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ABSTRACT

Generalization is one of the most fundamental challenges in deep learning, aim-
ing to predict model performances on unseen data. Empirically, such predictions
usually rely on a validation set, while recent works showed that an unlabeled val-
idation set also works. Without validation sets, it is extremely difficult to obtain
non-vacuous generalization bounds, which leads to a weaker task of finding gen-
eralization measures that monotonically relate to generalization error. In this pa-
per, we propose a new generalization measure REF Complexity (RElative Fitting
velocity between signal and noise), motivated by the intuition that a given model-
algorithm pair may generalize well if it fits signal (e.g., true labels) fast while
fitting noise (e.g., random labels) slow. Empirically, REF Complexity monoton-
ically relates to test accuracy in real-world datasets without accessing additional
validation sets, and achieves −0.988 correlation on CIFAR-10 and −0.960 corre-
lation on CIFAR-100. We further theoretically verify the utility of REF Complex-
ity under the regime of convex training with stochastic gradient descent.

1 INTRODUCTION

Generalization is one of the most fundamental mysteries in deep learning, measuring how the trained
model performs on unseen data. By convention, people empirically estimate generalization error
via validation data that are independently drawn from the population distribution. However, such
validation data are obtained by splitting a portion of training data, causing a shrink in the train-
ing set. Recently, a line of work argues that labeled validation sets are unnecessary in predicting
generalization, and proposes to predict generalization via an unlabeled validation set, e.g., RATT
approach (Garg et al., 2021), disagreement-based approaches (Jiang et al., 2022). However, the
additional dataset, even unlabeled, might be expensive. This naturally leads to a question: can we
estimate generalization error without any additional dataset?

Directly answering the question can be extremely challenging (Jiang et al., 2020a). As a surrogate,
people consider a weaker task of finding generalization measures that monotonically relate to gener-
alization error (Jiang et al., 2020b; Dziugaite et al., 2020). Unlike the predicting task that calculates
the exact value of generalization error, generalization measures are only required to sketch its trend.
Such relaxation is meaningful in many scenarios, e.g., model selection tasks where we only need to
compare two models (Zucchini, 2000; Johnson & Omland, 2004; Emmert-Streib & Dehmer, 2019).

There are various types of generalization measures in the existing literature, which can be roughly
split into four branches (Jiang et al., 2020b): (a) empirical measures, (b) norm-based measures, (c)
PAC-Bayesian and information-based measures, (d) stability-based measures. However, (a) may
imply a spurious causal relationship between the measure and generalization (Dziugaite & Roy,
2017), (b) even negatively correlate with generalization error (Jiang et al., 2020b), (c) only applies
in stochastic models instead of standard training scenarios. Therefore, (d) stands out due to its
algorithm-dependent property and is widely considered a potential approach to generalization mea-
sure analysis (Nagarajan & Kolter, 2019; Jiang et al., 2020b). Existing works have proposed mean-
ingful generalization measures based on algorithmic stability. For example, Hardt et al. (2016) the-
oretically study algorithmic stability and argue that “train faster, generalize better”, and Jiang et al.
(2020b) observe that the initial phase of optimization benefits the final generalization. Although
these arguments perform well empirically, there still exist phenomena that the existing stability-
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based measures cannot explain. For example, stochastic gradient descent (SGD) usually generalizes
better while trained slower (with more iterations) than gradient descent (GD).

In this paper, we propose a new measure following stability-based approaches, which (a) has a the-
oretical backbone, (b) empirically works, and (c) is appliable in standard training scenarios, named
REF Complexity (RElative Fitting velocity on signal and noise). The complexity is motivated by the
intuition that a given model-algorithm pair may generalize better if it fits the signal faster while fit-
ting the noise slower during the training process. Empirically, one can treat the real-world dataset as
the signal and the same dataset with random labels as the noise. Given a training set D and training
algorithm A, REF Complexity is informally derived as

Tn(D,A) =
The degree of fitting noise
The degree of fitting signal

, (1)

where n denotes the sample size. Intuitively, REF Complexity measures the degree to which a
model-algorithm pair can distinguish between signal and noise during training, and Tn(D,A) is
anticipated to monotonically increase with respect to generalization error since fitting noise usually
hurts generalization. Besides the property (a, b, c) above, REF Complexity (d) does not require an
additional dataset, and (e) increases with the noise scale. Property (e) meets the requirement that
the generalization bound (and its corresponding measure) should increase with the degree of noisy
labels, proposed in Nagarajan & Kolter (2019).

From the experimental perspective, REF Complexity monotonically correlates with the generaliza-
tion error (See Figure 1), demonstrated by experiments on CIFAR-10 and CIFAR-100. We further
show that REF Complexity explains several phenomena in deep learning. We take the comparison
between stochastic algorithms (e.g., SGD) and deterministic algorithms (e.g., GD) as an example.
SGD usually fits signal and noise both slower. However, we observe that SGD is trained significantly
slower when fitting noise compared to signal, leading to a smaller REF Complexity. Therefore, SGD
generalizes better under the REF Complexity framework, which accords with reality.

From the theoretical perspective, we validate the utility of REF Complexity by deriving that general-
ization error can be bounded using REF Complexity under the regime of convex training1 with SGD.
The derivation is inspired by the stability-based techniques in generalization analysis. Informally,
the degree of fitting noise ensures that the training gradient cannot be extremely large, leading to a
guarantee for algorithmic stability. Similar conclusion hold beyond SGD, and we also derive a sim-
ilar bound under the regime of GD with overparameterized linear regression, following the benign
overfitting techniques proposed in Bartlett et al. (2020).

We list our contributions as follows:

1. We propose a new generalization measure named REF Complexity, which quantifies how
well a given model-algorithm pair distinguishes between signal and noise during training.
REF Complexity extends the scope of stability-based measures.

2. Experimental results on CIFAR-10 and CIFAR-100 demonstrate the effectiveness of REF
Complexity, where REF Complexity monotonically decreases with respect to test accuracy
with correlations of −0.988 and −0.960 on CIFAR-10 and CIFAR-100, respectively.

3. We further theoretically validate the utility of REF Complexity under the regime of convex
training with SGD. Moreover, we show that similar arguments hold beyond SGD.

2 RELATED WORK

Algorithmic Stability is one of the most popular techniques in generalization analysis (Bousquet
& Elisseeff, 2002; Hardt et al., 2016). A line of works focuses on deriving high probability bound
based on algorithmic stability (Feldman & Vondrák, 2019; Bousquet et al., 2020). Another line of
works tries deriving algorithmic stability under various regimes, e.g., unbounded gradient (Lei &
Ying, 2020), non-smooth loss (Bassily et al., 2020), stochastic gradient Langevin dynamics (Mou
et al., 2018; Li et al., 2020). One of the properties of algorithmic stability is that the corresponding
bound usually increases with time, motivating the optimization-based measures which quantify the
number of iterations to reach a given loss threshold (Jiang et al., 2020b).

1One may relax the convex assumption using Stochastic Gradient Langevin Dynamics (SGLD) algorithms.
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(a) CIFAR-10 (b) CIFAR-100

Figure 1: Correlation between REF Complexity and test accuracy. We conduct over 144 experiments
with ResNet20, ResNet32, and RseNet56 on CIFAR-10 and CIFAR-100, showing that REF Com-
plexity negatively relates to test accuracy with correlations of −0.988 and −0.960 on CIFAR-10 and
CIFAR-100, respectively. We defer the experiment details to Section 6.

Theoretical generalization measures. Besides stability-based measures, there are many other
theory-motivated measures. A line of work focuses on the norm-based measures (Neyshabur et al.,
2015; Bartlett et al., 2017; Neyshabur et al., 2018; Wei & Ma, 2020), but it may dramatically fail to
show monotonically correlation with test errors (Nagarajan & Kolter, 2019; Jiang et al., 2020b). An-
other line of work focus on PAC-Bayesian (McAllester, 1999; Dziugaite & Roy, 2017; Neyshabur
et al., 2017) and information-based analysis (Russo & Zou, 2016; Xu & Raginsky, 2017; Haghifam
et al., 2020; 2021). This line of work performs well numerically but requires changing the training
scheme with stochastic models (Jiang et al., 2020b).

Predicting generalization errors. Compared to generalization measure approaches, predicting the
exact generalization error is a more difficult task. Traditional approaches split a holdout partition
(namely, validation set) from the available labeled data, where performances on the validation set di-
rectly imply generalization error. However, this approach restricts the number of labeled data in the
training process. Recently, Garg et al. (2021) leveraged an unlabeled dataset (with random labels)
to augment the labeled dataset and predict generalization via the different performances on the two
datasets. Besides, a line of work (Jiang et al., 2022) focuses on the relationship between disagree-
ment and generalization, where the disagreement comes from the different model performances
(e.g., trained with different training schemes) on unlabeled data. Despite not requiring additional
labeled datasets (validation set), these approaches still need additional unlabeled datasets.

Empirical generalization measures. Besides those measures motivated by theoretical analysis,
there are also empirical approaches to finding generalization measures or predicting generaliza-
tion errors, including sharpness based techniques (Keskar et al., 2017), robustness on representa-
tions (Natekar & Sharma, 2020) and robustness on augmentation (Aithal et al., 2021).

Distinguishing signal and noise. The structure of the response is one of the basic data properties
in generalization analysis. For example, Nagarajan & Kolter (2019) argues that the generaliza-
tion bound should increase with the noise levels (e.g., the portion of random labels). However,
some generalization measures do not even distinguish signal and noise (e.g., Rademacher complex-
ity (Shalev-Shwartz & Ben-David, 2014)), and therefore only return vacuous generalization bound
when the model can fit arbitrary random noise (Zhang et al., 2021). A line of work implicitly con-
siders different performances of signal and noise, e.g., algorithmic stability can extract the output
structure since neural networks usually fit signal faster than fitting noise (Zhang et al., 2021), and
NTK-based data-dependent measure grows with the potion of noise (Arora et al., 2019). Besides, an-
other line of work focuses on bounding the noise tolerance (Rudin, 2005; Manwani & Sastry, 2013;
Frénay & Verleysen, 2014; Bansal et al., 2021), which analyzes the training accuracy decrease when
adding a portion of label noise. This differs from our approach, where we aim at bounding gener-
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alization using noise tolerance. Of particular relevance here is Teng et al. (2022), which explicitly
split the effects of signal and noise during the generalization analysis. However, the bound in Teng
et al. (2022) cannot directly lead to a simple generalization measure.

3 PRELIMINARIES

This section introduces basic notations and necessary assumptions. Some of the notations differ from
the existing literature because besides the original data distribution, we also consider two parallel
types of distributions: signal distribution and noise distribution. We subscript them by sig and
noi, respectively.

3.1 BASIC NOTATIONS

Data Distribution. Let (x, y) ∼ P ⊂ Rd × R denote the input and the corresponding response.
We consider the ground truth function y = f(x;θ∗) + ϵ where ϵ ∈ R denotes the random noise,
θ∗ ∈ Rp denotes the best parameter, and f(·;θ∗) denotes a function f indexed by parameter θ∗.
In such regimes, we assume that E[ϵ|x] = 0. Without loss of generality, assume that f(x;0) ≡ 0.
Let D = {(xi, yi)}i∈[n] denote the dataset with n data points sampled from distribution P , where
we omit the dependency of n for simplicity. The corresponding signal dataset and noise dataset are
denoted by Dsig = {(xi, f(xi;θ

∗))}i∈[n] and Dnoi = {(xi, ϵi)}i∈[n] with distribution Psig and Pnoi.

Loss. Let ℓ(θ; z) denote the loss function with parameter θ on sample z = (x, y), given the
prediction f(x;θ). The training loss is then denoted by Ln(θ;D) = 1

n

∑
zi∈D ℓ(θ; zi). The corre-

sponding excess risk is then denoted as E(θ;P) = Ez∼Pℓ(θ; z)− ℓ(θ∗; z), measuring the distance
between θ and the best parameter θ∗. We assume that the excess risk is well-behaved, namely,
E(θ∗;P) ≤ E(θ;P), E(θ∗;Psig) ≤ E(θ;Psig), and E(0;Pnoi) ≤ E(θ;Pnoi) for all θ.

Algorithm. Let At denote the algorithm which takes a dataset D as an input and returns a parameter
θ(t) = At(D) ∈ Rp at step t. In the following text, we prefer the notation At(D) to emphasize
the dependency on dataset D. The algorithm can be either deterministic (e.g., gradient descent) or
randomized (e.g., stochastic gradient descent). When the context is clear, let A = {Aj}j∈[t] denote
algorithms in all steps. To simplify the discussion, we assume that the algorithm starts from zero,
namely, A0(D) = 0. During the discussion, we are interested in the excess risk of At(D), namely,
E(At(D);P). Without loss of generality, assume that A0(Dsig) = A0(D) and A0(Dnoi) = 0.

3.2 ALGORITHMIC STABILITY

Algorithmic stability is one of the most popular approaches to generalization (Bousquet & Elisseeff,
2002; Hardt et al., 2016). Informally, algorithmic stability measures how the model performance
alters when changing a training sample, which leads to generalization bound via Proposition 3.1.
Proposition 3.1 (Algorithmic stability, from Hardt et al. (2016)). Assume that the algorithm At is
γ-uniformly-stable, namely, for any two datasets D and D′ with only one different data point,

sup
z̃

EA[ℓ(At(D); z̃)− ℓ(At(D′); z̃)] ≤ γ.

Then the following generalization bound holds

EA,D[Ez∼Pℓ(At(D); z)− Ln(At(D);D)] ≤ γ.

One can generalize the results in Proposition 3.1 using other types of algorithmic stability, e.g., on-
average algorithmic stability (Lei & Ying, 2020). A line of research derives generalization measures
under specific regimes based on Proposition 3.1. Among them, the most popular one is the bound
derived in general convex and smooth regimes, proposed in Proposition 3.2.
Proposition 3.2 (Convex and smooth regimes, from Hardt et al. (2016)). Assume that the loss func-
tion ℓ(·; z) is convex, M -smooth and L-Lipschitz for any sample z, it holds that

EAt,D[Ez∼Pℓ(At(D); z)− Ln(At(D);D)] ≤ 2ηt

n
L2,

where η denotes the constant stepsize satisfying η ≤ 2/M .

4



Under review as a conference paper at ICLR 2023

Algorithm 1 Estimate REF Complexity in practice

Input: Training set D = {(xi, yi)}i∈[n], optimization algorithm At, training loss function Ln(·, ·).
1: Calculate the training loss on step 0 and step t for the real-world dataset, namely, Ln(A0(D);D)

and Ln(At(D);D);
2: Generate m randomly labeled datasets D(j)

noi = {(xi, ỹ
(j)
i )}i∈[n], j ∈ [m], where ỹ(j)i denotes a

random noise;
3: Calculate the training loss on step 0 and step t for the randomly labeled dataset, namely,

Ln(A0(D(j)
noi );D

(j)
noi ) and Ln(At(D(j)

noi );D
(j)
noi );

Output: T β
n (D,At) =

Ln(At(D);D)/Ln(A0(D);D)
1
m

∑
j∈[m] Ln(At(D(j)

noi );D
(j)
noi )/Ln(A0(D(j)

noi );D
(j)
noi )

.

Based on Proposition 3.2, a t/n-type generalization measure directly follows, leading to the argu-
ment train faster, generalize better (Hardt et al., 2016). In the next section, we show a different
generalization measure under the stability-based framework, contrasting the signal and noise during
the training process.

4 FORMAL DEFINITION OF REF COMPLEXITY

This section introduces the formal definition of REF Complexity, which quantifies the ability of a
model-algorithm pair to distinguish between signal and noise. Due to the practical restrictions, the
notion of REF Complexity is slightly different in theory and in practice. We next introduce them
separately, denoted as T α

n (D,At) and T β
n (D,At).

4.1 ANALYZING REF COMPLEXITY

In theoretical analysis, we can explicitly define the notion of signal and noise. Informally, if an
output has the form y = f(x; θ∗) + ϵ, we can split it into f(x; θ∗) and ϵ, as defined in Section 3.
Therefore, we directly define REF Complexity based on dataset Dnoi and Dsig in the theoretical
version. For a given training dataset D and training algorithm At, its theoretical REF Complexity
can be measured as

T α
n (D,At) =

1− ELn(At(Dnoi);Dnoi)/Ln(A0(Dnoi);Dnoi)

1− Ln(At(Dsig);Dsig)/Ln(A0(Dsig);Dsig)
, (2)

where the expectation is taken over the random noise in Dnoi. The metric T α
n (D,At) becomes larger

when fitting noise more (with smaller Ln(At(Dsig);Dsig)), given the degree of fitting signal.

4.2 CALCULATING REF COMPLEXITY

In practice, a real-world dataset usually mixes signal and noise. Unfortunately, it is impossible
to split the dataset into signal and noise components perfectly. Therefore, we cannot obtain Dsig
and calculate the REF Complexity like the theoretical version. Despite all this, a possible way is
to quantify a data-algorithm pair’s ability to distinguish the real-world dataset with the randomly
labeled dataset. Such a metric implies the ability to distinguish between signal and noise, since the
real-world dataset usually contains enough signal information. We formulate the practical version
of REF Complexity in Equation equation 3, given the dataset D and algorithm At,

T β
n (D,At) =

Ln(At(D);D)/Ln(A0(D);D)

ELn(At(Dnoi);Dnoi)/Ln(A0(Dnoi);Dnoi)
, (3)

where n denotes the sample size, and the expectation is taken over the random noise in Dnoi. REF
Complexity T β

n (D,At) becomes larger when fitting noise more (with smaller Ln(At(Dnoi);Dnoi)),
given the degree of fitting signal. The form in Equation equation 3 is different from that in Equa-
tion equation 2 due to computational stability. Since the real-world dataset D usually contains noise,
it is safer to put the related term in the numerator instead of the denominator.

We summarize the algorithm in Algorithm 1, which returns the REF Complexity value T β
n (D,At).

The construction of random noise (Step 2) varies from task to task. For example, we can use Gaus-
sian random noise in regression problems and uniform random labels in classification problems.
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Besides, REF Complexity T β
n (D,At) is usually smaller than one, since machine learning models

usually fit signal faster than noise (Arora et al., 2019; Zhang et al., 2021).

Comparison to Rademacher complexity. Both metrics focus on the ability to fit noise. However,
Rademacher complexity measures the noise-fitting ability for a given function class, while REF
Complexity measures it for a given model-algorithm pair. Besides, REF Complexity distinguishes
the signal influence and the noise influence, which is not covered in Rademacher Complexity. As
an algorithm-independent and output-independent measure, Rademacher complexity is inconsistent
and vacuous since neural networks can fit arbitrary random noise (Zhang et al., 2021). In compar-
ison, REF Complexity is noise recognizable since T β

n (D,At) becomes larger when the real-world
dataset D contains much noise, leading to a large generalization error.

5 BOUNDING GENERALIZATION VIA REF COMPLEXITY

In this section, we derive generalization bound using REF Complexity, providing theoretical guar-
antees for the metric. As the commonly-considered algorithm, we first study SGD under convex
regimes in Section 5.1. We further validate that the bound form holds beyond SGD, by consider-
ing GD under overparameterized linear regression regimes in Section 5.2 During the analysis, we
consider the metric of excess risk introduced before, which is generally considered in the related
literature (Bartlett et al., 2020; Teng et al., 2022).

5.1 SGD UNDER CONVEX REGIMES

This section introduces a generalization bound via REF Complexity in convex cases with SGD,
starting from the basic notations. The core technique in the proof is algorithmic stability. The key
intuition is that, one can bound the algorithm stability using a cumulative gradient, which is further
bounded by the degree of fitting noise.

Settings. We follow the notations in Section 3 when the context is clear. Additionally, we consider
a specific algorithm At: constant-stepsize SGD with replacement, where the iteration performs as

At+1(D) = At(D)− η∇ℓ(At(D); z),

where z is sampled uniformly from dataset D. We sketch the gradient noise in step t as
σ2
w(t;D) = EA,D

1
n

∑
i∈[n] ∥ℓ(At(D); zi)∥2 − ∥∇Ln(At(D);D)∥2. Similar notations are also

used in optimization-relevant papers (Shalev-Shwartz & Ben-David, 2014). We assume a bounded
gradient noise regime in the noise training, where σ2

w(t;Dnoi) ≤ σ2
w = O(1) for any step t. Be-

sides, we assume that the gradient noise is non-increasing during the noisy training process, namely,
EA,Dnoiσ

2
w(t;Dnoi) ≤ EA,Dnoiσ

2
w(j;Dnoi) for any j ≤ t. This assumption is valid under convex

regimes where the gradient is approximately non-increasing (Li et al., 2020).

Additionally, we assume the following Decomposition condition for the excess risk, aiming to de-
compose the influence of signal and noise in the generalization analysis.
Assumption 5.1 (Excess Risk Decomposition). We assume that the excess risk can be decomposed
into its signal component and noise component, namely, there exists a constant c1 such that for any
given time t ≥ T1,

EAt,DE(At(D);P) ≤ c1
[
EAt,DnoiE(At(Dnoi);Pnoi) + EAt,DsigE(At(Dsig);Psig)

]
+ ψ1(n),

where ψ1(n) → 0 as n→ ∞.

Assumption 5.1 can hold in both linear and non-linear cases under some additional assumptions,
as demonstrated in Teng et al. (2022). The next Assumption 5.2 sketches the properties of signal
training and noise training.
Assumption 5.2 (Signal and Noise Training). We assume that the signal training component satis-
fies for any t ≥ T2, there exists a constant c2 such that

EAt,DsigE(At(Dsig);Psig) ≤ c2EAt,DnoiE(At(Dnoi);Pnoi) + ψ2(n),

where ψ2(n) → 0 as n → ∞. Besides, we assume that the noise training component satisfies that
for any t ≥ T3,

EAt,DnoiLn(At(Dnoi);Dnoi) ≤ EA0,DnoiLn(A0(Dnoi);Dnoi).
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The first part on signal implies that signal training is a relatively simpler task than noise training,
which is demonstrated empirically (e.g., Arora et al. (2019); Zhang et al. (2021)) and theoretically
(e.g., Gaussian Mixture Models (Cao et al., 2021), overparameterized linear regression and Hy-
percube Classifier (Negrea et al., 2020)). The second part on noise requires that the training loss
decreases during noise training in expectation, without which REF Complexity might become neg-
ative. This holds with a sufficiently small learning rate, guaranteed by optimization theory (Shalev-
Shwartz & Ben-David, 2014).

We next derive in Proposition 5.1 that overparameterized linear regression regime with MSE loss
satisfies the above assumptions.

Proposition 5.1. Overparameterized linear regression regimes satisfy both Assumption 5.1 and
Assumption 5.2. Specifically, when the optimal parameter ∥θ∗∥ = O(1) and sample covariance
∥Σx∥ = O(1), we derive that

(a.) For all step t, EE(At(D);P) ≤ 2[EE(At(Dsig);Psig) + EE(At(Dnoi);Pnoi)] ;

(b.) For t ≥ n, EE(At(Dsig);Psig) = O( 1√
n
) ;

(c.) With sufficiently small η, ELn(At(Dnoi);Dnoi) ≤ ELn(A0(Dnoi);Dnoi).

We are now ready to introduce the main theorem, which bounds the excess risk using REF Com-
plexity T α

n (D,At) in general convex regimes.

Theorem 5.1 (Convex, smooth, with SGD). Assume that the loss ℓ(θ; z) is convex and M -smooth
with respect to θ for any sample z. Consider the SGD training regime with constant step-
size η ≤ 1√

t
. Under Assumption 5.1 and Assumption 5.2, the following inequality holds when∑

j∈[t] σ
2
w(j;Dnoi) = o(n2) and t ≥ max{T1, T2, T3}

ED,At
E(At(D);P) ≤ 8ecmax {M, 1}√

t
max

{
u, u2

}
ED,At

T α
n (D,At) + ψ(n),

where we define u ≜
√

1
n (1 +

t
n ) for simplicity, and the term ψ(n) → 0 as n → ∞. The constant

c > 0 denotes a constant related to the constant c1, c2 in Assumption 5.1 and Assumption 5.2.

Derived from Theorem 5.1, REF ComplexityT α
n (D,At) is valid from two aspects: (a) if T α

n (D,At)
is relatively small, the excess risk is consistent and, therefore, would be relatively small. Here we
use consistency to represent a bound that converges to zero as the sample size goes to infinity. (b) if
T α
n (D,At) is relatively large, the bound is dominated by the first term. Therefore, T α

n (D,At) is a
proper index for generalization since the proposed upper bound shows an approximate correlation.
We refer to Figure 3 in Appendix C for more discussions.

About the order in ψ. Besides the order of ψ1, ψ2 in Assumption 5.1 and Assumption 5.2, the
order of ψ is also closely related to the term 1

n2

∑
j∈[t] σ

2
w(j;Dnoi). To ensure the consistency,

we assume that
∑

j∈[t] σ
2
w(j;Dnoi) = o(n2). If t = o(n2) the assumption directly holds since

σ2
w(j;Dnoi) = O(1). However, the estimation on

∑
j∈[t] σ

2
w(j;Dnoi) can be much better, since

the gradient norm usually decreases in expectation along the trajectory under convex regimes (e.g.,
strong growth assumption in Schmidt & Roux (2013); Cevher & Vu (2019). This would lead to a
weaker requirement on t.

About other assumptions. The convex and smooth assumption used in Theorem 5.1 are also used
in algorithmic stability relevant papers (e.g., Lei & Ying (2020)). Besides, the stepsize assumption
is valid in SGD-relevant analysis (e.g., section 6.2 in Bubeck (2015)). We also remark that the
assumption

∑
j∈[t] σ

2
w(j;Dnoi) = o(n2) usually do not contradict to the time requirement T1, T2, T3

used in Assumption 5.1 and Assumption 5.2. For example, in overparameterized linear regression
cases, the first assumption is weaker than t = o(n2) and the second assumption requires that t ≥
max{T1, T2, T3} = n. Therefore the bound is at least valid in the region t ∈ (Ω(n), o(n2))2.

2We here use notation (Ω(n), o(n2)) to represent an interval with lower bound in order Ω(n) and upper
bound in order o(n2).
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We finally remark that we here provide the generalization bound with expectation version instead of
the high probability version, due to the inherent properties of stability-based techniques. One can
generalize the results to high probability versions following Feldman & Vondrák (2019); Bousquet
et al. (2020). Here are three key steps during the proof. The first is to decompose the excess risk
into signal component and noise component based on Assumption 5.1 and Assumption 5.2. The
second is to bound the algorithmic stability of the noise part using the cumulative gradient, based
on the convex and smooth assumption. And the third is to bound cumulative gradient using REF
Complexity, which is derived by smoothness assumption. We defer the whole proof to Appendix A.
Remark 5.1 (Comparison to algorithmic stability). The measures proposed in Theorem 5.1 are
fundamentally different from the stability-based approaches, although our bound is derived via
stability-based techniques. The measure proposed in this paper explicitly quantifies the ability to
distinguish signal and noise, which differs from the existing measures. We finally remark that the
goal of Theorem 5.1 is not to provide a tight bound but to validate the utility of REF Complexity.

We close the section by introducing how to generalize the results in Theorem 5.1 to general non-
convex regimes, under the training algorithm of Stochastic Gradient Langevin Dynamics (SGLD).
The main reason we need convex regimes is the one-expansion property under convexity with SGD,
required by algorithmic stability analysis (See Lemma A.4 in Appendix). This property is easily
violated under non-convex regimes. However, this could be avoided in SGLD training. A line of
work (e.g., Mou et al. (2018); Li et al. (2020)) derived that one can bound the generalization gap
using the cumulative gradient. We leave the detailed discussion for future work.

5.2 GD UNDER OVERPARAMETERIZED LINEAR REGRESSION

To validate the generality of REF Complexity, this section proves a similar argument under overpa-
rameterized linear regression regimes. One may generalize the results to kernel regression regimes
(e.g., neural tangent kernel), which is left for future work. Our techniques in this section are inspired
by Bartlett et al. (2020); Xu et al. (2022).

Settings. We follow the notations in Section 3 when the context is clear. Additionally, set
f(x; θ∗) = x⊤θ∗ as the ground truth function. Let Σx ≜ Exx⊤ denote the covariance matrix
with non-increasing eigenvalues λi, i ∈ [d]. Let rk(Σ) =

∑
i>k λi

λk+1
denote the corresponding effec-

tive rank, and k∗ = min{k ≥ 0 : rk(Σ) ≥ bn} for some constant b > 0. Assume that the noise
y−x⊤θ∗ is σ2

y-subGaussian, and x = Σ
1/2
x z can be represented as linear transformation of z where

z denotes a random vector with independent and σ2
x-subGaussian coordinate.

Theorem 5.2 (Overparameterized Linear Regression with Gradient Descent). Under overparame-
terized linear regression regimes, we assume that r0(Σ) = o(n) and k∗ = o(n). Besides, we assume
that ∥θ∗∥2 = O(1), ∥Σx∥2 = O(1) in a constant scale. We consider GD training process with zero
initialization and constant stepsize η. For any given δ > 0 which does not vary with sample size n
and satisfies log(1/δ) = o(n), for t = ω(1)3, with probability at least 1− δ,

E(At(D);D) ≤ c log(1/δ)σ2
yT α

n (D,At) + ψ̃(n),

where ψ̃(n) → 0 as n→ ∞ and c > 0 denotes a constant.

We remark that the bound proposed here can be consistent if T α
n (D,At) → 0 as n → ∞ for some

given fixed t. This usually holds when t = o(n) with constant stepsize. Besides, different from the
results proposed in Theorem 5.1, Theorem 5.2 do not contains time dependency (t/n-type term).
This is due to the different techniques used in the proof. Unfortunately, the techniques used in this
section cannot be easily applied to general convex regimes. We defer the whole proof to Appendix B.

6 EXPERIMENTAL RESULTS

This section provides experimental results to validate the utility of REF Complexity. Specifically, we
conduct over 144 experiments on CIFAR-10 and CIFAR-100, and plot each regime’s test accuracy
and REF Complexity in Figure 1. Experimental results in Figure 1 illustrate that REF Complexity

3The statement t = ω(1) means that t → ∞ as n → ∞.
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Table 1: Experiments on different batch sizes and different learning rates. REF Complexity and
norm-based bounds are both expected to be negatively related to accuracy. The W-norm fails to show
correct correlation with accuracy (with even positive correlation), while REF Complexity works
(with negative correlation).

BATCH SIZE 256 512 1024 2048 CORRELATION

ACCURACY 87.6±0.2 85.4 ±0.4 82.4±0.9 81.1±0.1 -
REF (↓) 0.021±0.003 0.051±0.003 0.111±0.016 0.155±0.002 -0.987

W-NORM (↓) 262.7±0.9 174±3.0 137±1.0 116±2.0 0.960

LR 0.005 0.01 0.05 0.1 CORRELATION

ACCURACY 81.9±0.2 82.4±0.9 86.3±0.3 88.1±0.4 -
REF (↓) 0.144±0.002 0.110±0.016 0.045±0.004 0.023±0.004 -0.981

W-NORM (↓) 115.9±0.5 137.1±1.3 304±4.0 536±12.0 0.964

negatively correlates to test accuracy with correlations of −0.988 and −0.960 on CIFAR-10 and
CIFAR-100, respectively. Besides, we show how to use REF Complexity to explain some interesting
phenomena in deep learning regimes, e.g., the great success of stochastic algorithms.

Setup. Our experiments contain two parts: Firstly, we conduct experiments on CIFAR-10 and
CIFAR-100 to show the correlation between test accuracy and REF Complexity. We use ResNets as
the basic architecture, and evaluate the test accuracy with different learning rates, batch sizes, weight
decay, and depths. We train each model for 150 epochs. To evaluate REF Complexity correctly, each
noise training process is trained five times, and we calculate the averaged REF Complexity as the
metric. The results are shown in Figure 1. Secondly, we conduct experiments on CIFAR-10 and
evaluate the correlation between REF Complexity and test accuracy. Each configuration is trained
three times, and we report the mean and standard deviation.

Discussion. Besides the monotonic relationship between REF Complexity and test accuracy, we
find that the notion of REF Complexity helps explain the deep learning phenomenon from a dif-
ferent perspective. We here take stochastic algorithms as an example. The success of stochastic
algorithms (e.g., SGD and its variants) is widely observed in deep learning regimes. We empirically
explain the phenomenon by REF Complexity (see Table 1), using different batch sizes as a surrogate.
Fortunately, one can explain the phenomenon under REF Complexity. We defer the details below.
Using a similar argument above, one can explain other phenomena empirically (e.g., learning rate).
We summarize the experimental results in Table 1.

Analyzing stochastic algorithms under REF Complexity. We end this section by discussing more
on the stochastic algorithms under the framework of REF Complexity. For deterministic algorithms
(e.g., GD), each iteration sees all the samples, and therefore the training loss would decrease in each
iterate for both signal and noise training. However, for stochastic algorithms (e.g., SGD), each iterate
only sees part of the samples. For signal training, the model still learns useful information since each
sample shares the same pattern. However, things can be much more different in noise training. The
model may even oscillate since the pattern in the first batch can even damage the training loss on the
remaining samples. This leads to a better REF Complexity for stochastic algorithms. We illustrate
this phenomenon in Appendix C (Figure 4).

7 CONCLUSION

In this paper, we propose a new generalization measure REF Complexity under the algorithmic
stability framework, which contains a theoretical backbone and empirically works well in standard
training scenarios. The complexity is motivated by the intuition that a model-algorithm pair would
generalize better if it fits the signal fast while fitting the noise slowly. The success of REF Complex-
ity may inspire some future directions. From the theoretical view, it would be interesting to relax
the assumption on gradient noise used in Theorem 5.1. From the empirical view, one may find more
generalization measures using signal-noise techniques. Another interesting direction is to predict
exact generalization error using the REF Complexity framework. If this is done, it may become a
new standard in practice parallel to cross-validation. One can track the algorithmic performance on
a randomly labeled dataset during training, and compare different models based on it.
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Appendix
A PROOF OF THEOREM 5.1

Theorem 5.1 (Convex, smooth, with SGD). Assume that the loss ℓ(θ; z) is convex and M -smooth
with respect to θ for any sample z. Consider the SGD training regime with constant step-
size η ≤ 1√

t
. Under Assumption 5.1 and Assumption 5.2, the following inequality holds when∑

j∈[t] σ
2
w(j;Dnoi) = o(n2) and t ≥ max{T1, T2, T3}

ED,At
E(At(D);P) ≤ 8ecmax {M, 1}√

t
max

{
u, u2

}
ED,At

T α
n (D,At) + ψ(n),

where we define u ≜
√

1
n (1 +

t
n ) for simplicity, and the term ψ(n) → 0 as n → ∞. The constant

c > 0 denotes a constant related to the constant c1, c2 in Assumption 5.1 and Assumption 5.2.

Proof. Firstly, due to Assumption 5.1 and Assumption 5.2, the difficulties of bounding the excess
risk falls in the noise component, that is to say,

ED,At
E(At(D);P) ≤ [c1 + c1c2]EDsig,At

E(At(Dsig);Psig) + ψ1(n, t) + c1ψ2(n, t). (4)

We next focus on the excess risk of the noise component. The first step is to bound the excess risk
via the generalization gap via Lemma A.1,

EAt,DnoiE(At(Dnoi);Dnoi) ≤ EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)]. (5)

The next step is to bound the generalization gap via Lemma A.2, where we use the notion of on-
average model stability proposed in Lei & Ying (2020). We derive that

EAt,DnoiL(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)

≤EAt,Dnoi [
2e(M + c)η2

n
(1 +

t

n
) +

1

2c
(
1

t
+ η2M)]

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 +
1

2c
σ2
w(t).

(6)

We finally apply Lemma A.3, which leads to

EAt,DnoiL(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)

≤EAt,Dnoi [
2e(M + c)η2

n
(1 +

t

n
) +

1

2c
(
1

t
+ η2M)]

2

η
E[Ln(At(Dnoi))− Ln(A0(Dnoi))]

+ [
2e(M + c)η2

n
(1 +

t

n
) +

1

2c
(
1

t
+ η2M)][2

∑
j∈[t]

σ2
w(j)] +

1

2c
σ2
w(t).

By using the fact that E[Ln(At(Dnoi)) − Ln(A0(Dnoi))] ≤ T α
n (D,At) and taking c =√

(1+1/t+η2M)n
(1+t/n)4eη2 , it holds that

EAt,DnoiL(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)

≤E[
2eMη

n
(1 +

t

n
) +

2
√
e√
n

√
(1 +

t

n
)(
1

t
+ η2M)]2T α

n (D,At)

+ [
2eMη2

n
(1 +

t

n
) +

2
√
eη√
n

√
(1 +

t

n
)(
1

t
+ η2M)]2

∑
j∈[t]

σ2
w(j) +

√
eη√
n

√
1 + t/n

1/t+ η2M
σ2
w(t).

We consider the three parts separately:
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For the first part, by setting η ≤ (1/
√
t), we derive that

E[
2eMη

n
(1 +

t

n
) +

2
√
e√
n

√
(1 +

t

n
)(
1

t
+ η2M)]2T α

n (D,At)

≤4emax{M,
√
M, 1}[ 1

n
√
t
(1 + t/n) +

1√
n

√
(1 +

t

n
)(1/t+ 1/t)]2T α

n (D,At)

≤4emax{M, 1} 1√
nt

[
1√
n
(1 +

t

n
) +

√
(1 +

t

n
]T α

n (D,At)

=4emax{M, 1} 1√
t
[
1

n
(1 +

t

n
) +

√
1

n
(1 +

t

n
)]

≤8emax{M, 1} 1√
t
max{ 1

n
(1 +

t

n
),

√
1

n
(1 +

t

n
)}T α

n (D,At).

For the second part, we derive similarly that

[
2eMη2

n
(1 +

t

n
) +

2
√
eη√
n

√
(1 +

t

n
)(
1

t
+ η2M)]2

∑
j∈[t]

σ2
w(j)

≤8emax{M, 1} 1√
n
[
1√
n
(1 +

t

n
) +

√
(1 +

t

n
]
1

t

∑
j∈[t]

σ2
w(j)

=8emax{M, 1}[ 1
n
(1 +

t

n
) +

√
1

n
(1 +

t

n
)]
1

t

∑
j∈[t]

σ2
w(j).

If t ≤ n2, it holds that

[
1

n
(1 +

t

n
) +

√
1

n
(1 +

t

n
)]
1

t

∑
j∈[t]

σ2
w(j) ≤ 4

1

t

∑
j∈[t]

σ2
w(j),

which goes to zero for bounded gradient norm.

If t ≥ n2, it holds that

[
1

n
(1 +

t

n
) +

√
1

n
(1 +

t

n
)]
1

t

∑
j∈[t]

σ2
w(j) ≤ 4

1

n2

∑
j∈[t]

σ2
w(j),

which goes to zero as long as
∑

j∈[t] σ
2
w(j) = o(n2).

For the third part, notice that
√
eη√
n

√
1 + t/n

1/t+ η2M
σ2
w(t)

=

√
e√
n

√
1 + t/n

1/(tη2) +M
σ2
w(t)

≤
√
e√
n

√
1 + t/n

1/(tη2) +M

1

t

∑
j∈[t]

σ2
w(j)

≤
√
e

√
1

n
(1 +

t

n
)
1

t

∑
j∈[t]

σ2
w(j),

which also goes to zero as n goes to infinity, given that
∑

j∈[t] σ
2
w(j) = o(n2). Therefore, summa-

rizing the above equations, we have that
EAt,DnoiL(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)

≤8emax{M, 1} 1√
t
max{ 1

n
(1 +

t

n
),

√
1

n
(1 +

t

n
)}T α

n (D,At) + ψ3(n, t),
(7)
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where ψ3(n, t) → 0 as n, t→ 0.

Combining Equation equation 4, Equation equation 5, Equation equation 7 leads to the conclusion.

Lemma A.1 (Bounding excess risk via Generalization Gap). Let L(θ;P) denote the population
risk of θ on distribution P and Ln(θ;D) denote the empirical risk of θ on dataset D. Under the
Assumptions in Theorem 5.1, we can bound the excess risk via generalization gap,

EAt,DnoiE(At(Dnoi);Dnoi) ≤ EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)].

Proof. Notice that the noise excess risk can be decomposed as

EAt,DnoiE(At(Dnoi);Dnoi)

=EAt,DnoiEz∼Pnoiℓ(At(Dnoi); z)− ℓ(θ∗
noi; z)

≜L(At(Dnoi);Pnoi)− L(θ∗
noi;Pnoi)

=EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)]

+ [Ln(At(Dnoi);Dnoi)− Ln(θ
∗
noi;Dnoi)] + [Ln(θ

∗
noi;Dnoi)− L(θ∗

noi;Pnoi)],

where θ∗
noi denotes the parameter to minimize the excess risk on noise part. For the second term,

note that A0(Dnoi) = 0 and θ∗
noi = 0, and EAt,DnoiLn(At(Dnoi);Pnoi)−Ln(A0(Dnoi);Pnoi) ≤ 0 by

Assumption 5.2 , therefore,

EAt,DnoiLn(At(Dnoi);Pnoi)− Ln(θ
∗
noi;Pnoi) ≤ 0.

Besides, notice that since θ∗
noi is unrelated to the training set Dnoi, we have

EAt,DnoiLn(θ
∗
noi;Dnoi)− L(θ∗

noi;Pnoi) = 0.

Therefore, we conclude that

EAt,DnoiE(At(Dnoi);Dnoi) ≤ EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)].

Lemma A.2. Under the assumptions in Theorem 5.1, we derive that for any c > 0, we have that

EAt,DnoiL(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)

≤EAt,Dnoi [
2e(M + c)η2

n
(1 +

t

n
) +

1

2c
(
1

t
+ η2M)]

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 +
1

2c
σ2
w(t).

Proof. Here we use the notion of on-average model stability proposed in Lei & Ying (2020), where
we have

EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)]

=EAt,Dnoi,D(i)
noi

1

n

∑
i∈[n]

ℓ(At(D(i)
noi); zi)− ℓ(At(Dnoi); zi),

(8)

where D(i)
noi denotes the dataset with only the i-th sample different from Dnoi. The above equation

holds because D(i)
noi does not contain any information of zi, and therefore is equal to the test loss in

expectation. Due to smoothness assumption, we have that for any constant c > 0,

ℓ(At(D(i)
noi); zi)− ℓ(At(Dnoi); zi)

≤∥At(D(i)
noi)−At(Dnoi)∥∥∇ℓ(At(Dnoi); zi)∥+

M

2
∥At(D(i)

noi)−At(Dnoi)∥2

≤ c
2
∥At(D(i)

noi)−At(Dnoi)∥2 +
1

2c
∥∇ℓ(At(Dnoi); zi)∥2 +

M

2
∥At(D(i)

noi)−At(Dnoi)∥2

=[
M + c

2
]∥At(D(i)

noi)−At(Dnoi)∥2 +
1

2c
∥∇ℓ(At(Dnoi); zi)∥2.
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where the first inequality is due to smoothness, the second inequality is due to 2ab ≤ ca2 + c−1b2,

We note that due to Lemma A.5, we have that for constant stepsize η

E∥At(D(i)
noi)−At(Dnoi)∥2 ≤ 4e(

1

n
+

t

n2
)η2

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2.

Besides, due to Lemma A.6, we have that
1

n

∑
i∈[n]

∥∇ℓ(At(Dnoi); zi)∥2 ≤ (
1

t
+ η2M)

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 + σ2
w(t).

Therefore, we have that

EAt,Dnoi,D(i)
noi

1

n

∑
i∈[n]

ℓ(At(D(i)
noi); zi)− ℓ(At(Dnoi); zi)

≤EAt,Dnoi,D(i)
noi

1

n

∑
i∈[n]

[
M + c

2
]∥At(D(i)

noi)−At(Dnoi)∥2 +
1

2c
∥∇ℓ(At(Dnoi); zi)∥2

≤EAt,Dnoi,D(i)
noi

1

n

∑
i∈[n]

[
M + c

2
]4e(

1

n
+

t

n2
)η2

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2

+
1

2c
(
1

t
+ η2M)

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 +
1

2c
σ2
w(t)

=EAt,Dnoi,D(i)
noi
[
2e(M + c)η2

n
(1 +

t

n
) +

1

2c
(
1

t
+ η2M)]

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 +
1

2c
σ2
w(t)

Lemma A.3 (Bounding Cumulative Gradient). Assuming that Ln(·; z) is M -smooth, if the training
stepsize η < 1/L (constant stepsize), it holds that

E
1

n

∑
i∈[n]

∑
[j∈[t]]

∥∇ℓ(Aj(Dnoi), zi)∥2 ≤ 2

η
E[Ln(At(Dnoi))− Ln(A0(Dnoi))] + 2

∑
j∈[t]

σ2
w(j).

where σ2
w(j) denotes the variance in gradient at step j.

Proof of Lemma A.3. Due to the smoothness assumption on the empirical loss (it could be done by
the smoothness assumption on each sample), we have that for all i,

ELn(Ai+1(Dnoi);Dnoi) ≤Ln(Ai(Dnoi);Dnoi) + E(Ai+1(Dnoi)−Ai(Dnoi))
⊤∇L(Ai(Dnoi);Dnoi)

+ E(
L

2
∥Ai+1(Dnoi)−Ai(Dnoi)∥2),

where the expectation is taken over the randomness on gradient. Plugging in the iteration
Ai+1(Dnoi) = Ai(Dnoi) + ηi∇ℓ(Ai(Dnoi), z[i]), where z[i] denotes the chosen sample, we have

E[Ln(Ai+1(Dnoi))] ≤ Ln(Ai(Dnoi))− η∥∇Ln(Ai(Dnoi))∥2 + E(
L

2
η2∥∇ℓ(Ai(Dnoi), z[i])∥2).

Due to the definition of variance that σ2
w = E∥∇ℓ(Ai(Dnoi), z[i])∥2 − ∥∇Ln(Ai(Dnoi))∥2, we have

E[Ln(Ai+1(Dnoi))] ≤Ln(Ai(Dnoi))− η∥∇ℓ(Ai(Dnoi), z[i])∥2 + ησ2
w + E(

L

2
η2∥∇ℓ(Ai(Dnoi), z[i])∥2).

≤Ln(Ai(Dnoi)) + ησ2
w + (−η + L

2
η2)E∥∇ℓ(Ai(Dnoi), z[i])∥2

≤Ln(Ai(Dnoi)) + ησ2
w − η

2
E∥∇ℓ(Ai(Dnoi), z[i])∥2,

where the last equation is due to η < 1/L. By telescoping and taking expectation, we rewrite it as

Eη
∑
[j∈[t]]

∥∇ℓ(Aj(Dnoi), z[j])∥2 ≤ 2E[Ln(At(Dnoi))− Ln(A0(Dnoi))] + 2
∑
j∈[t]

ησ2
w(j).
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Since each sample is sampled uniformly with probability 1/n, taking expectation leads to

E
∑
t

∥∇ℓ(Ai(Dnoi), z[i])∥2 =
1

n

∑
i∈[n]

∑
[j∈[t]]

∥∇ℓ(Aj(Dnoi), zi)∥2.

Therefore, we have

1

n

∑
i∈[n]

∑
j∈[t]

∥∇ℓ(Aj(Dnoi), zi)∥2 ≤ 2

η
E[Ln(At(Dnoi))− Ln(A0(Dnoi))] + 2

∑
j∈[t]

σ2
w(j).

Lemma A.4 (One-expansion under convexity, from Hardt et al. (2016)). Assume that for all z, the
function ℓ(z;w) is convex with respect to w and M -smooth, then for step size η < 2/M we have
that when not choosing the sample zi,

∥Aj+1(D(i)
noi)−Aj+1(Dnoi)∥ ≤ ∥Aj(D(i)

noi)−Aj(Dnoi)∥.

Lemma A.5 (Bound for stability parameter difference). Under the Assumptions in Theorem 5.1, We
have that for any i

E∥At(D(i)
noi)−At(Dnoi)∥2 ≤ 4e(

1

n
+

t

n2
)
∑
j∈[t]

η2jE∥∇ℓ(Aj(Dnoi); zi)∥2.

where i denotes the sample index and j denotes the time index.

Proof of Lemma A.5. The proof is partly inspired by the proof of Lemma C.2 in Lei & Ying (2020).

Note that for any step j, if the chosen index is i, we have that

∥Aj+1(D(i)
noi)−Aj+1(Dnoi)∥

=∥Aj(D(i)
noi)−Aj(Dnoi)− ηt∇ℓ(Aj(D(i)

noi); z̃i) + ηt∇ℓ(Aj(Dnoi); zi)∥

Therefore, due to the inequality (a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 for any p > 0, we have that

∥Aj+1(D(i)
noi)−Aj+1(Dnoi)∥2

≤(1 + p)∥Aj(D(i)
noi)−Aj(Dnoi)∥2 + η2t (1 + 1/p)∥∇ℓ(Aj(D(i)

noi); z̃i)−∇ℓ(Aj(Dnoi); zi)∥2

≤(1 + p)∥Aj(D(i)
noi)−Aj(Dnoi)∥2 + 2η2t (1 + 1/p)[∥∇ℓ(Aj(D(i)

noi); z̃i)∥
2 + ∥∇ℓ(Aj(Dnoi); zi)∥2],

for any p > 0.

If the chosen index is not i, due to the convexity of the loss , according to Lemma A.4, we have that

∥Aj+1(D(i)
noi)−Aj+1(Dnoi)∥2 ≤ ∥Aj(D(i)

noi)−Aj(Dnoi)∥2.

Therefore, since each index is chosen uniformly, we have that

E∥Aj+1(D(i)
noi)−Aj+1(Dnoi)∥2

≤ 1

n
[(1 + p)E∥Aj(D(i)

noi)−Aj(Dnoi)∥2 + 2η2t (1 + 1/p)E[∥∇ℓ(Aj(D(i)
noi); z̃i)∥

2 + ∥∇ℓ(Aj(Dnoi); zi)∥2]]

+
n− 1

n
E∥Aj(D(i)

noi)−Aj(Dnoi)∥2

=(1 +
p

n
)E∥Aj(D(i)

noi)−Aj(Dnoi)∥2 + 2
η2t
n
(1 + 1/p)E[∥∇ℓ(Aj(D(i)

noi); z̃i)∥
2 + ∥∇ℓ(Aj(Dnoi); zi)∥2]

=(1 +
p

n
)E∥Aj(D(i)

noi)−Aj(Dnoi)∥2 + 4
η2t
n
(1 + 1/p)E∥∇ℓ(Aj(Dnoi); zi)∥2.
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where the expectation is taken over the algorithm for the last step, and the dataset Dnoi,D(i)
noi . We use

the fact that E∥∇ℓ(Aj(Dnoi); zi)∥2 = E∥∇ℓ(Aj(D(i)
noi); z̃i)∥2. By iteration, we have that

E∥At(D(i)
noi)−At(Dnoi)∥2

≤4(1 + p−1)

n

∑
j∈[t]

η2j (1 + p/n)t−jE∥∇ℓ(Aj(Dnoi); zi)∥2.

By choosing p = n/t, we have that

(1 + p/n)t−j ≤ (1 + p/n)t = (1 + 1/t)t ≤ e.

Therefore, we have that

E∥At(D(i)
noi)−At(Dnoi)∥2 ≤ 4e(1 + t/n)

n

∑
j∈[t]

η2jE∥∇ℓ(Aj(Dnoi); zi)∥2.

Lemma A.6 (Bound for the last iterate gradient).

1

n

∑
i∈[n]

∥∇ℓ(At(Dnoi); zi)∥2 ≤ (
1

t
+ η2M)

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 + σ2
w(t).

Proof. We firstly notice that there exist ξ such that

∇Ln(At+1(Dnoi);Dnoi)

=∇Ln(At(Dnoi);Dnoi)−∇2Ln(ξ;Dnoi)[At+1(Dnoi)−At(Dnoi)]

=∇Ln(At(Dnoi);Dnoi)− η∇2Ln(ξ;Dnoi)[∇ℓ(At(Dnoi); zt)]

Therefore, we have that

∥∇Ln(At+1(Dnoi);Dnoi)∥2

=∥∇Ln(At(Dnoi);Dnoi)− η∇2Ln(ξ;Dnoi)[∇ℓ(At(Dnoi); zt)]∥2

=∥∇Ln(At(Dnoi);Dnoi)∥2 − η∇Ln(At(Dnoi);Dnoi)∇2Ln(ξ;Dnoi)∇ℓ(At(Dnoi); zt)

+ η2∇ℓ(At(Dnoi); zt)∇2Ln(ξ;Dnoi)∇ℓ(At(Dnoi); zt).

By taking expectation on the chosen index i, we have that

E∥∇Ln(At+1(Dnoi);Dnoi)∥2

=∥∇Ln(At(Dnoi);Dnoi)∥2 − η∇Ln(At(Dnoi);Dnoi)∇2Ln(ξ;Dnoi)∇Ln(At(Dnoi);Dnoi)

+ η2E∇ℓ(At(Dnoi); zt)∇2Ln(ξ;Dnoi)∇ℓ(At(Dnoi); zt)

≤∥∇Ln(At(Dnoi);Dnoi)∥2 + η2ME∥∇ℓ(At(Dnoi); zt)∥2

=∥∇Ln(At(Dnoi);Dnoi)∥2 + η2M
1

n

∑
i∈[n]

E∥∇ℓ(At(Dnoi); zi)∥2

By iteration, we have that

E∥∇Ln(At(Dnoi);Dnoi)∥2 ≤ η2M
1

n

∑
i∈[n]

t∑
j=k

E∥∇ℓ(Aj(Dnoi); zi)∥2 + ∥∇Ln(Ak(Dnoi);Dnoi)∥2.
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The above equation indeed holds for any iteration k, and therefore by taking average over all itera-
tions, we have that

E∥∇Ln(At(Dnoi);Dnoi)∥2

≤η2M 1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 +
1

t

∑
j∈[t]

∥∇Ln(Aj(Dnoi);Dnoi)∥2

≤η2M 1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 +
1

t

∑
j∈[t]

1

n

∑
i∈[n]

E∥∇ℓ(Aj(Dnoi); zi)∥2

=(
1

t
+ η2M)

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2

Therefore, we have that

E
1

n

∑
i∈[n]

∥∇ℓ(At(Dnoi); zi)∥2

=E∥∇Ln(At(Dnoi);Dnoi)∥2 + σ2
w(t)

≤(
1

t
+ η2M)

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 + σ2
w(t).

B PROOF OF THEOREM 5.2

Theorem 5.2 (Overparameterized Linear Regression with Gradient Descent). Under overparame-
terized linear regression regimes, we assume that r0(Σ) = o(n) and k∗ = o(n). Besides, we assume
that ∥θ∗∥2 = O(1), ∥Σx∥2 = O(1) in a constant scale. We consider GD training process with zero
initialization and constant stepsize η. For any given δ > 0 which does not vary with sample size n
and satisfies log(1/δ) = o(n), for t = ω(1)4, with probability at least 1− δ,

E(At(D);D) ≤ c log(1/δ)σ2
yT α

n (D,At) + ψ̃(n),

where ψ̃(n) → 0 as n→ ∞ and c > 0 denotes a constant.

Proof. Due to Lemma B.2, we derive that

E(At(D);D) ≤ 2E(At(Dsig);Dsig) + 2E(At(Dnoi);Dnoi).

According to Lemma B.1, since t = ω(1), r0(Σx) = o(n) and log(1/δ) = o(n), we have that

lim
n→∞

E(At(Dsig);Dsig) = 0. (9)

Besides, due to Lemma B.3, we have that

lim
n→∞

E(At(Dnoi);Dnoi) ≤ c1 log(1/δ)σ
2
yT α

n (D,At),

where we use the assumption that k∗ = o(n), and δ is unrelated to n. Therefore, we summarize the
results as

E(At(D);D) ≤ c log(1/δ)σ2
yT α

n (D,At) + ψ̃(n),

where ψ̃(n) → 0 as n→ ∞.

Lemma B.1 (Bound for signal component, Lemma (A.7) in Xu et al. (2022)). Under the overpa-
rameterized linear regression regimes,

E(At(Dsig);Dsig) ≤ c∥θ∗∥2
(

1

λt
+ ∥Σx∥max{

√
r0(Σx)

n
,
r0(Σx)

n
,

√
log(1/δ)

n
,
log(1/δ)

n
}

)
.

4The statement t = ω(1) means that t → ∞ as n → ∞.
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Lemma B.2 (Decomposition lemma, Lemma 18 in Bartlett et al. (2020)). In overparameterized
linear regression regimes, we have that

E(At(D);D) ≤ 2E(At(Dsig);Dsig) + 2E(At(Dnoi);Dnoi).

Proof. Due to the iteration of GD which is linear in y, we have that

At(D) = At(Dsig) +At(Dnoi).

Note that

E(At(D);D) = ∥At(D)− θ∗∥2Σx
,

E(At(Dsig);Dsig) = ∥At(Dsig)− θ∗∥2Σx
,

E(At(Dnoi);Dnoi) = ∥At(Dnoi)∥2Σx
.

Therefore, due to the fact that ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, we have that

E(At(D);D) ≤ 2E(At(Dsig);Dsig) + 2E(At(Dnoi);Dnoi).

Lemma B.3 (Bound for noise component). Under the assumptions in Theorem 5.2, we have that
with probability at least 1− δ

E(At(Dnoi);Dnoi) ≤ c log(1/δ)σ2
yT α

n (D,At) + c log(1/δ)σ2
y

k∗

n
,

for a given constant c > 0 which is related to log(1/δ).

Proof. For the noise component, we first notice that from Lemma C.1 in Teng et al. (2022), we have
that

At(Dsig) = X⊤[XX⊤]−1[I − [I − λ

n
XX⊤]t][Y −Xβ∗].

Therefore, due to the subGaussian assumption on Y −Xβ∗, we have that (we refer to Lemma 7 in
Bartlett et al. (2020))

E(At(Dnoi);Dnoi) ≤ cσ2
y log(1/δ)Tr[C],

where C = [[I − [I − λ
nXX

⊤]t]2[XX⊤]−1XΣxX
⊤[XX⊤]−1].

By denoting zi = Xvi/
√
λi, where λi, vi denotes the i-th eigenvalue and the corresponding eigen-

vector of matrix Σx, we have that XΣxX =
∑

i λ
2
iziz

⊤
i

TrC = Tr
∑
i

λ2i [I − [I − λ

n
XX⊤]t]2[XX⊤]−1ziz

⊤
i [XX⊤]−1.

We split the summation operator into two parts by k∗ = min{k ≥ 0, rk(Σx) ≥ bn}. For the first
part

Tr
∑
i≤k∗

λ2i [I − [I − λ

n
XX⊤]t]2[XX⊤]−1ziz

⊤
i [XX⊤]−1

=
∑
i≤k∗

λ2iTr[I − [I − λ

n
XX⊤]t]2[XX⊤]−1ziz

⊤
i [XX⊤]−1

≤
∑
i≤k∗

λ2iTr[XX
⊤]−1ziz

⊤
i [XX⊤]−1

=
∑
i≤k∗

Trλ2i [XX
⊤]−1ziz

⊤
i [XX⊤]−1

=
∑
i≤k∗

λ2i z
⊤
i [XX⊤]−2zi

≤k
∗

n
,
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where the first inequality comes from the fact that TrAB ≥ TrAC if A and B−C are both positive
semi-definite. The second inequality comes from Lemma 11 in Bartlett et al. (2020), given that
log(1/δ) = o(n).

Before considering the remaining part, we first notice that when i > k∗, we have that λi ≤
1
bn

∑
j>i λj ∑

i>k∗

λ2iziz
⊤
i

≤
∑
i>k∗

[
1

bn

∑
j>i

λj ]λiziz
⊤
i

≤[
1

bn

∑
j>k∗

λj ]
∑
i>k∗

λiziz
⊤
i

=[
1

bn

∑
j>k∗

λj ]XX
⊤.

Therefore, for the remaining part, we have that

Tr
∑
i>k∗

λ2i [I − [I − λ

n
XX⊤]t]2[XX⊤]−1ziz

⊤
i [XX⊤]−1

=Tr[XX⊤]−1[I − [I − λ

n
XX⊤]t]2[XX⊤]−1

∑
i>k∗

λ2iziz
⊤
i

≤Tr[XX⊤]−1[I − [I − λ

n
XX⊤]t]2[XX⊤]−1[

1

bn

∑
j>k∗

λj ]XX
⊤

=Tr[
1

bn

∑
j>k∗

λj ][XX
⊤]−1[I − [I − λ

n
XX⊤]t]2

≤ c1
bn

Tr[I − [I − λ

n
XX⊤]t]2.

The last inequality uses the fact that XX⊤ ≥ 1
c1

∑
j>k∗ λj for a given constant c1 (see Lemma 10

in Bartlett et al. (2020)). Besides, notice that since I − [I − λ
nXX

⊤]t is positive semi-definite, we
have that

1

n
Tr[I − [I − λ

n
XX⊤]t]2 ≤ 1

n
Tr[I − [I − λ

n
XX⊤]2t].

Besides, we notice that with high probability (concentration on y− x⊤θ∗), we have that there exists
constant c2 such that

Ln(At(Dnoi);Dnoi) ≤ (1 + c2)σ
2
yTr[I − [I − λ

n
XX⊤]2t,

Ln(A0(Dnoi);Dnoi) ≥ (1− c2)σ
2
y > 0.

where we abuse the notation c as a constant different from the above text. Therefore, with high
probability, we have that there exist constant c3, such that

c3Tr[I − [I − λ

n
XX⊤]2t] ≤ 1− Ln(At(Dnoi);Dnoi)/Ln(At(Dnoi);Dnoi).

Therefore, we have that
E(At(Dnoi);Dnoi)

≤cσ2
y log(1/δ)[

k∗

n
+ 1− Ln(At(Dnoi);Dnoi)/Ln(At(Dnoi);Dnoi)]

≤cσ2
y log(1/δ)

k∗

n
+ c log(1/δ)σ2

yT α
n (D,At).

for a constant probability δ, where we abuse the notation c as a constant independent of the data
distribution and time t.
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(a) Noised Sample (b) Learn Signal Faster (c) Learn Noise Faster

Figure 2: An illustration for REF Complexity. When the signal learning is faster, the learned de-
cision boundary becomes close to the ground truth. In opposite, if the noise learning is faster, the
decision boundary becomes close to the noise thus hard to generalize

Figure 3: An illustration for the bound of REF
Complexity

(a) GD+Signal (b) GD+Noise

(c) SGD+Signal (d) SGD+Noise

Figure 4: An illustration for Stochastic Algo-
rithms

C ILLUSTRATION

This section introduces some intuitions omitted in the main text. We first show in Figure 2 the
intuition of REF Complexity. Specifically, for a noisy dataset, if a model-algorithm pair learn signal
faster (small REF Complexity), it generalizes better (Figure (b)), and vice versa. We also show
in Figure 3 the relationship between the bound proposed in Theorem 5.1 and REF Complexity.
Additionally, we show in Figure 3 the comparison between stochastic algorithms (e.g., SGD) and
deterministic algorithms (e.g., GD). Specifically, for deterministic algorithms, each iteration reduces
the training loss. However, for stochastic algorithms, signal training can reduce the training loss due
to the same pattern, while noise training cannot.
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