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Abstract

Foresight v2 (FS2) is a Large Language Model001
based on LLaMa v2 7B and fine-tuned on hos-002
pital data for modelling patient timelines. It003
is capable of understanding a patient’s clinical004
notes and forecasting SNOMED codes for a005
wide range of biomedical use cases including006
disorder prediction, medication recommenda-007
tion, risk prediction, procedure recommenda-008
tion and many more. FS2 is trained on the free009
text portion of the MIMIC-III dataset, firstly010
through the extraction of biomedical concepts011
and then the creation of contextualised patient012
timelines, upon which the model is then fine-013
tuned. The results show significant improve-014
ment over the previous state-of-the-art for the015
next new biomedical concept prediction (P/R -016
0.71/0.64 vs 0.52/0.32) and a similar improve-017
ment specifically for the next new disorder fore-018
cast (P/R - 0.66/0.59 vs 0.46/0.25). Finally, on019
the task of disorder forecast, we compare this020
model, to GPT-4-turbo, and show that FS2 per-021
forms significantly better on such tasks (P@5022
- 0.84 vs 0.62). This highlights the need to023
incorporate real health data into LLMs and024
shows that even much smaller models when025
fine-tuned on high-quality specialised data out-026
perform much larger ones.027

1 Introduction and Related Work028

Language plays a central role in healthcare and029

medical practice, with unstructured text represent-030

ing the most prevalent data in Electronic Health031

Records (EHRs) (Jackson et al., 2018)). Yet to-032

day, AI models have largely failed to utilize this033

resource and mostly ignore the free text portion034

of the EHR. Recently, Large Language Models035

(LLMs, et al. (2023b,a); Touvron et al. (2023a,b);036

Bai et al. (2022)) have shown the potential to under-037

stand human language, but even the most advanced038

LLMs (as well as specialised medical LLMs Sing-039

hal et al. (2023b)) rarely use the free text portion040

of the EHR. What is more, most LLMs are not041

trained/tested/validated on real-world hospital data, 042

but on medical quizzes and exams. 043

Today’s large language models have seen a re- 044

markable evolution. Initial models like BERT (De- 045

vlin et al., 2019), RoBERTa (Liu et al., 2019), T5 046

(Raffel et al., 2023), GPT-1 (Yenduri et al., 2023) 047

and GPT-2 (Radford et al., 2019) set the stage. The 048

BERT family notably changed natural language 049

processing (NLP), largely replacing RNN-based 050

models in tasks such as Named Entity Recognition 051

(NER) and text classification. Meanwhile, the GPT 052

series, focused solely on text generation, sought to 053

predict the next word in a sequence. Despite initial 054

limitations, these models showed potential. This 055

set the groundwork for the recent revolution in NLP 056

caused by highly capable general LLMs such as 057

ChatGPT (Ouyang et al., 2022) and LLaMA 1&2 058

(Touvron et al., 2023a,b). These models enabled 059

use cases that before were either extremely difficult 060

or completely impossible. Tasks such as document 061

summarization, text classification, programming, 062

and question answering were now reduced to sim- 063

ple prompting. Today, state-of-the-art for a wide 064

range of NLP tasks is being set almost with every 065

release of a new LLM. 066

In the medical domain, the current LLM research 067

can be split into three groups: 1)Using LLMs on 068

medical tasks without any fine-tuning (via prompt 069

engineering); 2) Fine-tuning existing LLMs for the 070

medical domain; and 3) Training LLMs from the 071

ground up on medical data. 072

Recent work is mostly focused on approaches 073

from group 1, in other words evaluating existing 074

models for different medical tasks. Khan et al. 075

(2024) test GPT-4 (et al., 2023b) for Anesthesiol- 076

ogy Board-style Examination Questions, in total 077

they collected 884 questions and prompted GPT-4 078

for answers. They show promising results but note 079

that GPT-4 is still lacking in this area and more 080

research is needed for both validation and training. 081

Murphy Lonergan et al. (2023) show similar re- 082
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sults for surgery, they collected 23,035 questions083

from MedMCQA and prompted GPT-4 for answers.084

They note that GPT-4 shows promising results, but085

still requires more training and testing. On a simi-086

lar note, Savage et al. (2024) explore how to con-087

struct prompts so that the reasoning style of GPT-4088

matches that of clinicians, the dataset used is a089

modified MedQA USMLE, the conclusion being090

the same as for the other examples.091

There is significantly less work from group 2,092

i.e. LLMs fine-tuned for the medical domain. Med-093

PaLM 1&2 (Singhal et al., 2023a,b) are closed-094

source and closed-access models from Google that095

build on the PaLM (Chowdhery et al., 2022; Anil096

et al., 2023) architecture. The models are trained on097

QA-style datasets and show state-of-the-art results098

on USMLE-style questions from MultiMedQA.099

MediTRON 70B (Chen et al., 2023) builds on top100

of LLaMA-2 70B and is finetuned on medical pa-101

pers and clinical guidelines, the model is primarily102

tested on QA style datasets where it is shown to out-103

perform general models like GPT-3.5, and comes104

close to closed source medical models like Med-105

PaLM.106

And lastly, there are only a few examples from107

the third group, i.e. LLMs trained from the ground108

up on medical data. Yang et al. (2022) train a large109

language model with 8.9B parameters on a dataset110

with >90 billion words (including >82B words of111

de-identified clinical text) and evaluate it on clinical112

NLP tasks including clinical concept extraction,113

medical relation extraction, semantic text similarity,114

natural language inference, and medical question115

answering. Similarly, Peng et al. (2023) train an116

LLM with up to 20B parameters on 82B words of117

clinical text and 195B words of general English118

text. The tests they performed were largely the119

same as shown in the work from Yang et al. (2022).120

Most other examples in this group are not what we121

would today consider LLMs, those include models122

like BioBERT (Lee et al., 2019) and ClinicalBERT123

(Huang et al., 2020).124

Given the examples above, it is important to note125

that the vast majority of training/validation was126

performed on medical quizzes and exam questions,127

and not on real-world health data, highlighting the128

disparity between real-world use cases and LLM129

research in the medical domain. With some notable130

exceptions, like the work from Yang et al. (2022)131

which was trained on hospital data, but still tested132

mainly on public benchmarks for medical question133

answering, named entity recognition, and similar.134

This paper builds on the recent work from Kral- 135

jevic et al. (2023), which presents Foresight v1 136

(FS1), a generative transformer for modelling pa- 137

tient timelines using derived structured concepts 138

from unstructured text. The FS1 pipeline works as 139

follows: 1) Collect all free text data from a hos- 140

pital EHR; 2) Extract biomedical concepts (e.g., 141

diseases, medications, procedures and symptoms) 142

from the collected dataset; 3) Order the extracted 143

concepts in time and group by the patient, i.e. cre- 144

ate patient timelines; and 4) Train a generative 145

transformer to predict the next concept in the time- 146

line. The first weakness of FS1 is that the model 147

does not know anything about the context in which 148

a concept was mentioned (concepts are extracted 149

from free text without their surrounding semantic 150

context). The second problem is that FS1 was a 151

pure empiricist with limited a priori biomedical or 152

healthcare knowledge, in other words, the model 153

was trained from the ground up on patient timelines 154

consisting of only biomedical concepts. 155

To solve the aforementioned problems, we 156

present Foresight v2 (FS2), a biomedical Large 157

Language Model capable of extracting and mod- 158

elling vast amounts of knowledge from EHRs. 159

Foresight v2 is based on the LLaMAv2 7B (Tou- 160

vron et al., 2023b) model and was fine-tuned on 161

hospital data from the MIMIC-III (Johnson et al., 162

2016) dataset for the task of the next biomedical 163

concept prediction in a patient timeline. The pa- 164

tient timelines in FS2 are contextualised, meaning 165

a portion of the text where the concept was found 166

is kept. FS2 is a general model capable of han- 167

dling a wide range of use cases that are normally 168

found in the free text portion of EHRs, including 169

forecasting, medication suggestions, diagnosis and 170

procedure suggestion - all tasks are based on the 171

clinical notes, reflecting real word environments 172

and not hand-made QA benchmarks. 173

2 Methods 174

Foresight v2 is a transformer-based model, built on
top of a pretrained large LLM for temporal mod-
elling of patient timelines. Formally, the task at
hand can be defined as given a corpus of patients
U = {u1, u2, u3, ..} where each patient is defined
as a sequence of tokens ui = {w1, c2, w3, ...} and
each token is either a biomedical concept (cn) or
a text token (wn - context where the concept was
found), our objective is a modified language mod-

2



elling objective for supervised fine-tuning:

L(U) =
∑
i

∑
j∈Ci

logP (cij |kij−1, k
i
j−2, ...k

i
0)

Where kin is either a biomedical concept cn or a175

free text token wn belonging to the timeline from176

the patient i, and Ci is the list of all concept tokens177

from the timeline of patient i. In simpler terms, the178

model is not trained to predict text tokens, but only179

biomedical concept tokens given the past (concepts180

and text).181

2.1 Data Preparation182

The dataset used in this work is MIMIC-III (John-183

son et al., 2016), we used all available free text184

from clinical notes totalling 2,083,179 documents185

from 46,520 patients.186

We first perform entity recognition and linking187

on the collected free text. Extracted entities in-188

clude disorders, symptoms, findings and medica-189

tions (equivalent to Kraljevic et al. (2023)). Follow-190

ing extraction, these entities are chronologically191

organized into a timeline, reflecting their occur-192

rence based on the document’s creation date (The193

first part of Figure 1). An essential aspect of our194

methodology is the retention of contextual infor-195

mation for each extracted entity. For example, if196

an entity such as "hypertension" is identified, not197

only is the term itself preserved, but also the sen-198

tence in which it was found. This is crucial for two199

reasons: firstly, it allows us to capture qualifying200

information that could modify the understanding201

of the entity, such as severity (e.g., "severe hyper-202

tension"), and secondly, it enables the inclusion of203

negated or hypothetical concepts into the patient204

timeline (e.g., "no hypertension"). In instances205

where the boundaries of a sentence are ambiguous,206

we extract up to 50 tokens from each side of the207

entity, ensuring a comprehensive capture of con-208

text. In addition to contextual sentences, we also209

record the specific document ID for each concept,210

along with the absolute token IDs of words within211

the context. By tokenizing the entire document and212

assigning unique IDs to each token, we establish213

a precise reference system. This level of detail is214

instrumental in reconstructing the patient timeline215

(see the last step of Figure 1), as it allows for the216

accurate merging of contexts where concepts are217

closely related or appear within the same textual218

vicinity.219

Once the concepts and their context are extracted,220

we further refine this data, employing a technique221

known as ’bucketing’. This process involves the ag- 222

gregation of concepts within predefined time spans 223

(we use 1 day) to eliminate repetitive mentions 224

and reduce data noise. During bucketing we also 225

identify potential errors; for instance, a concept 226

mentioned only once within the whole patient EHR 227

will be flagged as a probable NER+L mistake and 228

removed. 229

After bucketing and cleaning, we add additional 230

information to the patient timeline including age, 231

ethnicity, sex and temporal separators. If the tem- 232

poral difference between two concepts in a patient 233

timeline is bigger than the size of the bucket (1 day 234

in our case), we add a special token in between 235

those concepts that tells the model how much time 236

has passed (e.g. <1 day later>, <7 days later>, <1 237

year later>). 238

Lastly, from the concepts and their context, 239

we reconstruct a single clinical note contain- 240

ing all the patient information. In this clinical 241

note, all biomedical concepts are represented with 242

SNOMED (Stearns et al., 2001) codes (as shown 243

in green, bottom of Figure 1), while the context 244

of those codes is free text. The size of this final 245

prepared dataset is 39,591 patients in the train set 246

and 2101 in the test set (the train/test split is 95/5). 247

2.2 Modelling of Patient Timelines 248

Foresight v2 is built on top of the LLaMA-2 7B 249

model and fine-tuned for modeling of patient time- 250

lines. LLaMA-2 7B is a partially open-source 251

model from Meta showing near state-of-the-art per- 252

formance on a wide range of benchmarks. As it 253

is a general large language model, it is not trained 254

or fine-tuned for biomedical use cases and it does 255

not have an understanding of SNOMED codes (the 256

patient timelines consist of free text and SNOMED 257

codes). To enable the LLaMA-2 model to handle 258

SNOMED codes efficiently and effectively, we ex- 259

pand its tokenizer with the SNOMED concepts of 260

interest (i.e. those SNOMED concepts that appear 261

in our dataset). Usually, when adding new tokens 262

to the tokenizer we would set the embeddings to be 263

the average of all other tokens in the tokenizer. As 264

the SNOMED codes are special we have slightly 265

changed this approach. Every token we add is a 266

SNOMED code with a unique name, so we first 267

tokenise that name and then average the embed- 268

dings of the tokens in the name and set this as the 269

embedding of the new token (i.e. SNOMED code). 270

With this, every SNOMED code is represented as 271

one token in our model. 272
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Figure 1: Data preparation workflow: 1) We collect all
free text documents from the patient EHR; 2) Extract
mentions of SNOMED-CT concepts and combine the
concepts with static data like sex, ethnicity and age;
3) Clean, filter and bucketed concepts and turn them
into a patient timeline; and lastly 4) From the concepts
in the timeline, based on the context where each one
was found, reconstruct a singular clinical note for each
patient.

To finetune the model we used 4xA100 80GB273

GPUs (the training took around 1day), the hyper-274

parameters were as follows: max_seq_len = 4096,275

learning_rate = 1e-5, gradient_accumulation_steps276

= 2, per_device_batch_size = 1, weight_decay =277

0, warmup_ratio = 0.1, and the adamw_torch op-278

timizer. To stabilise the model during training we279

set the adam_beta1 to 0.9 and adam_beta2 to 0.95.280

To speed up training and enable efficient training281

with long sequences we use Flash Attention 2 with282

PyTorch FSDP, without quantization. Importantly, 283

we have disabled loading the model in bfloat16 284

with the Huggingface library, as enabling this sig- 285

nificantly reduces the performance of the model. 286

All examples in the training set are packed, 287

meaning a special token <s> is added at the 288

beginning of each example, and they are then 289

concatenated and split into sequences of length 290

max_seq_len (4096 in our case). This was not done 291

for the test set to preserve the timelines as they are. 292

The labels are provided in a supervised fashion; 293

only the concepts (SNOMED codes) themselves 294

are trained on, while the labels for everything else 295

(the free text part) are set to −100. As an example, 296

at the bottom of Figure 1 in the reconstructed note, 297

we would only train on the green parts of the text 298

(i.e. SNOMED codes) while the labels for every- 299

thing else would be set to -100 (i.e. no training 300

would be performed on that part). 301

2.3 Metrics 302

The metrics used for the next concept prediction 303

in the patient timeline are equivalent to those used 304

in Kraljevic et al. (2023). In summary, the per- 305

formance of the models is measured using custom 306

metrics that are an extension of the standard pre- 307

cision (TP / TP + FP) and recall (TP / TP + FN) 308

aiming to replicate what the model will be used 309

for whilst also considering the limitations of the 310

training data. There are four important parameters: 311

1) T − days (30, 365, inf), if at timepoint T we 312

are predicting the concept X it is considered cor- 313

rect if it appears anywhere in the window of length 314

T−days in the patient timeline; 2) Concept tempo- 315

rality, we make a distinction between concepts that 316

never before appeared in a patient timeline (new 317

concepts) and those that are recurring; 3) We add 318

the notation @N which denotes how many candi- 319

dates we are taking from the model, if any one of 320

the N candidates is correct then the example is con- 321

sidered a TP; and 4) When calculating the metrics, 322

we filter the model output based on the type of the 323

biomedical concept of the label, e.g. if the type 324

of the label is Disorder then we filter the model 325

output to only include disorders. 326

2.4 Second Stage Fine-tuning for Risk 327

Forecasting 328

In addition to the contextualised patient timelines 329

we also create timelines for disease or symptom 330

forecasting. We do this by taking a patient time- 331

line, splitting it in the middle (or at most after 50 332
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concepts) and taking the first part of the timeline333

as is, while for the second part, we extract unique334

diseases that appear in the first month. So our task335

is, given a patient timeline (first part of it) predict336

the disorders that will affect the patient in the first337

month of the subsequent patient timeline. We take338

only patients that, after the timeline split, have at339

least one month of data in the future, and have at340

least 5 different disorder concepts appearing in that341

month (this is >90% of patients). This reduces the342

dataset to 13,651 in the train set and 727 in the test343

set.344

When fine-tuning FS2 on this data, all training345

parameters are kept the same as for the initial train-346

ing, we also run for only 1 epoch - anything above347

this led to overfitting to the training set. We prepare348

the same timelines for GPT-4-turbo, the primary349

difference is that all SNOMED codes are replaced350

with proper names (e.g. 73211009 − > Diabetes351

mellitus), find the full prompt used with GPT-4-352

turbo in Appendix A.353

3 Results354

The primary task that we test the Foresight v2355

model on is the prediction of the next concepts in356

a patient timeline. In this task, the model showed357

a significant improvement over the Foresight v1358

model, including a jump of 19% for the prediction359

of the next new concept (concept type ’All’), and360

20% for the prediction of the next new disorder361

(Table 1). These results were achieved using the362

objective function shown in Section 2; if we mod-363

ify this function to a standard language modelling364

objective (i.e. input_ids == labels) and train the365

model, the performance is slightly worse (overall366

2-3% worse than that shown in Table 1). Also, if367

we remove the context from the patient timelines368

(i.e. leave only the biomedical concepts) the perfor-369

mance drops drastically (on average around 40%370

compared to the results in Table 1). In addition, in371

Table 2, we show the top 10 and bottom 10 con-372

cepts with respect to precision for prediction of373

new Disorders.374

To showcase the capabilities of the model, we375

manually go through the MIMIC-III notes and find376

examples of different tasks that the model had to377

solve during the prediction of the next concept in378

a sequence. The results are shown in Table 3, for379

the input (column Patient) we only show a brief380

summary of the patient’s condition as we are not381

able to show real patient data. The Prompt column382

shows the prompt used for FS2, it is what really 383

was found in the clinical note for this patient. For 384

GPT-4-turbo the prompt was slightly adjusted to 385

be more natural and concrete, for example, we 386

pre-pended every prompt shown in the table with 387

an explanation that this is a medical quiz, that the 388

model should try to answer in a way a doctor would 389

and that it should be as precise as possible. The 390

Ground Truth comes from the patient’s EHR and it 391

represents what really happened to the patient. 392

3.1 Risk Forecasting 393

Both GPT-4-turbo and Foresight v2 were given 394

the task of predicting the top 5 disorders that the 395

patient is at risk for in the next month. The dataset 396

consisted of 100 random patients from the test set 397

prepared for the risk prediction task (727 patients in 398

total). As seen in Table 4, out of the 5 predictions 399

on a dataset of 100 patients, for GPT-4-turbo in 400

62% of patients, at least one prediction was correct, 401

compared to 84% in the case of Foresight v2. 402

To make sure the reconstructed timelines were 403

not problematic for GPT-4-turbo, we have also 404

taken the first 10 patients (from the 100 above) and 405

fed the full patient history (complete clinical notes) 406

until the timepoint T and prompted the model to 407

predict risk in the next month (this was possible 408

with GPT-4-turbo because the current maximum 409

sequence length is 128K tokens). The results for 410

these 10 patients were 10% worse in the case of full 411

timelines compared to the reconstructed timelines. 412

4 Conclusion and Discussion 413

Foresight v2 is an LLM fine-tuned on hospital data 414

for modelling and understanding patient timelines. 415

It is capable of understanding clinical notes and 416

predicting SNOMED codes for a wide range of 417

biomedical use cases including disorder prediction, 418

medication recommendation, symptom forecast, 419

procedure recommendation and many more. Fore- 420

sight v2 marks a significant advancement in the 421

modelling of patient timelines over the previous 422

state of the art (Foresight v1), enhancing the preci- 423

sion and effectiveness of LLMs for healthcare. 424

There are four primary reasons why SNOMED 425

codes were added to the tokenizer (and the model): 426

1) It allows us to standardise patient timelines, re- 427

move noise and repetitions (Searle et al., 2021) and 428

provides a way to train and benchmark LLMs on 429

hospital data. 2) It allows us to easily rank the 430

predictions of the model based on probability. At 431
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FS2 - P/R FS1 - P/R
Type T - days @ New Recurring New Recurring Sup. R. Sup. N.
All 30 1 0.71/0.64 0.95/0.95 0.52/0.32 0.83/0.67 245265 114922
All 30 5 0.91/0.85 1.00/1.00 0.84/0.59 0.98/0.92 245265 114922
All 30 10 0.95/0.90 1.00/1.00 0.91/0.70 1.00/0.97 245265 114922
All 365 1 0.71/0.64 0.95/0.96 0.54/0.33 0.85/0.70 245265 114922
All inf 1 0.71/0.64 0.95/0.96 0.55/0.33 0.86/0.70 245265 114922
Disorders 30 1 0.66/0.59 0.94/0.94 0.46/0.25 0.79/0.60 109019 51675
Disorders 30 5 0.88/0.81 1.00/1.00 0.79/0.51 0.98/0.89 109019 51675
Disorders 30 10 0.94/0.87 1.00/1.00 0.88/0.62 0.99/0.96 109019 51675
Disorders 365 1 0.67/0.59 0.95/0.95 0.49/0.26 0.83/0.64 109019 51675
Disorders inf 1 0.67/0.59 0.95/0.95 0.50/0.26 0.84/0.65 109019 51675
Findings 30 1 0.74/0.67 0.95/0.96 0.52/0.29 0.83/0.66 71007 33772
Findings 30 5 0.94/0.88 1.00/1.00 0.85/0.58 0.99/0.93 71007 33772
Findings 30 10 0.97/0.93 1.00/1.00 0.92/0.70 1.00/0.98 71007 33772
Findings 365 1 0.75/0.67 0.95/0.96 0.54/0.29 0.85/0.67 71007 33772
Findings inf 1 0.75/0.67 0.95/0.96 0.55/0.29 0.85/0.68 71007 33772
Substances 30 1 0.63/0.53 0.95/0.94 0.52/0.32 0.84/0.70 39578 19172
Substances 30 5 0.88/0.79 1.00/1.00 0.85/0.61 0.99/0.94 39578 19172
Substances 30 10 0.94/0.87 1.00/1.00 0.92/0.73 1.00/0.99 39578 19172
Substances 365 1 0.63/0.53 0.95/0.95 0.53/0.32 0.84/0.71 39578 19172
Substances inf 1 0.63/0.53 0.95/0.95 0.53/0.32 0.85/0.71 39578 19172
Procedures 30 1 0.92/0.90 0.98/0.99 0.79/0.67 0.94/0.92 7831 3379
Procedures 30 5 0.99/0.99 1.00/1.00 0.97/0.94 1.00/1.00 7831 3379
Procedures 30 10 1.00/1.00 1.00/1.00 0.99/0.99 1.00/1.00 7831 3379
Procedures 365 1 0.93/0.90 0.98/0.99 0.81/0.67 0.95/0.93 7831 3379
Procedures inf 1 0.93/0.90 0.98/0.99 0.81/0.67 0.95/0.94 7831 3379

Table 1: Results for the next concept prediction task. Sup N and Sup R is the support for recurring and new concepts,
FS2 = Foresight v2 model, FS1 = Foresight v1 model, P = Precision, R = Recall. T − days is the size of the
temporal window in days.

every point where we want to predict the next con-432

cept in a timeline, we can easily see what is the433

most probable, or what are the top N predictions.434

3) It makes sure the model predictions are part435

of a standardised widely accepted medical ontol-436

ogy, as opposed to having a model generate free437

text and then needing another step to map back-438

wards into standardised forms for compatibility439

with existing healthcare informatics systems. This440

compatibility with biomedical ontologies is impor-441

tant as general-purpose LLMs are prone to hallu-442

cinate realistic-looking standardised output (e.g.443

academic citations, Zhou et al. (2024)) which is444

addressable with greater exposure to standardised445

ontologies (Wang et al., 2024) in the way shown in446

this manuscript. 4) The model predictions are inher-447

ently privacy-preserving as the model was not di-448

rectly trained on text, it can only output healthcare449

concepts within intentionally constrained health-450

care vocabulary (SNOMED), it cannot predict any 451

personally identifiable information, like names, ad- 452

dresses or other HIPAA-defined protected health 453

information. Without this guarantee, no model 454

trained on hospital data should be made publicly 455

available. 456

During benchmarking between GPT4 and FS2, 457

some leniency was provided to GPT4 by allow- 458

ing for some poecilonymic predictions (e.g. ’gas- 459

trointestinal haemorrhage’ being predicted when 460

the ground truth was ’gastric haemorrhage’). At 461

the same time, Foresight v2 was only scored on 462

exact predictions. This means the real-world per- 463

formance of FS2 may be underestimated as poe- 464

cilonymic predictions may be sufficient for real- 465

world utility (especially for human-in-the-loop im- 466

plementations). It is important to note the diffi- 467

culty of the task, which in turn can explain why 468

models like GPT-4-turbo are performing signif- 469
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Disorder P TP FP
Stress ulcer 1.00 175 0
Postcholecystectomy s. 1.00 32 0
Left atrial dilatation 1.00 35 0
Muscle atrophy 1.00 22 0
Rubella 1.00 19 0
Conjunctival edema 1.00 16 0
Mediastinal shift 1.00 11 0
Diastolic hypertension 1.00 12 0
Mitral valve regurgitation 0.98 687 12
Systolic hypertension 0.98 338 6
Hypercholesterolemia 0.31 46 105
Left bundle branch block 0.30 12 28
Kidney stone 0.30 16 38
Gastroesophageal reflux d. 0.30 18 43
Gastrointestinal hemorrhage 0.30 18 43
Hyperlipidemia 0.29 62 155
Right bundle branch block 0.28 23 60
Hypothyroidism 0.27 41 109
Asthma 0.23 18 61
Benign prostatic hyperplasia 0.19 29 123

Table 2: Top and Bottom 10 concepts with respect to
precision for prediction of new disorders.

icantly worse. Real-world EHR data is messy,470

noisy, extremely complex and filled with dupli-471

cated text. Within this noisy data, predicting the472

next event can prove to be a very difficult task473

with the added factors of patient complexity, multi-474

morbidity, polypharmacy and acute clinical insta-475

bility of patients. Complications can develop as476

a result of their severe underlying disease or as477

an iatrogenic event secondary to procedures and478

medications. Of note, the median age of patients479

in MIMIC-III was 66 years old, with a mortality480

of 23.2% and a median hospital stay of 2.1 days481

(Q1-Q3: 1.2–4.1) (Dai et al., 2020). Predicting the482

next concept in such a highly unstable cohort of pa-483

tients over such a short time span is exceptionally484

difficult.485

4.1 Limitations and Risk486

There are limitations to ontological classification487

systems such as SNOMED or ICD-10 - these sys-488

tems may not cover all details and nuances within489

the clinical text. For example, there will be diseases490

or concepts that don’t fall within the defined bound-491

aries of available terminology or do not yet exist as492

formal concepts in codified terminologies (highly493

prevalent in fields with rapid scientific progress,494

e.g. cancer genetics and precision medicine). This 495

challenge is to the most extent resolved because 496

FS2 is capable of understanding free text next to 497

SNOMED concepts. Exploring this area in detail 498

is left for future work. 499

As this model is trained on a relatively small 500

dataset without any human preference alignment, 501

the prompts are more similar to GPT-3 rather than 502

recent LLMs (e.g. GPT-4). The prompts have to 503

reflect the way the clinical notes are written, and 504

the model cannot answer general questions or hold 505

conversations. For example, in the notes, we will 506

often have the phrase "The patient was discharged 507

with: " the model will know that after this it has to 508

predict discharge medications. Q&A-style prompt- 509

ing popularised by ChatGPT like "What are the 510

discharge medications for this patient?" would not 511

work without further human preference alignment. 512

It is also important to note that while the results 513

obtained are very good, these models are still in 514

the early stages of research and testing, and are 515

not yet suitable to be Software as a Medical De- 516

vice (SaMD). There is a temptation to imagine the 517

predictions to be used for clinical care or decision 518

support - this is still premature as Foresight v2 is de- 519

rived from historical practice so would not always 520

be expected to be consistent with contemporary 521

best practice. 522

Lastly, significantly larger hospital datasets as 523

well as general medical literature are needed to bet- 524

ter cover all possible biomedical concepts found in 525

SNOMED, as well as prevent biases or inaccura- 526

cies that can stem from using a single hospital as 527

the training dataset. Future work should explore ex- 528

panding the training data with medical guidelines, 529

textbooks, and definitions and if possible include 530

multiple hospitals. 531

4.2 Potential Utility 532

We note alerting systems as a use-case for which 533

models like Foresight v2 could be well-suited. Ta- 534

ble 2 shows that there is a wide range of conditions 535

with a precision of 100% and such conditions are 536

particularly well suited in the context of design- 537

ing alert systems. This high precision ensures that 538

when an alert is issued, it is almost invariably rel- 539

evant. Importantly, this high-precision approach 540

minimises the clinician ’alert fatigue’, a scenario 541

that might arise if high recall was favoured over 542

high precision. 543

Another utility of FS2 is for risk prediction and 544

prognosis, this can be used to guide primary or 545
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Patient Prompt Foresight v2 GPT-4-turbo Ground Truth
Middle-aged male
patient with swelling
and fracture of ankle.

Rule out: DVT DVT DVT

Older male patient
with obesity and
sleep apnoea.

Recently
increased
somnolence
and dyspnoea,
likely a sign of

Hypercapnia Acute Respiratory
Distress Syndrome

Hypercapnia
(later confirmed
to really be
Hypercapnia)

Older female patient
with a complex men-
tal health history.

Given the
parapsychotic
nature of the
depression,
started on

Risperidone Aripiprazole or
Lurasidone

Risperidone

A young female pa-
tient with a long med-
ical history and cur-
rent visit for gastroin-
testinal issues.

The patient was
discharged with
scripts for:

Omeprazole
(One of the top
3 predictions)

Proton Pump In-
hibitors (PPIs) or H2
Blockers (one of top
3 predictions)

Omeprazole

Infant with hyperten-
sion

<list of
problems>*
evaluate with

Echo Echo Echo

Table 3: Examples of tasks found in the MIMIC-III dataset, and the predictions by Foresight v2 and GPT-4-turbo.
The Patient column represents a very brief summary of the patient’s past for privacy reasons, during the tests
models were fed the real patient timelines. The prompts are original pieces of text taken from the patient’s timeline.
The Ground Truth is taken from the clincal notes for the patient. *We redacted the full list of problems to avoid
re-identification risk, in the prompts used with GPT-4-turbo and Foresight v2 the list was kept as found in the
clinical note.

Model
At least

1
At least

2
At least

3
GPT-4-turbo 62% 23% 6%
Foresight v2 84% 56% 28%

Table 4: Risk prediction results for GPT-4-turbo and
Foresight v2, both models were prompted to predict the
top 5 disorders a patient is at risk for in the next month.
The column ’At least N ’ shows in the dataset of 100
patients, the percentage of patients where at least N out
of the 5 predictions are correct.

secondary disease prevention or determine man-546

agement course. In medicine, there are countless547

validated risk and prognostic scores designed for548

disease-specific scenarios; e.g. QRISK (Hippisley-549

Cox et al., 2017) for stratification of cardiovascular550

disease, CHADSVASC (Lip et al., 2010) score for551

stroke risk, CURB65 (Lim, 2003) for pneumonia552

severity; these require large-scale calibration for553

generalisability and ongoing feature-engineering554

for more variables. Our approach with FS2 is more555

fine-grained and high-dimensional as it models tem- 556

porally ordered sequences of comorbidities, and 557

additional features (e.g. medications, social deter- 558

minants of health, complications and outcomes) 559

are included with limited a priori assumptions. 560

Lastly, various use cases in medical education, 561

clinical co-pilots (for medications, procedures, dis- 562

orders, etc.), synthetic data generation and recon- 563

struction of patient timelines are all possible with 564

models like FS2. In effect, models such as FS2 that 565

are trained on whole hospitals and medical litera- 566

ture (a priori for now in FS2) will become a model 567

of an entire healthcare system and the correspond- 568

ing population. 569

The code for Foresight v2 will be open-sourced 570

upon paper acceptance (because of the anonymity 571

period), we will try to publish the models also, 572

but this depends on MIMIC-III and the rules and 573

regulations they will apply to such models. 574
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A The prompt used for GPT-4-turbo855

856

<system prompts, these are appended857

as system messages to gpt-4-turbo>858

859

You are now playing the role of a860

medical doctor taking an exam,861

your goal is to be as accurate862

as possible and make sure you do863

not make any mistakes. If you 864

are unsure about something, think 865

step by step and then answer. 866

You have to follow the instructions 867

precisely. 868

869

Your first question in this medical 870

quiz will consist of a patient history, 871

your goal is to predict 5 specific disorders 872

the patient is at risk for in the next 873

month. Please take care that the disorders 874

you are predicting cannot be part of 875

the patient's past. They 876

have to be new disorders that will most 877

likely affect the patient in the next month. 878

You have to predict specific disorders, 879

for example: you should never say 880

"pulmonary problems" 881

as this is not a specific disorder, 882

but you can say "pneumonia" as that 883

is a specific disorder. Your output 884

should be in .json format and consists 885

of a list of disorder names and 886

explanations 887

(e.g. [('<disorder_1>', '<explanation>'), 888

...]) 889

</system prompts> 890

891

{history} 892

Given the above patient history. What 893

specific new disorders is this 894

patient at risk for in the next month? 895

896

11
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