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Abstract

We focus on training machine learning regression models in scenarios where the availability
labeled training data is limited due to computational constraints or high labeling costs.
Thus, selecting suitable training sets from unlabeled data is essential for balancing per-
formance and efficiency. For the selection of the training data, we focus on passive and
model-agnostic sampling methods that only consider the data feature representations. We
derive an upper bound for the expected prediction error of Lipschitz continuous regression
models that linearly depends on the weighted fill distance of the training set—a quantity
we can estimate simply by considering the data features. We introduce "Density-Aware
Farthest Point Sampling" (DA-FPS), a novel sampling method. We prove that DA-FPS
provides approximate minimizers for a data-driven estimation of the weighted fill distance,
thereby aiming at minimizing our derived bound. We conduct experiments using two re-
gression models across three datasets. The results demonstrate that DA-FPS significantly
reduces the mean absolute prediction error compared to other sampling strategies.

1 Introduction

Machine learning regression aims to predict continuous numerical values based on input features by learning
the underlying prediction patterns from labeled training data. Data quality and data selection are crucial
for developing and deploying effective regression models. Without sufficient or reliable data, ML regression
models cannot perform well: too little data leads to poor learning, and biased or corrupted data results in
inaccurate predictions. This work addresses challenges related to the limited availability of labeled training
data, often resulting from computational constraints and high labeling costs. These challenges frequently oc-
cur in scientific applications, where labeling typically relies on expensive numerical simulations or laboratory
experiments. Our work is motivated by molecular property prediction. The chemical compound space in
large. It is estimated to contain over 1060 molecules (Kirkpatrick & Ellis, 2004). Its exhaustive exploration
using classical labeling methods based on quantum-mechanics simulation is impractical. Machine learning
regression offers a promising solution by leveraging small, selectively labeled datasets to predict molecular
properties at scale (von Lilienfeld et al., 2020). This data-efficient approach has the potential to accelerate
the discovery of new drugs and materials.

We consider scenarios where we have access to a large pool of unlabeled data, e.g., molecules for which
chemical and physical properties (the labels) are unknown and costly to obtain. We aim to select and label
a small subset of the data pool to train a regression model. We show that by selecting suitable training
sets we can positively impact the prediction performance of ML regression models. The goal is to improve
the average prediction performance of the model on the points in the pool not selected for training. We
focus on label-agnostic, passive, and model-agnostic sampling, that is, selection approaches that solely rely
on the data feature representations, do not consider any active learning procedure, and do not assume any
specific structure for the regression model. On the one hand, this promotes the reusability of the labeled
samples, ensuring labeling efforts are not wasted on subsets useful only for specific models or tasks. On the
other hand, developing such approaches is a non-trivial challenge because we can rely only on very little
information, that is, the data feature representations and some assumption on the regularity of the learned
function, but not on the model used to learn it, e.g., using a neural network or a kernel approach. As
an additional constraint, we are interested on sampling approaches that are computationally efficient and
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potentially can be used on data pools consisting of hundreds of thousands of high-dimensional data points,
which is a realistic size for molecular property prediction tasks.

Training data selection for model performance optimization has been extensively studied. Relevant literature
includes Active Learning (AL) (Settles, 2012; Ren et al., 2021) and experimental design (John & Draper, 1975;
Yu et al., 2006). However, both focus on methodologies that optimize data selection by leveraging model-
specific knowledge. Here, we focus on passive and model-agnostic sampling strategies. Passive sampling was
first introduced in Yu & Kim (2010) where the authors highlight its importance in scenarios where labeled
data can be difficult, time-consuming, or expensive to obtain. Drawing from Climaco & Garcke (2024),
passive sampling strategies can be classified as model-dependent and model-agnostic. Model-dependent
approaches optimize the data selection process for specific models or classes of models. We see single-shot
batch active learners and experimental design approaches as passive addition model-dependent methods.
Model-agnostic selection approaches have the potential to benefit multiple classes of regression models,
thereby enhancing reusability of costly data labelling.

The Farthest Point Sampling (FPS) is a greedy passive and model-agnostic sampling strategy that provides
approximate solutions to the k-center problem by minimizing the fill distance of the selected set, which is
the maximal distance between a point in the feature space of interest and its closest selected point. The
benefits of minimizing the training set fill distance have been studied independently for classification (Sener
& Savarese, 2018) and regression (Climaco & Garcke, 2024). In Sener & Savarese (2018) it was shown that
minimizing the training set fill distance leads to increased accuracy by reducing the average classification
error of Lipschitz continuous models with a softmax output layer. Climaco & Garcke (2024) show that for
regression tasks minimizing the training set fill distance with the FPS significantly reduces the maximum
error of the label predictions of Lipschitz continuous models. However, it was also shown that employing
FPS to minimize the maximum prediction error is mostly beneficial in the low data regime and that in such
low data regime it does not provide any significant advantage in terms of the average absolute prediction
error compared to other passive sampling approaches that are model-agnostic.

This work addresses the limitations of the FPS for molecular property prediction tasks and aims to extend the
work done in Climaco & Garcke (2024). In particular, we develop a passive and model-agnostic algorithm,
inspired by the FPS greedy procedure and supported by a solid theoretical motivation, to select training sets
that can improve the average prediction performances of regression models measured in terms of the mean
absolute error (MAE).

We derive an upper bound for the expected prediction error of Lipschitz continuous regression models. Our
bound is linear in a novel weighted fill distance, that is, the maximum weighted distance between a point
in the feature domain of interest and its closest selected training point. The weights we use to scale the
distances provide information on the distributions of the data in the feature space. We introduce a novel
passive and model-agnostic data selection strategy called “Density-Aware Farthest Point Sampling” (DA-
FPS). This strategy greedily selects sets from a pool of available data points with the aim of minimizing a
data-drive estimation of the weighted fill distance of the selected set, thereby minimizing our proposed bound.
The ultimate goal of DA-FPS is to select training sets that can enhance the average prediction performance
of Lipschitz continuous regression models. We prove that DA-FPS provides approximate minimizers for a
data-driven estimation of the weighted fill distance. Additionally, we report experimental results showing
that selecting training sets using DA-FPS can decrease the average prediction absolute error of Lipschitz
continuous regression models. Compared with other model-agnostic sampling techniques, including FPS,
DA-FPS demonstrates its superiority for low training set budgets in terms of mean absolute error (MAE)
reduction. We are not aware of any other passive sampling model-agnostic strategy supported by rigorous
theoretical work that can improve the mean absolute prediction error of a regression model.

2 Related work

There has been a significant research effort to develop approaches that can be used for training data selec-
tion aiming at model performance optimization. There is a large body of literature on active learning (AL).
See Settles (2012) and Ren et al. (2021) for a review of such approaches. AL typically involves training
regression models to predict uncertainties or estimate labels for unlabeled data, selecting the most relevant
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points for labeling, including them in the training set and repeating the process until stopping criteria are
met. It optimizes the training set selection for a specific model or model class, and for a given task, by using
computed labels to iteratively update model parameters during selection. Single-shot batch active learners
select the training set in one step without iterative training or label knowledge. Examples include methods
that minimize maximum mean discrepancy, discrepancy, and nuclear discrepancy, which are quantities that
can be estimated solely relying on the data features (Chattopadhyay et al., 2012; Wang & Ye, 2015; Vier-
ing et al., 2019). However, these approaches require choosing a kernel function, and their effectiveness in
reducing the prediction error is theoretically motivated only assuming that the regression function belongs
to the reproducing kernel Hilbert space associated with the chosen kernel (Viering et al., 2019). That is,
they optimize the selection for specific model classes, such as kernel regularized least squares, similar to
active learning. Moreover, such approaches have been mostly studied for classification tasks. Assuming the
knowledge of the learning model may even lead to the development of strategies that reflect some principle
of optimality for the selection of the training set, as in the case of approaches developed in the field of
experimental design (John & Draper, 1975; Yu et al., 2006).

In this work we focus on passive and model-agnostic sampling strategies. Coresets (Feldman, 2019) pro-
vide an effective set of tools for performing model-agnostic passive sampling. Uniform random sampling
is considered the natural benchmark for all the other sampling strategies (Feldman, 2019). Importance
sampling selects data points that are more important to the problem at hand based on importance weights
determining the relevance of each data point. For instance, Xie et al. (2023) present an importance sam-
pling approach for selecting suitable pretraining datasets for large language models. Cluster-based methods,
such as k-medoids++ and k-means++ (Schubert & Rousseeuw, 2021), group similar points together and
select representatives from each cluster. Greedy methods such as submodular function maximization algo-
rithms (Krause & Golovin, 2014) start with an empty set and iteratively add the most influential point at
each step, according to a given principle. Data twinning partitions the dataset into statistically similar twin
set by attempting to minimizing the energy distance, a quantity that can be estimated solely computing
pairwise distances between data features. It has been effectively used for training data selection in regression
(Vakayil & Joseph, 2022). The work most similar to ours is Climaco & Garcke (2024), where the authors
show that selecting the training set by fill distance minimization using the Farthest Point Sampling (FPS)
can reduce the maximum prediction error of Lipschitz continuous regression models. However, the authors
also show that FPS does not offer any significant benefit in terms of the average absolute prediction error
when compared to other benchmark passive sampling model-agnostic approaches.

3 Problem definition

Our setting is similar to the one introduced in Climaco & Garcke (2024). We consider a supervised regression
problem where the feature space is X ⊂ Rd, bounded, and the label space is Y ⊂ R. The goal is to learn
a function g : X → Y from a function space M, using a set of labeled data. Each function in M may be
parameterized by weights w ∈ Rm, depending on the learning algorithm. To evaluate prediction quality,
we use an error function l : X × Y ×M → R+, which measures the prediction error of a trained regression
model for a given input feature and associated true label.

Let D := {(xi, yi)}n
i=1 be a pool of available data points consisting of i.i.d. realizations of two random

variables X and Y taking value on X and Y, respectively, with joint distribution pD ∈ P := {p : X × Y →
R+|

∫
X ×Y p(x, y)dxdy = 1}. We consider scenarios where the labels {yi}n

i=1 are unknown. We aim to
select and label a training set L := {(xij , yij )}b

j=1 from D, with ij ∈ {1, . . . , n} ∀j, and b ≪ n. The
objective of the training data selection is to maximize the average predictive performance of a regression
model mL ∈ M, trained on L, on the new data points not selected for training. In the following, without
loss of generality, we assume L := {(xj , yj)}b

j=1 and define LX := {xj}b
j=1. Following along Wang & Ye

(2015), we assume that the training data is selected according to a distribution pL ∈ P with pD ̸= pL
and pD(y|x) = pL(y|x). In other words, the training data distribution may differ from the data source
distribution, but the map connecting a data location x ∈ X and its associated label value is independent on
how the data is selected. Furthermore, we study a typical scenario involving molecular prediction tasks in
which the data source distribution pD is unknown, and we have only access to the locations DX := {xi}n

i=1 of
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the dataset D. Moreover, we are interested in applications in which the labeling process is computationally
expensive, therefore, given a budget b ∈ N of points to label, the goal is to select a subset LX ⊂ DX and
label it to obtain a subset L ⊂ D that solves the following optimization problem:

min
L⊂D,
|L|=b

EpD [l(X, Y,mL)], (1)

In other words, we aim to sample and label a training set L, of cardinality b, so that the expected error on
the data distribution pD associated with the function mL is minimized.

The optimization problem addressed in Climaco & Garcke (2024) and the one we define in (1) are similar in
the sense that both focus on minimizing an expected value of the error function by selecting a subset L from
a set of available data points D. The key distinction lies in their objectives: in Climaco & Garcke (2024),
the goal is to minimize the maximum expected error over a finite set of known data locations. Differently, in
(1), the objective is to minimize the average error, defined as the expected value of the error function over
the data source distribution pD on X × Y.

4 Bound for the expected prediction error

The optimization problem in (1) cannot be solved directly because the labels of the points in D and the
data source distribution pD are unknown. To address this challenge, we establish an upper bound for the
optimization objective in (1), depending linearly on a weighted fill distance of the training set. Subsequently,
we introduce Density-Aware Farthest Point Sampling (DA-FPS), a novel data selection algorithm aiming at
selecting training sets that can minimize the proposed bound. First, we define the weighted fill distance, a
quantity we can associate with finite subsets of the feature space X selected from pXL , which is the marginal
on X of a distribution pL ∈ P, called training data distribution.
Definition 4.1. Consider X ⊂ Rd bounded and LX = {xj}b

j=1 ⊂ X , set of data locations sampled from
pXL , marginal on X of a distribution pL ∈ P. Moreover, consider pXD marginal on X of a distribution
pD ∈ P. We define the weighted fill distance of LX in X with respect to pXD as

WLX, X (pXL ||pXD ) := sup
x∈X

min
xj∈LX

∥x− xj∥2ψLX (x), (2)

where ∥ · ∥2 is the L2-norm and the weight function ψLX : X → R is defined as

ψLX (x) :=
{

1− pXL (x)
pXD (x) if pXD (x) ̸= 0,

0 otherwise,
(3)

with pXL(x) :=
∫

Y pL(x, y)dy and pXD (x) :=
∫

Y pD(x, y)dy.

The weighted fill distance depends on the distance metric and on how we define the weight function ψLX .
Here, the L2-distance is considered, but the following results can be generalized to other distances. Note
that if the weight function ψLX is chosen to be constantly equal to one, the weighted fill distance reduces
to the standard fill distance. We make a specific choice for the weight function ψLX , aiming to take into
account the relationship between pXD and pXL . The weight function takes positive or non-negative values
in regions of the feature space where pXL(x) ≤ pXD (x). It takes negative values where pXL(x) > pXD (x).
Note that the weighted fill distance is non-negative as we show in appendix A. Simply put, the weighted
fill distance considers both point distances and distributional differences, and it provides a way to quantify
how well the features of points in LX selected from pXL represent the underlying distribution of data points
features arising from pXD .

For our theoretical analysis, we use assumptions from Climaco & Garcke (2024), which we recapture in
Appendix B.1 and B.2. In particular, we consider the assumptions to be valid also for pD and pL. The first
assumption states that given the data feature location X = xi, the associated label value, yi, is close to the
conditional expected value of the random variable Y at that location. This assumption models scenarios
where the true feature-label relationship is stochastic or deterministic but subject to random fluctuations
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with a magnitude parameterized by a fixed scalar ϵ. Further, a Lipschitz continuity assumption relates to
the smoothness of the map connecting X and Y. It implies that when two data points are closer in X , their
corresponding labels tend to be closer in Y. The second assumption essentially states that the expected
error on the training set is bounded and that standard regularity assumptions on the error and learned
functions hold in the form of Lipschitz continuity. With that, we are able to establish an upper bound for
the optimization objective in (1).
Theorem 4.2. Consider random variables (X, Y ) taking value on X × Y ⊂ Rd × R, with X bounded, data
source distribution pD ∈ P, labeled dataset L := {(xj , yj)}b

j=1 arising from training data distribution pL ∈ P,
regression model mL ∈ M trained on L, and error function l : X × Y ×M → R+. If Assumptions B.1
and B.2 are fulfilled, then we have that

EpD [l(X, Y,mL)] ≤ CWLX, X (pXL ||pXD ) +
+ λlY ϵ︸︷︷︸

labels
uncertainty

+ ϵL︸︷︷︸
max error

training set

+ EpL [l(X, Y,mL)]︸ ︷︷ ︸
expected error

training distribution

(4)

where C := (λlX + λlYλp). λp Lipschitz constant and ϵ labels’ uncertainty from Assumption B.1. λlX and
λlY are Lipschitz constants of the error function from Assumption B.2. ϵL is the maximum error of mL on
the training set, from Assumption B.2. WLX, X (pXL ||pXD ) weighted fill distance defined as in (2). Moreover,
pXD and pXL are the marginals of pD and pL, respectively, defined on X .

Theorem 4.2, proof in appendix C, provides a qualitative upper bound for the expected value of the error
function on the data source distribution pD depending linearly on the weighted fill distance of the selected
training set. Our goal is to design a training data distribution marginal pXL and sample a training set LX
to attempt to minimize the only component of the bound that does not involve the data labels and that we
can attempt to estimate before training a regression model: the weighted fill distance.

Note that, the bound in (4) depends on four main quantities: the maximum error on the training set (ϵL),
which we can only compute after training a regression model, the label uncertainty (ϵ), the expected error on
the training data distribution (EpL [l(X, Y,mL)]), which we may not know or be able to compute, and the
weighted fill distance, which contrarily to the previous three quantities does not depend on the data labels.
The expected error on the training data distribution and the maximum error on the training set indicate
that the bound also depends on how well the unknown trained model fits the training data distribution. We
do not consider minimizing these quantities because we can not estimate them without training a regression
model. We are considering a passive and model-agnostic sampling scenario where we have no knowledge
about the data labels and the regression model at the time of selection. In what follows, we work under the
general assumption that the employed trained model works well on the training data and these quantities
to be negligible. A similar assumption has been considered in previous work (Just et al., 2023). Note that,
under these assumptions, the smaller the weighted fill distance of the selected training set, the smaller the
bound for the expected approximation error on data from the source distribution pD. In the next section
we propose one possible sampling approach attempting to minimize the weighted fill distance of the selected
set.

5 Density-Aware Farthest Point Sampling (DA-FPS)

In this section we design a data selection procedure aiming at minimizing the weighted fill distance of the
selected set: WLX, X (pXL ||pXD ). Unfortunately, given a set LX ⊂ X , its associated weighted fill distance
can not be directly computed as the weights explicitly depend on pXD , and we usually do not know the
data source distribution pD, and therefore its marginal, pXD . Still, we have access to a set DX = {xi}n

i=1 of
unlabeled data points arising from pXD . Thus, we first compute an estimation p̂XD of pXD from the unlabeled
set DX . Subsequently, we select a training set LX = {xj}b

j=1 ⊂ DX determining an estimation p̂XL of the
marginal of the training data distribution pXL . The selection procedure we propose aims at selecting a
set LX that minimizes a data-driven estimation of the weighted fill distance based on the dataset DX , the
selected subset LX and the two estimated marginals p̂XD and p̂XL .
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Before diving into the technicalities of our proposed sampling method, let us briefly describe its core pro-
cedure. Our approach involves iteratively sampling data points at a maximal weighted distance from those
already selected. Initially the weights are set to one for all available points, thus, in this initial stage, our
procedure coincides with FPS. After a portion of the data has been selected, the weights adapt dynami-
cally during the selection process according to the chosen training set. The weights reflect the relationship
between p̂XD and p̂XL , which we estimate from the data locations. For this reason we call our approach
Density-Aware Farthest Point Sampling (DA-FPS). The weights dynamically change because the estimation
of the marginal of the training data distribution, p̂XL , is data-driven and depends on the current training
set. As we add new points to the selected set, p̂XL must be updated.

5.1 Density estimation

To estimate the multivariate marginal distributions pXD and pXL , we follow along Wang et al. (2009) and
choose an adaptive k-nearest-neighbor (kNN) density estimation approach. Note that, we opted for kNN
density estimators over other strategies for density or density ratio estimation because they are computa-
tionally efficient. Using kNNs, we can estimate the density at a specific data point by only considering its
distance relationships with its k-nearest neighbors, without having to perform additional comparisons with
other points in the data set. This reduces the computational costs involved in the iterative process of density
estimation. The multivariate kNN density estimations of marginal distributions, pXL and pXD , are based on
a selected set LX , the dataset DX and a kernel function K : Rd → R+. At a point x ∈ X the estimated
densities have the form

p̂k
XD

(x) :=

∑
xi∈DX

K

(
x−xi

rk
LX

(x)

)
|DX |

(
rk

LX
(x)
)d

and p̂k
XL

(x) :=

∑
xj∈LX

K

(
x−xj

rk
LX

(x)

)
|LX |

(
rk

LX
(x)
)d

, (5)

where

rk
LX

(x) := min
{

min
x̄∈LX

∥x− x̄∥2 + ϵX
|LX |

, ρk(x)
}

and K(x) :=
{

1
Vd
, if ∥x∥2 ≤ 1,

0, otherwise,
(6)

with ρk(x) := min{r ∈ R+ such that |{x̃ ∈ DX | ∥x − x̃∥2 ≤ r}| ≥ k} the distance between x and its k-
nearest neighbor in DX , and Vd := πd/2

Γ(d/2+1) is the volume of the unit ball in Rd, where Γ(r) = (r− 1)! is the
so-called Gamma function. The quantity rk

LX
(x) defines an adaptive neighborhood size, depending on the

selected set LX , aiming at reducing the estimation bias at finite sample sizes (Wang et al., 2009). ϵX in the
definition of rk

LX
(x) is an arbitrary small positive scalar that prevents the denominator in the kNN density

estimations from becoming zero on points in LX . Note that, we are interested in estimating the densities
only for points in DX \LX := {x ∈ DX such that x /∈ LX }, which are not already in LX , and we may want to
select depending on the value they would provide, which we quantify with the associated weighted distance.
Nonetheless, the kernel estimations in (5) are well-defined for all points in X . In Appendix D we show that,
under some assumptions, p̂k

XL
and p̂k

XD
are asymptotically unbiased estimations of pXL and pXD , respectively.

5.2 Estimated weighted fill distance

We compute a data-driven estimate of the weighted fill distance of a set LX ⊂ DX using the density
estimations in (5) as follows

max
x∈DX \LX

[(
1−

p̂k
XL

(x)
p̂k

XD
(x)

)
min

xj∈LX
∥x− xj∥2

]
. (7)

Unfortunately, the behavior of the estimated weight function in (7) is inconsistent with that of the true weight
function in (3). To see such inconsistency, we considerNk(x) := {x̃ ∈ DX such that ∥x−x̃∥2 ≤ ρk(x)} ⊂ DX
as the set of data points of DX in the k-neighborhood of x, and introduce the weights

ωk
LX

(x) :=
{
|{x̄ ∈ DX s.t. ∥x− x̄∥2 ≤ rk

LX
(x)}|, if |LX | > 0,

k, if LX = ∅
(8)
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Algorithm 1 Density-Aware Farthest Point Sampling (DA-FPS)
Input: Dataset DX = {xi}n

i=1 ⊂ X , data budget b ∈ N, neighborhood size k ∈ N, with b, k ≪ n. Set
LX ⊂ DX with |LX | ≪ b, u ∈ N with u < b.
Output: Subset LX ⊂ DX with |LX | = b.

1: if LX = ∅ then
2: Choose x̂ ∈ DX randomly and set LX = {x̂}
3: end if
4: while |LX | < b do
5: if |LX | < u then

6: x̄ = arg max
x∈DX

[
min

xj∈LX
∥x− xj∥2

]
.

7: else
8: Compute ωk

LX
(x) ∀ x ∈ DX /LX as in (8).

9: x̄ = arg max
x∈DX /LX

[
min

xj∈LX
∥x− xj∥2ω

k
LX

(x)
]
.

10: end if
11: LX ← LX ∪ {x̄}
12: end while

defining the number of points in DX contained in the ball centered in x with radius rk
LX

(x). Note that,
1 ≤ ωk

LX
(x) ≤ k. For completeness, we set the weights associated with the empty set equal to k. Now that

we have introduced the weights in (8) we can rewrite the estimated weight function in (7), evaluated on a
point x ∈ X , as follows

1−
p̂k

XL
(x)

p̂k
XD

(x)
=
{

1, if ̸ ∃ xj ∈ LX ∩Nk(x),
1− |DX |

ωk
LX

(x)|LX | , otherwise. (9)

To see this consider that the numerator of p̂k
XL

(x), as defined in (5), is either 1
Vd

or zero depending on
whether there exists an xj ∈ LX ∩ Nk(x) or not. Depending on the ratio |DX |

ωk
LX

(x)|LX | and the value of
k, the estimated weight function in (9) may allow for negative values on data points in DX \LX , not yet
included in the training set, where we would expect p̂k

XL
(x) ≤ p̂k

XD
(x). This behavior is not consistent with

the behavior of the true weight function defined in (3), which associates non-negative values with points
where pXL(x) ≤ pXD (x). This artifact is directly linked to the fact that the training and data densities are
estimated using sets with different amount of points, i.e., if |DX | = |LX | the estimated weight function in
(9) would be non-negative. Thus, the approach we use to compute the densities’ ratio is affected by scaling
issues related to the sets’ imbalance. But, we observe that the values of the estimated weight function are

directly correlated with those of the weights ωk
LX

(x) defined in (8). Given x̃, x̄ ∈ X we have
(

1− p̂k
XL

(x̃)
p̂k

XD
(x̃)

)
>(

1− p̂k
XL

(x̄)
p̂k

XD
(x̄)

)
⇒ ωk

LX
(x̃) ≥ ωk

LX
(x̄) and ωk

LX
(x̃) > ωk

LX
(x̄) ⇒

(
1− p̂k

XL
(x̃)

p̂k
XD

(x̃)

)
>

(
1− p̂k

XL
(x̄)

p̂k
XD

(x̄)

)
. The value

of ωk
LX

(x) is simply the number of points in DX that are close to x. Based on these observations, we avoid
the scaling issue of the estimated weight function in (9) by replacing it with weights defined in (8). That
is, instead of attempting the minimization of the quantity in (7) we consider the following minimization
problem:

OX ∈ arg min
LX ⊂DX
|LX |=b

[
max

x∈DX

(
ωk

LX
(x) min

xj∈LX
∥x− xj∥2

)]
. (10)

For a more compact notation, we define the quantity between the squared brackets as follows

W k
LX ,DX

:= max
x∈DX

(
ωk

LX
(x) min

xj∈LX
∥x− xj∥2

)
, (11)
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(b) 100 points selected
uniformly at random

(a) Dataset with 1000 points

(c) 100 points selected
with FPS

(d) 100 points selected
with DA-FPS

Figure 1: Illustration of DA-FPS, FPS, and uniform random sampling on a synthetic 2D dataset. Top row:
(a) A dataset with 1000 points in the unit square. The dataset consists of a high-density central cluster
(650 points), a smaller lower-left cluster (200 points), and uniformly scattered points (150 points). The
background shows a 2D kernel density estimation, where darker blue indicates higher density. Bottom row:
100 points selected by each method. (b) Uniform random sampling mostly selects from the dense cluster
and may miss sparse regions. (c) FPS selects points evenly across the space, ignoring density. (d) DA-FPS
selects more points from dense regions but still covers sparse areas, balancing density and coverage.

and refer to it as estimated weighted fill distance of LX in DX . The value k in (11) is the amount of nearest
neighbors we consider to compute the distance weights as in (8). The optimization problem in (10) is a
weighted version of the fill distance minimization problem and is therefore at least NP hard.

5.3 DA-FPS algorithm

To address the estimated weighted fill distance minimization problem in (10) we propose the novel DA-
FPS, described in Algorithm 1. DA-FPS takes in input a finite dataset DX ⊂ Rd, a data budget b ∈ N, a
neighborhood size k ∈ N, with b, k ≪ n, a subset LX ⊂ DX , with |LX | ≪ b and an additional hyperparameter
u ∈ N, u < b. The input hyperparameter u ∈ N allows for a greedy selection with uniform weights until
the size of the selected set reaches the value described by the hyperparameter. Later on, the objective of
our algorithm is to greedily augment the input subset LX by selecting points from the dataset DX so that
the maximum weighted distance of any point in DX to its nearest selected point in LX is minimized. The
weights used to scale the distances are defined in (8), depend on the selected set LX . Consequently, they
must be iteratively updated any time a new point is selected and included in LX . The algorithm stops when
the number of elements in the selected set LX reaches the data budget b. After that, LX is the output.

6 Simple illustration of DA-FPS

We provide a simple example to illustrate how DA-FPS works compared to uniform random sampling and
Farthest Point Sampling (FPS). Fig. 1 (top row) shows a dataset of 1000 two-dimensional points in the unit
square. The dataset contains a high-density cluster (650 points) in the center, a smaller cluster (200 points)
in the lower left, and 150 points scattered uniformly at random. The blue background is a 2D kernel density
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estimation (KDE) plot, where darker blue means higher density. For the KDE plot we use the Seaborn
Python library (Waskom, 2021). The second row of Fig. 1 shows 100-point subsets selected by uniform
random sampling, FPS, and DA-FPS. For DA-FPS, we set u = 0 and k = 100. From a global perspective,
DA-FPS balances two objectives: covering the data space evenly while giving greater importance to higher-
density regions. Consequently, the sampled data approximates the original distribution but with reduced
density differences across the data space. In contrast, FPS consistently selects points to provide a uniform
representation of the data space, while uniform random sampling mainly focuses on the high-density clusters,
potentially neglecting sparser regions, e.g., no point is selected in the lower right corner when uniform random
sampling is used. Locally, both FPS and DA-FPS tend to select points that are evenly distributed without
clustering. This is due to their optimization processes, which lead to maximize pairwise (weighted) distances
between the selected points, creating a “repulsion effect”. One of the key advantages of DA-FPS for sampling
training sets lies in its ability to balance the representation of both dense and sparse regions in the data. By
ensuring that high-density regions are well-represented while also covering sparser areas, DA-FPS mitigates
the risk of over-fitting or under-fitting to dominant clusters, which is a common issue when using random
sampling and FPS, respectively.

7 Analysis of DA-FPS

This section analyzes how well DA-FPS approximates the solution to the optimization problem in (10). The
following theorem establishes that DA-FPS achieves a 2k-approximation for this problem, where k is the
number of nearest neighbors used in DA-FPS.
Theorem 7.1. Given set of data locations DX = {xi}n

i=1 ⊂ Rd, subset OX ⊂ DX , optimal solution to the
problem in (10) with |OX | = b ∈ N+, b < n, and LX ⊂ DX , |LX | = b, subset selected with Algorithm 1
initialized with LX = ∅ and u = 0, we have

W k
LX , DX

≤ 2kW k
OX , DX

, (12)

where W k
LX , DX

and W k
OX , DX

are the estimated weighted fill distances of LX and OX in DX , respectively,
defined as in (11).

Proof is in appendix E. Theorem 7.1 gives an upper bound on the approximation error of DA-FPS for the
estimated weighted fill distance minimization problem defined in (10). The theorem indicates that increasing
the number k increases the approximation error. Recall that, k is the largest possible values of the weights
ωk

LX
(x). The presence of k in the bound quantifies the worst case approximation error of the weights

values, which depend on the selected set LX . In particular, the weights associated with the set selected
by DA-FPS can differ significantly from those of an optimal set OX of size b, especially in the early stages
of sampling when LX contains only a few points. Appendix N provides an additional result stating that
the approximation error of the DA-FPS estimation depends on the relationship between the weights of an
optimal set and those of the set selected by DA-FPS.

It is important to note that the bound in Theorem 7.1 does not account for the quality of the density ratio
estimation itself, which also depends on the parameter k. In other words, it does not quantify how well
the estimated weighted fill distance in (11) relates to the true weighted fill distance in (2). Addressing
this issue is an open problem for future work and is closely related to the broader field of density ratio
estimation. Nonetheless, multivariate density estimation theory indicates that smaller selected sets lead to
more biased approximations of the corresponding density marginal in (5), especially for high-dimensional
data (Wang et al., 2009). In simpler terms, the smaller the size of the selected set, the less representative
are the computed weights of the actual distribution of the points. To mitigate these limitations, we make
use of the hyperparameter u > 0. During the initial steps of the sampling process we consider constant
weights, which we then iteratively update according to (8) after selecting the first u points. Thus, in early
stages, DA-FPS coincides with FPS. That is, it focuses on minimizing the maximum distance between any
point in the dataset DX and its closest selected element. This approach ensures broader coverage of the
data space without initially accounting for the density of the data. The value of u plays a crucial role in the
effectiveness of DA-FPS for training data selection in regression task involving high-dimensional data. If u
is set too small, sparse regions of the dataset may be underrepresented in the training set, as the sampling
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will primarily target higher-density regions. This imbalance can result in low model performances in sparse
regions of the dataset with a consequential increase in the average error.

Note that, Algorithm 1 can be implemented using O(|D|k) memory and takes O(db|D|k) time, where d
is the data dimension. To give a qualitative understanding, with an implementation in PyTorch (Paszke
et al., 2019) it takes approximately 970 seconds to select 26000 points (≈ 20% of the total) from the
QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) dataset consisting 130202 data points of dimension
100.1 In Appendix F we provide more experimental results on the efficiency of DA-FPS.

8 Numerical Experiments

Experimental setup We focus on molecular property prediction, a regression task in quantum chemistry.
We use the QM7, QM8, and QM9 datasets, which contain 7,165, 21,766, and 130,202 molecules, respectively.
Our setup is based on Climaco & Garcke (2024), but with important differences. While Climaco & Garcke
(2024) studied FPS mainly for small training sets (1% to 10% of the data), we evaluate DA-FPS for larger
training set sizes, from 5% up to 20% of the data pool. This allows us to address challenges with high-
dimensional density estimation in very small data regimes (which DA-FPS requires), and to test DA-FPS in
scenarios where FPS alone does not significantly outperform standard passive sampling in terms of average
prediction error. Our data preprocessing is similar to Climaco & Garcke (2024), but we reduce the feature
vector dimension (up to 276 instead of up to 1300) to further mitigate issues with high-dimensional density
estimation. Full details on datasets, preprocessing, and descriptors are in Appendix G. Appendix H provides
empirical evidence that the datasets satisfy the required data assumption B.2. We use two regression models
that have been utilized in previous works for molecular property prediction tasks: kernel ridge regression
with a Gaussian kernel (KRR) (Stuke et al., 2019; Deringer et al., 2021) and feed-forward neural networks
(FNNs) (Pinheiro et al., 2020). Both models are Lipschitz continuous, which is required for our theoretical
results (see Appendix I for details on the models and hyperparameter tuning). We evaluate prediction
performance using the mean absolute error (MAE), defined as MAE := 1

nu

∑nu

i=1 |yi − ỹi|, where yi are true
values, ỹi are predictions, and nu is the number of unlabeled points in the data pool. The code necessary
to reproduce the results presented in this section is available in our GitHub repository.2 Let us remark that
the final goal of our experiments is to empirically show the benefits of using DA-FPS compared to other
model-agnostic state-of-the-art sampling approaches and investigate the benefits of complementing classical
passive sampling approaches with the FPS. We do not make any claims on the general prediction quality of
the employed models on any of the studied datasets.

Baseline sampling strategies We compare our approach with four sampling techniques, among those
analyzed in well-established papers related to data selection (Sener & Savarese, 2018; Ghorbani & Zou,
2019; Mirzasoleiman et al., 2020; Killamsetty et al., 2021), that fit our application scenario and problem
constraints: passive sampling model-agnostic data selection techniques that do not rely on the knowledge
of the labels. Specifically, we consider random sampling (RDM), Farthest Point Sampling (FPS), facility
location (Frieze, 1974) and k-medoids++ (Mannor et al., 2011). Both, facility location and k-medoids++,
attempt to minimize a sum of pairwise squared distances. However, the fundamental difference is that
facility location is a greedy technique, while k-medoids++ is based on a segmentation of the data points
into clusters.

Molecular property prediction on QM datasets Fig. 2 shows the MAE for the regression tasks on
the QM7, QM8 and QM9 datasets using KRR (top row) and FNN (bottom row). For each combination of
training set size and sampling strategy, the MAE is computed considering all the data points in the available
dataset that have not been selected for training. Our experiments indicate that selecting the training sets
using DA-FPS leads to better prediction performances than the baselines RDM, facility location, FPS and
k-medoids++ in terms of the MAE, particularly on the larger QM8 and QM9 and for larger training set sizes
(> 5% of the available data points). Comparing the MAE obtained with KRR and FNN, reveals that the
standard deviation of the MAE, represented by the error bars, tends to be larger for the FNN, especially on

1We used a 48-cores CPU with 384 GB RAM.
2GitHub-anonymous-DAFPS
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Figure 2: MAE for regression tasks on QM datasets using KRR with Gaussian kernel (top row) and FNN
(bottom row) trained on sets of various sizes, expressed as a percentage of the available data points, and
selected with different sampling strategies. Error bars represent the standard deviation over five runs. DA-
FPS (red lines) outperforms the baselines. The legend in the top-row leftmost graph applies to all graphs.
DA-FPS is initialized with LX = ∅, k = 100, and u = 3% of the available data, independently of the dataset.

the smaller QM7. This occurs because the FNN training process is sensitive to the limited amount of training
data available with the QM7. More specifically, the FNN determines its regression parameters by solving a
non-linear optimization problem using stochastic gradient descent, which is inherently prone to variability
and instability. As a result, metrics like the MAE often exhibit larger standard deviations. In contrast,
KRR solves a convex optimization problem with a closed-form solution. This deterministic approach results
in lower variability in predictions and lower standard deviation of the MAE. In Appendix J we evaluate
DA-FPS considering the root mean squared error (RMSE :=

√
1

nu

∑nu

i=1 |yi − ỹi|2) and show that DA-FPS
is still the most competitive approach. In Appendix K we provide results with two additional datasets, not
related to the quantum chemistry domain, two additional baseline selection strategies and one additional
regression model. The results of the additional experiments in Appendix K indicate that using DA-FPS
leads to the most competitive results in terms of MAE and RMSE.

It is important to note that, as explained in Section 7, during the initial phase of the sampling process DA-FPS
uses uniform weights. Meaning that, DA-FPS initially coincide with FPS. The amounts of points selected
with uniform weights is controlled by the hyperparameter u. In Appendix L we empirically investigate the
benefits of combining FPS with the baselines used to benchmark DA-FPS. The experiments in Appendix L
show that augmenting the baselines approaches with FPS during the initial steps of the sampling process
consistently leads to a decrease in the MAE of the predictions. Still, DA-FPS remains the most competitive
approach. This investigation highlights that the advantages of DA-FPS stem not only from initially using
FPS but also from its density-aware weighting, taking place after the first u points have been selected.

Regarding the DA-FPS hyperparameter u, determining the amount of points selected with uniform weights,
we make observations that can guide a user to a suitable choice. Our ablation study on the ZINC dataset
(Appendix M) shows that for larger training set sizes (> 10%), the choice of u has little effect on DA-FPS
performance compared to the baselines. However, for smaller training set sizes, u has a stronger impact.
When u is large, DA-FPS behaves more like FPS, which is known to reduce the maximum absolute prediction
error (MAXAE := max

1≤i≤nu

|yi− ỹi|), but may not lead to better average error. The work in Climaco & Garcke

(2024) found that, on the QM datasets, selecting just the first 2% of points with FPS, then switching to
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random sampling, achieves similar MAXAE as using FPS alone. This suggests that u should not be chosen
too large (e.g., < 5% of the available data points). Based on these observations we think that an “optimal”
choice u depends on what the user wants to achieve. Qualitatively, if the user is interested in ensuring
low MAXAE, at the cost of higher MAE, a larger u is recommended. If the user is mainly interested in
performing well on average in the region of high data density, a smaller u is recommended. In Appendix M,
we also analyze how changing the DA-FPS hyperparameter k affects performance. k defines the amount of
k-nearest neighbors considered for computing the weights. The results show that DA-FPS works well for a
range of k values, but choosing k that is too small can reduce its effectiveness.

9 Conclusion

We proposed DA-FPS, a passive model-agnostic sampling algorithm to select training sets by weighted
fill distance minimization. We provided an upper bound for the approximation error of DA-FPS to the
estimated weighted fill distance minimization problem we defined. Our numerical results demonstrated that
utilizing DA-FPS to select training sets has a positive impact on the average prediction of the regression
models, particularly for larger datasets, in line with our theoretical motivation. Concerning the choice of
DA-FPS hyperparameter u, we hypothesize that statistical properties, such as density or size of the tails
of the dataset, may be exploited by a user to take an informed decision. Future research directions should
investigate alternatives for the data density estimations. In this paper, we used a k-nearest neighbors (kNN)
approach for density estimation. Using the kNN was computationally efficient but lead to scaling issues
when estimating the weight function used in the definition of the weighed fill distance. Alternative methods
that overcome this issue while remaining effective and computationally efficient could be developed.

Broader Impact Statement

Selecting points aiming to reduce the training sets weighted fill distance is beneficial when traditional labeling
methods, such as numerical simulations or laboratory experiments, are expensive or time-consuming. In such
applications ML regression models provide fast label predictions for new data points. The quality of these
predictions depends on the quality of the training data. Therefore, selecting an effective training set is
crucial to ensure accurate predictions. Our research on minimizing the training set weighted fill distance
can potentially identify sets that can enhance average prediction quality for various regression models and
tasks, preventing the wastage of expensive labeling resources on training sets that may only benefit a specific
learning model or task.
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A The weighted fill distance is non-negative

Remark A.1. The weighed fill distance defined in (2) is non-negative.

Proof. In the definition of the weighted fill distance in (2) the distances are by definition non-negative.
Therefore, it is enough to show that there always exists a point x ∈ X such that pXD (x) ≥ pXL(x), that is,
there always exists a point where the weight function is non-negative. Let us proceed by contradiction. Let us
assume that ∀x ∈ X we have that pXD (x) < pXL(x). Next, let us note that

∫
X pXL(x)dx =

∫
X pXD (x)dx = 1,

which follows from the fact that both, pXD and pXL are probability distributions on X . However, by our
assumption we have that

1 =
∫

X
pXD (x)dx <

∫
X
pXL(x)dx = 1,

which is a contradiction.

B Assumptions

We recapture two assumptions from Climaco & Garcke (2024) that underlie our theoretical results. The first
assumption concerns the data being analyzed and the relationship between data features and labels.
Assumption B.1. We assume that for any feature vector xq ∈ X we have that

E
[
|Y |
∣∣xq

]
:=
∫

Y
|y| p(y|xq)dy <∞ (13)

and that there exists ϵ ≥ 0 such that

E
[
|Y − E[Y |xq]|

∣∣xq

]
:=
∫

Y

∣∣y − E[Y |xq]
∣∣ p(y|xq)dy ≤ ϵ, (14)

where
p(y|xq) := pZ(xq, y)

pX (xq) and pX (xq) :=
∫

Y
pZ(xq, y)dy. (15)

We refer to “ϵ” as the labels’ uncertainty. Moreover, we assume that∣∣E [Y |x̂]− E [Y |x̃]
∣∣ ≤ λp∥x̂− x̃∥2, (16)

∀ x̂, x̃ ∈ X , where λp ∈ R+.

The assumption in (14) states that given the data feature location X = xi, the associated label value is
close to the conditional expected value of the random variable Y at that location. This assumption models
scenarios where the true feature-label relationship is stochastic or deterministic but subject to random
fluctuations with a magnitude parametrized by the scalar ϵ. The Lipschitz continuity assumption in equation
(16) relates to the smoothness of the map connecting X and Y. It implies that when two data points are
closer in X , their corresponding labels tend to be closer in Y.

The second assumption concerns the error function used to evaluate the performance of the model and the
prediction quality of the model on the training set. Firstly, to formalize the notion that the prediction error
of a trained model on the training set is bounded. Secondly, to limit our analysis to error functions that
exhibit a certain degree of regularity, which also reflects the regularity of the regression model.
Assumption B.2. We assume there exist ϵL ≥ 0, depending on the labeled set L ⊂ D := {(xq, yq)}n

q=1 ⊂
X × Y and the trained regression model mL, such that for any labeled point (xj , yj) ∈ L we have that

E[l(xj , Y,mL)
∣∣xj ] ≤ ϵL. (17)

We consider ϵL as the maximum expected prediction error of the trained model mL on the labeled data L.
Moreover, we assume that for any y ∈ Y and L ⊂ D the error function l(·, y,mL) is λlX -Lipschitz and that
for any x ∈ X and L ⊂ D, l(x, ·,mL) is λlY -Lipschitz, convex and E[|l(x, Y,mL)|

∣∣x] <∞.
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With (17) we assume that the expected error on the training set is bounded. Moreover, with the Lipschitz
continuity assumptions we limit our study to error functions that show a certain regularity. However, these
regularity assumptions on the error function are not too restrictive and are connected with the regularity
of the evaluated trained model as already shown in Climaco & Garcke (2024). For instance, the λlY -
Lipschitz regularity and the convexity in the second argument are verified by all Lp-norm error functions,
with 1 ≤ p < ∞. We also assume that E[|l(x, Y,mL)|

∣∣x] < ∞ for any given x ∈ X . This assumption
formalizes the intuitive fact that, in applications, independently of the trained model and the feature vector
considered, we can expect the error function to take finite values.

C Proof Theorem 4.2

Proof. First, let us notice that

EpD [l(X, Y,mL)]
= EpD [l(X, Y,mL)]− EpL [l(X, Y,mL)] + EpL [l(X, Y,mL)]

=
∫

X
E [l(x, Y,mL)|x] pXD (x)dx−

∫
X
E [l(x, Y,mL)|x] pXL(x)dx + EpL [l(X, Y,mL)]

≤
∫
X ,

pXD ≥pXL

E [l(x, Y,mL)|x] (pXD (x)− pXL(x)) dx + EpL [l(X, Y,mL)] .

(18)

Note that in (18) the expectation E [l(x, Y,mL)|x] is independent of pD and pL. This is because, as mentioned
in Section 3, we consider a scenario where pD may differ from pL but the map connecting a data location
x ∈ X and its associated label value is independent on how the data is selected, that is, pD ̸= pL and
pD(y|x) = pL(y|x). In what follows we define p(y|x) := pD(y|x) = pL(y|x). Next, fixed X = x̃ ∈ X , we
want to bound E [l(x̃, Y,mL)|x̃]. To do that we use a result from Climaco & Garcke (2024): For fixed x̃ ∈ X
and xj ∈ LX we have

E [l(x̃, Y,mL)|x̃] =
∫

Y
l(x̃, y,mL)p(y|x̃)dy

≤
∫

Y
|l(x̃, y,mL)− l(xj , y,mL)| p(y|x̃)dy +

∫
Y
l(xj , y,mL)p(y|x̃)dy

≤ ∥x̃− xj∥2λlX +
∫

Y
l(xj , y,mL)p(y|x̃)dy

(19)

The second inequality in (19) follows from the λlX -Lipschitz continuity of the error function. We can bound
the remaining term as follows

∫
Y
l(xj , y,mL)p(y|x̃)dy

≤
∫

Y
|l(xj , y,mL)− l(xj ,E [Y |x̃] ,mL)| p(y|x̃)dy

+
∫

Y
|l(xj ,E [Y |x̃] ,mL)− l(xj ,E [Y |xj ] ,mL)| p(y|x̃)dy

+
∫

Y
l(xj ,E [Y |xj ] ,mL)p(y|x̃)dy

≤λlY

∫
Y
|y − E [Y |x̃]| p(y|x̃)dy

+ λlY

∫
Y
|E [Y |x̃]− E [Y |xj ]| p(y|x̃)dy

17
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+
∫

Y
E[l(xj , Y,mL)

∣∣xj ]p(y|x̃)dy

≤λlY ϵ+ λlY

∫
Y

(λp∥x̃− xj∥2) p(y|x̃)dy +
∫

Y
ϵL p(y|x̃)dy

≤λlY ϵ+ λlYλp∥x̃− xj∥2 + ϵL.

The second inequality follows from the λlY -Lipschitz continuity of the error function and Jensen’s inequality,
which is used to obtain the conditional expectation in the integrand of the last term. The third inequality
follows from the definition of labels’ uncertainty, the λp-Lipschitz continuity of the conditional expectation
of the random variable Y and the assumption that the expected error on the training set is bounded by ϵL.
The fourth inequality is obtained by taking out the constants from the integrals in the second and third
terms and noticing that, from the definition of p(y|x̃), we have

∫
Y p(y|x̃)dy = 1.

By taking the minimum over xj ∈ LX we get

E [l(x̃, Y,mL)|x̃] ≤ min
xj∈LX

∥x̃− xj∥2 (λlX + λlYλp) + λlY ϵ+ ϵL. (20)

Next, we define C := (λlX + λlYλp) and apply (20) to (18). Consequently, we have

EpD [l(X, Y,mL)]

≤
∫
X ,

pXD ≥pXL

(
min

xj∈LX
∥x− xj∥2C + λlY ϵ+ ϵL

)
(pXD (x)− pXL(x)) dx + EpL [l(X, Y,mL)]

=
∫
X ,

pXD ≥pXL

min
xj∈LX

∥x− xj∥2C (pXD (x)− pXL(x)) dx

+
∫
X ,

pXD ≥pXL

(λlY ϵ+ ϵL) (pXD (x)− pXL(x)) dx + EpL [l(X, Y,mL)]

≤
∫
X ,

pXD ≥pXL

min
xj∈LX

∥x− xj∥2C (pXD (x)− pXL(x)) dx

+ (λlY ϵ+ ϵL)
∫

X
pXD (x)dx + EpL [l(X, Y,mL)]

≤
∫
X ,

pXD ≥pXL
pXD >0

min
xj∈LX

∥x− xj∥2C

(
1− pXL(x)

pXD (x)

)
pXD (x)dx + (λlY ϵ+ ϵL) + EpL [l(X, Y,mL)]

≤ C sup
x∈X

(
min

xj∈LX
∥x− xj∥2

(
1− pXL(x)

pXD (x)

))
+ λlY ϵ+ ϵL + EpL [l(X, Y,mL)]

= CWLX, X (pXL ||pXD ) + λlY ϵ+ ϵL + EpL [l(X, Y,mL)] .

The last inequality follows from taking the supremum over x ∈ X , taking the constant terms out of the
integral and noticing that

∫
X ,

pXD ≥pXL
pXD >0

pXD (x)dx ≤
∫
X
pXD (x)dx = 1.

D Asymptotic unbiasedness of the density estimations

In this appendix we show that the kNN data-driven estimates p̂k
XD

and p̂k
XL

, defined in (5) and derived
from the finite sets DX ,LX ⊂ Rd, are asymptotically unbiased estimations of some densities pXD and pXL ,
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respectively, for any 2 ≤ k < n. We assume that pXD and pXL are uniformly continuous and that DX and LX
consist of random samples drawn from pXD and pXL , respectively. To show this we use results from Cacoullos
(1966), which we recapture in the following theorem in a formulation that is more suitable for our purposes.
Theorem D.1. Let us consider a d-dimensional Euclidean space X and K : X → R, Borel function on X ,
such that

sup
x∈X
|K(x)| <∞,

∫
X
|K(x)|dx <∞,

∫
X
K(x)dx = 1 and lim

∥x∥2→∞
∥x∥d

2|K(x)| = 0. (21)

Additionally, let us consider a sequence of positive scalar numbers {ri}∞
i=1 ⊂ R such that lim

i→∞
ri = 0. Let us

also consider {xi}m
i=1 ⊂ X , m ∈ N+, set of m independent realization of a random variable X with uniformly

continuous distribution density p. Then, for any x ∈ X in the non-zero support of p we have that

pm(x) = 1
m(rm)d

m∑
i=1

K

(
x− xi

rm

)
(22)

is an asymptotically unbiased estimator of p(x), i.e., lim
m→∞

Ep[pm(x)] = p(x).

Proof. The theorem recaptures results from Theorem 3.1 of Cacoullos (1966), which is proved using results
from Theorem 2.1 and Lemma 2.1 of the same paper. The sketch of the proof is as follows: First, fix x ∈ X ,
and let

εm(x) := 1
(rm)d

K

(
x−X

rm

)
. (23)

Then, under the mentioned assumptions on K and p, given a positive integer l, it is possible to show that

lim
m→∞

rd(l−1)
m Ep[εl

m(x)] = p(x)
∫
Kl(x)dx. (24)

Next, the theorem follows from noting that

Ep[pm(x)] = Ep[εm(x)]. (25)

Next we provide a corollary of the above theorem showing that the data-driven kNN density estimations
p̂k

XD
and p̂k

XL
are asymptotically unbiased estimators of pXD and pXL , respectively, for any 2 ≤ k < n.

Corollary D.2. Let us consider X ⊂ Rd and the function K : Rd → R+ defined in (6). Let us also consider
Dn,Lb ⊂ X , n, b ∈ N+ such that Dn := {xi}n

i=1 and Lb := {x̄j}b
j=1 are independent realizations of random

variables XD and XL with uniformly continuous densities pXD and pXL , respectively. Next, consider the
points x, x̄ ∈ Rd in the non-zero support of pXD and pXL , respectively, and the kNN data-driven density
estimations p̂k

XDn
(x) and p̂k

XLb
(x̄) defined as follows

p̂k
XDn

(x) :=

∑
xi∈Dn

K

(
x−xi

rk
b,n

(x)

)
n
(
rk

b,n(x)
)d

and p̂k
XLb

(x̄) :=

∑
x̄j∈Lb

K

(
x̄−x̄j

rk
b,n

(x̄)

)
b
(
rk

b,n(x̄)
)d

, (26)

where, for each x̃ ∈ Rd , rk
b,n(x̃) := min

{
min

x̄j∈Lb

∥x̃− x̄j∥2 + ϵX
b , ρk,n(x̃)

}
, with the scalar ϵX > 0 arbitrary

small and ρk,n(x̃) the distance between x̃ and its k-nearest neighbor in Dn. Then we have that, for any
2 ≤ k < n, p̂k

XDn
(x) and p̂k

XLb
(x̄) are asymptotically unbiased estimators of pXD (x) and pXL(x̄), respectively,

i.e.,
lim

n→∞
EpXD

[p̂k
XDn

(x)] = pXD (x) and lim
b→∞

EpXL
[p̂k

XLb
(x̄)] = pXL(x̄). (27)
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Proof. First note that the function K : Rd → R+ defined in (6) satisfies all the requirements in (21). In
particular, we have that

sup
x∈Rd

|K(x)| = 1
Vd

and
∫
Rd

K(x)dx = 1
Vd

∫
Bd(0,1)

1dx = 1, (28)

where Vd is the volume of the d-dimensional unit ball, which we write as Bd(0, 1) := {x ∈
Rd such that ∥x∥2 ≤ 1}. Moreover, we have that |K(x)| = 0 for ∥x∥2 ≥ 1, thus, lim

∥x∥2→∞
∥x∥d

2|K(x)| = 0.

The only thing left to show to apply Theorem D.1 to p̂k
XDn

(x) and p̂k
XLb

(x̄) is that lim
b→∞

rk
b,n(x̄) = 0 and

lim
n→∞

rk
b,n(x) = 0.

To show that lim
b→∞

rk
b,n(x̄) = 0 it is sufficient to observe that lim

b→∞
min

x̄j∈Lb

∥x̃ − x̄j∥2 = 0 due to the fact that

as the number of samples in Lb increases, the distance between x̄ and its nearest neighbor in Lb decreases,
tending to zero. Moreover, lim

b→∞
ϵX
b = 0. Similarly, we have that lim

n→∞
rk

b,n(x) = 0 from the fact that
lim

n→∞
ρk,n(x) = 0 which follows from the observation that as the number of samples in Dn increases, the

distance between x and its k-nearest neighbor decreases, tending to zero. Thus, we can apply Theorem D.1
to p̂k

XDn
(x) and p̂k

XLb
(x̄) showing that they are asymptotically unbiased estimators of pXD (x) and pXL(x̄),

respectively, for any 2 ≤ k < n.

E Proof Theorem 7.1

Proof. Let us fix the budget b ∈ N+, and define, for each i = 1, . . . , b + 1, Li := {x1, . . . ,xi} as the set of
cardinality i obtained after i − 1 iterations of the “While” loop in line 3 of Algorithm 1. To simplify the
notation, for the rest of the proof, for each LX ⊂ DX we define WLX := W k

LX , DX
omitting the k and DX

from the notation of the estimated weighted fill distance. The following proof consists of three main steps.

Step 1 The first step of the proof consists of showing that for each 1 ≤ i < b+ 1 we have

WLi+1 ≤WLi .

To prove this first step we notice that Li+1 = Li ∪ xi+1. Thus, for each x ∈ DX we have that

min
xj∈Li+1

∥x− xj∥2 ≤ min
xj∈Li

∥x− xj∥2.

This is because adding a point to the selected set Li ensures that the distance from any x ∈ DX to its
closest selected element either remains the same or decreases. Consequently, ωk

Li+1
(x) ≤ ωk

Li
(x) also holds.

To see this, recall that ωk
Li

(x) is the number of data points in DX contained within the ball centered at x

with radius rk
Li

(x) := min
{

minxj∈Li
∥x− xj∥2 + ϵX

|Li| , ρk(x)
}

, where ρk(x) is the distance between x and
its k-th nearest neighbor and ϵX positive scalar value, which we consider arbitrary small. Adding a point to
the selected set Li ensures that the distance between any x ∈ DX and its closest selected element does not
increase. As a result, the value of rk

Li
(x) is non-increasing, which in turn implies that the weights ωk

Li
(x)

are also non-increasing. Therefore, we have that for each 1 ≤ i < b+ 1

min
xj∈Li+1

∥x− xj∥2ω
k
Li+1

(x) ≤ min
xj∈Li

∥x− xj∥2ω
k
Li

(x),

Since the above inequality holds for each x ∈ DX , by taking the maximum over the points in DX we prove
the first claim.

Step 2 The second step of the proof shows that for each 2 ≤ i ≤ b+ 1 and 1 ≤ l < m ≤ i we have that

WLi−1 ≤ ∥xm − xl∥2ω
k
Lm−1

(xm), (29)
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where xm and xl are the points selected by Algorithm 1 at the m-th and l-th iterations, respectively. To
prove this second step we proceed by induction. For the base step we have i = 2, m = 2, l = 1. Then we
have

WL1 = max
x∈DX

∥x− x1∥2ω
k
L1

(x) = ∥x2 − x1∥2ω
k
L1

(x2)

which verifies the base step. The second equality follows from how the selection strategy in Algorithm 1 is
defined. Next, let us assume the assumption in (29) is true for i−1. Then we have for each 1 ≤ l < m ≤ i−1

WLi−1 ≤WLi−2 ≤ ∥xm − xl∥2ω
k
Lm−1

(xm).

Where the first inequality follows from the first step of the proof and the second inequality is our inductive
assumption. Now notice that for each 1 ≤ r < i we have

WLi−1 = min
xj∈Li−1

∥xi − xj∥2ω
k
Li−1

(xi) ≤ ∥xi − xr∥2ω
k
Li−1

(xi),

which proves the inductive step.

Step 3 Consider now a set C ⊂ DX , with |C| = b. Observe that by the definition of weighted fill distance
we have that for each x ∈ DX there exists c ∈ C such that ωk

C(x)∥x − c∥2 ≤ WC . Next, notice that
given Lb+1, with |Lb+1| = b + 1, selected with Algorithm 1, by the pigeonhole principle we have that there
exists xm,xl ∈ Lb+1 with 1 ≤ l < m ≤ b + 1 that have a common closest element c̄ ∈ C. Therefore,
max{∥xm − c̄∥2ω

k
C(xm), ∥xl − c̄∥2ω

k
C(xl)} ≤WC . Thus, we have

WLb
≤ ∥xm − xl∥2ω

k
Lm−1

(xm)

≤ (∥xm − c̄∥2 + ∥xl − c̄∥2)ωk
Lm−1

(xm)

≤
(
∥xm − c̄∥2ω

k
C(xm) + ∥xl − c̄∥2ω

k
C(xl)

)
ωk

Lm−1
(xm)

≤ 2ωk
Lm−1

(xm)WC

≤ 2kWC .

(30)

The first inequality follows from the second step of the proof, the second inequality follows from the triangular
inequality of the distance considered, the third and fifth inequalities follow from the fact that, by its definition,
we have 1 ≤ ωk

C(x) ≤ k for all x ∈ DX and C ⊂ DX . Since the above inequality holds for each C ⊂ DX , it
holds for the optimal subset OX as well.

F Computational efficiency DA-FPS

Given the novelty of DA-FPS, it is important to investigate its computational complexity. DA-FPS can
be implemented using O(|D|k) memory and the greedy selection takes O(db|D|k) time. |D| is the amount
of available data points, k the amount of nearest neighbors we consider for the density approximation, b
is the amount of points we select and d is the dimension of the data points. The computational cost of
DA-FPS is determined by the weights update (line 7 in Algorithm 1) taking O(d|D|k) at each of the b
iterations. In the current implementation the weights update involves iterating over all points in D and
compute the distances between the new selected point and the points’ k-nearest neighbors, which costs
O(d|D|k). Note that, initializing DA-FPS requires the computation of the k-nearest neighbors matrix, which
can be a potential bottleneck. In our implementation we query the k-nearest neighbors using the cKDtree
algorithm from the SciPy python library (Virtanen et al., 2020). The algorithm takes O(d|D| log |D|) for
building the balanced tree in the worst case scenario. After that, it queries the k-nearest neighbors with a
worst-case cost of O(|D|1− 1

d ) and an average cost of O(log |D|). Additionally, it is important to note that
if the nearest neighborhood size to compute the weights as in (8) is set to k = 1, the optimization problem
in (10) coincides with the fill distance minimization problem and Algorithm 1 reduces to the well known
Farthest Point Sampling algorithm (FPS), thus providing 2-optimal solution (Har-Peled, 2011)., which is the
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best approximation factor attainable in polynomial time with theoretical guarantees (Hochbaum & Shmoys,
1985).

We implemented two versions of DA-FPS: one using NumPy (van der Walt et al., 2011) and the other
with PyTorch (Paszke et al., 2019). The average computation times (over five runs) to select 20% of data
points from QM7, QM8, QM9, and ZINC are respectively as follows: NumPy - 6, 48, 1974, and 70 seconds;
PyTorch - 4, 31, 968, and 33 seconds. This was conducted on a 48-core CPU with 384 GB RAM. DA-FPS
was initialized with u = 0 and k = 100 independently of the dataset. DA-FPS’ PyTorch implementation is
faster than the NumPy implementation. This is because PyTorch can run computations exploiting multiple
CPU cores. It uses libraries like OpenMP(Dagum & Menon, 1998) and Math Kernel Library (Wang et al.,
2014) to perform operations on multiple CPU cores, leading to faster computations.

G Datasets

This appendix draws from (Climaco & Garcke, 2024) and provides additional information related to the
datasets, preprocessing procedures and molecular descriptors used for the experiments reported in Section 8

QM7 (Blum & Reymond, 2009; Rupp et al., 2012) contains 7,165 small organic molecules (up to 23 atoms,
including C, N, O, S). Each molecule is represented by the upper triangular entries of its Coulomb ma-
trix (Rupp et al., 2012), resulting in a feature vector in R276. The regression target is the atomization energy
(in eV), i.e., the energy required to separate all atoms in a molecule.

QM8 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2015) contains 21,766 organic molecules with up to 8
heavy atoms. For each molecule it provides its SMILES representation. We use Mordred (Moriwaki et al.,
2018) to compute 1,826 molecular descriptors from SMILES, set missing values to zero, remove 530 features
with zero variance, and normalize all features to (0, 1).Thus, each molecule in QM8 is represented by a
vector in R1296. We then apply PCA to reduce the feature dimension to 100. The regression target is the
lowest singlet transition energy (E1, in eV), computed using the PBE0 functional.

QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) consists of 130,202 small organic molecules with up
to 9 heavy atoms. For each molecule it provides its SMILES string and 19 computed properties. Following
along (Climaco & Garcke, 2024) we preprocess QM9 by removing molecules that fail consistency checks,
cannot be parsed by RDKit (Landrum, 2012), or have duplicate SMILES. Molecular features are computed
using Mordred (Moriwaki et al., 2018), with missing values set to zero, features with zero variance removed,
normalization to (0, 1), and PCA to 100 dimensions. The regression target is the HOMO-LUMO energy gap
(in eV), an important indicator of molecular stability.

The ZINC dataset (Gómez-Bombarelli et al., 2018) consists of about 250,000 molecules with up to 38 heavy
atoms selected from the ZINC database (Sterling & Irwin, 2015), which contains over 120 million purchasable
organic molecules. To reduce the computational effort of our analysis, we follow along Dwivedi et al. (2023)
and consider a subset of the ZINC dataset. Specifically, we use a subset of ZINC consisting of 24000 molecules
selected uniformly at random. The molecular representation we employ is based on the Mordred (Moriwaki
et al., 2018) library, as for the QM8 and QM9 datasets. We normalize the features provided by the Mordred
library, to scale them independently in the interval (0, 1). Again, we set to zero all the descriptor values
that Mordred could not compute, removed the features for which the values across the dataset have zero
variance and applied PCA to reduce the dimension of the feature vectors to 100. The label value to predict
is the water-octanal partition coefficient (LogP), describing the molecules’ solubility.

G.1 Datasets for additional experiments in Appendix K

This section provides a more detailed description of the additional datasets unrelated to quantum chemistry
used for experiments in Appendix K, including information on the preprocessing procedures.

The Concrete Compressive Strength dataset (Yeh, 1998) downloaded from the UCI Machine Learning
Repository (Dua & Graff, 2017) contains 1030 data points and is used for regression tasks. It includes eight
features: the amounts of cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine
aggregate, as well as the age of the concrete in days. We remove 34 data points having identical descriptors
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as at least one other point in the dataset, obtaining a reduced dataset of 996 data points. Furthermore,
we normalize the features to scale them independently in the interval (0, 1). The target variable is the
compressive strength of the concrete, measured in megapascals (MPa). This dataset is used to test machine
learning models to predict material properties.
In the additional experiments illustrated in Appendix K, we use the Twinning algorithm implementation
from Vakayil & Joseph (2022), which selects subsets based on an integer r, the inverse of the partitioning
ratio. Since the algorithm strictly partitions the dataset according to this ratio, we remove 6 points from
the Concrete dataset, resulting in a reduced dataset with 990 points. The points were selected randomly.
This adjustment ensures that the subset size determined by the Twinning algorithm matches the percentages
used to select the subsets, eliminating any discrepancies. Similarly, for the experiments in Appendix K, we
remove 66 points from the QM8 dataset, creating a reduced dataset of 21700 points. QM8 is preprocessed
with the same procedure used in Section 8.
The Electrical Grid Stability Simulated dataset from the UCI Machine Learning Repository (Dua &
Graff, 2017) contains 10000 data points and is designed for both classification and regression tasks. Each
data point in this dataset is represented by 12 features that describe characteristics of a simulated power
grid. We normalize the features to scale them independently in the interval (0, 1). For regression tasks, the
target variable is the stability margin, which quantifies the power grid’s stability.

H Data assumptions

We note that, for the experiments to be consistent with the theory the datasets we use should respect
the data assumptions required in Theorem 4.2. We focus on Assumption B.2, more specifically Formula
(16), indicating that if two data points have close representations in the feature space, then the conditional
expectations of the associated labels are also close. This assumption is necessary to attain the theoretical
result in Theorem 4.2.

For the QM datasets, the data assumptions have been already tested in Climaco & Garcke (2024) where the
authors perform experiments related to FPS. However, for the experiments with DA-FPS we use different
feature vectors. Thus, it is worth to verify whether the new feature vectors we consider still respect the
required assumptions or not. We use the same procedure employed in Climaco & Garcke (2024) and study
the correlation between pairwise distances in the feature and labels spaces by computing the Pearson’s
(ρp) and Spearman’s (ρs) correlation coefficients. We recall that these coefficients measure and quantify
the correlation between the quantities of interest. We compute the correlation coefficients for the pairwise
distances in the feature and label spaces on the QM7, QM8, QM9 and ZINC. We consider the features and
labels used for the experiments illustrated in Section 8 and Appendix M. Due to memory issue in storing
the distance matrix, for the QM9 we computed the correlation coefficients on 50% of randomly selected data
points. We selected random subsets and computed the associated correlation coefficients for five times. The
results we report for the QM9 are the average over the five runs. The computed coefficients are 0.15, 0.22,
0.26 and 0.22 for ρp, and 0.27, 0.19, 0.22 and 0.19 forρs, for QM7, QM8, QM9 and ZINC, respectively. Thus,
both the Pearson’s and Spearman’s coefficients indicate a positive correlation between the pairwise distances
of the data features and labels, suggesting that the data assumption considered in Theorem 4.2 is respected
for each of the considered datasets.

I Regression models: KRR and FNN

In this work, we follow along Climaco & Garcke (2024) and use two regression models already used in
previous works for molecular property prediction: kernel ridge regression with a Gaussian kernel (KRR)
and feed-forward neural networks (FNN). In this Appendix we recapture the key aspects of the KRR and
FNN regression models. For a more in dept analysis of KRR and FNN for molecular property prediction see
Deringer et al. (2021) and Pinheiro et al. (2020), respectively.

Kernel ridge regression (KRR) is a machine learning method that combines ridge regression with kernel
functions to perform regression in a flexible, non-linear way (Deringer et al., 2021). In this work, we use
the Gaussian kernel. Given two data points xq,xl ∈ X , the Gaussian kernel is defined as k(xl,xq) :=
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e−γ∥xq−xl∥2
2 , where γ > 0 is a parameter that controls the width of the kernel. Suppose we have a training

set L = {(xj , yj)}b
j=1 and a set of weights ααα = [α1, α2, . . . , αb]T ∈ Rb, the predicted label value mL,ααα(x) ∈ R

associated with a data location x ∈ Rd of a new data point is defined as follows mL,ααα(x) :=
∑b

j=1 αjk(x,xj).
The scalar mL,ααα(x) is the label predicted by the KRR method associated with the training data locations
{xj}b

j=1 and weights ααα. The goal of KRR is to find weights ααα = [α1, α2, . . . , αb]T that minimize the following
objective:

ααα = arg min
ᾱαα

b∑
j=1

(mL(xj)− yj)2 + λᾱααTKKKL ᾱαα, (31)

where KKKL is the kernel matrix with entries KKKL(q, r) = k(xq,xr), and λ > 0 is a regularization parameter
that helps prevent overfitting. The solution to this problem is given by: ααα = (KKKL + λIII)−1y, where y =
[y1, y2, . . . , yb]T . To predict the label for a new data point x ∈ X , we use: y(x) := mL(x) =

∑b
j=1 αjk(x,xj).

The hyperparameters γ and λ are selected by cross-validation grid search on random training subsets. For
each training set size we select the best pairs of parameters. Next, we compute the average of the best pairs
across all set sizes and use it for testing. The cross-validation tensor-grid uses 6 values per parameter from
10−6 to 10−1. We use the same set of hyperparameters for all selection strategies and training set sizes so
that the only variable affecting the model performances is the selected training set.

Feed-forward neural networks (FNNs) (Goodfellow et al., 2016) are a type of deep neural network used for
regression. An FNN predicts the label y(x) for input x ∈ X by passing it through a sequence of layers.
With l layers, the output is:

y(x) = ψl ◦ σl ◦ ψl−1 ◦ σl−1 ◦ · · · ◦ ψ1(x), (32)

where each ψi is an affine transformation (ψi(x) = Wix + bi) and each σi is a nonlinear activation function
(here, ReLU). Following (Pinheiro et al., 2020), we use l = 3 layers and ReLU activations. The weights Wi

and biases bi are learned by minimizing the mean absolute error on the training set. To train the FNN and
learn the weight matrices Wi and biases bi, we use the PyTorch (Paszke et al., 2019) Adam optimizer with
a learning rate of 0.001, betas (0.9, 0.999), and weight decay 0.001. We use a batch size of 516 and train for
1000 epochs, regardless of the dataset. To ensure that performance differences are only due to the choice of
training set, we always initialize the FNN with the same random weights.
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Figure 3: RMSE for regression tasks on QM datasets using KRR with Gaussian kernel (top row) and FNN
(bottom row) trained on sets of various sizes, expressed as a percentage of the available data points, and
selected with different sampling strategies. Error bars represent the standard deviation over five runs. The
performances of FPS (blue lines) may be close to that of DA-FPS (red lines) when we consider the RMSE,
particularly for larger training set sizes, e.g., on QM7 and for larger set sizes on QM8. Nevertheless, DA-FPS
still leads to the most competitive performances across datasets. The legend in the leftmost graph in the top
row applies to all graphs. DA-FPS is initialized with LX = ∅, k = 100, and u = 3% of the available data,
independently of the dataset.

J Evaluation DA-FPS using the root mean squared error (RMSE)

In this appendix we use the root mean squared error (RMSE) to evaluate the performance of DA-FPS
against the baselines used in Section 8. Given true target values {yi}nu

i=1 and the predicted values {ỹi}nu
i=1

the RMSE is defined as RMSE :=
√

1
nu

∑nu

i=1 |yi − ỹi|2, where nu is the number of unlabeled points in the
data pool. Similarly to the MAE, the RMSE provides information on the average quality of the prediction.
The difference is in the fact that RMSE penalizes large errors more than the MAE, thus providing insight
on the robustness of the predictions. The graphs in Fig. 3 compare the performances of DA-FPS with the
baselines and illustrate the RMSE of the predictions for the KRR (top row) and FNN (bottom row). The
illustrated results suggest that the performances of FPS may be closer to that of DA-FPS when we consider
the RMSE. This is particularly evident on the smaller QM7 and for larger set sizes on the QM8. Note that
the RMSE penalizes large errors more than the MAE, thus giving more relevance to outlier error values.
As we know from Climaco & Garcke (2024) FPS leads to a substantial decrease in maximum prediction
error and hence reduces the amount and magnitude of large error values. Nevertheless, DA-FPS still leads
competitive performances in terms of the RMSE, highlighting its robustness against large errors.

K Additional experiments

In this section we present experiments considering two additional datasets unrelated to quantum chemistry,
two additional sampling strategies, and one additional kernel method. The new datasets are the Concrete
Compressive Strength dataset and the Electrical Grid Stability Simulated Dataset, from the public UCI ML
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repository (Dua & Graff, 2017). The Electrical Grid Stability dataset contains 10000 data points represented
by 12-dimensional vectors. The target variable for regression is the stability margin (stab), reflecting grid
stability. The Concrete dataset consists of 1030 data points of described by 8-dimensional vectors. The target
variable is the compressive strength in megapascals (MPa). In Section G.1 we provide additional details on
the datasets and preprocessing procedures. We also consider the QM8 to evaluate the performance of the
additional sampling strategies and regression model in a quantum chemistry context.

The additional sampling strategies are the Twinning algorithm (Vakayil & Joseph, 2022), and the facility
location with a Gaussian similarity function (FacLocG) as defined in Bhatt et al. (2024). Fine-tuning is
required for the Gaussian width of the similarity function in facility location, and we follow the methodology
outlined in Bhatt et al. (2024), with complete details and hyperparameters described in Section M.1 of
this appendix. Section M.1 also includes the hyperparameters used for DA-FPS. In these experiments, we
compare DA-FPS with the additional sampling strategies alongside the baseline methods used in the previous
section, including RDM, k-medoids++, facility location and FPS. The Twinning algorithm implementation
from Vakayil & Joseph (2022) only allows the selection of subsets of the size that can be expressed as an
integer “r” representing the inverse of the partitioning ratio, i.e., for obtaining a training subset consisting of
20% of the data points, we must set r = 100

20 = 5. Consequently, to use the Twinning algorithm, we consider
training set sizes similar to those considered in the previous section, but that can be expressed as an integer
ratio. Specifically, we consider training set sizes of 5%, 10%, 16.67% and 20% associated with a ratio r of
20, 10, 6 and 5, respectively.

We use KRR with a Cauchy kernel as an additional regression method. We take the definition of Cauchy
kernel used in Basak (2008). We describe the Cauchy kernel, its hyperparameters and the hyperparameters’
optimization process in later in Section M.2. For each sampling strategy and set size, the training set selection
process is independently run five times considering different initializations, that is, different initial point or
random seed. Accordingly, we report for each analyzed model the average and the standard deviation of the
results for five runs. We consider three distinct evaluation metric to analyze the prediction performances.
We use the MAE and RMSE, introduced in Section8 and Appendix J, respectively, and quantifying the
average quality of the prediction. In addition, we also compute the Maximum Absolute Error (MAXAE)
of the predictions. The MAXAE is defined as MAXAE:= max1≤i≤nu

|yi − ỹi|, where yi and ỹi are the true
and predicted values, respectively. The MAXAE provides information on the worst-case scenario, thus, it
provides information on the robustness of the model’s predictions. Fig. 4 presents the regression task results
on the Concrete dataset, the Electrical Grid dataset, and the QM8 dataset, using KRR with a Cauchy
kernel trained on datasets of various sizes, selected with different strategies. The top row of the figure shows
the MAE of the predictions, the primary metric of interest. These results suggest that, overall, DA-FPS
outperforms other methods across all datasets. The only exception occurs with a training set size of 5%
on the QM8 dataset, where the Twinning approach performs better. Generally, The MAE plots indicate
that Twinning is the second-best method regarding MAE. The middle row of Fig. 4 presents the RMSE
results, which indicate that DA-FPS consistently achieves strong performance, ranking as either the best
or second-best method across all scenarios. Unlike the MAE results, where Twinning is the second best-
performing approach, the RMSE results highlight FPS as the method most closely aligned with DA-FPS
in terms of performance. This distinction underscores the reliability of DA-FPS across varying evaluation
metrics. Since RMSE assigns greater weight to larger prediction errors compared to MAE, these findings
emphasize the capability of DA-FPS to manage and mitigate significant prediction errors effectively. The
bottom row of Fig. 4 illustrates the MAXAE, further indicating DA-FPS as either the best or second-best
method in every scenario. FPS emerges as the other best performing. It is worth to note that while the
Twinning approach is the second best performing approach it terms of the MAE, it performs poorly in terms
of MAXAE, especially when compared to DA-FPS and FPS. For example, Twinning is the worst-performing
algorithm on the Concrete dataset with a training set size of 5% and the second-worst on the QM8 dataset,
regardless of training set size. In both cases, Twinning performs even worse than random sampling. The
results in Fig. 4 underscore the effectiveness and adaptability of DA-FPS across different datasets, sampling
strategies, and error metrics. These additional experiments further indicate that DA-FPS is a robust and
versatile approach for various regression tasks not only constrained to the quantum-chemistry domain.
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Figure 4: Results for regression tasks on the Concrete Compressive Strength, Electrical Grid Stability,
and QM8 datasets. We use KRR with the Cauchy kernel trained on sets of various sizes, expressed as a
percentage of the available data points, and selected with different sampling strategies. MAE (top row),
RMSE (middle row) and MAXAE (bottom row) are shown for each training set size and sampling approach.
Error bars represent the standard deviation of the results over five runs. DA-FPS (red lines) consistently
showcases competitive performances across all metrics. For MAE, DA-FPS generally outperforms other
methods, except Twinning (black lines) at 5% training set size on QM8. Twinning is the second-best method
in terms of the MAE. For the RMSE, DA-FPS consistently ranks as the best or second-best. MAXAE
results confirm DA-FPS as the best or second-approach, with FPS (blue lines) as the other most competitive
approach. As for Twinning, despite strong MAE performance, it under-performs in MAXAE, sometimes
worse than random sampling (green lines). Overall, DA-FPS delivers competitive performances across all
metrics. DA-FPS is initialized with LX = ∅ and u = 3%, 1% and 3% and k = 100, 300 and 300 for the
QM8, Concrete dataset and electricity dataset, respectively.
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Figure 5: MAE for regression tasks on QM datasets using KRR with Gaussian kernel (top row) and FNN
(bottom row) trained on sets of various sizes, expressed as a percentage of the available data points, and
selected with different sampling strategies. Error bars represent the standard deviation over five runs. The
modified versions of the baselines (dashed lines) lead to better performance than the respective original
baselines (solid lines). The legend in the leftmost graph in the top row applies to all graphs. The modified
baselines sample the first 3% of the points using FPS.

L Combining FPS with baselines

In this appendix we empirically investigate the benefits of combining the baseline sampling approaches used
in Section 8 with FPS. We consider modified versions of the RDM, Facility location and k-medoids++. These
modified versions of the baselines first select a prefixed amount of points with the FPS, the same amount
we would consider for the DA-FPS, and then augment the selected set by sampling from the remaining
points in the data pool according to their specific criteria. Consequently, in the early stage of the sampling
process, the sets selected with our proposed approach coincide with those selected with FPS and the modified
baselines. We refer to the modification of the baselines as FPS-RDM, FPS-FacLoc and FPS-k-medoids++.
The experiments in this appendix are performed considering the same experimental set up as in Section 8.

Fig. 5 shows that FPS-RDM, FPS-FacLoc and FPS-k-medoids++ consistently outperform the associated
baselines RDM, facility location and k-medoids++ in terms of the MAE for both, the KRR (top row) and
FNN (bottom row). These results suggest that modifying the baselines by initially sampling with FPS leads
to a reduction of the MAE independently of the dataset and trained model.

Fig. 6 compares DA-FPS with the modified baselines. Overall, DA-FPS leads to lower MAE of the regression
models. Looking at the results in Fig. 6 obtained with FNN (bottom row), we can highlight two scenarios
where DA-FPS is outperformed by one of the modified baselines: on the smaller QM7 and on the QM9
for the 5% training set size. These results suggest that, the advantages of using DA-FPS with respect to
the modified baselines may be less evident on smaller datasets and training set sizes (≤ 5% of the available
points), when using the FNN as learning model. Recall that, FNN predictions are prone to instability for
lower training set sizes. Nonetheless, our experiments still indicate that, overall, DA-FPS is more competi-
tive than the modified baselines in terms of the MAE of the predictions. In particular, no modified baseline
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Figure 6: MAE for regression tasks on QM datasets using KRR with Gaussian kernel (top row) and FNN
(bottom row) trained on sets of various sizes, expressed as a percentage of the available data points, and
selected with different sampling strategies. Error bars represent the standard deviation over five runs. DA-
FPS (red lines) outperforms the modified baselines. The legend in the leftmost graph in the top row applies
to all graphs. DA-FPS is initialized with LX = ∅, k = 100, and u = 3% of the available data, independently
of the dataset. The modified baselines coincide with DA-FPS until 3% of the data is selected

can consistently outperform DA-FPS in any of the datasets considered. Moreover, according to our experi-
ments, the comparative effectiveness of the modified baselines, in terms of the MAE, depends on the dataset
considered, that is, on the underlying data distribution. For instance, in Fig. 6, if we consider KRR as the
regression model (top row), FPS-RDM outperforms FPS-k-medoids++ on QM9. The opposite is true on
QM8. The results with DA-FPS appear to be more robust to changes in the datasets.

M Ablation study DA-FPS hyperparameters on ZINC dataset

In this appendix we analyze how the performances of DA-FPS may be affected as we vary the hyperparameter
u, defining the amount of samples initially selected with uniform weights and the hyperparameter k, defining
the amount of k-nearest neighbors considered for computing the weights. We perform this analysis on the
ZINC dataset and use the KRR and FNN as regression models. We consider a version of the ZINC dataset
consisting of 24000 molecules represented as vectors in R100. We aim to predict the molecules’ LogP value,
describing the molecules’ solubility. In Appendix G we provide the details on the descriptors, label values,
and preprocessing procedures we use. ZINC provides one additional application scenario to those already
considered in Section 8.

Hyperparameter “u”

To study how DA-FPS performs as the hyperparameter u varies, we fix k = 300. The graphs in Fig. 7a
illustrate how the performance of DA-FPS (dashed lines) changes as the parameter u varies, compared to
the baseline approaches (solid lines) for both, the KRR (top row) and FNN (bottom row). We consider
u = 0%, 1%, 2%, 3%. For the low data budget of 5%, we see that random sampling and k-medoids++ lead to
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better results than DA-FPS, particularly if we consider larger values of u for DA-FPS. This is more evident
with KRR. On the contrary, for the larger training set sizes of 10%, 15% and 20%, DA-FPS consistently
outperforms all the baselines independently of the choice of u. Moreover, for the smallest training set size
of 5% we see that the smaller the value of u the more accurate the average predictions obtained considering
training set selected with DA-FPS, independently of the regression model. We note that, such a trend may
change or even be reverted if we consider larger training set sizes of 10%, 15% and 20%. This is particularly
evident in the graph of Fig. 7a related to the FNN model (bottom row), where, for training set sizes of 15%
and 20%, the larger the value of u the more accurate the average predictions with DA-FPS. Thus, from our
experiments, we see that the parameter u may affect the performance of DA-FPS differently, depending on
the training set size and regression model considered. Nonetheless, for larger training set sizes the increased
effectiveness of DA-FPS compared to the baselines is consistent across the different choices of u.
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(a) u = 0%, 1%, 2%, 3%
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(c) u=3%
Figure 7: Sensitivity study DA-FPS hyperparameter “u”: MAE for regression tasks on ZINC using KRR
(top row) and FNN (bottom row) trained on sets of various sizes, expressed as a percentage of the available
data points, and selected with different sampling strategies. DA-FPS is implemented with k = 300 and
considering various values for u. In (a) DA-FPS is implemented with u = 0%, 1%, 2%, 3%. DA-FPS and
the modified baselines are implemented with u = 1% in (b) and u = 3% in (c). Error bars represent the
standard deviation over five runs. DA-FPS is initialized with LX = ∅ and k = 300.

The graphs in Fig. 7b compare DA-FPS and the modified baselines. They show the results obtained by
initializing DA-FPS and the modified baselines with u = 1% of the available data points. That is, DA-FPS
and the modified baselines coincide with FPS until 1% of the available data points has been selected. The
results align with those of the experiments performed in Section 8. In particular, the graphs in Fig. 7b show
that, DA-FPS tends to outperform the modified baselines in terms of the MAE of the regression models,
particularly for larger training set sizes (> 5%).

Fig. 7c illustrates the performance of DA-FPS and the modified baselines considering u = 3% of the available
data. The graphs suggest that, by increasing the parameter u form 1% to 3% the gap between the modified
baselines and DA-FPS reduces for KRR and increases FNN. This indicates that the choice of u has an impact
on the relative effectiveness of the modified baselines and DA-FPS and that such impact also depends on
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Figure 8: Sensitivity study DA-FPS hyperparameter “k”: MAE for regression tasks on ZINC using KRR
with Gaussian kernel (a) and FNN (b) trained on sets of various sizes, and selected with DA-FPS considering
u = 1% and k = 30, 290, 300, 310, 3000. Error bars represent the standard deviation over five runs. The per-
formance of DA-FPS remains stable when the hyperparameter k is within a certain range (k = 290, 300, 310).
Choosing k too small may lead to a notable performance decline. Legend in the left graph applies to both
graphs. DA-FPS is initialized with LX = ∅ and u = 1% of the available data.

the model used for the regression task. Nonetheless, independently of the choice u, DA-FPS is the best or
second best performing for the larger training set sizes (> 10%).

Hyperparameter “k”

To study how DA-FPS performs as the hyperparameter k varies, we fix u=1%. We choose u=1% because,
according to the results in Fig. 7, it provides the better overall results across the various training set sizes
considered. Fig. 8 reports experiments where we investigate the effects of varying the DA-FPS parameter k
for regression tasks with KRR and FNN on the ZINC dataset. We select training sets of various sizes with
DA-FPS, considering different values of k (k = 30, 290, 300, 310, 3000).

These exemplary results suggest that the proposed value k = 300 (used for the experiments in Fig. 7) falls
within a range where small changes would not negatively impact the effectiveness of our approach on the
ZINC datasets. Using k = 290 and 310 does not lead to substantial differences, independently of the training
set size. However, applying changes of an order of magnitude to k could potentially affect the approach.
For instance, changing the value of k = 300 by a factor of 10 to k = 30 leads to a significant decrease in
performance for the training set size of 5%, independently of the regression model. The rough magnitude
of k likely depends on the data dimension and distribution and is generally investigated in the context of
density estimation. We expect further insights from that domain.

M.1 Hyperparameter optimization for additional experiments

In this section we follow along Bhatt et al. (2024) and describe the fine-tuning process for optimizing the
hyperparameters of the facility location algorithm with the Gaussian similarity function. In addition, we
report the hyperparameters considered for DA-FPS used for the additional experiments.

For the facility location method using the Gaussian similarity function, the fine-tuning process involves
selecting an appropriate kernel width, denoted as γ, to prevent the function’s gains from saturating when new
data points are added to the training set. That is, given a finite pool of data points DX ⊂ Rn, a subset Sk ⊂
DX , consisting of k elements, and f(Sk) :=

∑
x∈DX

max
x̂∈Sk

e−γ∥x−x̂∥2 ∈ R+ value of the facility location function

evaluated on Sk, we aim to choose γ to maximize the gains f(Sk+1) − f(Sk). The optimization procedure
consists of computing the gains for various values of γ and analyzing their behavior. The optimal value
γ is chosen to maximize gains for larger training sets while maintaining the ability to capture interactions
between data points.
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Figure 9: Gains from adding new elements to the selected sets for the QM8, Concrete, and Electrical Grid
datasets using the facility location method with the Gaussian similarity function. Gains are shown for various
values of the kernel width, γ = 1000, 10, 5, 1, 0.1 and 0.01.

Figure 9 illustrates the gains obtained from adding new elements to the selected sets for the Concrete,
Electrical grid, and QM8 datasets. We initialize the greedy selection process with the same data point,
independently of the value of γ. Low values of γ result in diminishing gains as the training set size grows,
while excessively high values, such as γ = 1000, cause the kernel to approximate a diagonal matrix, failing
to capture data point interactions. Based on the experimental results, we set γ to 1 for QM8, 10 for the
Concrete dataset, and 10 for the Electrical grid dataset.

For the DA-FPS we follow the same heuristic approach used for experiments in Section 8 and set u = 3%,
1% and 3% and k = 100, 300 and 300 for the QM8, Concrete dataset and electricity dataset, respectively.

M.2 Cauchy Kernel

In this section we define the Cauchy kernel and describe the optimization process implemented to fine-tune
the kernel hyperparameter and the regularization hyperparameter for the kernel ridge regression weights
optimization problem. Given data points xi,xj ∈ Rd, we follow along Basak (2008) and define the Cauchy
kernel as follows:

k(xi,xj) = 1

1 +
(

∥xi−xj∥2
γc

)2 (33)

The hyperparameter γc of the Cauchy kernel and λ, the regularization parameter of kernel ridge regression
problem, are fine-tuned using the following process: first, we conduct a cross-validation grid search to
identify the best hyperparameters for each training set size used in the experiments. The training subsets
are obtained through random sampling. Then, we calculate the average of the best hyperparameter pairs
across all training set sizes, which is subsequently used to build the final model. The tensor-grid search
explores 6 points for each hyperparameter, ranging from 10−6 to 10−2. It is important to note that in our
experiments we do not use an optimal set of hyperparameters for each selection strategy and training set
size. This choice ensures that we focus on analyzing the qualitative behavior of a fixed model, where the
only variable influencing the prediction quality is the selection of the training set.

N Alternative to Theorem 7.1

Theorem 7.1 states that DA-FPS provides a 2k-optimal result to the optimization problem in (10), which
considers dynamic-weights, that is, the weights are iteratively updated any time a new point is selected.
We can consider a simplified version of the optimization problem in (10) by considering for each data point
x ∈ DX a fixed weight ω(x) ∈ R+, which is determined a-priori and does not depend on the selected set.
Such a simplified scenario has been already studied in literature. In particular, the authors of Dyer &
Frieze (1985) show that it is possible to find solutions that are σ-optimal, with σ := min{3, 1 + α}, where
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α := maxx∈DX ω(x)
minx∈DX ω(x) . That is, it is possible to find solutions that are at least 3-optimal. With the following

theorem we attempt to extend the result provided in Dyer & Frieze (1985) into our scenario with dynamic
weights.
Theorem N.1. Given set DX = {xi}n

i=1 ⊂ Rd, subset OX ⊂ DX , optimal solution to the problem in (10)
with |OX | = b ∈ N+, b < n, and LX ⊂ DX , |LX | = b, subset selected with Algorithm 1 initialized with
LX = ∅ and u = 0, we have

W k
LX , DX

≤ σγW k
OX , DX

, (34)

where W k
LX , DX

and W k
OX , DX

are the estimated weighted fill distances of LX and OX in DX , respectively,
defined as in (11). Moreover,

γ := max
j=1,...,b+1

ωk
Lj−1

(xj)
ωk

OX
(xj)

(35)

and

σ := min{3, 1 + α} with α := max
i,j=1,...,b+1

i<j

ωk
Lj−1

(xj)
ωk

Li−1
(xi)

. (36)

For each j = 1, . . . , b, Lj := {x1, . . . ,xj} is the set of cardinality j obtained with Algorithm 1. We set
L0 = ∅. The weights ωk

Lj−1
(xj) and ωk

OX
(xj) in (35) and (36) are computed according to the same principle

as in (8).

Proof. Let OX := {o1, . . . ,ob} be an optimal solution to the optimization problem in (10). Moreover, let
Lb+1 := {x1, . . . ,xb+1} be the set of cardinality b + 1 obtained with Algorithm 1. First, note that by
pigeonhole principle there exist xi,xj ∈ Lb+1, with 1 ≤ i < j ≤ b + 1 such that there exists a common
closest element oc ∈ OX . Therefore, max{∥xi − oc∥2ω

k
OX

(xi), ∥xj − oc∥2ω
k
OX

(xj)} ≤ WOX , DX . Next, we
define the quantity

β :=
ωk

Lj−1
(xj)

ωk
Li−1

(xi)

and consider two scenarios β ≤ 2 and β > 2.

First scenario: β ≤ 2. If we assume β ≤ 2 we can prove the Theorem as follows

W k
Lb, DX

≤ωk
Lj−1

(xj) min
x∈Lj−1

∥x− xj∥2

≤ωk
Lj−1

(xj)∥xi − xj∥2

≤ωk
Lj−1

(xj) (∥xi − oc∥2 + ∥xj − oc∥2)

≤
ωk

Lj−1
(xj)

ωk
OX

(xj)
ωk

OX
(xj)∥xj − oc∥2

+
ωk

Lj−1
(xj)

ωk
Li−1

(xi)
ωk

Li−1
(xi)

ωk
OX

(xi)
ωk

OX
(xi)∥xi − oc∥2

≤γ(1 + β)W k
OX , DX

≤σγW k
OX , DX

.

The first inequality follows from the fact that W k
Li+1, DX

≤ W k
Li, DX

for all i = 1, . . . , b. This is shown in
Step 1 of the proof of Theorem 7.1. The second inequality follows from the fact that xi ∈ Lj−1 since i < j.
The last inequality follows from the assumption that β ≤ 2, thus, we have that β ≤ min{α, 2} which implies
that 1 + β ≤ σ.
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Second scenario: β > 2. Consider 1 = i < j ≤ b+ 1. Note that by how the weights are defined in (8), we
have that ωk

Li−1
(xi) = ωk

L0
(x1) = ωk

∅ (x1) = k and that for each j = 2, . . . , b+ 1 we have 1 ≤ ωk
Lj−1

(xj) ≤ k.
Thus, if 1 = i < j ≤ b+ 1, it follows that

β =
ωk

Lj−1
(xj)

ωk
Li−1

(xi)
=
ωk

Lj−1
(xj)
k

≤ 1,

which contradicts the assumption β > 2, so it holds i > 1. Next, consider 1 ≤ l < i < j ≤ b + 1, and xl to
be the closest point to xj when xi is chosen, then we have that

W k
Lb, DX

≤ωk
Lj−1

(xj) min
x∈Lj−1

∥x− xj∥2

≤ωk
Lj−1

(xj)∥xl − xj∥2

≤
∣∣{x̄ ∈ DX such that ∥xj − x̄∥2 ≤ min{∥xj − xl∥2 + ϵX

|Li−1|
, ρk(xj)}

}∣∣∥xl − xj∥2

=ωk
Li−1

(xj) min
x∈Li−1

∥x− xj∥2

≤ωk
Li−1

(xi) min
x∈Li−1

∥x− xi∥2

≤ωk
Li−1

(xi)∥xi − xl∥2

≤ωk
Li−1

(xi) (∥xi − xj∥2 + ∥xj − xl∥2) .

(37)

The second inequality follows from the fact that xl ∈ Lj−1, thus the distance between xj and the closest
element in Lj−1 is smaller than ∥xj − xl∥2. This is also relevant for the third inequality: The value of the
weight ωk

Lj−1
(xj), which is the amount of data points in the ball centered in xj with radius rk

Lj−1
(xj) :=

min
{

minx∈Lj−1 ∥x−xj∥2 + ϵX
|Lj−1| , ρk(xj)

}
, is less or equal the amount of data points contained in the ball

centered in xj with the larger radius of min{∥xj −xl∥2 + ϵX
|Li−1| , ρk(xj)}. The equality follows from the fact

that we assume xl to be the closest point to xj when xi is chosen, that is, rk
Li−1

(xj) = min{∥xj − xl∥2 +
ϵX

|Li−1| , ρk(xj)}. The fourth inequality is true because if we assume it was false then xj would have been
selected before xi.

If we now assume that ∥xi − xj∥2 ≤ ∥xj − xl∥2 by the inequalities in (37) we would have

ωk
Lj−1

(xj)∥xj − xl∥2 ≤ 2ωk
Li−1

(xi)∥xj − xl∥2,

which implies that
ωk

Lj−1
(xj)

ωk
Li−1

(xi)
≤ 2,

which is a contradiction since we are assuming β > 2. Thus, we have that ∥xi−xj∥2 > ∥xj−xl∥2. Therefore,
from equation (37), we have that

W k
Lb, DX

≤2ωk
Li−1

(xi)∥xi − xj∥2

≤2ωk
Li−1

(xi) (∥xi − oc∥2 + ∥xj − oc∥2)

≤2
ωk

Li−1
(xi)

ωk
OX

(xi)
ωk

OX
(xi)∥xi − oc∥2

+ 2
ωk

Li−1
(xi)

ωk
Lj−1

(xj)
ωk

Lj−1
(xj)

ωk
OX

(xj)
ωk

OX
(xj)∥xj − oc∥2

≤2γ(1 + β−1)W k
OX , DX

≤σγW k
OX , DX

The last inequality follows from the facts that β > 2 ⇒ α > 2 ⇒ 1 + α > 3 ⇒ σ = 3. Thus, since
2(1 + β−1) ≤ 3, we have that σ ≥ 2(1 + β−1).
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With Theorem N.1 we provide an alternative result to Theorem 7.1 for the optimality of the solution provided
by DA-FPS. Note that in Theorem N.1 we explicitly link the quality of approximation of DA-FPS with the
ratio between the computed and optimal weights. In particular, one of the terms in the approximation factor
is γ := maxj=1,...,b+1

ωk
Lj−1

(xj)
ωk

OX
(xj) , that is, the ratio between the weights related to the set selected with DA-FPS

and those of an optimal set. Note that the simplest upper bound for γ is γ ≤ k. This is because, for how we
defined them in (8), the weights value is at least 1 and at the most k, independently of the set considered
to define them. Thus, using the simplest upper bound for γ, according to Theorem N.1, DA-FPS achieves
approximations that are 3k-optimal. This rate represents a less favorable worst-case scenario compared to
the 2k-optimal rate given by Theorem 7.1. Nonetheless, we think this result is relevant because it highlights
how the relationship between the weights an optimal set and those associated with the selected set can be
connected to the approximation error of DA-FPS. Moreover, by explicitly linking the quality of DA-FPS’s
approximation to γ and σ, we aim to highlight a possible path for improving the optimality constant by
identifying a bound for either of these two quantities. Future work should focus on this direction.
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