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Abstract

Generalized category discovery (GCD) is proposed to handle categories from unseen labels
during the inference stage by clustering them. Most work in GCD provides solutions for
unseen classes in data-centralized settings. However, unlabeled categories possessed by
clients, which are common in real-world federated learning (FL), have been largely ignored
and degraded the performance of classic FL algorithms. To demonstrate and mitigate
the harmful effect of unseen classes, we dive into a GCD problem setting applicable for
FL named FedGCD, analyze overfitting problem in FedGCD in detail, establish a strong
baseline constructed with state-of-the-art GCD algorithm simGCD, and design a learning
framework with prompt tuning to tackle both the overfitting and communication burden
problems in FedGCD. In our methods, clients first separately carry out prompt learning
on local data. Then, we aggregate the prompts from all clients as the global prompt to
help capture global knowledge and then send the global prompts to local clients to allow
access to broader knowledge from other clients. By this method, we significantly reduce the
parameters needed to upload in FedGCD, which is a common obstacle in the real application
of most FL algorithms. We conduct experiments on both generic and fine-grained datasets
like CIFAR-100 and CUB-200, and show that our method is comparable to the FL version
of simGCD and surpasses other baselines with significantly fewer parameters to transmit.

1 Introduction
With advanced supervised learning techniques which have been greatly developed in recent years, machines
can approach human performance in some types of tasks such as classification and segmentation. However,
this enormous ability of machines relies heavily on the annotations given by people and requires a large amount
of labeled data, which may be deficient in many real scenarios due to the varying data distributions/tasks
and the substantial labor required. Several fields like domain adaptation (DA) and domain generalization
(DG) are proposed to tackle the situation where distribution changes, while all these methods fail to solve
the problem where the tasks met by the models are varied. On the other hand, cross-task transfer learning
Transfer (TL) strategies have gained great success and are widely applied with the labels of new tasks (29),
however, transfer learning can do no help to new tasks without the labels from new tasks. To deal with the
problem of the lack of labels in new tasks, novel category discovery (NCD) and generalized category discovery
(GCD) first learn a feature extractor with semi-supervised representation learning for making full use of both
the labeled and unlabeled data. Then, a non-parametric clustering or parametric classification method is
applied to cluster the unlabeled data from new tasks (32).

Most previous works in FL assume that the data from clients are fully labeled and all classes in test data
appear in training data (23). However, this assumption is becoming harder to maintain for FL systems than
in the data-centralized setting. Therefore, considering GCD problems in the FL setting is of great importance
for real-world applications. Most previous work in GCD only provides solutions for unseen classes in the
data-centralized setting, while similar situations are more common in FL as described in Section 2.4. In the
meantime, FL setting brings more challenges to the GCD problem since both representation learning and
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Figure 1: Overfitting of fine-tuning the last block with simGCD on Cifar-100. Horizontal axis represents
global training epoch in Federated Learning. Subfigure (a) shows the accuracy of global model during training
process. Subfigure (b) and (c) report accuracy and loss on local clients, respectively.

classification are more demanding to learn with distributed or even heterogeneous data in each client, which is
often encountered in FL. We found the overfitting problem of GCD even worse and more complicated in the
data distributed scenario, where each client owns significantly less data compared with the centralized setting.
In FedGCD, overfitting for labeled (old) class leads to performance descent in a novel class. Moreover, we
witness a test performance gap between local training and test data due to data deficiency to train a complete
large-scale model or even a layer of it, as demonstrated in Figure 1. We empirically show our method can
effectively alleviate the overfitting problem in FedGCD by local prompt tuning with less but more effective
trainable parameters in Section 5.6.

Moreover, the real application of FL always meets strict restrictions for communication costs. Our prompt
tuning paradigm perfectly responds to the requirement of reducing communication costs in the real employment
of FL algorithms. Previous FedGCD requires training the whole model from scratch (34) or fine-tuning
the last blocks in local clients (34; 25). Previous FedGCD methods like FedoSSL and AGCL require the
transmission of the whole local models, which typically consist of millions of trainable parameters, together
with auxiliary components such as local centroids and Gaussian mixture models. The training paradigm
causes a great communication burden for both local clients and the central server. Our method FedGCD-P
exploits recent Parameter-Efficient Fine-Tuning (PEFT) methods to tackle this challenging but important
problem: how can we effectively learn both local and global presentation without modifying a large number
of parameters, which costs unbearable communication bandwidth and demands the local client to own great
computation ability? Specifically, we adopt prompt tuning (14) to achieve this goal: by only modifying a
small number of prompt parameters, we extract useful presentation for local datasets, which makes it possible
for us to carry out FL with significantly smaller communication costs and less requirements on computation
ability of local clients, making our method far more practical and resource-friendly than previous work.

We conduct experiments on commonly-used classification datasets such as CIFAR-100 and CUB-200 with a
self-supervised pre-trained Vision Transformer DINO-ViT-B/16, demonstrating that our method obtains
state-of-the-art performance with only 0.7% parameter transmission.

We summarize our contributions as follows:

• We first discover the overfitting problem of federated generalized category discovery, which significantly
degrades the performance of previous FedGCD methods and causes heavy system overhead in federated
systems.

• We propose FedGCD-P, a FedGCD method based on prompt tuning to handle the overfitting problem
of FedGCD, and mitigate the communication burdens in generic FL settings.

• We empirically demonstrate the effectiveness of our method to be comparable or even outperform
baselines with the transmission of significantly fewer parameters due to solving the overfitting
problem.
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Figure 2: Overall Framework of FedGCD-P. The images with a solid line frame are labeled data, while the
images with a dotted line frame are unlabeled data. We fix the encoder of the Vision Transformer. At the
beginning of one federated round, Global Prompt serves as the initial value of Local Prompts, while the
Local Prompts are obtained from local fine-tuning. While at the end of the federated round, Local Prompts
aggregate by average to get Global Prompts.

2 Related Work

2.1 Federated Learning

Federated learning (FL) was first proposed by (23) as a decentralized training paradigm without sharing
training data. However, naive FedAvg faced many problems, two severe problems are (1) Data Heterogeneity:
In the real application, different distributions always occur in different clients, which violates the basic i.i.d.
(independent and identically distributed) assumptions of most machine learning algorithms. Especially when
using FedAvg, heterogeneous data will cause severe client drift. To solve this problem, plenty of works have
been proposed to restrict local updates either with a regularization term (1; 20) or by correcting the local
update (17) to prevent them from diverge too much from global model; (2) Communication cost: FedAvg ask
the full transmission of the whole model or gradients of it, which is of thousands of parameter and non-trivial
to communicate. A large number of parameter decoupling methods (3; 8; 7; 16) have been proposed to update
only part of the model to reduce the communication cost of transmitting the model or gradients, while keeping
similar or even better results compared to update the whole model. However, due to communication and
computation resource limitations, large-scale vision Transformers (ViT) are explored in FL with a relatively
low frequency. A few previous works (6; 28; 30) focused on fully supervised and close-set settings, which is
a typical setting in idealistic FL. However, when applying FL in the real world, the fully labeled data and
close-set assumption are not applicable, therefore making those works impractical in such a situation.

2.2 Federated semi-supervised Learning

To tackle the practical issue of full-supervised assumption above, there are already some works attempting
to combine unsupervised or semi-supervised together with FL, to enable real-world FL even when label
missing exists in local clients. Some of them (2; 19) utilize a model trained on labeled data to produce
pseudo labels to carry out semi-supervised learning in FL. While some previous works (36; 22) use consistency
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regularization, a semi-supervised technique commonly used, aiming at minimizing the consistency loss between
two representations of the same sample. There are also works like FedMatch (13) combining pseudo label and
consistency regularization to boost the performance of semi-supervised learning. However, all those works
assume a close-set setting, which is not completely practical in FL, e.g. some clients may have not observed
data from some classes previously and thus are not possible to correctly label them.

2.3 Generalized Category Discovery

Due to the frequent happening of unlabeled class in training data and test data. Novel category discovery
(NCD) (11) is first proposed for leveraging training data and cluster test data from unlabeled classes more
reasonably. Several previous works (10; 15; 37; 39; 40; 9) for NCD also have shown the ability to cluster
unknown class data with knowledge learned from unlabeled classes. However, these works are all based on
the assumption that all the test data comes from unknown classes, which is impractical in most application
scenarios. For example, (11) involves a procedure to predict the number of new categories in the unlabeled
data. In this process, the estimated number of classes is considered non-overlapped, and overlapped classes in
labeled and unlabeled data will bias the prediction of the number of unknown classes. Therefore, generalized
category discovery (GCD) has been proposed by (29), which extends the classes of test data to both unknown
classes in unlabeled training data and classes already appeared in labeled training data. At the same time,
Open-world Semi-supervised Learning (Open-world SSL) (4) proposed a very similar problem setting with
GCD. Later, DCCL (26) introduce Conceptional Contrastive Learning (CCL) to enhance representation
learning by exploiting hierarchical classification information, and their cluster methods follow the semi-
supervised cluster paradigm of GCD (29). While simGCD and GPC (38) propose to exploit parametric
classification (33) with prototypes learning, respectively through direct optimization and EM-like optimizing
Gaussian Mixture Models (GMM). PromptCAL (35) and SPTNet separately introduce GCD methods based
on soft prompt and spatial prompt tuning to solve GCD problems. However, all the above works discuss the
GCD problem in a centralized setting, leaving the GCD problem in the Federated setting an under-discussed
field. To the best of our knowledge, only two previous works FedoSSL (34) and AGCL (25) have discussed
the GCD problem in the Federated setting, and our work first discusses the overfitting problem of existing
GCD methods and explore prompt learning in the GCD problem in Federated setting.

2.4 Federated GCD

In federated learning, data are decentrally scattered among all clients, and it is hard to require all participants
to label local data; therefore, a great number of unlabeled data exist in FL systems. Ignoring these unlabeled
data will greatly damage the performance of federated models when faced with the same class data as the
unlabeled data and misclassify the unlabeled new class data into the labeled classes. To leverage these
unlabeled data properly and correctly cluster the new task data, formulating federate generalized category
discovery (FedGCD) and designing corresponding generalized category discovery methods to solve the FedGCD
problem is necessary and beneficial. However, to the best of our knowledge, there are only two previous
works FedoSSL (34) and FedGCD (25) attempted to solve the GCD problem under the federated setting.
Below we discuss them in detail and compare their differences with our work.

FedoSSL. In FedoSSL (34), local feature extractors is trained with unbiased semi-supervised learning loss
in local clients and aggregate all local feature extractors to obtain a global one. However, a traditional
CNN architecture is adopted by FedoSSL, which may face the problem of not having enough representation
ability due to the lack of training data in the federated setting. Different from FedoSSL, to enhance the
representation ability of the global federated learning model, we utilize prompt learning with joint training
of large-scale pre-trained visual transformer (ViT), aiming at better discovering semantic clusters in the
unlabeled data. As for the clustering of unlabeled data, a prototype learning method is exploited to carry
out clustering in the server in FedoSSL. The way of clustering with uploading local centroids may be exposed
to the risk of privacy leakage, while replacing Sinkhorn-Knopp based clustering with general k-means method
may witness a performance drop as stated in FedoSSL (34). Therefore, with a more representative feature
extractor to obtain better semantic features, we choose to take advantage of k-means to cluster the unseen
categories without auxiliary information.
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AGCL. AGCL (25) attempts to share information through the Gaussian mixture model (GMM), however,
such methods are faced with certain privacy risks, since a generative model trained with local data may reveal
private information about the clients. What’s more, AGCL (25) fine-tunes and transfers the last block of the
ViT, which costs large communication overhead as Table 2 shown and makes the method unpractical for
closed-source pre-trained model following the trend in current Large Language Models, e.g. GPT-4, Claude
3.5.

3 Problem Definition

Before introducing the FedGCD setting, we introduce the formulation of the GCD problem (29), FL
setting (23; 27) and present some preliminaries. Finally, we introduce the FedGCD setting defined in (25).

3.1 Generalized Category Discovery

Our GCD setting follows (29). Specifically, we assume that the training dataset D = Dl ∪ Du comprises
two subsets: a labeled set Dl = {xi, yi}N1

i=1 ⊂ Xl × Yl with its label space Yl = CSeen, and an unlabeled set
Du = {xi}N2

i=1 ⊂ Xu with its underlying label space Yu = C = CSeen ∪ CUnseen. Here, C, CSeen, and CUnseen

denote the label set for All, Seen, and Unseen classes, respectively. Following (29), we assume |C| is known.

3.2 Federated Learning

FL algorithms can be split into Generic FL (GFL) and Personalized FL (PFL) according to the place where
the inference happens, and they focus on different optimization goals with varied application scenarios. Below
we briefly introduce both kinds of FL. In this work, we mainly focus on the Generic FL setting.

3.2.1 Generic FL
The GFL aims to make NL clients collaboratively learn a global model parameterized as θ used to conduct
prediction on the server. Each client has its local training dataset, we denote the training dataset of client n
as DL

n . Thus, the local objective function Ln(θ) on client n is also different from client to client. The global
optimization object of GFL is defined as (17):

min
θ∈Rd

LG(θ) :=
NL∑
n=1

pnLn(θ) :=
NL∑
n=1

pnExn∈DL
n

ℓ(f(θ, xn), xn), (1)

where (xn, yn) ∈ DL
n is the sample from DL

n , f(θ, xn) is the prediction of the trained model, d is the number
of model parameters, pn > 0 and

∑NL

n=1 pn = 1. Usually, pm = NL
n

N , where NL
n denotes the number of client

n’s samples in local training dataset and N =
∑NL

n=1 NL
n . The global model refers to the model obtained

from optimizing the GFL objective.

3.2.2 Personalized FL
While the object of GFL is to learn a model suitable for all training distribution, the PFL requires less from a
single model and chooses to learn multiple personalized models fitting on local datasets separately: (7; 21):

min
Ω,θ1,...,θNL

LP (Ω, θ1, ..., θNL ) :=
NL∑
n=1

pnExn∈DL
n

ℓ(f(θn, xn), xn) + R(Ω, θ1, ..., θNL ), (2)

where Ω is the collaboration scheme of clients, R is the regularizer (7), both of which vary from algorithm to
algorithm, . The obtained personalized models are named as Personalized Models (PMs).

3.3 Federated Generalized Category Discovery

From the introduction of problem formulation of NCD and FL, We now introduce the formal formulation
of FedGCD (25). We assume there are NL clients in the FL system, and client n maintains a local model
θn. A global model is initialized in two ways according to the parameter part, (1) randomly initialized,
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(2) initialized with pre-trained model (5) like in our experiments. After initialization, the global model is
distributed to all clients, i.e. ∀n ∈ {0, 1, . . . , NL}, θn

0 = θG
0 . Given the local labeled training dataset on n-th

client DL
n,l = {(xi, yi)}

NL
n,l

i=1 ∈ XL
n,l × Yn

L with the corresponding data set XL
n,l and label set YL

n , and the local

unlabeled training dataset DL
n,u = {(xi, yi)}

NL
n,u

i=1 ∈ XL
n,u, client n is supposed to train its local model θn. In

order to keep the same setting with FedGCD (25), we also assume the label space of each client cannot be
the same as or include that of another client, i.e. for client i and j, i ̸= j, YL

i and YL
j , YL

i ∪ YL
j ̸= YL

i or YL
j .

Following the common FL setting (23), we simulate and control the data and label heterogeneity that often
exists in both real-world FL and GCD applications, with the Latent Dirichlet Sampling (Dir) partition
method (12). In our setting, we mainly consider the Generic FL setting where a global model is used for
inference by all clients in the FL system.

4 Methodology

4.1 Local Prompt Tuning

From the observation above, we think about what may cause the performance gap between training and test
data and the reason why a similar phenomenon hasn’t been observed in a centralized setting. The assumption
made by us is that the local clients own significantly fewer data samples in their number compared with
centralized settings. Moreover, less diversity due to the notorious problem called data heterogeneity in FL
significantly increases the risk of overfitting the training on local clients. To alleviate the effects brought by
those problems, we propose to apply prompt tuning for local training. To effectively tune the local prompt,
we adopt the loss style from state of art GCD algorithm (33). To further boost prompt tuning on local clients,
we also propose a loss applying to the prompt itself. As shown in Figure 2, our overall learning objective is
composed of four parts.

Loss on [CLS] token. Fine-tuning of Vision Transformers on downstream classification tasks always relies
on [CLS] token to utilize supervision information. Therefore, for prompt tuning, we follow previous works
to output class logit with a multilayer perceptron (MLP) as classification prediction and pseudo label, and
apply cross-entropy loss for comparing model prediction and label together with the pseudo label. Our loss
function on MLP consists of two parts: supervised classification loss and self-distillation loss with entropy
regularization. The denotation follows those in the Section 3.3. For the supervised part, given p(xi) is the
output logit of MLP for local sample xi ∈ DL

n , supervised classification loss is defined as

Lcls(DL
n ) = 1

NL
n,l

∑
x∈DL

n,l

CE(softmax(p(xi)), yi), (3)

, where yi is the class label of the sample xi. CE(·, ·) denotes cross-entropy loss. As for the self-distillation
part, it involves cross-entropy of output logit of xi sharpened with a relatively low temperature τs and logit
of different views (random argumentations) x′

i with a sharper temperature τt as the pseudo label.

LSD(DL
n ) = 1

NL
n

∑
xi,x′

i
∈Aug(DL

n )

xi ̸=x′
i

CE(softmax(p(xi)/τs), softmax(p(x′
i)/τt)), (4)

where Aug(DL
n ) denote the augmented local training data.

After introducing the loss function associated with the output of MLP, we also apply supervised and self-
supervised contrastive loss for better representation ability with prompts. For supervised contrastive loss,
class labels are used to identify if two samples are from the same class instead of providing direct classification
guidance, and this loss aims to reduce the distance of samples from the same class in feature space and
increase that of samples from different classes, the specific form is as follows:

Lsup−con(DL
n ) = 1

NL
n,l

∑
xi∈DL

n,l

∑
xj∈N(xi)

exp(zi, zj)∑
xn∈DL

n,l
exp(zi, zn) (5)
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where N(xi) is the set that all samples own the same label yi with xi, i.e. N(xi) = {x ∈ DL
n |yj = yi}. As for

the self-supervised contrastive loss, we define it in the following form:

Lself−con(DL
n ) = 1

NL
n

∑
xi∈DL

n

∑
xi,x′

i
∈Aug(DL

n )

xi ̸=x′
i

exp(zi, z′
i)∑

xn∈DL
n

exp(zi, z′
i)

(6)

With the four parts of loss, we have the total loss function below:

L(DL
n ) = λ ∗ (Lcls(DL

n ) + Lsup−con(DL
n )) + (1 − λ) ∗ (LSD(DL

n ) + Lsup−con(DL
n )) (7)

where λ is a hyper-parameter controlling the importance of supervised and unsupervised learning objectives.
On each client participating in current training, the overall learning objective is in the form of equation 7.

Loss on [PMT] tokens. After implementing the loss on [CLS] token, we attempted to carry out prompt
tuning on local clients, surprisingly finding prompt tuning instead of fine-tuning the whole block effectively
relieves the overfitting problem. We found that fine-tuning the prompt with only the learning objective
of the output of [CLS] token is not sufficient for full utilization of knowledge from local data, especially
the labeled data, which we will elaborate more in Section 5.3. Motivated by this observation, we thought
the lack of supervision and self-supervision on the output of prompt tokens was the root of the problem.
Therefore, we added auxiliary MLP for prompt tokens to assist the supervision from labeled samples and the
self-supervision from all samples, our overall training objective follows the above overall learning objective in
equation 7. Our empirical results show the learning objective on prompt tokens significantly improves the
representation ability of prompts.

4.2 Global Aggregation

We only aggregate the prompt part of the Vision prompt transformer. In practice, this aggregation scheme
greatly reduces the communication burden of both clients and the server, together with the storage burden of
servers in FL systems with plenty of clients. Our aggregation scheme for local prompts from participating
clients follows the classic Federated algorithm FedAvg (23), which averages the prompt from clients who take
part in the current training round by its number of training samples.

θG
t+1 =

NL∑
n=1

NL
n

N
· θn

t (8)

After aggregating the prompt parameters, the server sends the global prompt back to clients, clients update
their local prompt with the global prompt. Through this aggregation process, clients benefit from the
knowledge of other clients.

5 Experiments

5.1 Experimental Setup

Dataset. To fairly evaluate the performance of FedGCD methods, we conduct a comparison for all methods
on two commonly-used generic image classification datasets (i.e., CIFAR-10 (18), CIFAR-100 (18)) and
two fine-grained image classification datasets (i.e., CUB-200 (31), Oxford-Pet (24). We leverage the Latent
Dirichlet Sampling (Dir) partition method (12) to split the training set into NL subsets, each of which is stored
in local clients as its local training data. After partitioning the whole training dataset into heterogeneous
subsets, we sample a subset of half the classes as “Seen” categories in the original training set, and only local
data from these classes are treated as potentially labeled data. In these potentially labeled data, 50% of
instances of each labeled class are randomly sampled to form the labeled set. The remaining local data are
treated as unlabeled data when training. We set NL = 5 and partition the whole dataset into local data with
Dir(0.05) in our main experiments and explore more settings in Section 5.5 and Section 5.4.
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Table 1: Comparison of different methods on CIFAR-10, CIFAR-100, CUB-200, and Oxford-Pet datasets. §:
As ACGL (25) official implementation hasn’t been release, we collect the origin result of ACGL from (25). *:
FedoSSL failed to converge on CIFAR-10 and CIFAR-100 in our setting following their hyper-parameters,
and we rerun them with modified parameters but still failed.

Method CIFAR-10 (%) CIFAR-100 (%) Imagenet-100 (%) CUB-200 (%) Oxford-Pet (%)
All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen All Seen Unseen

5 clients (full participation)

Fed-GCD 93.3 95.3 91.3 63.6 63.4 63.8 77.3 84.7 70.0 49.1 52.4 45.9 84.6 82.8 86.4
Fed-SimGCD§ 86.4 92.3 80.4 66.0 62.1 69.8 76.3 88.7 63.8 63.0 63.4 62.5 82.6 81.9 83.3

FedoSSL* 65.6 65.5 65.7 29.6 33.2 26.0 46.6 59.1 34.0 52.0 56.5 47.7 76.0 84.5 67.0
AGCL 82.5 83.4 82.2 54.2 54.6 54.0 73.1 78.1 67.0 53.1 52.9 54.2 81.4 82.0 80.7

FedGCD-P 94.1 94.0 94.1 69.3 71.3 67.2 79.0 87.3 70.8 61.3 63.5 59.2 83.1 85.4 80.7

Table 2: # parameters needed to transmit versus methods on CIFAR-100.

Method Fed-GCD Fed-SimGCD FedoSSL AGCL FedGCD-P

# Parameters 7.1M 7.1M 7.9M 8.7M 55.3k

Evaluation Protocols. Different from GCD who use the semi-supervised k-means to evaluate the final
performance of models, we evaluate the global model performance with clustering accuracy (ACC) of prediction
directly with k-means for all methods except for FedoSSL. We choose k-means because (1) it is more efficient
in terms of running time; (2) differences between semi-supervised k-means and k-means have little effect
on the comparison of different GCD methods. We follow the original evaluation method of FedoSSL due
to its contribution related to its novel classifier calibration module. The cluster accuracy is defined as
ACC = 1

M

∑M
i=1 1(yi, p∗(ŷi)), where yi denotes the ground truth label, and ŷi denotes the prediction given

by k-means on extracted features, p∗(·) denotes the optimal permutation maximize the ACC of the overall
predictions. Besides overall clustering accuracy testing on ’All’ classes, we also measure the clustering accuracy
for “Seen” and “Unseen” categories individually. Following common practice in GCD, we apply k-means on
the feature outputted by [CLS] token of ViT to get the final clustering results.

Baselines and implementation details. We compare FedGCD-P with two strong baselines adapted from
centralized GCD. GCD (29) is the most classic algorithm designed for GCD problems, while simGCD (33)
is the state-of-the-art method for GCD in the centralized setting. Specifically, we utilize the original GCD
methods in local client training to fine-tune the last block of ViT in both methods, and aggregate the trained
local model with FedAvg (23). We also compare FedGCD-P with existing FedGCD works FedoSSL (34) and
AGCL (25). As ACGL (25) official implementation hasn’t been released, we collect the baseline result of
ACGL from (25). We set the batch size to 128 for all methods and datasets. All methods are optimized by
SGD with a momentum of 0.9 and weight decay of 1 × 10−4 for 200 epochs with a cosine annealing schedule
starting from a learning rate of 0.1. All methods use dino-vitb16 (5) as the backbone. The hyper-parameters
λ controlling weight of supervised and self-supervised learning are set to 0.35 for Fed-GCD, Fed-SimGCD,
and FedGCD-P. During training process, we define the initial random seed as 2023, then the random seed is
increased by 1 every global round, while when federatedly partitioning the datasets, the random seed is set
as 0. Our local training epoch is set as 1. Other parameters and implementation details follow the official
implementation of baselines.

Hardware and Software Configuration. We conduct experiments using NVIDIA V100 32GB GPU, 20
Intel(R) Xeon(R) Silver 4114 CPUs @ 2.20GHz. The operating system is Oracle Linux 8 (x86_64) UEK
Release 6. The pytorch version is 1.12.1. The numpy version is 2.0.1. The cuda version is 11.8. All our
experiments are carried out in a single GPU to avoid unexpected influence on contrastive learning of splitting
batch data to multiple GPUs.
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5.2 Experiment Results

From Table 1, we observe that FedGCD-P significantly outperforms other baselines on the CIFAR-10 and
CIFAR-100, while FedGCD-P ranked second in both CUB-200 and Oxford-Pet with slight with the best
results. What’s notable for the advantage of FedGCD-P is its significantly lower communication cost compared
with other baselines. As shown in Table 2, FedGCD-P transmits only 0.70 ∼ 0.78% of parameter compared
with baselines. This advantage is in the requirement of real-world FL applications where many clients like
edge devices may be short of communication bandwidth.

5.3 Ablation Study of FedGCD-P

We attempt to explain the effects of the components in our methods, with analysis towards different loss
terms of FedGCD-P: (1) self-supervised contrastive loss(self-CL); (2) supervised contrastive loss (sup-CL);
(3) self-distillation loss with entropy regularization (SD); (4) supervised classification loss (CLS); (6) loss on
prompt tokens (L-PMT) and (5) prompt. We have the following observation and conclusion: (1) imbalance
between supervised and unsupervised learning has a catastrophic effect on FedGCD methods, which may
lead to failure of convergence, e.g. (1) and (3) columns of Table 3, we believe this unique issue with FedGCD
problems is associate with its decentralized setting and great heterogeneity make naive FedAvg aggregation
unstable for the convergence of the global model, so we claim a more robust aggregation scheme is required
to help more robust convergence of FedGCD methods, and believe it to be a promising future direction for
FedGCD problems; (2) we show all components of our method FedGCD-P except for L-PMT is vital for
achieving the best performance on FedGCD problems, especially the improvement brought by introducing
prompt tuning, which we will experimentally verify later in Section 5.6.

Table 3: Ablation Study of FedGCD-P.

CIFAR-100 (%) Oxford-Pet (%)
self-CL sup-CL SD CLS PMT L-PMT All Seen Unseen All Seen Unseen

(1) ✓ ✗ ✗ ✗ ✗ ✗ 55.0 56.3 53.7 75.7 66.5 85.6
(2) ✓ ✓ ✗ ✗ ✗ ✗ 63.6 63.4 63.8 84.6 82.8 86.4
(3) ✓ ✓ ✓ ✗ ✗ ✗ 56.5 55.6 57.4 78.9 68.2 90.2
(4) ✓ ✓ ✓ ✓ ✗ ✗ 66.0 62.1 69.8 82.6 81.9 83.3
(5) ✓ ✓ ✓ ✓ ✓ ✗ 69.9 68.4 71.5 85.9 86.9 84.9

(6) ✓ ✓ ✓ ✓ ✓ ✓ 69.3 71.3 67.2 83.1 85.4 80.7

5.4 FedGCD-P under different degrees of heterogeneity

In this section, we discuss a significant problem in FL named data heterogeneity, and empirically show
the robustness towards different degrees of heterogeneity of baselines and our method. From Table 4, we
found besides the abnormal convergence of FedoSSL, all baselines suffered with the increase of heterogeneity
from Dir(0.2) to Dir(0.05), especially Fed-SimGCD. The performance of FedGCD-P is at a medium level
compared with other baselines.

5.5 FedGCD-P under different numbers of clients

In this section, we test the scalability of different methods in our FedGCD setting. We compare the
performance of all methods under the FL system with 5 clients and 10 clients. In both settings, all clients
participate in the local training and upload their local models for aggregation. From Table 5, we see the
growth of the number of clients only slightly influences the performance of FedGCD-P and witness a relatively
balanced decrease instead of in Fed-SimGCD, whose ’Seen’ is increased while ’Unseen’ greatly decreases. The
phenomena show the supervised and unsupervised learning in FedGCD-P is relatively balanced. We attribute
the good scalability to the alleviation of the overfitting problem in local data, which deteriorates with the
increase of the number of clients and decrease of data samples on each client.
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Table 4: Comparison of different degrees of heterogeneity Dir(0.2) and Dir(0.05), NL = 5, on dataset
CIFAR-100.*: we found FedoSSL cannot converge on CIFAR-10 and CIFAR-100 in our setting following
their hyper-parameters and we attempt to rerun them with modified parameters but still cannot converge
normally.

Heterogeneity Dir(0.2) Dir(0.05)
All Seen Unseen All Seen Unseen

5 clients (full participation)

Fed-GCD 66.0 64.6 67.3 63.6 63.4 63.8
Fed-SimGCD 71.6 69.9 73.3 66.0 62.1 69.8

FedoSSL* 30.1 26.3 33.9 52.0 56.5 47.7
AGCL 56.1 56.8 55.3 54.2 54.6 54.0

FedGCD-P 71.7 72.6 70.8 69.3 71.3 67.2

Table 5: Comparison of different methods on NL = 5 and NL = 10, on dataset CIFAR-100, with Dir(0.05). *:
we found FedoSSL cannot converge on CIFAR-100 in our setting following their hyper-parameters and we
attempt to rerun them with modified parameters but still cannot converge normally.

#clients 5 10
All Seen Unseen All Seen Unseen

Fed-GCD 63.6 67.1 63.8 62.7 64.7 60.6
Fed-SimGCD 66.0 62.1 69.8 63.6 67.7 59.4

FedoSSL* 52.0 56.5 47.7 45.8 44.0 47.6
AGCL 54.2 54.6 54.0 52.2 53.6 52.4

FedGCD-P 69.3 71.3 67.2 69.0 71.1 66.9

5.6 Prompt can effectively alleviate overfitting

We empirically testify our motivation that prompt tuning can be utilized to alleviate the overfitting problem
of local training. From Figure 3, other baselines’ performances constantly decrease with the communication
round after a short period of increase. It is clearly observed that FedGCD-P prevents the overfitting of the
global model.

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

FedGCD-P
Fed-SimGCD
Fed-GCD
FedoSSL

(a) CIFAR-100

0 50 100 150 200
0.2

0.4

0.6

A
cc

ur
ac

y

FedGCD-P
Fed-SimGCD
Fed-GCD
FedoSSL

(b) CUB-200

Figure 3: Performance of all methods on CIFAR-100 and CUB-200 with Dir(0.05), 5 clients.

6 Conclusion

In this paper, we introduce and formulate a federated generalized category discovery setting. We observe
and dive into the common phenomena of overfitting problems in this FedGCD setting. We propose a
global FedGCD framework based on a prompt tuning framework to solve the problem. We also show some
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intermediate experiment results on both generalized and fine-grained datasets, and empirically testify our
claim that we can significantly alleviate overfitting by fine-tuning prompt instead of ViT itself.
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