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Abstract

A core goal in artificial intelligence (AI) is to build machines that learn like brains.
Many AI systems, including convolutional neural networks (CNNs) and vision
transformers (ViTs), rival human adults on visual recognition tasks. But, do these
AI systems actually learn like brains? If so, AI systems should produce the same
learning outcomes as brains when trained with the same data. Here, we tested
whether AI systems learn the same object recognition skills as newborn chicks
when trained in the same visual environments as chicks. We performed digital twin
studies of prior controlled-rearing experiments, evaluating whether CNNs and ViTs
produce the same pattern of successes and failures as chicks. When ViTs were
equipped with a biologically inspired temporal learning objective, the ViTs showed
the same learning patterns as chicks: both learned object recognition when reared
with normal objects, but failed to learn object recognition when reared with line
drawings. Conversely, when CNNs were equipped with the same temporal learning
objective, the CNNs showed a different pattern from chicks: CNNs learned object
recognition whether exposed to normal objects or line drawings. These results show
that transformers can be accurate image-computable models of visual learning.

1 Introduction
A major scientific and engineering goal is to build machines that learn like brains. For science, this
would provide working models for simulating how brains learn to perceive and understand the world.
For engineering, this would provide systems that can learn with the same power and efficiency as
brains. The past decade has produced dozens of success stories in which machines match or exceed
the abilities of humans. For example, convolutional neural networks (CNNs) and vision transformers
(ViTs) can achieve high levels of performance on a range of tasks, including object recognition [1],
action recognition [2], scene perception [3], object segmentation [4], optic flow perception [5], and
navigation [6].

But, do AI systems actually learn like brains (i.e., produce the same learning outcomes when trained
with the same data)? As many researchers have pointed out, the training regimes faced by animals
and machines differ radically. AI systems are typically trained on massive datasets (e.g., millions
of images and videos across thousands of object categories and environments), whereas animals
spend their postnatal lives in one environment surrounded by a handful of objects and caregivers.
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On face, there seems to be a massive mismatch between the volume and variety of training data
needed by machines versus animals. Accordingly, AI systems are often regarded as data hungry
systems, “gorging on hundreds of terabytes of data,” whereas brains are thought to be “efficient and
even elegant systems that operate with small amounts of information” [7]. From this perspective,
learning in brains and machines is nothing alike.

The view that AI systems are data hungry rests on the assumption that the visual experiences of
newborns are impoverished and noisy, a “blooming, buzzing confusion” [8]. However, recent work
from developmental psychology suggests that the opposite is true: The first-person views acquired by
babies are temporally and spatially rich [9]. By moving their bodies and heads, babies produce large
numbers of diverse, high-quality object views that are well suited for learning [10, 11]. In fact, when
first-person views from babies are used to train CNNs and ViTs, the models learn core visual skills [12].
Thus, the gap between human and machine vision might not be as great as previously thought [13].

Human infants acquire a rich visual diet filled with many objects, agents, textures, and surfaces.
However, biological visual systems can learn effectively even in impoverished worlds. For example,
newborn chicks learn object perception in worlds that contain just a single object [14–17]. Can
CNNs and ViTs learn in the same impoverished environments faced by newborn animals?

Digital twin studies [18] are designed to tackle this question, by raising animals and machines in the
same environments and testing them with the same tasks. Researchers control and match the training
data from which brains and machines learn, allowing for direct comparison of learning outcomes.
Prior digital twin studies show that AI algorithms show common learning successes as newborn
animals. When CNNs [19, 20] or ViTs [21] are trained on first-person views of agents exploring
virtual animal chambers that mimic the rearing conditions of chicks, CNNs and ViTs learn the same
object recognition skills as chicks. These findings contradict the view that AI algorithms are more
data hungry than brains.

The discovery that both CNNs and ViTs can learn effectively in the impoverished environments faced
by newborn animals raises a new challenge: how do we distinguish between these model classes? On
one hand, CNNs might be the more accurate model class because CNNs and newborn visual systems
are both hierarchically and retinotopically organized [22, 23]. On the other hand, the visual system’s
CNN-like receptive field structure could be an emergent property of even more foundational (and
generic) learning mechanisms. For instance, fully connected neural networks learn convolutional
structures when trained on data with non-Gaussian, higher-order local structure [24]. During
prenatal development, brains are shaped by spontaneous retinal waves, which have a non-Gaussian,
higher-order local structure [25]. Thus, brains could learn a hierarchical and retinotopic organization
during prenatal development, powered by more generic learning mechanisms. If so, then the core
learning mechanisms driving visual intelligence would not be CNN-like; rather, the brain’s learning
mechanisms might be more like a transformer. Indeed, ViTs learn CNN-like receptive field structures
when trained on natural images [26]. The core computations in transformers also closely match
those in the neuron–astrocyte network in the brain [27] and there is evidence that cortical waves can
implement the self-attention computation of transformers [28]. These findings raise the possibility
that transformers are the more accurate model of the core learning mechanisms in brains.

We tested this hypothesis by evaluating whether CNNs and ViTs show the same successes and
failures as newborn chicks. Newborn chicks learn better from some experiences than others, so by
examining whether CNNs and ViTs show the same pattern of successes and failures as newborn
chicks across studies, we can measure which model class learns more like brains. We focused on
visual learning from normal objects versus line drawings (objects lacking surface features, Fig. 1).
If a chick’s visual environment contains normal objects with surface features, then chicks learn to
recognize objects across familiar and novel viewpoints [14]. But, if a chick’s environment contains
line drawings, then chicks fail to develop object recognition [29]. For newborn brains, a visual diet
of line drawings is insufficient to learn object recognition.

Line drawings for studying vision. Line drawings have been used for decades to study object
recognition. Many studies show that human adults can readily recognize objects depicted in line
drawings (e.g., [30, 31]). This ability develops rapidly. Infants show enhanced attention to lines
that depict corners and edges in the first year of life [32], and young children use lines to depict
objects in their earliest attempts to draw the world [33]. Humans have used line drawings to depict
scenes since prehistoric times [34, 35]. There is also evidence that nonhuman animals can recognize
line drawings, including chimpanzees [36, 37] and pigeons [38].
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Figure 1: Design and Results. (1) Deep neural networks (DNNs) and newborn chicks were reared
in the same visual environments, containing either normal objects or line drawings. (2) DNNs and
chicks were tested with the same object recognition tasks. (3) Chicks and vision transformers (ViTs)
showed common patterns of development: both learned object recognition when reared with normal
objects, and both failed to learn object recognition when reared with line drawings. In contrast,
convolutional neural networks (CNNs) learned object recognition in both conditions.

None of these studies, however, tested humans or animals at the beginning of life. All of the subjects
had already acquired months to years of visual experience with real-world objects before they were
tested. To explore whether newborn brains can recognize line drawings, Wood and Wood [29] used
controlled rearing. The researchers raised newborn chicks in automated controlled-rearing chambers
that contained a single object, then tested the chicks’ ability to recognize that object across novel
viewpoints. When chicks were reared with an object that had surface features, the chicks developed
view-invariant object recognition. However, when chicks were reared with a line drawing of an
object, the chicks failed to develop object recognition. Do CNNs and ViTs show this same learning
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pattern? We address this question through digital twin experiments, raising CNNs and ViTs in the
same visual environments as chicks and testing them with the same tasks.

2 Methods

Architecture. We used two architectures (CNNs and ViTs) because both are high-performing model
classes on a range of visual recognition tasks [39–41] and because the models differ in terms of their
hardcoded inductive biases. CNNs have a strong spatial bias. The convolutional operation reflects
the spatial structure of natural images, allowing CNNs to generalize well from small datasets and
learn useful feature hierarchies that capture the structure of visual images [42, 43]. Conversely, ViTs
are generic learning algorithms that do not have hardcoded knowledge about objects or space [40].
Instead, ViTs learn through flexible (learned) allocation of attention that does not assume any spatial
(or object) structure.

Objective Function. For each experiment, we performed comparisons between CNNs and ViTs that
had the same temporal learning objective function. Based on decades of empirical and theoretical
work in neuroscience, we hypothesize that unsupervised temporal learning (UTL) drives visual
development in the brain [44–49]. According to UTL models, brains build object representations
by adapting to the spatiotemporal statistics of the animal’s visual environment. The key assumption
underlying UTL is that distal scene variables (e.g., curvature, depth, orientation, texture, shape) vary
slowly over time in natural visual environments. Thus, in principle, brains could learn distal scene
variables by encoding statistical regularities across successive changes in proximal retinal images
(see Appendix A.4 for details).

Training Data We used behavioral benchmarks from newborn chicks because chicks can be raised
in strictly controlled environments from the onset of vision, providing strict control of all visual
experiences (training data) acquired by the animal [50]. This control over training data is essential for
directly comparing learning across animals and machines. Chicks can also inform our understanding
of human vision because avian brains have similar cells and circuitry as mammalian brains, as
well as a similar large-scale organization, including a hierarchy of sensory information processing,
hippocampus regions, and associative areas [51–53].

To simulate the visual experiences of newborn chicks, we created realistic digital twins of the
controlled-rearing chambers, using a video game engine (Unity 3D). Then, we simulated the visual
diet available in the chick’s environment by recording the first-person images acquired by an agent
moving through the virtual chambers. We collected 80,000 first-person images in each of the rearing
conditions and used those images to train the CNNs and ViTs (see Appendix section A.2 for details).
Our models were initially untrained (no pre-training), and during training, the models were trained
on the simulated first-person visual experiences from chicks. Like the chicks, the models’ visual
diet was limited to a single object in a controlled-rearing chamber.

3 Results
3.1 Experiment 1: 60° object rotation experience

In Experiment 1 (Fig. 1, left column), we focused on the view-invariant object recognition task and
data reported in Wood [14] and Wood & Wood [29]. Newborn chicks were hatched in darkness,
then raised singly in automated controlled-rearing chambers that measured each chick’s behavior
continuously (24/7) during the first two weeks of life. The chambers were equipped with two display
walls (LCD monitors) for displaying object stimuli. The chambers did not contain any objects other
than the virtual objects projected on the display walls, providing control over all object experiences
acquired by the animal from the onset of vision.

During the training phase, chicks were reared in an environment containing a single virtual object rotat-
ing through a 60° viewpoint range. This virtual object was the only object in the chick’s environment.
The chicks were raised in this environment for 1 week, allowing the critical period on filial imprinting
to close. The chicks were raised and tested with either line drawings or objects with surface features.

During the test phase, the chicks were tested on their ability to recognize the imprinted object across
12 in-depth viewpoint changes. On each test trial, the imprinted object appeared on one display wall
and an unfamiliar object appeared on the opposite display wall. Test trials were scored as correct when
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the chicks spent a greater proportion of time with their imprinted object and incorrect when the chicks
spent a greater proportion of time with the unfamiliar object. The viewpoint changes introduced large,
novel, and complex changes in the object’s appearance. Nevertheless, as shown in Fig. 1 (Panel 3, left),
the chicks reared with surface-feature objects successfully recognized their imprinted object across
the novel viewpoints. From a visual diet of a single object, chicks can learn view-invariant object
representations. In contrast, when chicks were reared with line drawings of that same object, the chicks
never learned to recognize objects. The chicks reared with the line drawings performed at chance level,
despite acquiring over 100 hours of visual experience with the line drawings during the training phase.

To compare learning across chicks, CNNs, and ViTs, we performed matching controlled-rearing
experiments on CNNs and ViTs (Fig. 1, Panels 1 & 2). We created digital twins of the controlled-
rearing chambers, then simulated the visual diet in those chambers and used those simulated data
streams to train CNNs and ViTs. We then tested the models with the same stimuli used to test the
chicks. The chicks and models were trained in the same visual environment and tested on the same
task, allowing for direct comparison of their learning outcomes.

Fig. 1 (Panel 3, left) shows the performance of CNNs (SimCLR-CLTT) and ViTs (ViT-CoT) in
the surface feature and line drawing conditions. The CNNs succeeded in both conditions, learning
view-invariant object representations from both normal objects and line drawings. In contrast, the
ViTs showed the same learning pattern as chicks: ViTs succeeded when learning from normal objects,
but failed when learning from line drawings.

3.2 Experiment 2: 360° of object rotation experience

To validate this conclusion under different conditions, we performed a second digital twin experiment
of prior controlled-rearing studies [29, 54] (Fig. 1, middle column). Rather than presenting the
objects from a 60° viewpoint range, the objects moved through a 360° viewpoint range, completing
an in-depth rotation every 15 seconds. The chicks, CNNs, and ViTs were thus exposed to six times
as many unique views of the object during the training phase. In the test phase, we measured whether
the models could recognize the imprinted object across novel viewpoints, by rotating the object
around novel axes of rotation (Fig. 1, Panels 1 & 2).

As shown in Fig. 1 (Panel 3, middle), when chicks were reared with an object with surface features,
the chicks developed view-invariant representations that generalized across large, novel, and complex
changes in the object’s appearance [54]. When chicks were reared with line drawings, they performed
at chance level, despite acquiring over 100 hours of visual experience with the line drawings during
the training phase [29]. Fig. 1 (Panel 3, middle) shows the performance of the CNNs and ViTs in the
surface feature and line drawing conditions. Again, the CNNs succeeded in both conditions, learning
view-invariant object representations from both normal objects and line drawings. In contrast, the
ViTs showed the same learning pattern as the chicks: ViTs succeeded when learning from normal
objects, but failed when learning from line drawings.

3.3 Experiment 3: Looming 2D shapes

To validate our results with different object stimuli, we performed a third digital twin experiment of
prior controlled-rearing studies [29, 55]. These studies used simple two-dimensional objects, rather
than complex three-dimensional objects. During the training phase, the chicks were presented with
a sequence of four looming shapes (Fig. 1, right column). During the test phase, the chicks were
tested on their ability to distinguish familiar shapes from novel shapes.

When chicks were reared with a sequence of shapes containing surface features, they reliably
distinguished familiar from novel shapes [55]. In contrast, when reared with a sequence of line
drawing shapes, the chicks failed to distinguish familiar from novel shapes [29]. Fig. 1 (Panel
3, right) shows the performance of the CNNs and ViTs in the surface feature and line drawing
conditions. The CNNs performed equally well in the surface feature and line drawing conditions.
Conversely, the ViTs, like the chicks, showed impaired recognition when learning from line drawings.

3.4 Discussion

Do AI systems learn like brains? We trained CNNs and ViTs on simulated visual experiences
from newborn chicks, and found that temporal learning ViTs (ViT-CoT) showed the same learning
patterns as chicks. Both ViT-CoT and chicks learned object recognition when reared with normal
objects, but failed to learn object recognition when reared with line drawings. Conversely, CNNs
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equipped with the same temporal learning objective as the ViTs (SimCLR-CLTT) did not show
this pattern: SimCLR-CLTT learned object recognition from both normal objects and line drawings.
Appendix A.1 contains additional experiments using alternative architectures and objective functions.
Transformers, but not CNNs, showed the same visual learning pattern as chicks.

Our study provides a new form of guidance for building brain-like AI systems. Researchers have long
attempted to build machines that learn like brains, but almost all prior studies compared animals and
machines that were raised (trained) in different environments. If animals and machines learn from
different training data, then it is impossible to determine whether machines learn like brains (i.e.,
differences in performance could be due to the algorithm, training data, or some combination of the
factors). We tackle this problem by performing parallel controlled-rearing experiments on newborn
chicks and AI algorithms, matching training data across animals and machines. This allowed us
to distinguish between candidate model classes (ViTs vs. CNNs) and discover AI systems (ViTs) that
show the same learning outcomes as newborn visual systems. We found that transformers, which are
typically thought to be less "brain-like" than CNNs, are the more accurate model of visual learning.

3.4.1 Generic fitting as the origins of vision

There is a long history of attempts to characterize the core learning mechanisms underlying intelligent
behavior. Our work extends earlier studies [56, 57] exploring whether blind, evolution-like fitting pro-
cesses can explain the rapid, self-organized development of behavior. Simulations are necessary for
this enterprise, since the outcomes of evolutionary processes can be counter intuitive [58]. However,
earlier simulations were limited by compute power, so researchers could not run image computable
simulations testing whether core visual skills can be learned by generic fitting mechanisms. Image-
computable simulations allow researchers to directly test fitting theories of brain development, by
measuring whether generic fitting models produce the same learning outcomes as newborn brains.

Transformers are ideal models for testing fitting theories of brain development. Evolution operates
by blind fitting, in which a generic high-dimensional combinatorial medium (DNA) adapts to
the environment [59, 60]. Likewise, transformers are blind fitting systems, in which a generic
high-dimensional combinatorial medium (neural network) adapts to the data distributions in the
environment. Both evolution and transformers start from scratch and produce complex and diverse
products (animal species in evolution; mental skills in transformers). Since evolution and transformers
operate by common fitting principles, they can be united under a common framework [61, 18].

We have shown that transformers, which start from scratch (no prior knowledge of objects or space)
and learn through blind fitting, are sufficient to account for both successes and failures of visual
object learning in newborn chicks. Based on these (and other [21, 19]) findings, we speculate that
learning in the brain can be understood in evolutionary terms, as a dynamic high-dimensional system
adapting (fitting) to the spatiotemporal data distributions underlying sensory experiences. Under
this view, object recognition is not a hardcoded (innate) system, structure, primitive, module, or
program; rather, it is an emergent property of generic temporal fitting mechanisms adapting to the
embodied visual data streams acquired by newborn animals.

3.4.2 Limitations

One limitation of our study is the models were trained passively, learning from batches of images in
a pre-specified order. Newborn animals, in contrast, interact with their environment to produce their
own training data. Future studies could close this gap between animals and machines by embodying
CNNs and ViTs in artificial agents that collect their own training data from the environment [62, 63].
A second limitation is we do not know why the objects with surface features provide better learning
signals than line drawings. In Appendix Section A.5.1, we provide preliminary results showing that
objects with surface features provide more robust learning signals than line drawings.

3.4.3 Broader Impact

This paper tackles a question at the heart of science and engineering: What are the core learning
mechanisms in brains? By demonstrating that transformers produce similar learning outcomes as
newborn animals, our work shows that transformers can be powerful modeling tools for studying
how brains learn to perceive and understand the world. Our work also provides an important step
towards building “naturally intelligent” learning systems. Naturally intelligent learning algorithms
are an untapped goldmine for inspiring the next generation of machine learning systems.
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A Appendix

A.1 Experiment 4: Comparing Different Objective Functions

In Experiments 1-3, we compared CNNs and ViTs that had the same temporal learning objective.
We used contrastive learning through time because it implements the UTL principle discovered in
neuroscience and behavioral experiments. In Experiment 4, we assessed the contribution of the
temporal learning objective by comparing CNNs and ViTs across other objective functions. If the
CNNs and ViTs still show the same pattern of performance (i.e., ViTs, but not CNNs, are impaired
when learning from line drawings), then the architecture alone would be the main contributing factor
for mimicking visual learning in chicks. However, if the pattern changes, then both the architecture
and the objective function would be essential for mimicking learning in chicks.

Figure S 1: Object recognition performance of a range of CNNs and ViTs in (A) Experiment 1, (B)
Experiment 2, and (C) Experiment 3.

We repeated Experiments 1-3 with four additional ViT models and five additional CNN models. All
of the models used different self-supervised objective functions. As shown in Fig. S1, most of the
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ViT and CNN models were significantly impaired when learning from line drawings compared to
learning from objects with surface features. Yet, many of the CNN models still succeeded in both
conditions, learning object recognition even from line drawings (unlike chicks).

Overall, Experiment 4 shows that both the architecture and the objective function are important for
building accurate models of visual learning. We show that, by precisely characterizing both the
architecture (transformer) and the objective function (temporal learning), deep neural networks can
serve as accurate image-computable models of visual learning.

A.2 Data Generation

Figure S 2: The virtual chamber in the surface feature and line drawing conditions. (Top) The agent
visually explores the chamber, randomly moving from place to place. (Bottom) First-person images
captured from the camera attached to the agent’s head. We use the first-person images to train the
ViTs and CNNs.

Figure S 3: Head movements of the virtual agent across the three axes of rotations (yaw, roll, and tilt)
in (A) Experiment 1 and (B) Experiment 3. The agent moved its head 60° on each axis. The images
show how head movements provide a natural form of data augmentation.

We created a virtual animal chamber in the Unity Game Engine (Fig. S2). The virtual chamber
had two 19” display monitors on opposite sides (akin to the opposing LCD monitors in the chick
chambers), while the other two sides of the chamber were white walls. The display monitors were
used to display virtual 3D or 2D objects moving on a white background at the center of the screens.
The floor of the virtual chamber was constructed with black wire mesh and had a provision for food
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and water next to one of the chamber walls. The dimensions of the virtual chamber were 66 cm (L) x
42 cm (W) x 69 cm (H). The chamber also contained a virtual chick agent; the dimensions of the
chick agent were 3.5 units (H) x 1.2 units (L).

This virtual chamber was equipped with two cameras. One camera was placed in the position of
the agent’s eyes to capture first-person RGB images, simulating the visual experiences of newborn
chicks. The second camera was placed on the chamber’s ceiling to capture a top view of the agent’s
movement. To simulate the visual diet available in the chambers, the agent moved to random locations
inside the chamber, at a speed of 1.5 units per second. While moving, the agent maintained a constant
gaze at the object. Once it reached its destination, the agent then moved its head along all three axes
(yaw, roll, and tilt) in a random order (Fig. S3). These head movements lasted for 9.5 seconds. This
cycle was repeated until 80,000 first-person images were collected in each rearing condition. The
same method was used to collect test data, except the agent kept their gaze fixed on the object.

This simulation approach canvassed the range of visual experiences that chicks could acquire in the
chamber. The approach did not directly simulate a specific chick’s visual experiences. The approach
also did not capture views chicks may have seen of their own bodies (e.g., wings, feet). Our virtual
agent could not see its body, so its visual diet was limited to views of the chamber. As such, this
approach establishes a baseline of what can be learned when a model has access to the same visual
environment as newborn chicks.

A.3 Architectures

We report all the model architectures and their hyperparameters in Table 1.

Table 1: Architectures and Hyperparameters for various self-supervised learning models

Model Parameters
(M)

Attention
Heads Layers Learning

Objective
Batch
Size

ViT-3H 16.9 3 3 Contrastive Learning
Through Time 128

ViT-9H 59.4 9 9 Contrastive Learning
Through Time 128

VideoMAE-0.3 53.9 6 6 Video
Reconstruction 32x8(GPUs)

VideoMAE-0.6 53.9 6 6 Video
Reconstruction 32x8(GPUs)

VideoMAE-0.9 53.9 6 6 Video
Reconstruction 32x8(GPUs)

SimCLR-CLTT 7.9 NA 10 Contrastive Learning
Through Time 512

BYOL 15.9 NA 10 Asymmetric
Embedding 512

Barlow Twins 7.9 NA 10 Joint Embedding 512

AE 15.5 NA 10 Image
Reconstruction 128

VAE 15.6 NA 10 Image
Reconstruction 128

GIM 16.5 NA 10 Non-Backpropagation
Contrastive Learning 32

A.3.1 ViT-CoT

We systematically varied the number of attention heads and transformer layers to create different
architecture sizes for ViTs. For instance, we used three attention heads and layers to create ViT-3H.
For ViT-9H, we increased the number of attention heads and layers to nine. The last layer of the
ViT-CoTs generated a 512-dimensional embedding, which was then passed through the loss function.
Each architecture was trained using self-supervised learning with a contrastive learning through
time objective function. To preserve the temporal relationships between consecutive frames, we did
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not shuffle the frames in the dataset. Additionally, to avoid hardcoding spatial knowledge in the
ViT-CoTs, we did not use any convolutional layers to generate image patches. The models were
trained using images of size 64x64 and a patch size of 8x8. A constant learning rate of 0.0001 was
used to train the models.

A.3.2 VideoMAE

In the VideoMAE architecture, both the encoder and decoder blocks had six layers and attention heads.
The VideoMAEs were trained by sampling 16 frames from the training set with a temporal stride of 1.
Each batch sample had dimensions of (16x3x64x64), where 16 represents the temporal window and
3x64x64 indicates the image dimensions. Subsequently, a random mask of spatial dimension 8x8 and
temporal dimension of 2 (2x8x8) was applied to the training batch. The visible patches (non-masked
patches) were encoded by the VideoMAE encoder and passed on to the VideoMAE decoder. The
decoder combined the encoded features and the masked patches to reconstruct the entire sequence of
temporal frames. We experimented with three masking ratios: 30%, 60%, and 90%.

A.3.3 CNN

For the CNN models, we created a custom ResNet architecture (ResNet-10). Each architecture
consisted of two residual blocks, totaling of 10 convolutional layers. We used the same bridge
connections between the residual blocks as implemented in default ResNets. Similar to the ViT-CoTs,
the last layer of the CNNs generated a 512-dimensional embedding, which was then passed through
the loss function. To train SimCLR-CLTT, we used a learning rate scheduler with the warm-up
epochs set to 5. Additionally, to preserve the temporal relationships between consecutive frames, we
did not shuffle the frames in the dataset.

A.4 Objective Function

Many behavioral studies provide evidence that human adults use unsupervised temporal learning
(UTL) to learn object representations [64–66]. UTL has also been found on the neurophysiological
level in adult monkeys [67–69]. There is even evidence that newborn animals (including chicks) use
UTL to build their first object representation [70, 71, 54, 72, 73, 17]. These findings suggest that
UTL is foundational to visual learning.

To incorporate UTL in our models, we used a temporal learning algorithm, Contrastive Learning
Through Time (CLTT), that can be implemented in both CNNs [74, 75] and ViTs [21]. CLTT
leverages the temporal structure of natural visual experience, without relying on supervision or
labeled data (see Fig. S4). The algorithm contrasts temporally adjacent instances (positive examples)
against non-adjacent instances (negative examples), thereby learning representations that capture the
underlying dynamics, context, and patterns across time.

Figure S 4: Contrastive Learning Through Time (CLTT) objective function used with the SimCLR-
CLTT (CNN) and ViT-COT (transformer) models. The algorithm pushes together features that occur
in the same temporal window (300 ms time window), akin to the 100-400 ms spike-timing-dependent
plasticity temporal learning window in brains.
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A.5 Evaluation

After training the models (encoders), we evaluated their classification performance using the test
stimuli. Task performance was assessed by removing the last fully connected layer of the network,
adding a new fully connected linear readout layer on top of the last layer of each trained encoder, and
then training only the parameters of the readout layer on the object classification task. The linear
classifiers contained 512 neurons, each of which received input from one of the 512 neurons in the
final layer of the model. The linear readout layers were optimized for binary cross-entropy loss.

To train and test the linear classifiers, we used the test images collected from the agents moving
through the virtual chambers (10,000 images for each of two objects across 12 viewpoint ranges,
see Fig. S5). When training the linear classifiers, the object identities were used as the ground-truth
labels. Since the encoder weights were frozen, the supervised training of the linear classifiers did not
change the features learned by the model.

To evaluate whether the features learned by the models could generalize across novel viewpoints, we
used a cross-validated K-fold analysis to train/test the linear classifiers, where each fold contained
images from one of the 12 viewpoint ranges. Specifically, the test images were divided into 12 folds,
with each fold containing images of each object rotating through 1 viewpoint range. The linear
classifiers were cross-validated by training on 11 folds (11 viewpoint ranges) and testing on the
held-out fold (1 viewpoint range).

The linear classifiers were trained on 11,000 images. During training, we used a batch size of 128 for
100 epochs. Transfer performance was evaluated by first fitting the parameters of the linear classifier
on the training set and then measuring classification accuracy on the held-out test set. We report
average cross-validated performance on the held-out images not used to train the linear readout layer.
Thus, all of our results reflect the generalization performance of the models across novel viewpoints.

In Experiment 2, we reused the same linear classifier design from Experiment 1 to conduct binary
classification between the two objects. The linear classifier was trained on 10,000 samples.

In Experiment 3, the linear classifier had 8 output neurons, each corresponding to an object class.
We used softmax and categorical cross-entropy loss to train the linear classifier. The training dataset
consisted of 8 object classes with each class having 2,500 samples. To construct a test set, we split
the training set in half by selecting the initial 1,250 samples from each class. This way, the linear
classifier could be trained and evaluated on 10,000 samples (1250 samples x 8 classes).

Figure S 5: Viewpoints used in Experiment 1 for the view-invariant object recognition task. The
encoder was trained on a single viewpoint and tested on 11 novel viewpoints, using a 12-fold cross-
validation design with a linear classifier. The images show object images for the line drawings (top)
and normal objects with surface features (bottom).

A.5.1 Evaluation Results

In Fig. S6, we present the validation accuracy and validation loss data for the linear classifiers
trained on frozen encoders in Experiment 1. We observed a consistent pattern across all models: the
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Figure S 6: Linear classifier evaluation results for Experiment 4. The plots show the validation
accuracy and loss for the linear classifiers attached to nine different visual encoders. Normal
objects with surface features consistently provide stronger and more robust learning signals than line
drawings.

validation accuracy was high when the linear classifier was evaluated on a frozen encoder trained
on normal objects, but it was low when evaluated on line drawings. Similarly, the validation loss
was low for encoders trained on normal objects compared to those trained on line drawings. This
indicates that linear classifiers can effectively extract rich surface features, but struggle to disentangle
features when the encoders are trained on line drawings.

Fig. S7 compares the validation accuracy and validation loss for ViTs and CNNs that had the same
objective function (contrastive learning through time) but different architectures. The ViTs provided
strong training signals to the linear classifier when the encoder was trained on surface features, but
not when the encoder was trained on line drawings. In contrast, the CNNs provided strong training
signals regardless of whether they were trained on surface features or line drawings.
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Figure S 7: Linear classifier evaluation results for Experiment 3. The plots compare ViTs and CNNs
that have the same contrastive learning through time objective function. Transformers generate
weaker learning signals when reared with line drawings versus normal objects (like chicks), whereas
CNNs produce similar learning signals for normal objects and line drawings.

A.6 Training Details

We trained each model using 3 different seeds and 100 epochs. All models, except VideoMAEs,
were trained on a single NVIDIA A10 GPU. VideoMAEs were trained using multi-GPU distributed
training across 8 NVIDIA A10 GPUs. Each GPU had 24 gigabytes of memory. We report the number
of trainable parameters for each model in Table 1.

A.7 Data and Code Availability

The code and data needed to reproduce these findings will be available upon publication.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] ,

Justification: Our main claim is that ViTs that learn with contrastive learning through time
show the same pattern of successes and failures as newborn chick (when trained with the
same training environment and tested with the same tasks). This is supported, in particular,
by Figure 2.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, we discuss the limitations of our work in Appendix Section A.7.2
(Limitations).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our work does not include any theoretical proofs or mathematical derivations.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed instructions for each experiment in Sections 3.1, 3.2, and
3.3, and instructions for generating the datasets in Appendix A.2. Additionally, information
on training and testing the models can be found in Appendix Sections A.3, A.4, A.5, and
A.6. Code and data for reproducibility are provided in Appendix Section A.8.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to our datasets and the models with detailed instruc-
tions on our GitHub page in Appendix Section A.8.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all experimental details relevant to replicating our results in
the Appendix. Additionally, we also provide information on our computational models
(architecture and objective function) in Section 2 (Methods).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bars (showing Standard Error) in all of our bar charts (reported
in Fig 1, Panel 3).

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide all the relevant information in Appendix Section A.6 (Training
Details).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, all author(s) in this paper have reviewed the NeurIPS Code of Ethics and
abide by its rules.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We include a Broader Impacts section, but our societal impacts are limited
because we are reporting foundational research that is not tied to particular applications, let
alone deployments.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The datasets and models used in this study pose no risks. The datasets consist
of virtual 3D and 2D objects that do not pose any safety concerns.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, all the original assets used in this study (if any) are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide open access to all the assets used in this paper (models, datasets,
and scripts) in Appendix Section A.8.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our study does not involve research with Human Subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our study does not involve research with Human Subjects. Our study does not
require IRB Approvals or Equivalent.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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