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Abstract

Foresight v2 (FS2) is a Large Language Model
based on LLaMa v2 7B and fine-tuned on hos-
pital data for modelling patient timelines. It
is capable of understanding a patient’s clinical
notes and forecasting SNOMED codes for a
wide range of biomedical use cases including
disorder prediction, medication recommenda-
tion, risk prediction, procedure recommenda-
tion and many more. FS2 is trained on the free
text portion of the MIMIC-III dataset, firstly
through the extraction of biomedical concepts
and then the creation of contextualised patient
timelines, upon which the model is then fine-
tuned. The results show significant improve-
ment over the previous state-of-the-art for the
next new biomedical concept prediction (P/R -
0.71/0.64 vs 0.52/0.32) and a similar improve-
ment specifically for the next new disorder fore-
cast (P/R - 0.66/0.59 vs 0.46/0.25). Finally, on
the task of disorder forecast, we compare this
model, to GPT-4-turbo, and show that FS2 per-
forms significantly better on such tasks (P@5
- 0.84 vs 0.62). This highlights the need to
incorporate real health data into LLMs and
shows that even much smaller models when
fine-tuned on high-quality specialised data out-
perform much larger ones.

1 Introduction and Related Work

Language plays a central role in healthcare and
medical practice, with unstructured text represent-
ing the most prevalent data in Electronic Health
Records (EHRs) (Jackson et al., 2018)). Yet to-
day, Al models have largely failed to utilize this
resource and mostly ignore the free text portion
of the EHR. Recently, Large Language Models
(LLMs, et al. (2023b,a); Touvron et al. (2023a,b);
Bai et al. (2022)) have shown the potential to under-
stand human language, but even the most advanced
LLMs (as well as specialised medical LLMs Sing-
hal et al. (2023b)) rarely use the free text portion
of the EHR. What is more, most LLMs are not

trained/tested/validated on real-world hospital data,
but on medical quizzes and exams.

Today’s large language models have seen a re-
markable evolution. Initial models like BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), T5
(Raffel et al., 2023), GPT-1 (Yenduri et al., 2023)
and GPT-2 (Radford et al., 2019) set the stage. The
BERT family notably changed natural language
processing (NLP), largely replacing RNN-based
models in tasks such as Named Entity Recognition
(NER) and text classification. Meanwhile, the GPT
series, focused solely on text generation, sought to
predict the next word in a sequence. Despite initial
limitations, these models showed potential. This
set the groundwork for the recent revolution in NLP
caused by highly capable general LLMs such as
ChatGPT (Ouyang et al., 2022) and LLaMA 1&2
(Touvron et al., 2023a,b). These models enabled
use cases that before were either extremely difficult
or completely impossible. Tasks such as document
summarization, text classification, programming,
and question answering were now reduced to sim-
ple prompting. Today, state-of-the-art for a wide
range of NLP tasks is being set almost with every
release of a new LLM.

In the medical domain, the current LLM research
can be split into three groups: 1)Using LLMs on
medical tasks without any fine-tuning (via prompt
engineering); 2) Fine-tuning existing LLMs for the
medical domain; and 3) Training LLMs from the
ground up on medical data.

Recent work is mostly focused on approaches
from group 1, in other words evaluating existing
models for different medical tasks. Khan et al.
(2024) test GPT-4 (et al., 2023b) for Anesthesiol-
ogy Board-style Examination Questions, in total
they collected 884 questions and prompted GPT-4
for answers. They show promising results but note
that GPT-4 is still lacking in this area and more
research is needed for both validation and training.
Murphy Lonergan et al. (2023) show similar re-



sults for surgery, they collected 23,035 questions
from MedMCQA and prompted GPT-4 for answers.
They note that GPT-4 shows promising results, but
still requires more training and testing. On a simi-
lar note, Savage et al. (2024) explore how to con-
struct prompts so that the reasoning style of GPT-4
matches that of clinicians, the dataset used is a
modified MedQA USMLE, the conclusion being
the same as for the other examples.

There is significantly less work from group 2,
i.e. LLMs fine-tuned for the medical domain. Med-
PalLM 1&2 (Singhal et al., 2023a,b) are closed-
source and closed-access models from Google that
build on the PaLM (Chowdhery et al., 2022; Anil
et al., 2023) architecture. The models are trained on
QA-style datasets and show state-of-the-art results
on USMLE-style questions from MultiMedQA.
MediTRON 70B (Chen et al., 2023) builds on top
of LLaMA-2 70B and is finetuned on medical pa-
pers and clinical guidelines, the model is primarily
tested on QA style datasets where it is shown to out-
perform general models like GPT-3.5, and comes
close to closed source medical models like Med-
PalLM.

And lastly, there are only a few examples from
the third group, i.e. LLMs trained from the ground
up on medical data. Yang et al. (2022) train a large
language model with 8.9B parameters on a dataset
with >90 billion words (including >82B words of
de-identified clinical text) and evaluate it on clinical
NLP tasks including clinical concept extraction,
medical relation extraction, semantic text similarity,
natural language inference, and medical question
answering. Similarly, Peng et al. (2023) train an
LLM with up to 20B parameters on 82B words of
clinical text and 195B words of general English
text. The tests they performed were largely the
same as shown in the work from Yang et al. (2022).
Most other examples in this group are not what we
would today consider LLMs, those include models
like BioBERT (Lee et al., 2019) and ClinicalBERT
(Huang et al., 2020).

Given the examples above, it is important to note
that the vast majority of training/validation was
performed on medical quizzes and exam questions,
and not on real-world health data, highlighting the
disparity between real-world use cases and LLM
research in the medical domain. With some notable
exceptions, like the work from Yang et al. (2022)
which was trained on hospital data, but still tested
mainly on public benchmarks for medical question
answering, named entity recognition, and similar.

This paper builds on the recent work from Kral-
jevic et al. (2023), which presents Foresight v1
(FS1), a generative transformer for modelling pa-
tient timelines using derived structured concepts
from unstructured text. The FS1 pipeline works as
follows: 1) Collect all free text data from a hos-
pital EHR; 2) Extract biomedical concepts (e.g.,
diseases, medications, procedures and symptoms)
from the collected dataset; 3) Order the extracted
concepts in time and group by the patient, i.e. cre-
ate patient timelines; and 4) Train a generative
transformer to predict the next concept in the time-
line. The first weakness of FS1 is that the model
does not know anything about the context in which
a concept was mentioned (concepts are extracted
from free text without their surrounding semantic
context). The second problem is that FS1 was a
pure empiricist with limited a priori biomedical or
healthcare knowledge, in other words, the model
was trained from the ground up on patient timelines
consisting of only biomedical concepts.

To solve the aforementioned problems, we
present Foresight v2 (FS2), a biomedical Large
Language Model capable of extracting and mod-
elling vast amounts of knowledge from EHRs.
Foresight v2 is based on the LLaMAv2 7B (Tou-
vron et al., 2023b) model and was fine-tuned on
hospital data from the MIMIC-III (Johnson et al.,
2016) dataset for the task of the next biomedical
concept prediction in a patient timeline. The pa-
tient timelines in FS2 are contextualised, meaning
a portion of the text where the concept was found
is kept. FS2 is a general model capable of han-
dling a wide range of use cases that are normally
found in the free text portion of EHRSs, including
forecasting, medication suggestions, diagnosis and
procedure suggestion - all tasks are based on the
clinical notes, reflecting real word environments
and not hand-made QA benchmarks.

2 Methods

Foresight v2 is a transformer-based model, built on
top of a pretrained large LLLM for temporal mod-
elling of patient timelines. Formally, the task at
hand can be defined as given a corpus of patients
U = {u1,u2,us, ..} where each patient is defined
as a sequence of tokens u; = {wy, ¢, w3, ...} and
each token is either a biomedical concept (c,,) or
a text token (w,, - context where the concept was
found), our objective is a modified language mod-



elling objective for supervised fine-tuning:

L(U) = Z Z logP(c;|k§_1, ;_2, kD)

1 jeCt

Where k!, is either a biomedical concept c,, or a
free text token w,, belonging to the timeline from
the patient 4, and C" is the list of all concept tokens
from the timeline of patient <. In simpler terms, the
model is not trained to predict text tokens, but only
biomedical concept tokens given the past (concepts
and text).

2.1 Data Preparation

The dataset used in this work is MIMIC-III (John-
son et al., 2016), we used all available free text
from clinical notes totalling 2,083,179 documents
from 46,520 patients.

We first perform entity recognition and linking
on the collected free text. Extracted entities in-
clude disorders, symptoms, findings and medica-
tions (equivalent to Kraljevic et al. (2023)). Follow-
ing extraction, these entities are chronologically
organized into a timeline, reflecting their occur-
rence based on the document’s creation date (The
first part of Figure 1). An essential aspect of our
methodology is the retention of contextual infor-
mation for each extracted entity. For example, if
an entity such as "hypertension" is identified, not
only is the term itself preserved, but also the sen-
tence in which it was found. This is crucial for two
reasons: firstly, it allows us to capture qualifying
information that could modify the understanding
of the entity, such as severity (e.g., "severe hyper-
tension"), and secondly, it enables the inclusion of
negated or hypothetical concepts into the patient
timeline (e.g., "no hypertension"). In instances
where the boundaries of a sentence are ambiguous,
we extract up to 50 tokens from each side of the
entity, ensuring a comprehensive capture of con-
text. In addition to contextual sentences, we also
record the specific document ID for each concept,
along with the absolute token IDs of words within
the context. By tokenizing the entire document and
assigning unique IDs to each token, we establish
a precise reference system. This level of detail is
instrumental in reconstructing the patient timeline
(see the last step of Figure 1), as it allows for the
accurate merging of contexts where concepts are
closely related or appear within the same textual
vicinity.

Once the concepts and their context are extracted,
we further refine this data, employing a technique

known as *bucketing’. This process involves the ag-
gregation of concepts within predefined time spans
(we use 1 day) to eliminate repetitive mentions
and reduce data noise. During bucketing we also
identify potential errors; for instance, a concept
mentioned only once within the whole patient EHR
will be flagged as a probable NER+L mistake and
removed.

After bucketing and cleaning, we add additional
information to the patient timeline including age,
ethnicity, sex and temporal separators. If the tem-
poral difference between two concepts in a patient
timeline is bigger than the size of the bucket (1 day
in our case), we add a special token in between
those concepts that tells the model how much time
has passed (e.g. <1 day later>, <7 days later>, <1
year later>).

Lastly, from the concepts and their context,
we reconstruct a single clinical note contain-
ing all the patient information. In this clinical
note, all biomedical concepts are represented with
SNOMED (Stearns et al., 2001) codes (as shown
in green, bottom of Figure 1), while the context
of those codes is free text. The size of this final
prepared dataset is 39,591 patients in the train set
and 2101 in the test set (the train/test split is 95/5).

2.2 Modelling of Patient Timelines

Foresight v2 is built on top of the LLaMA-2 7B
model and fine-tuned for modeling of patient time-
lines. LLaMA-2 7B is a partially open-source
model from Meta showing near state-of-the-art per-
formance on a wide range of benchmarks. As it
is a general large language model, it is not trained
or fine-tuned for biomedical use cases and it does
not have an understanding of SNOMED codes (the
patient timelines consist of free text and SNOMED
codes). To enable the LLaMA-2 model to handle
SNOMED codes efficiently and effectively, we ex-
pand its tokenizer with the SNOMED concepts of
interest (i.e. those SNOMED concepts that appear
in our dataset). Usually, when adding new tokens
to the tokenizer we would set the embeddings to be
the average of all other tokens in the tokenizer. As
the SNOMED codes are special we have slightly
changed this approach. Every token we add is a
SNOMED code with a unique name, so we first
tokenise that name and then average the embed-
dings of the tokens in the name and set this as the
embedding of the new token (i.e. SNOMED code).
With this, every SNOMED code is represented as
one token in our model.
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A 25 year-old man complains of 51197009 and
22253000. He reports having 398032003 and losing
6.8 kg over a 3-month duration.

He also reports increased 84229001. On physical
examination, his 56342008 is 38.6°C.

Figure 1: Data preparation workflow: 1) We collect all
free text documents from the patient EHR; 2) Extract
mentions of SNOMED-CT concepts and combine the
concepts with static data like sex, ethnicity and age;
3) Clean, filter and bucketed concepts and turn them
into a patient timeline; and lastly 4) From the concepts
in the timeline, based on the context where each one
was found, reconstruct a singular clinical note for each
patient.

To finetune the model we used 4xA100 80GB
GPUs (the training took around 1day), the hyper-
parameters were as follows: max_seq_len = 4096,
learning_rate = le-5, gradient_accumulation_steps
= 2, per_device_batch_size = 1, weight_decay =
0, warmup_ratio = 0.1, and the adamw_torch op-
timizer. To stabilise the model during training we
set the adam_betal to 0.9 and adam_beta2 to 0.95.
To speed up training and enable efficient training
with long sequences we use Flash Attention 2 with

PyTorch FSDP, without quantization. Importantly,
we have disabled loading the model in bfloatl16
with the Huggingface library, as enabling this sig-
nificantly reduces the performance of the model.

All examples in the training set are packed,
meaning a special token <s> is added at the
beginning of each example, and they are then
concatenated and split into sequences of length
max_seq_len (4096 in our case). This was not done
for the test set to preserve the timelines as they are.
The labels are provided in a supervised fashion;
only the concepts (SNOMED codes) themselves
are trained on, while the labels for everything else
(the free text part) are set to —100. As an example,
at the bottom of Figure 1 in the reconstructed note,
we would only train on the green parts of the text
(i.e. SNOMED codes) while the labels for every-
thing else would be set to -100 (i.e. no training
would be performed on that part).

2.3 Metrics

The metrics used for the next concept prediction
in the patient timeline are equivalent to those used
in Kraljevic et al. (2023). In summary, the per-
formance of the models is measured using custom
metrics that are an extension of the standard pre-
cision (TP / TP + FP) and recall (TP / TP + FN)
aiming to replicate what the model will be used
for whilst also considering the limitations of the
training data. There are four important parameters:
1) T — days (30, 365, inf), if at timepoint T we
are predicting the concept X it is considered cor-
rect if it appears anywhere in the window of length
T —days in the patient timeline; 2) Concept tempo-
rality, we make a distinction between concepts that
never before appeared in a patient timeline (new
concepts) and those that are recurring; 3) We add
the notation @N which denotes how many candi-
dates we are taking from the model, if any one of
the IV candidates is correct then the example is con-
sidered a TP; and 4) When calculating the metrics,
we filter the model output based on the type of the
biomedical concept of the label, e.g. if the type
of the label is Disorder then we filter the model
output to only include disorders.

2.4 Second Stage Fine-tuning for Risk
Forecasting

In addition to the contextualised patient timelines
we also create timelines for disease or symptom
forecasting. We do this by taking a patient time-
line, splitting it in the middle (or at most after 50



concepts) and taking the first part of the timeline
as is, while for the second part, we extract unique
diseases that appear in the first month. So our task
is, given a patient timeline (first part of it) predict
the disorders that will affect the patient in the first
month of the subsequent patient timeline. We take
only patients that, after the timeline split, have at
least one month of data in the future, and have at
least 5 different disorder concepts appearing in that
month (this is >90% of patients). This reduces the
dataset to 13,651 in the train set and 727 in the test
set.

When fine-tuning FS2 on this data, all training
parameters are kept the same as for the initial train-
ing, we also run for only 1 epoch - anything above
this led to overfitting to the training set. We prepare
the same timelines for GPT-4-turbo, the primary
difference is that all SNOMED codes are replaced
with proper names (e.g. 73211009 — > Diabetes
mellitus), find the full prompt used with GPT-4-
turbo in Appendix A.

3 Results

The primary task that we test the Foresight v2
model on is the prediction of the next concepts in
a patient timeline. In this task, the model showed
a significant improvement over the Foresight v1
model, including a jump of 19% for the prediction
of the next new concept (concept type All’), and
20% for the prediction of the next new disorder
(Table 1). These results were achieved using the
objective function shown in Section 2; if we mod-
ify this function to a standard language modelling
objective (i.e. input_ids == labels) and train the
model, the performance is slightly worse (overall
2-3% worse than that shown in Table 1). Also, if
we remove the context from the patient timelines
(i.e. leave only the biomedical concepts) the perfor-
mance drops drastically (on average around 40%
compared to the results in Table 1). In addition, in
Table 2, we show the top 10 and bottom 10 con-
cepts with respect to precision for prediction of
new Disorders.

To showcase the capabilities of the model, we
manually go through the MIMIC-III notes and find
examples of different tasks that the model had to
solve during the prediction of the next concept in
a sequence. The results are shown in Table 3, for
the input (column Patient) we only show a brief
summary of the patient’s condition as we are not
able to show real patient data. The Prompt column

shows the prompt used for FS2, it is what really
was found in the clinical note for this patient. For
GPT-4-turbo the prompt was slightly adjusted to
be more natural and concrete, for example, we
pre-pended every prompt shown in the table with
an explanation that this is a medical quiz, that the
model should try to answer in a way a doctor would
and that it should be as precise as possible. The
Ground Truth comes from the patient’s EHR and it
represents what really happened to the patient.

3.1 Risk Forecasting

Both GPT-4-turbo and Foresight v2 were given
the task of predicting the top 5 disorders that the
patient is at risk for in the next month. The dataset
consisted of 100 random patients from the test set
prepared for the risk prediction task (727 patients in
total). As seen in Table 4, out of the 5 predictions
on a dataset of 100 patients, for GPT-4-turbo in
62% of patients, at least one prediction was correct,
compared to 84% in the case of Foresight v2.

To make sure the reconstructed timelines were
not problematic for GPT-4-turbo, we have also
taken the first 10 patients (from the 100 above) and
fed the full patient history (complete clinical notes)
until the timepoint 7" and prompted the model to
predict risk in the next month (this was possible
with GPT-4-turbo because the current maximum
sequence length is 128K tokens). The results for
these 10 patients were 10% worse in the case of full
timelines compared to the reconstructed timelines.

4 Conclusion and Discussion

Foresight v2 is an LLM fine-tuned on hospital data
for modelling and understanding patient timelines.
It is capable of understanding clinical notes and
predicting SNOMED codes for a wide range of
biomedical use cases including disorder prediction,
medication recommendation, symptom forecast,
procedure recommendation and many more. Fore-
sight v2 marks a significant advancement in the
modelling of patient timelines over the previous
state of the art (Foresight v1), enhancing the preci-
sion and effectiveness of LLMs for healthcare.
There are four primary reasons why SNOMED
codes were added to the tokenizer (and the model):
1) It allows us to standardise patient timelines, re-
move noise and repetitions (Searle et al., 2021) and
provides a way to train and benchmark LLMs on
hospital data. 2) It allows us to easily rank the
predictions of the model based on probability. At



FS2 - P/R FS1-P/R

Type T-days | @ | New Recurring | New Recurring | Sup. R. | Sup. N.
All 30 1 ] 0.71/0.64 | 0.95/0.95 | 0.52/0.32 | 0.83/0.67 | 245265 | 114922
All 30 5 10.91/0.85 | 1.00/1.00 | 0.84/0.59 | 0.98/0.92 | 245265 | 114922
All 30 10 | 0.95/0.90 | 1.00/1.00 | 0.91/0.70 | 1.00/0.97 | 245265 | 114922
All 365 1 | 0.71/0.64 | 0.95/0.96 | 0.54/0.33 | 0.85/0.70 | 245265 | 114922
All inf 1 | 0.71/0.64 | 0.95/0.96 | 0.55/0.33 | 0.86/0.70 | 245265 | 114922
Disorders | 30 1 | 0.66/0.59 | 0.94/0.94 | 0.46/0.25 | 0.79/0.60 | 109019 | 51675
Disorders | 30 5 | 0.88/0.81 | 1.00/1.00 | 0.79/0.51 | 0.98/0.89 | 109019 | 51675
Disorders | 30 10 | 0.94/0.87 | 1.00/1.00 | 0.88/0.62 | 0.99/0.96 | 109019 | 51675
Disorders | 365 1 | 0.67/0.59 | 0.95/0.95 | 0.49/0.26 | 0.83/0.64 | 109019 | 51675
Disorders | inf 1 ] 0.67/0.59 | 0.95/0.95 | 0.50/0.26 | 0.84/0.65 109019 | 51675
Findings 30 1 | 0.74/0.67 | 0.95/0.96 | 0.52/0.29 | 0.83/0.66 | 71007 33772
Findings 30 5 | 0.94/0.88 | 1.00/1.00 | 0.85/0.58 | 0.99/0.93 | 71007 33772
Findings 30 10 | 0.97/0.93 | 1.00/1.00 | 0.92/0.70 | 1.00/0.98 | 71007 33772
Findings 365 1 | 0.75/0.67 | 0.95/0.96 | 0.54/0.29 | 0.85/0.67 | 71007 33772
Findings inf 1 | 0.75/0.67 | 0.95/0.96 | 0.55/0.29 | 0.85/0.68 | 71007 33772
Substances | 30 1 | 0.63/0.53 | 0.95/0.94 | 0.52/0.32 | 0.84/0.70 | 39578 19172
Substances | 30 5 | 0.88/0.79 | 1.00/1.00 | 0.85/0.61 | 0.99/0.94 | 39578 19172
Substances | 30 10 | 0.94/0.87 | 1.00/1.00 | 0.92/0.73 | 1.00/0.99 | 39578 19172
Substances | 365 1 ] 0.63/0.53 | 0.95/0.95 | 0.53/0.32 | 0.84/0.71 | 39578 19172
Substances | inf 1 | 0.63/0.53 | 0.95/0.95 | 0.53/0.32 | 0.85/0.71 | 39578 19172
Procedures | 30 1 | 0.92/0.90 | 0.98/0.99 | 0.79/0.67 | 0.94/0.92 | 7831 3379
Procedures | 30 5 10.99/0.99 | 1.00/1.00 | 0.97/0.94 | 1.00/1.00 | 7831 3379
Procedures | 30 10 | 1.00/1.00 | 1.00/1.00 | 0.99/0.99 | 1.00/1.00 | 7831 3379
Procedures | 365 1 | 0.93/0.90 | 0.98/0.99 | 0.81/0.67 | 0.95/0.93 | 7831 3379
Procedures | inf 1 |0.93/0.90 | 0.98/0.99 | 0.81/0.67 | 0.95/0.94 | 7831 3379

Table 1: Results for the next concept prediction task. Sup N and Sup R is the support for recurring and new concepts,
FS2 = Foresight v2 model, FS1 = Foresight vl model, P = Precision, R = Recall. T' — days is the size of the

temporal window in days.

every point where we want to predict the next con-
cept in a timeline, we can easily see what is the
most probable, or what are the top N predictions.
3) It makes sure the model predictions are part
of a standardised widely accepted medical ontol-
ogy, as opposed to having a model generate free
text and then needing another step to map back-
wards into standardised forms for compatibility
with existing healthcare informatics systems. This
compatibility with biomedical ontologies is impor-
tant as general-purpose LLLMs are prone to hallu-
cinate realistic-looking standardised output (e.g.
academic citations, Zhou et al. (2024)) which is
addressable with greater exposure to standardised
ontologies (Wang et al., 2024) in the way shown in
this manuscript. 4) The model predictions are inher-
ently privacy-preserving as the model was not di-
rectly trained on text, it can only output healthcare
concepts within intentionally constrained health-

care vocabulary (SNOMED), it cannot predict any
personally identifiable information, like names, ad-
dresses or other HIPAA-defined protected health
information. Without this guarantee, no model
trained on hospital data should be made publicly
available.

During benchmarking between GPT4 and FS2,
some leniency was provided to GPT4 by allow-
ing for some poecilonymic predictions (e.g. ’gas-
trointestinal haemorrhage’ being predicted when
the ground truth was ’gastric haemorrhage’). At
the same time, Foresight v2 was only scored on
exact predictions. This means the real-world per-
formance of FS2 may be underestimated as poe-
cilonymic predictions may be sufficient for real-
world utility (especially for human-in-the-loop im-
plementations). It is important to note the diffi-
culty of the task, which in turn can explain why
models like GPT-4-turbo are performing signif-



Disorder P TP | FP
Stress ulcer 1.00 | 175 | O
Postcholecystectomy s. 1.00 |32 | O
Left atrial dilatation 1.00 |35 |0
Muscle atrophy 1.00 22 |0
Rubella 1.00 |19 |0
Conjunctival edema 1.00 | 16 | O
Mediastinal shift 1.00 | 11 |0
Diastolic hypertension 1.00 |12 |0
Mitral valve regurgitation 0.98 | 687 | 12
Systolic hypertension 098 | 338 | 6
Hypercholesterolemia 0.31 | 46 105
Left bundle branch block 0.30 | 12 | 28
Kidney stone 0.30 | 16 | 38
Gastroesophageal reflux d. 0.30 | 18 | 43
Gastrointestinal hemorrhage | 0.30 | 18 | 43
Hyperlipidemia 0.29 | 62 | 155
Right bundle branch block 0.28 | 23 | 60
Hypothyroidism 0.27 | 41 109
Asthma 023 |18 |61
Benign prostatic hyperplasia | 0.19 | 29 | 123

Table 2: Top and Bottom 10 concepts with respect to
precision for prediction of new disorders.

icantly worse. Real-world EHR data is messy,
noisy, extremely complex and filled with dupli-
cated text. Within this noisy data, predicting the
next event can prove to be a very difficult task
with the added factors of patient complexity, multi-
morbidity, polypharmacy and acute clinical insta-
bility of patients. Complications can develop as
a result of their severe underlying disease or as
an iatrogenic event secondary to procedures and
medications. Of note, the median age of patients
in MIMIC-III was 66 years old, with a mortality
of 23.2% and a median hospital stay of 2.1 days
(Q1-Q3: 1.2-4.1) (Dai et al., 2020). Predicting the
next concept in such a highly unstable cohort of pa-
tients over such a short time span is exceptionally
difficult.

4.1 Limitations and Risk

There are limitations to ontological classification
systems such as SNOMED or ICD-10 - these sys-
tems may not cover all details and nuances within
the clinical text. For example, there will be diseases
or concepts that don’t fall within the defined bound-
aries of available terminology or do not yet exist as
formal concepts in codified terminologies (highly
prevalent in fields with rapid scientific progress,

e.g. cancer genetics and precision medicine). This
challenge is to the most extent resolved because
FS2 is capable of understanding free text next to
SNOMED concepts. Exploring this area in detail
is left for future work.

As this model is trained on a relatively small
dataset without any human preference alignment,
the prompts are more similar to GPT-3 rather than
recent LLMs (e.g. GPT-4). The prompts have to
reflect the way the clinical notes are written, and
the model cannot answer general questions or hold
conversations. For example, in the notes, we will
often have the phrase "The patient was discharged
with: " the model will know that after this it has to
predict discharge medications. Q&A-style prompt-
ing popularised by ChatGPT like "What are the
discharge medications for this patient?" would not
work without further human preference alignment.

It is also important to note that while the results
obtained are very good, these models are still in
the early stages of research and testing, and are
not yet suitable to be Software as a Medical De-
vice (SaMD). There is a temptation to imagine the
predictions to be used for clinical care or decision
support - this is still premature as Foresight v2 is de-
rived from historical practice so would not always
be expected to be consistent with contemporary
best practice.

Lastly, significantly larger hospital datasets as
well as general medical literature are needed to bet-
ter cover all possible biomedical concepts found in
SNOMED, as well as prevent biases or inaccura-
cies that can stem from using a single hospital as
the training dataset. Future work should explore ex-
panding the training data with medical guidelines,
textbooks, and definitions and if possible include
multiple hospitals.

4.2 Potential Utility

We note alerting systems as a use-case for which
models like Foresight v2 could be well-suited. Ta-
ble 2 shows that there is a wide range of conditions
with a precision of 100% and such conditions are
particularly well suited in the context of design-
ing alert systems. This high precision ensures that
when an alert is issued, it is almost invariably rel-
evant. Importantly, this high-precision approach
minimises the clinician ’alert fatigue’, a scenario
that might arise if high recall was favoured over
high precision.

Another utility of FS2 is for risk prediction and
prognosis, this can be used to guide primary or



Patient Prompt Foresight v2 GPT-4-turbo Ground Truth
Middle-aged male | Rule out: DVT DVT DVT
patient with swelling
and fracture of ankle.
Older male patient | Recently Hypercapnia Acute  Respiratory | Hypercapnia
with obesity and | increased Distress Syndrome (later confirmed
sleep apnoea. somnolence to really be
and dyspnoea, Hypercapnia)
likely a sign of
Older female patient | Given the | Risperidone Aripiprazole or | Risperidone
with a complex men- | parapsychotic Lurasidone
tal health history. nature of the
depression,
started on
A young female pa- | The patient was | Omeprazole Proton Pump In- | Omeprazole
tient with a long med- | discharged with | (One of the top | hibitors (PPIs) or H2
ical history and cur- | scripts for: 3 predictions) Blockers (one of top
rent visit for gastroin- 3 predictions)
testinal issues.
Infant with hyperten- | <list of | Echo Echo Echo
sion problems >*
evaluate with

Table 3: Examples of tasks found in the MIMIC-III dataset, and the predictions by Foresight v2 and GPT-4-turbo.
The Patient column represents a very brief summary of the patient’s past for privacy reasons, during the tests
models were fed the real patient timelines. The prompts are original pieces of text taken from the patient’s timeline.
The Ground Truth is taken from the clincal notes for the patient. *We redacted the full list of problems to avoid
re-identification risk, in the prompts used with GPT-4-turbo and Foresight v2 the list was kept as found in the

clinical note.

Model Atleast Atleast At least
1 2 3

GPT-4-turbo 62% 23% 6%

Foresight v2 84% 56% 28%

Table 4: Risk prediction results for GPT-4-turbo and
Foresight v2, both models were prompted to predict the
top 5 disorders a patient is at risk for in the next month.
The column ’At least N’ shows in the dataset of 100
patients, the percentage of patients where at least [N out
of the 5 predictions are correct.

secondary disease prevention or determine man-
agement course. In medicine, there are countless
validated risk and prognostic scores designed for
disease-specific scenarios; e.g. QRISK (Hippisley-
Cox et al., 2017) for stratification of cardiovascular
disease, CHADSVASC (Lip et al., 2010) score for
stroke risk, CURB65 (Lim, 2003) for pneumonia
severity; these require large-scale calibration for
generalisability and ongoing feature-engineering
for more variables. Our approach with FS2 is more

fine-grained and high-dimensional as it models tem-
porally ordered sequences of comorbidities, and
additional features (e.g. medications, social deter-
minants of health, complications and outcomes)
are included with limited a priori assumptions.

Lastly, various use cases in medical education,
clinical co-pilots (for medications, procedures, dis-
orders, etc.), synthetic data generation and recon-
struction of patient timelines are all possible with
models like FS2. In effect, models such as FS2 that
are trained on whole hospitals and medical litera-
ture (a priori for now in FS2) will become a model
of an entire healthcare system and the correspond-
ing population.

The code for Foresight v2 will be open-sourced
upon paper acceptance (because of the anonymity
period), we will try to publish the models also,
but this depends on MIMIC-III and the rules and
regulations they will apply to such models.
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A The prompt used for GPT-4-turbo

<system prompts, these are appended
as system messages to gpt-4-turbo>

You are now playing the role of a
medical doctor taking an exam,
your goal is to be as accurate
as possible and make sure you do

11

not make any mistakes. If you

are unsure about something, think
step by step and then answer.

You have to follow the instructions
precisely.

Your first question in this medical

quiz will consist of a patient history,
your goal is to predict 5 specific disorders
the patient is at risk for in the next
month. Please take care that the disorders
you are predicting cannot be part of

the patient's past. They

have to be new disorders that will most
likely affect the patient in the next month.
You have to predict specific disorders,
for example: you should never say
"pulmonary problems”

as this is not a specific disorder,

but you can say "pneumonia” as that

is a specific disorder. Your output
should be in .json format and consists

of a list of disorder names and
explanations

(e.g. [('<disorder_1>', '<explanation>'),
D)

</system prompts>

{history}

Given the above patient history. What
specific new disorders is this

patient at risk for in the next month?
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