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Abstract

A core goal in artificial intelligence (AI) is to build machines that learn like brains.1

Many AI systems, including convolutional neural networks (CNNs) and vision2

transformers (ViTs), rival human adults on visual recognition tasks. But, do these3

AI systems actually learn like brains? If so, AI systems should produce the same4

learning outcomes as brains when trained with the same data. Here, we tested5

whether AI systems learn the same object recognition skills as newborn chicks6

when trained in the same visual environments as chicks. We performed digital twin7

studies of prior controlled-rearing experiments, evaluating whether CNNs and ViTs8

produce the same pattern of successes and failures as chicks. When ViTs were9

equipped with a biologically inspired temporal learning objective, the ViTs showed10

the same learning patterns as chicks: both learned object recognition when reared11

with normal objects, but failed to learn object recognition when reared with line12

drawings. Conversely, when CNNs were equipped with the same temporal learning13

objective, the CNNs showed a different pattern from chicks: CNNs learned object14

recognition whether exposed to normal objects or line drawings. These results show15

that transformers can be accurate image-computable models of visual learning.16

1 Introduction17

A major scientific and engineering goal is to build machines that learn like brains. For science, this18

would provide working models for simulating how brains learn to perceive and understand the world.19

For engineering, this would provide systems that learn with the same power and efficiency as brains.20

The past decade has produced dozens of success stories in which machines match or exceed the21

abilities of humans. For example, convolutional neural networks (CNNs) and vision transformers22

(ViTs) can achieve high levels of performance on a range of tasks, including object recognition [1, 2],23

action recognition [3], scene perception [4], object segmentation [5], optic flow perception [6], and24

navigation [7].25

But, do AI systems actually learn like brains (i.e., produce the same learning outcomes when trained26

with the same data)? As many researchers have pointed out [8–11], the training regimes faced by27

animals and machines differ radically. AI systems are typically trained on massive datasets (e.g.,28

millions of images and videos across thousands of object categories and environments), whereas29

animals spend their postnatal lives in one environment surrounded by a handful of objects and30

caregivers. On face, there seems to be a massive mismatch between the volume and variety of31

training data needed by machines versus animals. Accordingly, AI systems are often regarded as32

data hungry systems, “gorging on hundreds of terabytes of data,” whereas brains are thought to be33

“efficient and even elegant systems that operate with small amounts of information” [12]. From this34

perspective, learning in brains and machines is nothing alike.35

The view that AI systems are data hungry rests on the assumption that the visual experiences of new-36

borns are impoverished and noisy, a “blooming, buzzing confusion” [13]. However, recent work from37
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Figure 1: Design and Results. (1) Deep neural networks (DNNs) and newborn chicks were reared
in the same visual environments, containing either normal objects or line drawings. (2) DNNs and
chicks were tested with the same object recognition tasks. (3) Chicks and vision transformers (ViTs)
showed common patterns of development: both learned object recognition when reared with normal
objects, and both failed to learn object recognition when reared with line drawings. In contrast,
convolutional neural networks (CNNs) learned object recognition in both conditions.

developmental psychology suggests that the opposite is true: The first-person views acquired by babies38

are temporally and spatially rich [14]. By moving their bodies and heads, babies produce large num-39

bers of diverse, high-quality object views that are well suited for learning[10, 15]. In fact, when first-40

person views from babies are used to train CNNs and ViTs, the models learn core visual skills [9, 11].41

Thus, the gap between human and machine vision might not be as great as previously thought [16].42

Human infants acquire a rich visual diet filled with many objects, people, and environments.43

However, biological visual systems can learn effectively even in impoverished worlds. For example,44
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newborn chicks learn object perception in worlds that contain just a single object [17–20]. Can45

CNNs and ViTs learn in the same impoverished environments faced by newborn animals?46

Digital twin studies [21] are designed to tackle this question, by raising animals and machines in the47

same environments and testing them with the same tasks. Researchers control and match the training48

data from which brains and machines learn, allowing for direct comparison of learning outcomes.49

Prior digital twin studies show that AI algorithms show common learning successes as newborn50

animals. When CNNs [22, 23] or ViTs [8] are trained on first-person views of agents exploring51

virtual animal chambers that mimic the rearing conditions of chicks, CNNs and ViTs learn the same52

object recognition skills as chicks. These results contradict the view that AI algorithms are more53

data hungry than brains.54

The discovery that both CNNs and ViTs can learn effectively in the impoverished environments faced55

by newborn animals raises a new challenge: how do we distinguish between these model classes? On56

one hand, CNNs might be the more accurate model class because CNNs and newborn visual systems57

are both hierarchically and retinotopically organized [24, 25]. On the other hand, the visual system’s58

receptive field structure could be an emergent property of even more foundational (and generic)59

learning machinery. For instance, fully connected neural networks learn convolutional structures60

when trained on data with non-Gaussian, higher-order local structure [26]. During prenatal develop-61

ment, brains are shaped by spontaneous retinal waves, which have a non-Gaussian, higher-order local62

structure [27]. Thus, brains could learn a hierarchical and retinotopic organization during prenatal63

development, powered by more generic learning mechanisms. If so, the core learning machinery64

driving visual intelligence would not be CNN-like; rather, it might be more like a transformer. Indeed,65

ViTs learn CNN-like receptive field structures when trained on natural images [28]. The core com-66

putations in transformers also closely match those in the neuron–astrocyte network in the brain [29],67

raising the possibility that ViTs are the more accurate model of the core learning algorithm in brains.68

We tested this hypothesis by evaluating whether CNNs and ViTs show the same successes and69

failures as newborn chicks. Newborn chicks learn better from some experiences than others, so by70

examining whether CNNs and ViTs show the same pattern of successes and failures as newborn71

chicks across studies, we can measure which model class learns more like brains. We focused on72

visual learning from normal objects versus line drawings (objects lacking surface features, Fig. 1).73

If a chick’s visual environment contains normal objects with surface features, then chicks learn to74

recognize objects across familiar and novel viewpoints [17]. But, if a chick’s environment contains75

line drawings, then chicks fail to develop object recognition [30]. For newborn brains, a visual diet76

of line drawings is insufficient to learn object recognition.77

Line drawings for studying vision. Line drawings have been used for decades to study object78

recognition. Many studies show that human adults can readily recognize objects depicted in line79

drawings (e.g., [31–34]). This ability develops rapidly. Infants show enhanced attention to lines80

that depict corners and edges in the first year of life [35], and young children use lines to depict81

objects in their earliest attempts to draw the world [36]. Humans have used line drawings to depict82

scenes since prehistoric times [37, 38]. There is also evidence that nonhuman animals can recognize83

line drawings, including chimpanzees [39, 40] and pigeons [41].84

None of these studies, however, tested humans or animals at the beginning of life. All of the subjects85

had already acquired months to years of visual experience with real-world objects before they were86

tested. To explore whether newborn brains can recognize line drawings, Wood and Wood [30] used87

controlled rearing. The researchers raised newborn chicks in automated controlled-rearing chambers88

that contained a single object, then tested the chicks’ ability to recognize that object across novel89

viewpoints. When chicks were reared with an object that had surface features, the chicks developed90

view-invariant object recognition. However, when chicks were reared with a line drawing of an91

object, the chicks failed to develop object recognition. Do CNNs and ViTs show this same learning92

pattern? We address this question through digital twin experiments, raising CNNs and ViTs in the93

same visual environments as chicks and testing them with the same tasks.94

2 Methods95

Architecture. We used two architectures (CNNs and ViTs) because both are high-performing model96

classes on a range of visual recognition tasks [42–44] and because the models differ in terms of their97

hardcoded inductive biases. CNNs have a strong spatial bias. The convolutional operation reflects98
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the spatial structure of natural images, allowing CNNs to generalize well from small datasets and99

learn useful feature hierarchies that capture the structure of visual images [45, 46]. Conversely, ViTs100

are generic learning algorithms that do not have hardcoded knowledge about objects or space [43].101

Instead, ViTs learn through flexible (learned) allocation of attention that does not assume any spatial102

(or object) structure.103

Objective Function. For each experiment, we performed comparisons between CNNs and ViTs that104

had the same temporal learning objective function. Based on decades of empirical and theoretical105

work in neuroscience, we hypothesized that unsupervised temporal learning (UTL) drives visual106

development in the brain [47–52]. According to UTL models, brains build object representations107

by adapting to the spatiotemporal statistics of the animal’s visual environment. The key assumption108

underlying UTL is that distal scene variables (e.g., curvature, depth, orientation, texture, shape) vary109

slowly over time in natural visual environments. Thus, in principle, brains could learn distal scene110

variables by encoding statistical regularities across successive changes in proximal retinal images111

(see Appendix A.4 for details).112

Our models were initially untrained (no pre-training), and during training, the models were trained113

on simulated first-person visual experiences from chicks. Like the chicks, the models’ visual diet114

was limited to a single object in a controlled-rearing chamber.115

Training Data We used behavioral benchmarks from newborn chicks because chicks can be raised116

in strictly controlled environments from the onset of vision, providing strict control of all visual117

experiences (training data) acquired by the animal [53]. This control over training data is essential for118

directly comparing learning across animals and machines. Chicks can also inform our understanding119

of human vision because avian brains have similar cells and circuitry as mammalian brains [54–56],120

as well as a similar large-scale organization, including a hierarchy of sensory information processing,121

hippocampus regions, and associative areas.122

To simulate the visual experiences of newborn chicks, we created realistic digital twins of the123

controlled-rearing chambers in a video game engine (Unity 3D). Then, we simulated the visual124

diet available in the chick’s environment by recording the first-person images acquired by an agent125

moving through the virtual chambers. We collected 80,000 first-person images in each of the rearing126

conditions and used those images to train the CNNs and ViTs (see Appendix section A.2 for details).127

3 Results128

3.1 Experiment 1: 60° object rotation experience129

In Experiment 1 (Fig. 1, left), we focused on the view-invariant object recognition task and130

data reported in Wood [17] and Wood & Wood [30]. Newborn chicks were hatched in darkness,131

then raised singly in automated controlled-rearing chambers that measured each chick’s behavior132

continuously (24/7) during the first two weeks of life. The chambers were equipped with two display133

walls (LCD monitors) for displaying object stimuli. The chambers did not contain any objects other134

than the virtual objects projected on the display walls, providing control over all object experiences135

acquired by the animal from the onset of vision.136

During the training phase, chicks were reared in an environment containing a single virtual object rotat-137

ing through a 60° viewpoint range. This virtual object was the only object in the chick’s environment.138

The chicks were raised in this environment for 1 week, allowing the critical period on filial imprinting139

to close. The chicks were raised and tested with either line drawings or objects with surface features.140

During the test phase, the chicks were tested on their ability to recognize the imprinted object across141

12 in-depth viewpoint changes. On each test trial, the imprinted object appeared on one display wall142

and an unfamiliar object appeared on the opposite display wall. Test trials were scored as correct when143

the chicks spent a greater proportion of time with their imprinted object and incorrect when the chicks144

spent a greater proportion of time with the unfamiliar object. The viewpoint changes introduced large,145

novel, and complex changes in the object’s appearance. Nevertheless, as shown in Fig. 1 (Panel 3, left),146

the chicks reared with surface-feature objects successfully recognized their imprinted object across147

the novel viewpoints. From a visual diet of a single object, chicks can learn view-invariant object148

representations. In contrast, when chicks were reared with line drawings of that same object, the chicks149

never learned to recognize objects. The chicks reared with the line drawings performed at chance level,150

despite acquiring over 100 hours of visual experience with the line drawings during the training phase.151
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To compare learning across chicks, CNNs, and ViTs, we performed matching controlled-rearing152

experiments on CNNs and ViTs (Fig. 1, Panels 1 & 2). We created digital twins of the controlled-153

rearing chambers, then simulated the visual diet in those chambers and used those simulated data154

streams to train CNNs and ViTs. We then tested the models with the same stimuli used to test the155

chicks. The chicks and models were trained in the same visual environment and tested on the same156

task, allowing for direct comparison of their learning outcomes.157

Fig. 1 (Panel 3, left), shows the performance of CNNs (SimCLR-CLTT) and ViTs (ViT-CoT) in158

the surface feature and line drawing conditions. SimCLR-CLTT succeeded at the task, learning159

view-invariant object representations in both conditions. In contrast, ViT-CoT showed the same160

learning pattern as chicks: ViT-CoT succeeded when learning from normal objects, but failed when161

learning from line drawings.162

3.2 Experiment 2: 360° of object rotation experience163

To validate this conclusion under different conditions, we performed a second digital twin experiment164

of prior controlled-rearing studies [30, 57](Fig. 1, middle). Rather than presenting the objects from165

a 60° viewpoint range, the objects moved through a 360° viewpoint range, completing an in-depth166

rotation every 15 seconds. The chicks, CNNs, and ViTs were thus exposed to six times as many167

unique views of the object during the training phase. In the test phase, we tested whether the models168

could recognize the imprinted object across novel viewpoints, by rotating the object around novel169

axes of rotation (Fig. 1, Panels 1 & 2).170

As shown in Fig. 1 (Panel 3, middle), when chicks were reared with an object with surface features,171

the chicks built view-invariant representations that generalized across large, novel, and complex172

changes in the object’s appearance [57]. When chicks were reared with line drawings, they performed173

at chance level, despite acquiring over 100 hours of visual experience with the line drawings during174

the training phase [30]. Fig. 1 (Panel 3, middle) shows the performance of SimCLR-CLTT and175

ViT-CoT in the surface feature and line drawing conditions. Again, SimCLR-CLTT succeeded on the176

task, learning view-invariant object representations in both conditions. In contrast, ViT-CoT showed177

the same learning pattern as the chicks. ViT-CoT succeeded when learning from normal objects,178

but failed when learning from line drawings.179

3.3 Experiment 3: Looming 2D shapes180

To validate our results with different object stimuli, we performed a third digital twin experiment of181

prior controlled-rearing studies [30, 58]. These studies used simple two-dimensional objects, rather182

than complex three-dimensional objects. During the training phase, the chicks were presented with183

a sequence of four looming shapes (Fig. 1, right). During the test phase, the chicks were tested on184

their ability to distinguish familiar shapes from novel shapes.185

When chicks were reared with a sequence of shapes containing surface features, they reliably186

distinguished familiar from novel shapes [58]. In contrast, when reared with a sequence of line187

drawing shapes, the chicks failed to distinguish familiar from novel shapes [30]. Fig. 1 (Panel 3,188

right) shows the performance of SimCLR-CLTT and ViT-CoT in the surface feature and line drawing189

conditions. SimCLR-CLTT performed equally well in the surface features and lines conditions.190

Conversely, ViT-CoT, like the chicks, showed impaired recognition when learning from line drawings.191

4 Conclusion192

Do AI systems learn like brains? We trained CNNs and ViTs on simulated visual experiences from193

newborn chicks, and found that temporal learning ViTs (ViT-CoT) showed the same learning patterns194

as chicks. Both ViT-CoT and chicks learned object recognition when reared with normal objects,195

but failed to learn object recognition when reared with line drawings. Conversely, CNNs equipped196

with the same temporal learning objective as the ViTs (SimCLR-CLTT) did not show this pattern:197

SimCLR-CLTT learned object recognition from both normal objects and line drawings. Appendix198

A.1 contains additional experiments using alternative architectures and objective functions, and199

Appendix A.7 contains a more detailed discussion of the limitations and broader impacts of this200

work. Transformers, but not CNNs, showed the same visual learning pattern as chicks. We conclude201

that transformers can be accurate image-computable models of visual learning in newborn brains.202
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NeurIPS Paper Checklist388

1. Claims389

Question: Do the main claims made in the abstract and introduction accurately reflect the390

paper’s contributions and scope?391

Answer: [Yes] ,392

Justification: Our main claim is that ViTs that learn with contrastive learning through time393

show the same pattern of successes and failures as newborn chick (when trained with the394

same training environment and tested with the same tasks). This is supported, in particular,395

by Figure 2.396

Guidelines:397

• The answer NA means that the abstract and introduction do not include the claims398

made in the paper.399

• The abstract and/or introduction should clearly state the claims made, including the400

contributions made in the paper and important assumptions and limitations. A No or401

NA answer to this question will not be perceived well by the reviewers.402

• The claims made should match theoretical and experimental results, and reflect how403

much the results can be expected to generalize to other settings.404

• It is fine to include aspirational goals as motivation as long as it is clear that these goals405

are not attained by the paper.406

2. Limitations407

Question: Does the paper discuss the limitations of the work performed by the authors?408

Answer: [Yes]409

Justification: Yes, we discuss the limitations of our work in Appendix Section A.7.2410

(Limitations).411

Guidelines:412

• The answer NA means that the paper has no limitation while the answer No means that413

the paper has limitations, but those are not discussed in the paper.414

• The authors are encouraged to create a separate "Limitations" section in their paper.415

• The paper should point out any strong assumptions and how robust the results are to416

violations of these assumptions (e.g., independence assumptions, noiseless settings,417

model well-specification, asymptotic approximations only holding locally). The authors418

should reflect on how these assumptions might be violated in practice and what the419

implications would be.420

• The authors should reflect on the scope of the claims made, e.g., if the approach was421

only tested on a few datasets or with a few runs. In general, empirical results often422

depend on implicit assumptions, which should be articulated.423

• The authors should reflect on the factors that influence the performance of the approach.424

For example, a facial recognition algorithm may perform poorly when image resolution425

is low or images are taken in low lighting. Or a speech-to-text system might not be426

used reliably to provide closed captions for online lectures because it fails to handle427

technical jargon.428

• The authors should discuss the computational efficiency of the proposed algorithms429

and how they scale with dataset size.430

• If applicable, the authors should discuss possible limitations of their approach to431

address problems of privacy and fairness.432

• While the authors might fear that complete honesty about limitations might be used by433

reviewers as grounds for rejection, a worse outcome might be that reviewers discover434

limitations that aren’t acknowledged in the paper. The authors should use their best435

judgment and recognize that individual actions in favor of transparency play an impor-436

tant role in developing norms that preserve the integrity of the community. Reviewers437

will be specifically instructed to not penalize honesty concerning limitations.438

3. Theory Assumptions and Proofs439
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Question: For each theoretical result, does the paper provide the full set of assumptions and440

a complete (and correct) proof?441

Answer: [NA]442

Justification: Our work does not include any theoretical proofs or mathematical derivations.443

Guidelines:444

• The answer NA means that the paper does not include theoretical results.445

• All the theorems, formulas, and proofs in the paper should be numbered and cross-446

referenced.447

• All assumptions should be clearly stated or referenced in the statement of any theorems.448

• The proofs can either appear in the main paper or the supplemental material, but if449

they appear in the supplemental material, the authors are encouraged to provide a short450

proof sketch to provide intuition.451

• Inversely, any informal proof provided in the core of the paper should be complemented452

by formal proofs provided in appendix or supplemental material.453

• Theorems and Lemmas that the proof relies upon should be properly referenced.454

4. Experimental Result Reproducibility455

Question: Does the paper fully disclose all the information needed to reproduce the main ex-456

perimental results of the paper to the extent that it affects the main claims and/or conclusions457

of the paper (regardless of whether the code and data are provided or not)?458

Answer: [Yes]459

Justification: We provide detailed instructions for each experiment in Sections 3.1, 3.2, and460

3.3, and instructions for generating the datasets in Appendix A.2. Additionally, information461

on training and testing the models can be found in Appendix Sections A.3, A.4, A.5, and462

A.6. Code and data for reproducibility are provided in Appendix Section A.8.463

Guidelines:464

• The answer NA means that the paper does not include experiments.465

• If the paper includes experiments, a No answer to this question will not be perceived466

well by the reviewers: Making the paper reproducible is important, regardless of467

whether the code and data are provided or not.468

• If the contribution is a dataset and/or model, the authors should describe the steps taken469

to make their results reproducible or verifiable.470

• Depending on the contribution, reproducibility can be accomplished in various ways.471

For example, if the contribution is a novel architecture, describing the architecture fully472

might suffice, or if the contribution is a specific model and empirical evaluation, it may473

be necessary to either make it possible for others to replicate the model with the same474

dataset, or provide access to the model. In general. releasing code and data is often475

one good way to accomplish this, but reproducibility can also be provided via detailed476

instructions for how to replicate the results, access to a hosted model (e.g., in the case477

of a large language model), releasing of a model checkpoint, or other means that are478

appropriate to the research performed.479

• While NeurIPS does not require releasing code, the conference does require all submis-480

sions to provide some reasonable avenue for reproducibility, which may depend on the481

nature of the contribution. For example482

(a) If the contribution is primarily a new algorithm, the paper should make it clear how483

to reproduce that algorithm.484

(b) If the contribution is primarily a new model architecture, the paper should describe485

the architecture clearly and fully.486

(c) If the contribution is a new model (e.g., a large language model), then there should487

either be a way to access this model for reproducing the results or a way to reproduce488

the model (e.g., with an open-source dataset or instructions for how to construct489

the dataset).490

(d) We recognize that reproducibility may be tricky in some cases, in which case491

authors are welcome to describe the particular way they provide for reproducibility.492

In the case of closed-source models, it may be that access to the model is limited in493
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some way (e.g., to registered users), but it should be possible for other researchers494

to have some path to reproducing or verifying the results.495

5. Open access to data and code496

Question: Does the paper provide open access to the data and code, with sufficient instruc-497

tions to faithfully reproduce the main experimental results, as described in supplemental498

material?499

Answer: [Yes]500

Justification: We provide open access to our datasets and the models with detailed instruc-501

tions on our GitHub page in Appendix Section A.8.502

Guidelines:503

• The answer NA means that paper does not include experiments requiring code.504

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/505

public/guides/CodeSubmissionPolicy) for more details.506

• While we encourage the release of code and data, we understand that this might not be507

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not508

including code, unless this is central to the contribution (e.g., for a new open-source509

benchmark).510

• The instructions should contain the exact command and environment needed to run to511

reproduce the results. See the NeurIPS code and data submission guidelines (https:512

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.513

• The authors should provide instructions on data access and preparation, including how514

to access the raw data, preprocessed data, intermediate data, and generated data, etc.515

• The authors should provide scripts to reproduce all experimental results for the new516

proposed method and baselines. If only a subset of experiments are reproducible, they517

should state which ones are omitted from the script and why.518

• At submission time, to preserve anonymity, the authors should release anonymized519

versions (if applicable).520

• Providing as much information as possible in supplemental material (appended to the521

paper) is recommended, but including URLs to data and code is permitted.522

6. Experimental Setting/Details523

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-524

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the525

results?526

Answer: [Yes]527

Justification: We provide all experimental details relevant to replicating our results in528

the Appendix. Additionally, we also provide information on our computational models529

(architecture and objective function) in Section 2 (Methods).530

Guidelines:531

• The answer NA means that the paper does not include experiments.532

• The experimental setting should be presented in the core of the paper to a level of detail533

that is necessary to appreciate the results and make sense of them.534

• The full details can be provided either with the code, in appendix, or as supplemental535

material.536

7. Experiment Statistical Significance537

Question: Does the paper report error bars suitably and correctly defined or other appropriate538

information about the statistical significance of the experiments?539

Answer: [Yes]540

Justification: We include error bars (showing Standard Error) in all of our bar charts (reported541

in Fig 1, Panel 3).542

Guidelines:543

• The answer NA means that the paper does not include experiments.544
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-545

dence intervals, or statistical significance tests, at least for the experiments that support546

the main claims of the paper.547

• The factors of variability that the error bars are capturing should be clearly stated (for548

example, train/test split, initialization, random drawing of some parameter, or overall549

run with given experimental conditions).550

• The method for calculating the error bars should be explained (closed form formula,551

call to a library function, bootstrap, etc.)552

• The assumptions made should be given (e.g., Normally distributed errors).553

• It should be clear whether the error bar is the standard deviation or the standard error554

of the mean.555

• It is OK to report 1-sigma error bars, but one should state it. The authors should556

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis557

of Normality of errors is not verified.558

• For asymmetric distributions, the authors should be careful not to show in tables or559

figures symmetric error bars that would yield results that are out of range (e.g. negative560

error rates).561

• If error bars are reported in tables or plots, The authors should explain in the text how562

they were calculated and reference the corresponding figures or tables in the text.563

8. Experiments Compute Resources564

Question: For each experiment, does the paper provide sufficient information on the com-565

puter resources (type of compute workers, memory, time of execution) needed to reproduce566

the experiments?567

Answer: [Yes]568

Justification: We provide all the relevant information in Appendix Section A.6 (Training569

Details).570

Guidelines:571

• The answer NA means that the paper does not include experiments.572

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,573

or cloud provider, including relevant memory and storage.574

• The paper should provide the amount of compute required for each of the individual575

experimental runs as well as estimate the total compute.576

• The paper should disclose whether the full research project required more compute577

than the experiments reported in the paper (e.g., preliminary or failed experiments that578

didn’t make it into the paper).579

9. Code Of Ethics580

Question: Does the research conducted in the paper conform, in every respect, with the581

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?582

Answer: [Yes]583

Justification: Yes, all author(s) in this paper have reviewed the NeurIPS Code of Ethics and584

abide by its rules.585

Guidelines:586

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.587

• If the authors answer No, they should explain the special circumstances that require a588

deviation from the Code of Ethics.589

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-590

eration due to laws or regulations in their jurisdiction).591

10. Broader Impacts592

Question: Does the paper discuss both potential positive societal impacts and negative593

societal impacts of the work performed?594

Answer: [Yes]595
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Justification: We include a Broader Impacts section, but our societal impacts are limited596

because we are reporting foundational research that is not tied to particular applications, let597

alone deployments.598

Guidelines:599

• The answer NA means that there is no societal impact of the work performed.600

• If the authors answer NA or No, they should explain why their work has no societal601

impact or why the paper does not address societal impact.602

• Examples of negative societal impacts include potential malicious or unintended uses603

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations604

(e.g., deployment of technologies that could make decisions that unfairly impact specific605

groups), privacy considerations, and security considerations.606

• The conference expects that many papers will be foundational research and not tied607

to particular applications, let alone deployments. However, if there is a direct path to608

any negative applications, the authors should point it out. For example, it is legitimate609

to point out that an improvement in the quality of generative models could be used to610

generate deepfakes for disinformation. On the other hand, it is not needed to point out611

that a generic algorithm for optimizing neural networks could enable people to train612

models that generate Deepfakes faster.613

• The authors should consider possible harms that could arise when the technology is614

being used as intended and functioning correctly, harms that could arise when the615

technology is being used as intended but gives incorrect results, and harms following616

from (intentional or unintentional) misuse of the technology.617

• If there are negative societal impacts, the authors could also discuss possible mitigation618

strategies (e.g., gated release of models, providing defenses in addition to attacks,619

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from620

feedback over time, improving the efficiency and accessibility of ML).621

11. Safeguards622

Question: Does the paper describe safeguards that have been put in place for responsible623

release of data or models that have a high risk for misuse (e.g., pretrained language models,624

image generators, or scraped datasets)?625

Answer: [NA]626

Justification: The datasets and models used in this study pose no risks. The datasets consist627

of virtual 3D and 2D objects that do not pose any safety concerns.628

Guidelines:629

• The answer NA means that the paper poses no such risks.630

• Released models that have a high risk for misuse or dual-use should be released with631

necessary safeguards to allow for controlled use of the model, for example by requiring632

that users adhere to usage guidelines or restrictions to access the model or implementing633

safety filters.634

• Datasets that have been scraped from the Internet could pose safety risks. The authors635

should describe how they avoided releasing unsafe images.636

• We recognize that providing effective safeguards is challenging, and many papers do637

not require this, but we encourage authors to take this into account and make a best638

faith effort.639

12. Licenses for existing assets640

Question: Are the creators or original owners of assets (e.g., code, data, models), used in641

the paper, properly credited and are the license and terms of use explicitly mentioned and642

properly respected?643

Answer: [Yes]644

Justification: Yes, all the original assets used in this study (if any) are properly cited.645

Guidelines:646

• The answer NA means that the paper does not use existing assets.647

• The authors should cite the original paper that produced the code package or dataset.648
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• The authors should state which version of the asset is used and, if possible, include a649

URL.650

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.651

• For scraped data from a particular source (e.g., website), the copyright and terms of652

service of that source should be provided.653

• If assets are released, the license, copyright information, and terms of use in the654

package should be provided. For popular datasets, paperswithcode.com/datasets655

has curated licenses for some datasets. Their licensing guide can help determine the656

license of a dataset.657

• For existing datasets that are re-packaged, both the original license and the license of658

the derived asset (if it has changed) should be provided.659

• If this information is not available online, the authors are encouraged to reach out to660

the asset’s creators.661

13. New Assets662

Question: Are new assets introduced in the paper well documented and is the documentation663

provided alongside the assets?664

Answer: [Yes]665

Justification: We provide open access to all the assets used in this paper (models, datasets,666

and scripts) in Appendix Section A.8.667

Guidelines:668

• The answer NA means that the paper does not release new assets.669

• Researchers should communicate the details of the dataset/code/model as part of their670

submissions via structured templates. This includes details about training, license,671

limitations, etc.672

• The paper should discuss whether and how consent was obtained from people whose673

asset is used.674

• At submission time, remember to anonymize your assets (if applicable). You can either675

create an anonymized URL or include an anonymized zip file.676

14. Crowdsourcing and Research with Human Subjects677

Question: For crowdsourcing experiments and research with human subjects, does the paper678

include the full text of instructions given to participants and screenshots, if applicable, as679

well as details about compensation (if any)?680

Answer: [NA]681

Justification: Our study does not involve research with Human Subjects.682

Guidelines:683

• The answer NA means that the paper does not involve crowdsourcing nor research with684

human subjects.685

• Including this information in the supplemental material is fine, but if the main contribu-686

tion of the paper involves human subjects, then as much detail as possible should be687

included in the main paper.688

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,689

or other labor should be paid at least the minimum wage in the country of the data690

collector.691

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human692

Subjects693

Question: Does the paper describe potential risks incurred by study participants, whether694

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)695

approvals (or an equivalent approval/review based on the requirements of your country or696

institution) were obtained?697

Answer: [NA]698

Justification: Our study does not involve research with Human Subjects. Our study does not699

require IRB Approvals or Equivalent.700
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Guidelines:701

• The answer NA means that the paper does not involve crowdsourcing nor research with702

human subjects.703

• Depending on the country in which research is conducted, IRB approval (or equivalent)704

may be required for any human subjects research. If you obtained IRB approval, you705

should clearly state this in the paper.706

• We recognize that the procedures for this may vary significantly between institutions707

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the708

guidelines for their institution.709

• For initial submissions, do not include any information that would break anonymity (if710

applicable), such as the institution conducting the review.711
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A Appendix712

A.1 Experiment 4: Comparing Different Objective Functions713

In Experiments 1-3, we compared CNNs and ViTs that had the same temporal learning objective.714

We used contrastive learning through time because it implements the UTL principle discovered in715

neuroscience and behavioral experiments. In Experiment 4, we assessed the contribution of the716

temporal learning objective by comparing CNNs and ViTs across other objective functions. If the717

CNNs and ViTs still show the same pattern of performance (i.e., ViTs, but not CNNs, are impaired718

when learning from line drawings), then the architecture alone would be the main contributing factor719

for mimicking visual learning in chicks. However, if the pattern changes, then both the architecture720

and the objective function would be essential for mimicking learning in chicks.721

Figure S 1: Object recognition performance of a range of CNNs and ViTs in (A) Experiment 1, (B)
Experiment 2, and (C) Experiment 3.

We repeated Experiments 1-3 with four additional ViT models and five additional CNN models. All722

of the models used different self-supervised objective functions. As shown in Fig. S1, most of the723
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ViT and CNN models were significantly impaired when learning from line drawings compared to724

learning from objects with surface features. Yet, many of the CNN models still succeeded in both725

conditions, learning object recognition even from line drawings (unlike chicks).726

Overall, Experiment 4 shows that researchers will need to consider both the architecture and the727

objective function to build models of visual learning. We show that, by precisely characterizing both728

the architecture (transformer) and the objective function (temporal learning), deep neural networks729

can serve as accurate image-computable models of visual learning.730

A.2 Data Generation731

Figure S 2: The virtual chamber in the normal object and line drawing conditions. (Top) The agent
visually explores the chamber, randomly moving from place to another. (Bottom) First-person images
captured from the camera attached to the agent’s head. We use the first-person images to train the
ViTs and CNNs.

Figure S 3: Head movements of the virtual agent across the three axes of rotations (yaw, roll, and tilt).
The agent moved its head 60° on each axis. The images show how head movements provide a form
of natural data augmentation.

We created a virtual animal chamber in the Unity Game Engine (Fig. S2). The virtual chamber had732

two 19” LCD monitors on opposite sides, while the other two sides of the chamber were white walls.733

The LCDs were used to display virtual 3D or 2D objects moving on a white background at the center734

of the screens. The floor of the virtual chamber was constructed with black wire mesh and had a735

provision for food and water next to one of the chamber walls. The dimensions of the virtual chamber736
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were 66 cm (L) x 42 cm (W) x 69 cm (H). The chamber also contained a virtual chick agent; the737

dimensions of the chick agent were 3.5 units (H) x 1.2 units (L).738

This virtual chamber was equipped with two cameras. One camera was placed in the position of739

the agent’s eyes to capture first-person RGB images, simulating the visual experiences of newborn740

chicks. The second camera was placed on the chamber’s ceiling to capture a top view of the agent’s741

movement. To simulate the visual diet available in the chambers, the agent moved to random locations742

inside the chamber, at a speed of 1.5 units per second. While moving, the agent maintained a constant743

gaze at the object. Once it reached its destination, the agent then moved its head along all three axes744

(yaw, roll, and tilt) in a random order (Fig. S3). These head movements lasted for 9.5 seconds. This745

cycle was repeated until 80,000 first-person images were collected in each rearing condition. The746

same method was used to collect test data, except the agent kept their gaze fixed on the object.747

This simulation approach canvassed the range of visual experiences that chicks could acquire in the748

chamber. The approach did not directly simulate a specific chick’s visual experiences. The approach749

also did not capture views chicks may have seen of their own bodies (e.g., wings, feet). Our virtual750

agent could not see its body, so its visual diet was limited to views of the chamber. As such, this751

approach established a baseline of what could be learned when a model has access to the same visual752

environment as newborn chicks.753

A.3 Architectures754

We report all the model architectures and their hyperparameters in Table 1.755

Table 1: Architectures and Hyperparameters for various self-supervised learning models

Model Parameters
(M)

Attention
Heads Layers Learning

Objective
Batch
Size

ViT-3H 16.9 3 3 Contrastive Learning
Through Time 128

ViT-9H 59.4 9 9 Contrastive Learning
Through Time 128

VideoMAE-0.3 53.9 6 6 Video
Reconstruction 32x8(GPUs)

VideoMAE-0.6 53.9 6 6 Video
Reconstruction 32x8(GPUs)

VideoMAE-0.9 53.9 6 6 Video
Reconstruction 32x8(GPUs)

SimCLR-CLTT 7.9 NA 10 Contrastive Learning
Through Time 512

BYOL 15.9 NA 10 Asymmetric
Embedding 512

Barlow Twins 7.9 NA 10 Joint Embedding 512

AE 15.5 NA 10 Image
Reconstruction 128

VAE 15.6 NA 10 Image
Reconstruction 128

GIM 16.5 NA 10 Non-Backpropagation
Contrastive Learning 32

A.3.1 ViT-CoT756

We systematically varied the number of attention heads and transformer layers to create different757

architecture sizes for ViTs. For instance, we used three attention heads and layers to create ViT-3H.758

For ViT-9H, we increased the number of attention heads and layers to nine. The last layer of the759

ViT-CoTs generated a 512-dimensional embedding, which was then passed through the loss function.760

Each architecture was trained using self-supervised learning with a contrastive learning through761

time objective function. To preserve the temporal relationships between consecutive frames, we did762

not shuffle the frames in the dataset. Additionally, to avoid hardcoding spatial knowledge in the763
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ViT-CoTs, we did not use any convolutional layers to generate image patches. The models were764

trained using images of size 64x64 and a patch size of 8x8. A constant learning rate of 0.0001 was765

used to train the models.766

A.3.2 VideoMAE767

In the VideoMAE architecture, both the encoder and decoder blocks had six layers and attention heads.768

The VideoMAEs were trained by sampling 16 frames from the training set with a temporal stride of 1.769

Each batch sample had dimensions of (16x3x64x64), where 16 represents the temporal window and770

3x64x64 indicates the image dimensions. Subsequently, a random mask of spatial dimension 8x8 and771

temporal dimension of 2 (2x8x8) was applied to the training batch. The visible patches (non-masked772

patches) were encoded by the VideoMAE encoder and passed on to the VideoMAE decoder. The773

decoder combined the encoded features and the masked patches to reconstruct the entire sequence of774

temporal frames. We experimented with three masking ratios: 30%, 60%, and 90%.775

A.3.3 CNN776

For the CNN models, we created a custom ResNet architecture (ResNet-10). Each architecture777

consisted of two residual blocks, totaling of 10 convolutional layers. We used the same bridge778

connections between the residual blocks as implemented in default ResNets. Similar to the ViT-CoTs,779

the last layer of the CNNs generated a 512-dimensional embedding, which was then passed through780

the loss function. To train SimCLR-CLTT, we used a learning rate scheduler with the warm-up781

epochs set to 5. Additionally, to preserve the temporal relationships between consecutive frames, we782

did not shuffle the frames in the dataset.783

A.4 Objective Function784

Many behavioral studies provide evidence that human adults use UTL to learn object representations785

[59–61]. UTL has also been found on the neurophysiological level in adult monkeys [62–64].786

There is even evidence that newborn animals (including chicks) use UTL to build their first object787

representation [65, 66, 57, 67–69]. These findings suggest that UTL is foundational to visual learning.788

To incorporate UTL in our models, we used a temporal learning algorithm, Contrastive Learning789

Through Time (CLTT), that can be implemented in both CNNs [70, 71] and ViTs [8]. CLTT leverages790

the temporal structure of natural visual experience, without relying on supervision or labeled data791

(see Fig. S4). The algorithm contrasts temporally adjacent instances (positive examples) against non-792

adjacent instances (negative examples), thereby learning representations that capture the underlying793

dynamics, context, and patterns across time.794

Figure S 4: Contrastive Learning Through Time (CLTT) objective function used with the SimCLR-
CLTT (CNN) and ViT-COT (transformer) models. The algorithm pushes together features that occur
in the same temporal window (300 ms time window), akin to the 100-400 ms spike-timing-dependent
plasticity temporal learning window in brains.
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A.5 Evaluation795

After training the models (encoders), we evaluated their classification performance using the test796

stimuli. Task performance was assessed by removing the last fully connected layer of the network,797

adding a new fully connected linear readout layer on top of the last layer of each trained encoder, and798

then training only the parameters of the readout layer on the object classification task. The linear799

classifiers contained 512 neurons, each of which received input from one of the 512 neurons in the800

final layer of the model. The linear readout layers were optimized for binary cross-entropy loss.801

To train and test the linear classifiers, we used the test images collected from the agents moving802

through the virtual chambers (10,000 images for each of two objects across 12 viewpoint ranges,803

see Fig. S5). When training the linear classifiers, the object identities were used as the ground-truth804

labels. Since the encoder weights were frozen, the supervised training of the linear classifiers did not805

change the features learned by the model.806

To evaluate whether the features learned by the models could generalize across novel viewpoints, we807

used a cross-validated K-fold analysis to train/test the linear classifiers, where each fold contained808

images from one of the 12 viewpoint ranges. Specifically, the test images were divided into 12 folds,809

with each fold containing images of each object rotating through 1 viewpoint range. The linear810

classifiers were cross-validated by training on 11 folds (11 viewpoint ranges) and testing on the811

held-out fold (1 viewpoint range).812

The linear classifiers were trained on 11,000 total images. During training, we used a batch size813

of 128 for 100 epochs. Transfer performance was evaluated by first fitting the parameters of the814

linear classifier on the training set and then measuring classification accuracy on the held-out test set.815

We report average cross-validated performance on the held-out images not used to train the linear816

readout layer. Thus, all of our results reflect the generalization performance of the models across817

novel viewpoints.818

In Experiment 2, we reused the same linear classifier design from Experiment 1 to conduct binary819

classification between the two objects. In both experiments, the linear classifier was always trained820

on 10,000 samples.821

In Experiment 3, the linear classifier had 8 output neurons, each corresponding to an object class.822

We used softmax and categorical cross-entropy loss to train the linear classifier. The training dataset823

consisted of 8 object classes with each class having 2,500 samples. To construct a test set, we split824

the training set in half by selecting the initial 1,250 samples from each class. This way, the linear825

classifier could be trained and evaluated on 10,000 samples (1250 samples x 8 classes).

Figure S 5: Viewpoints used in Experiment 1 for the view-invariant object recognition task. The
encoder was trained on a single viewpoint and tested on 11 novel viewpoints, using a 12-fold cross-
validation design with a linear classifier. The images show object images for the line drawings (top)
and normal objects with surface features (bottom).

826
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Figure S 6: Linear classifier evaluation results for Experiment 4. The plots show the validation
accuracy and loss for the linear classifiers attached to nine different visual encoders. Normal
objects with surface features consistently provide stronger and more robust learning signals than line
drawings.

A.5.1 Evaluation Results827

In Fig. S6, we present the validation accuracy and validation loss data for the linear classifiers828

trained on frozen encoders in Experiment 1. We observed a consistent pattern across all models: the829

validation accuracy was high when the linear classifier was evaluated on a frozen encoder trained830

on normal objects, but it was low when evaluated on line drawings. Similarly, the validation loss831

was low for encoders trained on normal objects compared to those trained on line drawings. This832

indicates that linear classifiers can effectively extract rich surface features, but struggle to disentangle833

features when the encoders are trained on line drawings.834

Fig. S7 compares the validation accuracy and validation loss for ViT and SimCLR, both having835

the same objective function (contrastive learning through time) but different architectures in case836
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Figure S 7: Linear classifier evaluation results for Experiment 3. The plots compare ViTs and CNNs
that have the same contrastive learning through time objective function. Transformers generate
weaker learning signals when reared with line drawings versus normal objects (like chicks), whereas
CNNs produce similar learning signals for normal objects and line drawings.

of experiment 3. The transformers provide strong training signals to the linear classifier when the837

encoder is trained on surface features, as opposed to line drawings. In contrast, the CNN backbone838

provides consistent training signals regardless of whether it is trained on surface features or line839

drawings.840

A.6 Training Details841

We trained each model using 3 different seeds and 100 epochs. All models, except VideoMAEs,842

were trained on a single NVIDIA A10 GPU. VideoMAEs were trained using multi-GPU distributed843

training across 8 NVIDIA A10 GPUs. Each GPU had 24 gigabytes of memory. We report the number844

of trainable parameters for each model in Table 1.845

A.7 Discussion846

Our study provides a new form of guidance for building brain-like AI systems. Researchers have long847

attempted to build machines that learn like brains, but almost all prior studies compared animals and848

machines that were raised (trained) in different environments. If animals and machines learn from849

different training data, then it is impossible to determine whether machines learn like brains (i.e.,850

differences in performance could be due to the algorithm, training data, or some combination of the851

factors). We overcome this barrier by performing parallel controlled-rearing experiments on newborn852

chicks and AI algorithms, matching training data across animals and machines. This allowed us to853

distinguish between candidate model classes (ViTs vs. CNNs) and discover AI systems (ViTs) that854

show the same learning outcomes as newborn brains. We found that transformers, which are typically855

considered to be less "brain-like" than CNNs, are the more accurate model of visual learning.856

A.7.1 Theoretical simulations of the origins of vision857

There is a long history of attempts to characterize the core learning machinery underlying intelligence.858

Our work expands earlier techniques [72, 73] that used theoretical simulations to study whether859

blind, evolution-like fitting processes can explain the rapid, self-organized development of visual860

intelligence. Earlier simulations were limited by compute power, so researchers could not run861

image computable simulations testing whether core visual skills really are learnable via generic862

fitting machinery. Image computable simulations are essential for testing fitting theories of brain863

development because the outcomes of evolutionary processes can be counter intuitive [74].864

Transformers are ideal models for running simulations of evolution-like fitting processes. The ma-865

chinery underlying evolution involves blind, brute-force fitting, in which a generic high-dimensional866

combinatorial medium (the genetic code) adapts to the environment [75, 76]. Likewise, transformers867

are blind, brute-force fitting systems, in which a generic high-dimensional combinatorial medium868

(neural networks) adapts to the data distributions in the environment. Both natural selection and869

transformers start from scratch and produce complex animal forms (natural selection) and mental870

skills (transformers). Since evolution and transformers operate by common general fitting principles871

[77], they can be united under a common framework.872

We show that transformers, which start from scratch (no prior knowledge of objects or space) and873

learn through blind fitting, are sufficient to account for successes and failures of visual object learning874
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in newborn chicks. Based on these (and other [8, 78, 77]) findings, we speculate that learning in875

the brain can be understood in evolutionary terms, as a dynamic high-dimensional system adapting876

(fitting) to the spatiotemporal data distributions underlying sensory experiences. Under this view,877

object recognition is not a hard-coded system, structure, primitive, module, or program; rather, it878

is an emergent property of generic temporal fitting machinery adapting to the embodied visual data879

streams acquired by newborn animals.880

A.7.2 Limitations881

One limitation of our study is the models were trained passively, learning from batches of images in a882

pre-specified order. Newborn animals, in contrast, interact with their environment to produce their883

own training data. Future studies could close this gap between animals and machines by embodying884

CNNs and ViTs in artificial agents that collect their own training data from the environment. A885

second limitation is we do not know why the objects with surface features provide better learning886

signals than line drawings. In Appendix Section A.5.1, we provide preliminary results showing that887

objects with surface features provide more robust learning signals than line drawings.888

A.7.3 Broader Impact889

This paper tackles a question at the heart of cognitive science: What are the core learning algorithms890

in brains? By demonstrating that transformers produce similar learning outcomes as newborn animals,891

our work shows that transformers can be powerful modeling tools for studying how brains learn892

to perceive and understand the world. Our work also provides an important step towards building893

“naturally intelligent” learning systems. Naturally intelligent learning algorithms are an untapped894

goldmine for inspiring the next generation of machine learning systems.895

A.8 Data and Code Availability896

The code and data needed to reproduce these findings will be available upon publication.897
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