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Abstract

Cross-lingual transfer learning with large mul-001
tilingual pre-trained models can be an effec-002
tive approach for low-resource languages with003
no labeled training data. Existing evaluations004
of cross-lingual generalisability of large pre-005
trained models use datasets with English train-006
ing data, and test data in a selection of tar-007
get languages. We explore a more extensive008
transfer learning setup with 65 different source009
languages and 105 target languages for part-010
of-speech tagging. Through our analysis, we011
show that pre-training of both source and tar-012
get language, as well as matching language013
families, writing systems, word order systems,014
and lexical-phonetic distance significantly im-015
pact cross-lingual performance.016

1 Introduction017

At present, for a large majority of natural language018

processing tasks, the most successful approach is019

fine-tuning pre-trained models with task-specific020

labelled data. Unfortunately, for many languages,021

and especially low-resource languages, such task-022

specific labelled data is often not available. A po-023

tential solution is cross-lingual fine-tuning of mul-024

tilingual pre-trained language models (Conneau025

et al., 2020; Devlin et al., 2018), using available026

data from some source language to model the phe-027

nomenon in a different target language for which028

labelled data does not exist.029

Cross-lingual generalisability of large pre-030

trained language models is often evaluated by fine-031

tuning multilingual models on English data and032

testing them on unseen languages (Conneau et al.,033

2018; Artetxe et al., 2020; Lewis et al., 2020; Hu034

et al., 2020). Of course, this approach is influenced035

by the availability of English training data for given036

tasks, but also then comes with the implicit as-037

sumption that English is a representative source038

language. This, however, may not be true in prac-039

tice. Specifically, depending on the task, aspects of040

similarity between source and target language may 041

be relevant for cross-lingual transfer performance 042

(de Vries et al., 2021). If similarity between source 043

and target language impacts performance, cross- 044

lingual transfer should not be assessed using only a 045

single predetermined source language, especially 046

if training sets in multiple languages are available. 047

Furthermore, target test languages are generally 048

selected based on data availability for the evaluated 049

tasks, but availability may not result in a representa- 050

tive subset of the world’s languages. The XTreme 051

benchmark collection (Hu et al., 2020), for exam- 052

ple, attempts to alleviate this problem by including 053

a varied selection of languages from different lan- 054

guage families. This collection contains token clas- 055

sification, text classification, question answering 056

and retrieval tasks in 40 languages. The language 057

selection does, however, obfuscate the fact that 058

for most non-Indo-European and low-resource lan- 059

guages no data is available for semantically rich 060

tasks such as question answering. This imbalance 061

regarding tasks in this type of collections may con- 062

sequently inflate the perceived performance for 063

these languages. 064

In this work, we aim to shed light on what factors 065

make a language a good source and/or target lan- 066

guage for cross-lingual transfer when fine-tuning a 067

large multilingual model. We evaluate this via part- 068

of-speech (POS) tagging data, as this is the only 069

task for which high-quality data is available in a 070

large number of languages, including low-resource 071

languages from different language families. Also, 072

high cross-lingual POS tagging performance may 073

be seen as a precondition for more semantically 074

complex tasks, as a base understanding of syntactic 075

structure in both the source and target language 076

is necessary for any meaningful natural language 077

processing task. 078

Contributions This paper is a case-study of 079

cross-lingual transfer learning with part-of-speech 080
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tagging. We explore the limits and contributing081

factors to successful cross-lingual transfer and part-082

of-speech tagging in particular. Among others, we083

evaluate the effects of (matching) language fami-084

lies, (matching) writing systems, and pre-training085

on cross-lingual training. Moreover, we provide in-086

sights that can help to estimate performance when087

one tries to transfer to a low-resource language088

with little or no annotated data. Source code will089

be released on Github, and 65 fine-tuned models090

will be shared via the Hugging Face Model Hub.091

2 Approach092

We fine-tune a pre-trained model for the task of093

part-of-speech tagging using different languages in094

training and testing. Every combination of source095

and target language yields an accuracy score, with096

a large matrix of accuracies as a result. Monolin-097

gual, or within-language performance is the accu-098

racy where the source and target language are the099

same. Overall cross-lingual source or target accu-100

racies can be calculated per column or row in the101

accuracy matrix, excluding the monolingual accu-102

racy. Such accuracies give an overall indication103

of (i) how suitable a given language is as source104

for cross-lingual POS tagging, and (ii) how easy105

or difficult it is to POS-tag a given target language106

when monolingual training data isn’t available.107

Predictors Through a mixed-effects regression108

analysis, with source and target language (family)109

as random-effect factors, we assess which vari-110

ables determine a “good” source language. The111

variables we consider are whether or not the lan-112

guage family is shared between source and target113

language, the writing systems (and writing system114

types) of both languages and whether or not these115

match, the subject-object-verb (SOV) word order116

of both languages and whether or not these match,117

and whether or not a (source or target) language118

was included in pre-training. Additionally, we add119

the (lexical-phonetic) LDND measure (Wichmann120

et al., 2010) on the basis of the 40-item word lists121

from the ASJP database (Wichmann et al., 2010) as122

a quantitative similarity measure comparing source123

and target language. Finally, we also consider the124

size of the training set of the source language as a125

predictor. We analyze results both from a quantita-126

tive and a qualitative viewpoint.127

Task data We use the POS tag data from Univer-128

sal Dependencies 2.8 (Zeman et al., 2021). It con-129

tains manually annotated data for 114 languages; 130

among these all have test data and 75 languages 131

have training data. We exclude three mixed-code 132

languages, one sign language, three languages with 133

fewer than 10 test samples and two languages that 134

do not have any word-level annotations. Moreover, 135

we exclude training data for five languages that 136

have fewer than 25 training samples. All other 137

training datasets consist of at least 125 samples. As 138

a result, we have 105 languages which can serve 139

as target languages, of which 65 can also serve as 140

source languages since they have training data. 141

Model The XLM-RoBERTa base model (Con- 142

neau et al., 2020) is used for our experiments.1 143

XLM-RoBERTa is pre-trained on web crawled data 144

from 100 languages (with the largest Wikipedia 145

sizes). For our dataset, 53 of our 65 source lan- 146

guages and 58 of our 105 target languages were 147

included in XLM-RoBERTa pre-training. 148

Data sampling Typical fine-tuning procedures 149

train for a fixed number of epochs on the training 150

data. However, there is a substantial amount of 151

variation in the size of our source language datasets 152

(127 to 163,106 sentences). In such a situation, 153

choosing a fixed number of epochs might result in 154

underfitting for the smaller languages and overfit- 155

ting for the larger languages. Figure 1 shows that 156

accuracies start decreasing with more than 10K 157

samples, so we choose this threshold for further 158

evaluation. Consequently, the 25 source languages 159

with more than 10K training samples are randomly 160

under-sampled, whereas the other 40 languages are 161

over-sampled (i.e. multiple epochs). The four lan- 162

guages with more than 50K training samples (Ger- 163

man, Czech, Russian and Turkish) achieve highest 164

overall average accuracy with 1250, 20K, 1250 165

and 10K samples, respectively, showing that under- 166

sampling can improve cross-lingual performance. 167

Within-language performance does keep increasing 168

with longer training, which indicates that longer 169

training can cause source language overfitting. 170

Training procedure All models are trained with 171

the same hyper-parameter settings. Specifically, the 172

models are trained for 1,000 batches of 10 samples 173

with a linearly decreasing learning rate starting at 174

5e− 5. We use 10% dropout between transformer 175

layers and 10% self-attention dropout. These hy- 176

1Preliminary experiments have shown no performance gain
with the large model variant, so out of practical and environ-
mental considerations, we limit our experiments to this model.
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perparameters were selected based on preliminary177

experiments with the English, Dutch, Armenian,178

Marathi and Chinese source languages. Models for179

different source languages were trained with the180

same random seed.181
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Figure 1: Accuracy distributions for different sampling
strategies. Median and mean overall POS-tagging ac-
curacy starts decreasing with more than 10K training
samples.

3 Results182

Figure 2 illustrates the test accuracies for every183

combination of source and target language. The184

heat map shows that the model achieves relatively185

high performance for cases where the source and186

target language is the same (outlined in black).187

While for many languages same-language train-188

ing is the only way to achieve high performance189

(for example Maltese), there are also many target190

languages for which high performance is observed191

when training on several other languages (for ex-192

ample Russian). Indeed, within-language perfor-193

mance tends to be high with a mean accuracy of194

94.1% (σ = 4.5). However, there is a substantial195

amount of variation for cross-lingual accuracies196

with an overall mean of 57.4% (σ = 22.4). This197

shows that cross-lingual training does not univer-198

sally yield good performance.199

We evaluate several predictors for inclusion (see200

Section 2) by adding them to a linear mixed-effects201

model with random intercepts for source language,202

target language, and target language family. No203

other random intercepts were found to improve the204

model (via model comparison). We ascertained that205

the predictors of the final model remained signifi-206

Predictor Coef. Std. Err.

(Intercept) 42.2 3.3
Target pre-trained 19.2 2.5
LDND distance −12.7 1.0
Both pre-trained 7.4 7.4
Same family 6.8 6.8
Source pre-trained 5.6 2.0
Same writing system type 3.6 0.4
Same writing system 1.4 0.3
Same SOV word order 1.3 0.2

Table 1: Coefficients and standard errors of predictors
in the final mixed-effects regression model with Accu-
racy as the dependent variable. All predictors were sig-
nificant at the p < 0.01 level. LDND distances were
scaled between 0 (minimum) and 1 (maximum). The
predictors are sorted in order of decreasing importance.

cant when the corresponding random slopes were 207

included. These are not further reported, however. 208

Fixed-effect predictors were included if they signif- 209

icantly (p < 0.05) improved the model fit as deter- 210

mined via (maximum likelihood) model compari- 211

son. Table 1 shows the predictors included in the 212

final model. This mixed-effects regression model 213

yields a conditional R2 of 91.1% and a marginal 214

R2 of 47.1%. In other words, the included fixed 215

effects explain 47.1% of variance, whereas the ad- 216

ditional 44% is captured by the random effects 217

(i.e. other language-related factors). Regarding the 218

random-effects, the variance explained by the tar- 219

get language was more than three times as high 220

as the variance explained by the source language, 221

reflecting the fact that the POS accuracy is much 222

stronger linked to the target language than to the 223

source language. This is also visible in Figure 2, 224

where the rows are much more variable than the 225

columns. 226

4 Quantitative discussion 227

4.1 Pre-training 228

Table 1 shows that the best predictor for accu- 229

racy differences is whether the target language 230

is included in pre-training or not, with an esti- 231

mated 19.2% higher accuracy for target languages 232

that were included. Similarly, performance is 233

higher when the source language is included in pre- 234

training, but with a much smaller effect (5.6%) as 235

the target language. There is an additional increase 236

of 7.4% in accuracy if both the source language 237
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Figure 2: Universal Dependencies part-of-speech tagging accuracies for every combination of source (column)
and target (row) languages by fine-tuning XLM-RoBERTa base on the source language. Language names printed
in green were included in XLM-RoBERTa pre-training, whereas language names printed in red were not. Group
colors in the dendrograms indicate different language families. Different shades of blue indicate different branches
in the Indo-European language family. Dendrograms are based on hierarchical clusters using unweighted average
linkage clustering (UPGMA) with the Euclidean distance metric.
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and target language are included in pre-training.238

Consequently, inclusion in pre-training, especially239

the target language, is highly important for achiev-240

ing high cross-lingual performance. This is unfor-241

tunate for many low-resource languages that are242

not included in pre-training, as the benefit from243

cross-lingual transfer will be limited. Specific ex-244

amples of underperforming languages that were not245

included in pre-trainig are discussed in Section 5.1.246

4.2 LDND distance247

The ASJP-based LDND measure has the strongest248

effect on predicted accuracy after target language249

inclusion in pre-training with a coefficient of250

−12.70. Figure 3 shows that low LDND distances251

between source and target language (i.e. when two252

languages share cognates) are indeed associated253

with high accuracy, whereas high LDND distances254

(very dissimilar languages) seem less informative.
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Figure 3: Relation between LDND lexical-phonetic dis-
tances and accuracy.

255
This significant effect might be surprising as the256

measure is based on (broad) phonetic transcriptions257

of single words, but measures of linguistic distance258

at different linguistic levels are correlated (Spruit259

et al., 2009).260

4.3 Language family261

Whether source and target languages are part of the262

same language family has a considerable effect on263

accuracy (see Table 1)2. Therefore, when choosing264

a source language, the best option would be a lan-265

guage from the same family. Figure 4 shows the266

average accuracies per language family combina-267

tion. This figure is solely based on target languages268

2Preliminary experiments have shown that splitting the
large Indo-European language family into the major branches
does not contribute to the explainability of the model.
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Figure 4: Average accuracies per source and target lan-
guage family combination based on target languages
that were included in pre-training. Numbers between
parentheses indicate the number of languages in each
family. High performance can be observed within
language families (black outlines). Dendrograms are
based on hierarchical clusters using unweighted aver-
age linkage clustering (UPGMA) with the Euclidean
distance metric.

that were included in pre-training, since absence 269

from pre-training has a large negative effect on per- 270

formance as previously discussed (see Section 4.1). 271

The Japanese and Sino-Tibetan (Chinese, Classi- 272

cal Chinese and Cantonese) target languages only 273

reach reasonable accuracies with Japanese, Sino- 274

Tibetan or Korean source languages. These target 275

languages reach a lower than 50% macro-averaged 276

accuracy across language families. This could be 277

a reflection of the type of writing system in those 278

languages (see Section 4.4 for a dedicated discus- 279

sion on this), but this is not certain. Tai-Kadai 280

(Thai), Korean, and Austro-Asiatic (Vietnamese) 281

languages also reach relatively low cross-family 282

macro-average accuracies (up to 60%), whereas 283

the remaining target language families generally 284

reach a higher performance. 285

In Section 3, we found that accuracy is higher 286

if the source and target language are the same, but 287

transfer can work between different families. Fig- 288

ure 4 shows that some family combinations might 289

not be suitable for transfer, but since the lower- 290

performing families contain small numbers of lan- 291

guages, it is difficult to reach definitive conclusions. 292

4.4 Writing systems 293

Regarding writing systems, we distinguish writing 294

system types (i.e. alphabetic, logosyllabic, abjad, 295
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Figure 5: Average accuracies per source and target writ-
ing system combination based on target languages that
were included in pre-training. Numbers between paren-
theses indicate the number of languages that use each
writing system. Dendrograms are based on hierarchical
clusters using unweighted average linkage clustering
(UPGMA) with the Euclidean distance metric. Den-
drogram colors represent writing system types (blue:
alphabetic, orange: logosyllabic, red: abiguda, green:
abjad.)

and abiguda3) from the more fine-grained writing296

systems (e.g., Armenian, Greek, Cyrillic, and Latin297

are all alphabetic). Cross-lingual POS-tagging ac-298

curacy is higher if the source and target writing sys-299

tem types are similar. If the two languages share the300

same writing system, performance is even better301

(see Table 1).302

Languages that share a writing system, such as303

Latin, can benefit from a shared vocabulary if those304

languages have some lexical overlap (Pires et al.,305

2019). However, a shared vocabulary also intro-306

duces cross-lingual homography problems, where307

the same token has different meanings, and thus308

possibly different grammatical functions, in differ-309

ent languages. Both aspects are not present for310

languages that use different writing systems, even311

if the vocabulary is technically shared within a mul-312

tilingual model.313

Figure 5 shows average cross-writing-system ac-314

curacies. Some singleton writing systems reach315

very low accuracies. These are the logosyllabic316

3Characters in logosyllabic writing systems represent full
words (logograms) or syllables. In abugida writing systems,
consonants and vowels are combined as single units. This
can make abugida writing systems similar to syllabic writing
systems for character-based NLP systems. Abjad writing
systems only use characters for consonants, whereas vowels
are implied.

Chinese characters, Kana (Japanese) and Hangul 317

(Korean) writing systems and Thai, which is an 318

abugida writing system. There are several other 319

writing systems that are used by a single target 320

language and achieve high performance regardless 321

of source writing system, i.e. Hebrew, Tamil and 322

Telugu. This might indicate that the data or the lan- 323

guage itself is easier than other target languages. 324

Cross-script transfer seems to work well for a 325

subset of writing systems. Languages with logosyl- 326

labic or the Thai writing system, tend to perform 327

poorly with source languages that use different writ- 328

ing systems. However, these writing systems are 329

not used across language families, so it is difficult 330

to attribute these findings specifically to the writing 331

systems themselves. 332

5 Qualitative discussion 333

Having discussed significant predictors in detail, 334

we now take a closer look at “bad" source lan- 335

guages, thereby providing a better understanding 336

of how to choose a “good" source language (Sec- 337

tion 5.1). We also identify some optimal source- 338

target language pairs (Section 5.2), and “optimal" 339

source languages for our task (Section 5.3). 340

5.1 Underperforming source languages 341

Figure 2 shows that many source languages 342

(columns) achieve high performance for at least 343

a subset of the target languages, and also that some 344

source languages never achieve high cross-lingual 345

accuracies. While overall contributing factors have 346

been discussed in Section 4, here we unpack why 347

some source languages yield low accuracy. 348

Source languages should achieve highest perfor- 349

mance on themselves as target languages. This 350

is not the case for Arabic (higher accuracy on 351

Ukrainian), Korean (higher accuracy on Hebrew) 352

and Spanish (higher accuracy on Catalan). Exclud- 353

ing those languages, the lowest within-language 354

accuracy is Sanskrit (84.2%). We identify poorly 355

performing source languages as those where the 356

best cross-lingual accuracy is below that 84.2% 357

threshold. Based on this threshold, we identify 19 358

source languages that perform sub-optimally on 359

every target language except themselves. 360

The full set of source languages contains 12 lan- 361

guages that were not included in XLM-RoBERTa 362

pre-training (see red column labels in Figure 2). 363

Out of these 12 languages, nine are in the bottom 364

25% of source languages ranked by overall accu- 365
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racy: Ancient Greek, Classical Chinese, Gothic,366

Maltese, Naija, North Sami, Old Church Slavonic,367

Old French and Wolof. The remaining three source368

languages that were not included in pre-training are369

Faroese, Old East Slavic and Western Armenian.370

The written forms of these three languages are con-371

sidered mutually intelligible with at least one lan-372

guage that was included in pre-training.4 Specifi-373

cally, mutually intelligible are written Faroese with374

Icelandic (Barbour and Carmichael, 2000), Old375

East Slavic with Russian, Belarusian and Ukrainian376

(Andersen, 2003) and West Armenian with (East-377

ern) Armenian (Adalian, 2010). No similar mutual378

intelligibility pairs were found for the nine poorly379

performing non-pre-trained source languages. This380

indicates that while inclusion in pre-training is op-381

timal for both the source and target language, in-382

clusion of a mutually intelligible language variant383

can be sufficient for source languages.384

Other source languages that never achieve high385

transfer performance but that were present in pre-386

training are Sanskrit, Arabic, Chinese, Japanese,387

Vietnamese, Uyghur, Irish, Marathi, Hebrew, Tamil.388

For Uyghur and Irish, no clear cause could be found389

for their low performance. This is not the case for390

the other languages, however.391

Sanskrit is effectively not present in pre-training,392

since the Universal Dependencies data mainly con-393

tains romanized Sanskrit, whereas the data in the394

XLM-RoBERTa pre-training uses the Devanagari395

writing system. Serbian is the only other evalu-396

ated source language where the writing system in397

Universal Dependencies is not used in pre-training.398

However, the Latin script that is used in Univer-399

sal Dependencies is used with the Croatian pre-400

training data, and Croatian is structurally and in401

written form effectively the same language as Ser-402

bian (Kordić, 2010).403

For Arabic, the problem seems a poor model404

fit in general, since the trained model for Arabic405

also achieves only 75.9% accuracy on Arabic test406

data. We did not identify a clear external factor407

for why Arabic performance is so low, since other408

genetically related languages and other languages409

that use the Arabic writing system perform better.410

Problems with Chinese, Japanese and Viet-411

namese might originate from issues with logosyl-412

labic writing systems (see Section 4.4). Japanese413

uses its own unique syllabic writing system, and414

4If we consider these languages as pre-trained in the mixed
effects model of Section 3, the marginal R2 would increase
from 47.1% to 54.6%.

the Vietnamese language uses a romanized version 415

of (logographic) Chinese characters. Logosyllabic 416

writing systems therefore seem to transfer poorly 417

to other languages. The languages in our set of 418

source languages with logosyllabic writing systems 419

are Japanese, Chinese, Classical Chinese and Can- 420

tonese. These four languages are in the bottom 20% 421

lowest performing source languages for average 422

cross-lingual accuracy. While the source writing 423

system type was not identified as a significant pre- 424

dictor in the mixed-effects regression model, this 425

could be because logosyllabic writing systems are 426

not used across multiple language families. 427

The three remaining poorly performing lan- 428

guages are Marathi, Hebrew and Tamil. Those 429

three languages are the only evaluated source lan- 430

guages with fewer than 200 training sentences. 431

Therefore, the reason for the low performance of 432

these source languages could be the lack of suffi- 433

cient training data. 434

Overall, these findings suggest that a good 435

source language should: 436

• Be included in pre-training data with the same 437

writing system as the task-specific training 438

data. Alternatively, a mutually intelligible re- 439

lated language must be included; 440

• Achieve good within-language performance. 441

One cannot expect high cross-lingual perfor- 442

mance, if a model performs poorly on the 443

source language itself; 444

• Use the same type of writing system as the 445

target language. Transfer between different al- 446

phabetic writing systems (i.e. Latin and Cyril- 447

lic) can work well, but lower performance is 448

observed for logosyllabic writing systems (see 449

Section 4.4); 450

• Have sufficient training data available. Using 451

only 200 training sentences seems too little. 452

5.2 Optimal language pairs 453

For every target language, the best source language 454

can be determined by taking the source language 455

with the highest accuracy. Some highly similar 456

languages are each other’s best source language. In 457

our set of languages, we found 11 of such pairs: 458

• Estonian and Finnish 459

• Icelandic and Faroese 460

• French and Italian 461

• Chinese and Japanese 462

• Irish and Scottish Gaelic 463
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• Croatian and Serbian464

• Catalan and Spanish465

• Belarusian and Ukrainian466

• Hindi and Urdu467

• Armenian and Western Armenian468

• English and Swedish469

All of these pairs, except English and Swedish,470

originate from countries that are geographic neigh-471

bours, or in the same country. Moreover, most of472

these pairs are closest siblings according to the Eth-473

nologue genetic classification scheme (Eberhard474

et al., 2021), compared to alternative languages in475

our language set. The exceptions are English and476

Swedish (both are Germanic languages, but for in-477

stance Dutch is closer to English, and Norwegian478

is closer to Swedish), Chinese and Japanese (sepa-479

rate families, but Japanese has many Chinese loan480

words) and Catalan and Spanish (Portuguese is481

genetically closer to Spanish than Catalan).482

Some of these pairs are known to have mutual483

intelligibility (see Section 5.1) and share common484

ancestor languages. This shows that optimal cross-485

lingual performance can be achieved by pairing486

highly similar languages. However, since all of487

these pairs are languages that were included in pre-488

training, it is unclear whether this also holds for489

low-resource languages that were not included.490

5.3 The best source language491

Romanian and Swedish are the most common best492

source language for any target language, with 10493

and 7 target languages, respectively. Alternatively,494

optimal cross-lingual performance can be deter-495

mined by taking the average cross-lingual accuracy496

per source language. According to this measure the497

best source languages are still Romanian (67.2%)498

and Swedish (65.9%). This criterion ranks English499

as 19th out of 65 source languages, with an average500

accuracy of 62.4%. All languages that perform bet-501

ter than English are Indo-European except Estonian502

(Uralic), and English is the fifth-best source lan-503

guage from the Germanic Indo-European branch.504

Romanian is also, on average, the best source lan-505

guage for both the set of target languages that were506

included in pre-training (81.5%) as well as the set507

of non-pre-trained languages (49.8%). This shows508

that even though cross-lingual tansfer commonly509

takes English as a source language, English might510

not be the best source language overall.511

However, overall average performance might512

not be a good measure of source language qual- 513

ity because that introduces a strong Indo-European 514

bias, due to the large amount of Indo-European lan- 515

guages in our target language set. If we determine 516

the best source language per target language family 517

(or Indo-European branch), we find that the best 518

source language is from a different language family 519

for 23 out of 30 families. Again, Romanian is the 520

best general source language since it is the best 521

source language for seven different families. All 522

other best source languages occur twice (Chinese, 523

Uyghur and Wolof) or once (17 languages). 524

In short, for this particular task, with this particu- 525

lar dataset, Romanian as source language achieves 526

the best cross-lingual performance. 527

6 Conclusion 528

We show that simply fine-tuning a large multilin- 529

gual pre-trained language model on English data 530

does not necessarily make full use of the cross- 531

lingual potential of the model. Especially when one 532

applies cross-lingual training for a low-resource 533

language with little or no evaluation data, the dif- 534

ferent factors that influence performance should be 535

kept in mind. Unfortunately, one of the most impor- 536

tant factors highlighted by our experiments is that 537

the target language, or a highly similar language 538

variant, should be included in pre-training for cross- 539

lingual training to be successful. For current lan- 540

guage models, this excludes many languages and 541

a large number of language families. For those 542

languages, the most important step is to collect 543

unlabeled data for pre-training. 544

Languages that are included in pre-training can 545

achieve high cross-lingual performance across lan- 546

guage families and writing systems, at least for 547

languages that use alphabetic writing systems. The 548

English language, which is the de facto default 549

source language for cross-lingual training, is not 550

necessarily the best source language. 551

Due to data availability, our experiments focused 552

on POS tagging, but we hypothesize that the fac- 553

tors we identified may be predictive for other tasks 554

too. The significant influence of lexical-phonetic 555

distances and word order differences on accuracies 556

indicate that similar languages are encoded simi- 557

larly in XLM-RoBERTa, even if there is no lexi- 558

cal overlap due to differing writing systems. Thus, 559

these factors potentially also influence more syntax- 560

dependent tasks, such as parsing, and semantically 561

rich tasks, such as natural-language-inference. 562
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Ethics statement563

We used freely available data and a freely avail-564

able pre-trained model for our experiments. Our565

experimental setup required fine-tuning many large566

language models, but we ran preliminary experi-567

ments on a few languages to determine whether we568

could achieve sufficient performance with a small569

model size. As this indeed was the case, environ-570

mental impact was limited compared to the larger571

model size. Moreover, to limit the need for future572

fine-tuning efforts for this task, we release all of573

the fine-tuned models.574
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