence for latent dynamics prediction, and L1 distance & SSIM index for (A) one-step and
(B) long-horizon predictions.

However, we see from Figure [[3|how the general trend is confirmed, with Replay-KL and Rollout
either matching or improving over the baseline, while Replay-L2 behaving better than the baseline in
latent reconstructions (KL divergence), while failing to properly decode its predictions.

Figure 14: Numerical comparison for Minecraft "Treechop-v0" task. Results are divided in (A)
one-step and (B) long-horizon predictions.

The results from "Treechop-v0" (Figure from the Minecraft benchmark further confirm our
findings. Intuitively, the state space of the task is limitless, with a few "bottlenecks" occurring in the
proximity of a tree. Nonetheless, our agents are generally better at reconstructing latent dynamics,
and on average match the baseline on visual reconstructions. We found this result surprising, as
our agents only store a limited number of trajectories, while an SSM should theoretically be able to
generalize better.

Similarly, in "Navigate-v0" a human expert is asked to explore the open world of the game, with no
particular aim. Hence, it is nearly impossible to fully represent the full space without having access
to an infinite number of trajectories. The results in Figure[I3]reflect this intrinsic complexity: this
is the only instance in our experiments where the latent reconstruction favors the baseline over our
strongest model, Replay-KL. However, we notice how, despite similar or higher KL divergence, our
models’ decoded latents are generally closer to the real sequence.

Our experiments on "Space Invaders", reported in Figure [I6]reflect the average trend shown in the
main text. Notably, in this case the KL divergence computed on our models is very low, meaning
that the predicted dynamics is generally very close to the original sequence. Also, due to the images

17

Figure 15: Numerical comparison for Minecraft "Navigate-v0" task. Results are divided in (A)
one-step and (B) long-horizon predictions.

Figure 16: Numerical evaluation of "Space Invaders" from the Atari benchmark. Results report (A)
one-step and (B) long-horizon predictions.

differing only on small details, the error on L1 distance is an order of magnitude lower w.r.t. the other
benchmarks, and SSIM is close to perfect.

Figure 17: Numerical evaluation of "Seaquest" from the Atari benchmark. Results report (A) one-step
and (B) long-horizon predictions.

18

—— SSM

—— Rollout
Replay-L2

—— Replay-KL

O SuperTuxKart

A Minecraft

2500 -

2000 -

=
1%
o
S

KL divergence

1000

500 1

T T T T T
0.4 0.5 0.6 0.7 0.8
State space coverage ratio

Figure 18: A comparison between latent space coverage ratio, that is, the fraction of latent space
"sectors" covered by the encoded trajectories, and the KL prediction error of each world model.

Table 2: Pearson correlation index of the tested models representing the correlation between encoded
trajectories and KL prediction error.

Model Pearson Correlation
PlaNet -0.8269
Rollout -0.6709
Replay-L2 -0.6711
Replay-KL -0.6366

Similarly, Figure[T7] further confirms the validity of our approach, with Replay-KL performing either
on par or better than the baseline. Moreover, like in "Space Invaders", the gap in KL divergence
is abyssal, while L1 distance and SSIM are similar, but always favoring Replay-KL, especially in
long-horizon reconstructions.

A.1 Coverage statistics

In Section 6] we concluded that our methods are most expressive in smaller-scoped tasks, in which
the set of encoded trajectories are sufficient representations of the task dynamics. However, due
to page limitations, no empirical result was provided. In this Section, we test the generalization
capabilities of our proposed approaches w.r.t. to the PlaNet baseline. To do so, we compare the
latent state coverage ratio of the encoded trajectories with the KL prediction error of each model.
Additionally, we compute the Pearson’s correlation index for each tested environment and model.
The results are shown in Figure [I8]and Table 2]

The experiment shows that, as denoted in Section[f] higher coverage of the latent space corresponds to
a lower prediction error. This supports our claim that our models are better suited for smaller scoped
tasks, such as SuperTuxKart and Atari, where a significant fraction of the environment dynamics is
implicitly reproduced in the encoded trajectories. However, interestingly the strongest correlation is
observed in the PlaNet baseline, indicating that both learning and search-based world models benefit
similarly from more data.

B Prediction & reconstruction - qualitative evaluation

This Appendix reports a number of visual reconstructions of predicted dynamics. For each environ-
ment, we report two one-step and two long-horizon predictions, namely a positive example and a
failure case for our models. Given the number of models we test, finding a totally positive/negative

19

example that include all models is hard. As such, in order to maintain the length of our Appendix
reasonable, we report the best overall positive/negative examples. Each subsection refers to an

environment.

Figure 19: Examples from SuperTuxKart "fortmagma" track. (A) Long-horizon success; (B) long-
horizon failure; (C) One-step success; (D) One-step failure.

In "fortmagma" (Figure[I9) we could not find a failure case for Replay-KL. However, Rollout and
especiallt Replay-L2 are subject to hallucinations both in one-step and long-term reconstruction.

As stated in the main text, "snes_rainbowroad" represents a particularly hard case for this benchmark
due to the visual complexity of the track and to the "falls" that a player may experience. As such, in
Figure 20| we see how all models can incur into hallucinations.

The track "volcano_island" features a lot of visual variety, as it includes track sections on asphalt,
rock, sand, and even water. Such visual diversity generally makes prediction harder. As expected,

20

Figure 20: Examples from SuperTuxKart "snes_rainbowroad" track. (A) Long-horizon success; (B)
long-horizon failure; (C) One-step success; (D) One-step failure.

in Figure @] we see how, to some extent, all models incur into hallucinations. An exception is
represented by Replay-KL, which exhibits strong performance throughout the whole track.

As visible in Figure 22] in "snowmountain” all models except Replay-L2 are mostly capable of
predicting both long-term and one-step situations. However, we see in Figure 22JA that the baseline
SSM model might diverge from the reference sequence.

As previously stated, "lighthouse" is a peculiar case of this benchmark due to its intrinsic darkness.
As such, spotting hallucinations is a hard task. However, the tracks also features lightnings occurring
at random times, which we use to determine failure cases. In particular, Figure[23B shows Replay-KL
predicting a lightning when not existing. Also, in section D of the same Figure we see how all models
fail to reconstruct a coherent background.

21

Figure 21: Examples from SuperTuxKart "volcano_island" track. (A) Long-horizon success; (B)
long-horizon failure; (C) One-step success; (D) One-step failure.

Tasks from the MineRL benchmark feature an almost limitless state space. As such, expecting a
perfect prediction from quite simple models such as ours is quite irrealistic. However, in Figure[24]it
is surprising to see Replay-KL achieving quite good reconstructions in A and C. Notably, in this task
our baseline model (SSM) produces mostly blurry reconstructions.

An even more extreme case of limitless state space is represented by "Navigate-v0", for which we
report some examples in Figure Interestingly, quite some trajectories are centered on navigating
the sea, hence easily leading all models to hallucinations if water is shown in the picture. For this
task, finding a "good prediction" was particularly hard.

22

Figure 22: Examples from SuperTuxKart "snowmountain” track. (A) Long-horizon success; (B)
long-horizon failure; (C) One-step success; (D) One-step failure.

The most notable difference between the models in "Space Invaders" (Figure [26]is the consistency
with which they predict the alien ships. In general, Replay-KL was the most consistent one, even
though it was not perfect.

Similarly, as shown in Figure[27]in "Seaquest” the most notable example of hallucination is repre-
sented by the enemy boats that, in some models, flicker throughout the sequence. Like in "fortmagma",
Replay-KL was mostly correct and coherent in its predictions, while both SSM, Rollout and Replay-
L2 struggle to maintain consistency in their predictions.

23

Figure 23: Examples from SuperTuxKart "lighthouse" track. (A) Long-horizon success; (B) long-
horizon failure; (C) One-step success; (D) One-step failure.

C Ablation study - additional results

In this Appendix we report some visual reconstructions coming from the ablation study presented in
Section[5.2] Moreover, we report the results of an additional ablation study performed on Minecraft
"Treechop-v0", using [10, 80] trajectories and a step of 10. This additional ablation study is also used
to compute the wallclock time needed for each method to predict the latent dynamics. To fit all the
models in one run, the test is run on CPU, using an Intel i7 12650HX.

24

Figure 24: Examples from MineRL "Treechop-v0" task. (A) Long-horizon success; (B) long-horizon
failure; (C) One-step success; (D) One-step failure.

C.1 Wallclock time

Figure 28| shows the average time required to recover a transition for each method in the one-step
(top) and long-horizon (bottom) cases. As expected, the time required to perform the search scales
linearly in the number of stored transitions. During the test, we occupied a maximum of 12GB of
RAM, including VAE, SSMs, a rollout and a replay buffer.

Clearly, computing the KL divergence requires significantly more time than computing L2 distance.
However, we highlight that for long-term predictions we only require to compute the distances
once every IV steps, where N is the horizon. Additionally, we inform that in our implementation
we used the torch.distributions package to ensure correctness, regardless of efficiency. The

25

Figure 25: Examples from MineRL "Navigate-v0" task. (A) Long-horizon success; (B) long-horizon
failure; (C) One-step success; (D) One-step failure.

package requires two Distribution objects to compute the KL distance between them exactly,
hence making the computation quite expensive. However, if the type of distribution is set, efficiency
can be improved by computing a closed-form solution and leveraging PyTorch parallel computation.
Additionally, we remark that the test has been done in CPU, since all models could not fit in the
VRAM of our GPU. However, when using only a single method, the computation can be parallelized
in GPU to vastly improve speed.

Finally, we point out how encoding almost half a million transitions represents quite an extreme case
needed only in open-ended tasks: in SuperTuxKart, for example, each dataset is composed of roughly
10k transitions; similarly, in Atari we store around 20k transitions per task. Therefore, we expect the
time gap between methods to be quite limited in practice.

26

Figure 26: Examples from Atari "Space Invaders" games. (A) Long-horizon success; (B) long-
horizon failure; (C) One-step success; (D) One-step failure.

To account for this expected practical scenario, we computed the inference time (dynamics evolution
& action selection) for each model, by using a typical number of encoded trajectories for tasks in
SuperTuxKart. As the inference time only depends on the number of encoded transitions, the results
hold for any task using a comparable number of encodings of similar size. We show the results in
Table 3

In the "best-case scenario"” of a small scoped task with a reasonable amount of encoded trajectories,
PlaNet inference time is significantly higher than our methods. However, one might argue that in this
case, performance could justify the gap if, for example, our approaches were to be comparable to a
random policy. We address this point in Appendix ?? using data from the same experiment used to
collect the numbers in Table[3l

27

Figure 27: Examples from Atari "Seaquest" game. (A) Long-horizon success; (B) long-horizon
failure; (C) One-step success; (D) One-step failure.

C.2 Visual results

In Figure 29| we report an example of reconstruction for 10, 20, 40 and 80 encoded trajectories. The
image suggests that encoding more images slightly improves visual resemblance in our method,
mostly thanks to the more complete coverage of the state space. However, reconstruction is not
always perfect. Interestingly, despite improving its latent prediction skills as reported in Section [}
the baseline cannot produce convincing decoded sequences from its predictions.

28

1.0

— SSM

—— Rollout
Replay-L2

—— Replay-KL

0.75 1

0.5 1

Time (s)

0.25 1

0.0 4

1.0

0.75 1

0.5 1

Time (s)

0.251

0.0 1 —

T T T T T T T T
60000 120000 180000 240000 300000 360000 420000 480000
Number of encoded transitions

Figure 28: Average time needed for one-step (top) and long-horizon (bottom) latent dynamics
prediction.

Table 3: Average inference time for each model in SuperTuxKart tasks. Results are consistent in all
other environments, when using a similar number of encoded trajectories.

Method Inference time (1 + o) (s)

PlaNet 0.04448 £+ 0.00392
Rollout 0.00248 £+ 0.00021
L2 0.00084 £ 0.00007
KL 0.00188 £ 0.00044

D Action conditioning - visual examples

In Figures 30} 31} [32] [33] and [34] we report some visual examples of the effects of action conditioning
for each track of SuperTuxKart. In each Figure, the first row shows the real sequence, while the three
pairs of sequences show (top to bottom) Rollout, Replay-L2 and Replay-KL with (first row of a pair)
and without (second row of a pair) action conditioning.

As reported in main text, conditioning on the action generally makes the prediction task harder,
especially for Rollout and Replay-L2, as both models need to sample a batch on transitions to
estimate the distribution. On the contrary, Replay-KL seems generally unaffected. We hypothesize
that this is the result of matching the distribution rather than estimating it.

Moreover, in Figure [35] we report an example of retrieval failure for Replay-KL, as discussed in
Section [5] It is notable how retrieving a significantly different first latent leads to a completely
different predicted sequence. Fortunately, such occurrences are very rare, as discussed in Section [5]

E Algorithm & implementation details

In this Appendix, we report the architectures we have used for our study, along with some details and
hyperparameters, to facilitate reproducibility of our results. A working implementation of our code is
provided at https://github.com/fmalato/zero_shot_world_models,

29

https://github.com/fmalato/zero_shot_world_models

Figure 29: Visual examples of reconstructions from MineRL "Treechop-v0" using (A) ten, (B) twenty,
(C) forty, and (D) eighty trajectories.

E.1 VAE

Table [d] shows the hyperparameters used to train the VAEs. We train the models using the 3-VAE
variant, which includes a warm-up procedure for the KL divergence term. Specifically, the KL
divergence part of the loss is masked in the first 10% of the epochs, then it is gradually increased
during the next 80% of training time. The architecture of the encoder and decoder follows [8].

For MineRL, we have increased the latent size due to the higher amount of relevant information of
an image. Additionally, we have decreased the number of epochs to 50, as empirically the model
showed signs of convergence around that time. Finally, we have increased the learning rate from
5x 107° to 3 x 1074, as it empirically led to the best results.

30

Figure 30: Effects of action conditioning on dynamics prediction in "fortmagma" track. First row
reports the real sequence; after that, each pair of rows reports our three methods, respectively with
and without action conditioning.

Figure 31: Effects of action conditioning on dynamics prediction in "snes_rainbowroad" track. First
row reports the real sequence; after that, each pair of rows reports our three methods, respectively
with and without action conditioning.

E.2 SSM

We report the hyperparameters used to train the SSM model in Table [5] The training procedure
follows [8]]. From the original paper, we changed the values of the hyperparameters to obtain the best
results, according to our empirical tests. Our PyTorch implementation uses https://github. com/
abhayrawl/planet-torch|as reference, even though the source code of the repo has been used
only as a guide. We re-implemented the model as shown in the source code linked to this study.

31

https://github.com/abhayraw1/planet-torch
https://github.com/abhayraw1/planet-torch

Figure 32: Effects of action conditioning on dynamics prediction in "volcano_island" track. First row

reports the real sequence; after that, each pair of rows reports our three methods, respectively with
and without action conditioning.

Figure 33: Effects of action conditioning on dynamics prediction in "snowmountain" track. First row

reports the real sequence; after that, each pair of rows reports our three methods, respectively with
and without action conditioning.

Table 4: Hyperparameters for VAE models used in this study.

Name | SuperTuxKart | MineRL \ Atari
image size 64x64x3 64x64x3 64x64x3
latent size 128 512 128

learning rate 5x 1075 3x 1074 5x107°

epochs 250 50 250
batch size 128 128 128

beta 00 —-5x10"% 1 00—=5x10"%|0.0—=5x10"8

betainterval | o5 o5 5 — 45 25 — 225
(epochs)

32

Figure 34: Effects of action conditioning on dynamics prediction in "lighthouse" track. First row
reports the real sequence; after that, each pair of rows reports our three methods, respectively with
and without action conditioning.

Figure 35: A comparison between (A) a successful retrieval and (B) a failed search by Replay-KL.
Both sequences are extracted from the "fortmagma" track.

Table 5: Hyperparameters used to train the PlaNet baseline.
Name | SuperTuxKart | MineRL | Atari

latent size 128 512 128
hidden size 256 256 256
learning rate 1x1073 1x1073 | 1x1073
epochs 250 250 250
batch size 64 64 64
beta 0.1 0.1 0.1

33

	Introduction
	Related Work
	Zero-shot World Models
	Rollout buffer
	Replay buffer
	Comparing the methods

	Experiments
	Results & Discussion
	Prediction & reconstruction quality
	Ablation study: number of trajectories
	Action selection
	Action conditioning

	Conclusions
	Prediction & reconstruction - benchmark results
	Coverage statistics

	Prediction & reconstruction - qualitative evaluation
	Ablation study - additional results
	Wallclock time
	Visual results

	Action conditioning - visual examples
	Algorithm & implementation details
	VAE
	SSM

