
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MEMGEN: WEAVING GENERATIVE LATENT MEMORY
FOR SELF-EVOLVING AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Agent memory shapes how Large Language Model (LLM)-powered agents, akin
to the human brain, progressively refine themselves through environment inter-
actions. Existing paradigms remain constrained: parametric memory forcibly
adjusts model parameters, and retrieval-based memory externalizes experience
into structured databases, yet neither captures the fluid interweaving of reason-
ing and memory that underlies human cognition. To address this gap, we pro-
pose MemGen, a dynamic generative memory framework that equips agents with
a human-esque cognitive faculty. It consists of a memory trigger, which moni-
tors the agent’s reasoning state to decide explicit memory invocation, and a mem-
ory weaver, which takes the agent’s current state as stimulus to construct a la-
tent token sequence as machine-native memory to enrich its reasoning. In this
way, MemGen enables agents to recall and augment latent memory throughout rea-
soning, producing a tightly interwoven cycle of memory and cognition. Exten-
sive experiments across eight benchmarks show that MemGen surpasses leading
external memory systems such as ExpeL and AWM by up to 38.22%, exceeds
GRPO by up to 13.44%, and exhibits strong cross-domain generalization abil-
ity. More importantly, we find that without explicit supervision, MemGen sponta-
neously evolves distinct human-like memory faculties, including planning mem-
ory, procedural memory, and working memory, suggesting an emergent trajec-
tory toward more naturalistic forms of machine cognition. Codes are available at
http://anonymous.4open.science/r/mem-gen.

1 INTRODUCTION
The ascent of Large Language Model (LLM)-powered agents marks a paradigm shift across diverse
domains (Luo et al., 2025b; Yang et al., 2024b; Qian et al., 2025; Singh et al., 2025; Pantiukhin et al.,
2025; Ren et al., 2025). Pivotal to this success is the concept of agent memory (Zhang et al., 2024b;
Wu et al., 2025b), which enables LLM agents to learn progressively from environmental interac-
tions (Zhang et al., 2025a; Qiu et al., 2025b). Crucially, this conception of agent memory extends
beyond that of conversational agents (i.e., personalized memory (Wu et al., 2025b)), whose primary
role is to sustain coherence across long-horizon, multi-turn dialogues (Chhikara et al., 2025; Xu
et al., 2025a; Packer et al., 2024; Zhong et al., 2023). Rather, the scope of this paper is primarily on
enabling agents to internalize experience, simulate human-like cognitive iteration, and progressively
enhance problem-solving competence (Gao et al., 2025).

The memory serving as this self-evolving engine typically manifests in two dominant paradigms.
The first is (I) parametric memory, which internalizes experiences by directly updating agents’ pa-
rameters (Yao et al., 2024; Yang et al., 2023; Zeng et al., 2023; Chen et al., 2024b; 2025). While this
approach can yield substantial performance gains, its reliance on parameter modification inevitably
entails catastrophic forgetting, i.e., the erosion of general knowledge (Dou et al., 2024). Conversely,
the second paradigm is (II) retrieval-based memory, which externalizes past experiences into a
structured database, such as (i) raw trajectories (Luo et al., 2025a; Zhang et al., 2025a; Zhao et al.,
2024), (ii) high-level experiences (Zhao et al., 2024; Tang et al., 2025; Fang et al., 2025; Wang et al.,
2024c), and (iii) condensed skills like reusable APIs (Zheng et al., 2025) or MCP boxes (Qiu et al.,
2025b;a). Although this non-invasive approach circumvents catastrophic forgetting, its efficacy is
fundamentally tethered to context engineering. It adheres to a rigid execution pipeline, providing
retrieved context to the agent without achieving the fluid, seamless integration characteristic of truly
internalized memory (Su et al., 2025).

1

http://anonymous.4open.science/r/mem-gen

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Parametric Memory

Retrieval-based Memory

Latent Memory (for MemGen)

Agent
Policy

Experience
DataReward

SFT, GRPO, DPO, etc.

Rollout

Agent
Policy

Task
Query

In-context
prompting

Previous
Trajectories

A-Mem, Mem0, AWM, etc.

Condensed
Insights & Exp.

Expel, Mobile-Agent-E, etc.

Task Query: Which U.S. state has the longest
coastline? You can search the Internet.

Latent
Space

I will use
an iterative
search
paradigm...

Think
Paradigm

Experience
Retreive

Formatting
Experience

External
Knowledge

Refine
search
keyword
as [..]

...
The final
answer is
\boxed{Alaska}.

Latent

Latent

Latent

Internal Memory External Memory
Seen tasks: PopQA, TriviaQA .. RAG system: ...

Figure 1: The comparison among parametric memory, retrieval-based memory and MemGen.

Given these deficiencies, latent memory offers a compelling alternative, leveraging latent states as a
machine-native, high-density medium for memory. Existing approaches either use the (i) key-value
(KV) cache to maintain dynamic memory set (Gim et al., 2024; Jin et al., 2024; Hongkang Yang
et al., 2024), yet which is primarily confined to addressing long-context issues, or (ii) latent token
embeddings to store agent experiences (Wang et al., 2024b; 2025b), which still rely on invasive
LLM parameter updates. More fundamentally, these methods diverge from human cognition in two
critical dimensions: they lack the seamless interleaving of reasoning and memory, a process where
thought and memory dynamically reshape one another, and remain largely retrieval-based, fetching
memories by embedding similarity (Wang et al., 2024b) rather than generatively reconstructing them
into novel, coherent insights. This leads to the pivotal research question that motivates our work:

How can we architect agent memory as a dynamic cognitive faculty, capable of fluid, reconstructive pro-
cesses that interweave seamlessly with reasoning?

To address this challenge, we introduce MemGen, a dynamic and generative memory framework de-
signed to endow any LLM agent with a more human-esque cognitive faculty. At its core, MemGen
continuously monitors an agent’s cognitive state, enabling it to dynamically invoke a generative pro-
cess that synthesizes a bespoke latent memory at any critical juncture during its reasoning process.
Practically, MemGen comprises two synergistic components: a reinforcement learning (RL)-trained
♣ memory trigger, which acts as a metacognitive monitor to discern the opportune moments for
explicit memory invocation; and a ♠ memory weaver, which takes the agent’s current state as a
stimulus to draw upon relevant implicit parametric memory (potentially augmented with externally
retrieved information) and then reconstructs this synthesis into a succinct, machine-native latent
memory. With the reasoning core fixed, MemGen inherently mitigates catastrophic forgetting when
exposed to new data, and equips agents with a generative memory deeply integrated with reasoning.

Experimental Observation. Extensive experiments across nine benchmarks and four baseline
categories demonstrate that MemGen delivers ❶ substantial performance gains, with improve-
ments of up to 31.7% on ALFWorld (Shridhar et al., 2021) and 27.1% on KodCode (Xu et al.,
2025d) with Qwen3-8B, surpassing parametric memory (REINFORCE++, +5.8%) and the GRPO
method (+5.32%);❷ strong cross-domain generalization, where training in the math domain not
only avoids degradation elsewhere but also boosts performance in science reasoning (+6.06%) and
code generation (+5.1%); and ❸ continual learning ability, maintaining stable performance in
previously trained domains even after fine-tuning on three additional ones.

Analysis & Interpretation. Beyond quantitative evaluation, we also analyze the functional be-
havior of the latent memories learned by MemGen. Through post-hoc interventions examining the
impact of removing specific latent memory on different agent failure modes, we found that differ-
ent latent memory tokens play distinct computational roles within the agent’s reasoning process,
including ❶ planning memory, where certain latent tokens specifically support high-level task

planning, ❷ procedural memory, where some latent memory tokens facilitate the agent’s recall
of task-specific procedural skills, such as tool usage and answer formatting, and ❸ working mem-
ory, where certain tokens help the agent maintain coherence and understanding over long contexts

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

within a single task session. These specializations strongly reveal that MemGen endows the agent
with precise, functionally distinct memory.

2 RELATED WORK

LLM & Agent Memory. As outlined in §1, existing memory mechanisms designed to evolve the
problem-solving capacity of LLM agents can be broadly categorized into three classes: (I) para-
metric memory, which either integrates past experiences directly into agent parameters through
finetuning, as in FireAct (Chen et al., 2023), AgentLumos (Yin et al., 2024), and others (Zhang
et al., 2024a; Fu et al., 2025), or maintains them in external parameter modules (Tack et al., 2024;
Wang et al., 2024a); (II) retrieval-based memory, which abstracts prior experiences into trans-
ferable knowledge (Zhang et al., 2025a; Zhao et al., 2024), or distills them into reusable tools and
skills (Zheng et al., 2025; Wang et al., 2025c; Qiu et al., 2025b;a); and (III) latent memory, which
leverages implicit representations to encode and retrieve experience (Wang et al., 2024b; 2025b;
Hu et al., 2025b; Liu et al., 2024; Sun et al., 2025). Our MemGen falls within the latent memory
paradigm, yet distinguishes itself from prior approaches through its interweaving of reasoning and
memory, as well as generative reconstruction mechanism.

Latent Computation. Our method is also closely related to latent computation, wherein latent
states are employed to intervene in or reshape the LLM’s reasoning process (Zhu et al., 2025).
Prominent paradigms include: (I) architecturally enabling native latent reasoning, exemplified
by Coconut (Hao et al., 2024), CODI (Shen et al., 2025b), LatentR3 (Zhang et al., 2025b) and
CoLaR (Tan et al., 2025), which render the LLM’s inference process inherently latent and machine-
native; and (II) employing latent computation to steer LLM generation, as in LaRS (Xu et al.,
2023), LatentSeek (Li et al., 2025a), SoftCoT (Xu et al., 2025c;b), and Coprocessor (Liu et al.,
2024), which leverage latent representations to modulate the quality of generated outputs.

3 PRELIMINARY

Notation. We formalize the agent’s interaction within an environment E . An agent, powered by
an LLM parameterized by θ, is denoted as πθ. For a given task x, the agent’s interaction unfolds as
a high-level trajectory, denoted as follows τ = (s0, a0, s1, a1, . . . , sT), where st represents the state
of the environment and at is the high-level action taken by the agent. More internally, each action
at is essentially a sequence of tokens, at = (zt,1, zt,2, . . . , zt,Lt), generated autoregressively by
the LLM. The generation of the j-th token is conditioned on the current state st and all previously
generated tokens within that action:

zt,j ∼ πθ(· | st, zt,<j). (1)

After an entire action sequence at is generated, it is executed in the environment, which transitions
the state from st to st+1. The success of the trajectory τ is evaluated by a reward function R(τ).

Problem Formalization Given a history of past experiencesH = {(xi, τi)}Ni=1, the objective is to
leverage this history to maximize the agent’s performance on new tasks. The policy πθ and a memory
systemM are thus jointly optimized to maximize the expected reward over a task distribution D:

max
θ,M

Ex∼D, τ∼πθ,M

[
R(τ)

]
, (2)

during whichM is to produce a memory representation, m, which conditions the agent’s policy. The
action at any timestep t is thus sampled as at ∼ πθ(· | st,mt), where mt is the inserted memory at
that step. Crucially, the nature and timing of memory generation, which we denote as the function
fM, vary across different paradigms. We express the generation of the memory mt as:

mt = fM(st,H,m<t), (3)

which accommodates diverse memory invocation granularities. For task-level memory (e.g., Ex-
pel (Zhao et al., 2024) and G-Memory (Zhang et al., 2025a)), fM is invoked only at t = 0, and
mt = m0 for all subsequent steps. For step-level memory (e.g., AgentKB (Tang et al., 2025)),
fM is invoked at every step t to update the memory. In parametric memory, the influence of H is
compiled into θ, rendering memory generation implicit in the model parameters. Our work, which
introduces dynamic latent memory, focuses on designing a more fine-grained fM that decides for
itself the optimal moments to regenerate mt at the token level during the agent’s reasoning process.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Task Query: Hello, please find a flight from JFK to LAX for next FridayReaonser

Weaver

Trigger

L
aten

t

Okay, to achieve this, I'll start
by searching for the cheapest
flight on Google Flights.

Context

...

Token Sequence

No Memory
Invocation

Memory
Invocation

Memory
Weaver Model

Latent Memory Tokens

...

Parametric
Memory

Notations
Prompt
tokens

Completion
tokens

Latent memory tokens

E
n

v.
O

bs.

It seems that
the API is
not usable.

Token Sequence

Context

Memory
Weaver Model

External Mem DB

Raw Trajectories

High-level abstracts

Memory
Invocation

Latent Memory Tokens

...

Im
p

li
ci

t
M

em
or

y
Wait, I can
do this
faster by..

Latent
Latent token
sequence

M
em

or
y

In
se

rt

M
em

or
y

In
se

rt

L
aten

t

E
xp

li
ci

t
R

ea
so

n
 (should be earlier than 12am), and book me a ride from the airport.

Figure 2: The overview of our proposed MemGen.

4 METHODOLOGY

4.1 MemGen: INTERLEAVING MEMORY AND REASONING

Just as a person is the sum of their past experiences (McAdams, 2001), memory profoundly shapes
an agent’s behavior (Xiong et al., 2025). Yet existing agent memory systems lack the adaptive
fluidity characteristic of human cognition. Human reasoning and recollection operate in a continuous
interplay, whereas most agent memory frameworks retrieve information only once at task initiation
and append it to the query in a coarse and static manner. MemGen is designed to close this gap by
enabling memory to participate dynamically in the reasoning process.

As shown in Figure 2, the reasoning process in an agent equipped with MemGen unfolds autore-
gressively, driven by a frozen core LLM, the reasoner πθ. For a given state st, πθ generates the
action at = (zt,1, . . . , zt,Lt

). MemGen continuously monitors the token-by-token generation process
and performs on-demand memory insertion. At each token-generation step j, a memory trigger
Ttrigger monitors the reasoner’s internal cognitive state to determine if a moment of reflection, i.e., a
memory invocation, is necessary. Specifically, as the reasoner generates the token sequence zt,<j , it
produces a corresponding sequence of hidden state vectors, Ht,<j = (ht,1, . . . ,ht,j−1), where each
ht,k ∈ Rdmodel . The trigger takes the current hidden states Ht,<j as a representation of the reasoner’s
current metacognitive state and computes an invocation probability:

pj = σ (Ttrigger(ht,1, . . . ,ht,j−1)) , (4)

from which a binary decision, dj ∼ Bernoulli(pj) ∈ {INVOKE,SKIP}, is sampled. If the decision
is to [SKIP], πθ proceeds with its standard autoregressive generation, i.e., zt,j ∼ πθ(· | st, zt,<j).
However, if the decision is to INVOKE, the reasoning process is momentarily paused. This summons
the second core component of our framework: the memory weaverWweaver, which takes the same
cognitive state Ht,<j as a stimulus to perform a generative act of recollection. It synthesizes a
bespoke, machine-native latent memory, formalized as Mt ∈ RK×dmodel with fixed length K:

Mt := [mt,1,mt,2, · · · ,mt,K] =Wweaver(Ht,<j), (5)

where the memory is generated not merely from the parametric knowledge encoded withinWweaver
but may also incorporate cues retrieved from external memory databases (detailed implementation
is elaborated in §4.3). Crucially, Mt is not a verbatim restatement of prior content but a selective
reconstruction, filtered and integrated throughWweaver, akin to the memory consolidation process in
human brain (Spens & Burgess, 2024). Once formed, the latent memory is woven seamlessly into
the reasoner’s ongoing dynamics: its hidden states are prepended to Ht,<j , upon which the reasoner
resumes generation conditioned on this enriched context,

zt,j ∼ πθ(· | st, zt,<j ,Mt). (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This iterative cycle of generation, monitoring, invocation, weaving, and reintegration elevates rea-
soning from a linear unfolding to a recursive dialogue with memory, all without altering the frozen
reasoner πθ, and thereby preserving its general capabilities. In the following sections, we detail the
implementations of the memory trigger (▷ §4.2) and the memory weaver (▷ §4.3).

4.2 MEMORY TRIGGER: LEARNING TO INVOCATE MEMORY

In this section, we describe the concrete instantiation and training recipe of the memory trigger
Ttrigger. Recall from §4.1 that Ttrigger serves as a metacognitive monitor, observing the evolving rea-
soning state of the frozen reasoner πθ and producing a binary decision dj ∈ {INVOKE,SKIP}(0↔
SKIP, 1↔ INVOKE) that determines whether the memory weaver should be invoked at token j.

Instantiation. We instantiate Ttrigger as a lightweight LoRA adapter attached to the reasoner πθ.
At the decoding step j of the timestep t, it receives the sequence of all hidden states, Ht,<j ∈
R(j−1)×dmodel ; conditioned on this context, Ttrigger outputs the action probability P (dj = INVOKE) ∈
[0, 1]. We use hidden states rather than textual context as input because, following prior work in
latent reasoning (Hao et al., 2024; Shen et al., 2025a), latent embeddings retain richer context-
sensitive information that would otherwise be lost after softmax decoding. To avoid excessive
computational overhead, we adopt a sentence-granularity activation strategy, inspired by recent
studies on LLM interpretability (Anthropic, 2025; Chen et al., 2024a), which find that interventions
between sentences can more effectively guide LLMs’ reasoning path. Specifically, we define a
delimiter token set D (e.g., commas, periods) and let the trigger act only when the current token
falls in D. The invocation decision is computed as:

dj = Bernoulli(pj), pj =

{
0 if zj /∈ D,
Ttrigger(Ht,<j) if zj ∈ D,

(7)

which ensures that Ttrigger is invoked only at semantically significant boundaries, preserving decod-
ing efficiency. We validate that MemGen does not incur excessive inference delay in Appendix E.3.3.

Training Recipe. The memory trigger is trained via reinforcement learning, motivated by the
need to balance two competing desiderata: ensuring that critical latent memories are invoked to
improve task performance, while avoiding unnecessary or spurious invocations that could disrupt
reasoning or incur computational overhead. Given a batch of seen tasks H = {(xi, τi)}Ni=1, the
frozen reasoner πθ generates candidate trajectories while the memory weaverWweaver remains fixed.
At each activated step, the trigger selects an action d̃j ∈ {INVOKE,SKIP} and receives a reward
r(τi) reflecting the quality of the resulting trajectory with respect to the task objective. To encourage
sparse yet strategically critical memory invocation, we introduce a reward-adaptive penalty, which
discourages unnecessary activations while preserving essential ones, into the objective:

max
ϕ

E
τi∼πθ,d̃∼T ϕ

trigger

[
R(τi)− λ

∑
i,j

max(0, d̃i,j − p̄)
]
, (8)

where p̄ is computed as the mean activation probability across high-reward trajectories, i.e., those
with reward exceeding the batch median:

p̄ =
1

|Hhigh|
∑

i∈Hhigh

1

|τi|
∑
j

d̃i,j , Hhigh = {i : R(τi) ≥ mediank(R(τk))}, (9)

where ensures that Ttrigger learns to invoke memory selectively at key decision points, maximizing
task reward while maintaining computational efficiency.

4.3 MEMORY WEAVER: SYNTHESIZING AND INSERTING LATENT MEMORY

In this section, we elaborate on the weaverWweaver, the memory carrier within the MemGen frame-
work. When the agent assimilates new experiences, this information is exclusively internalized into
the parameters ofWweaver, leaving the core reasoner πθ entirely unmodified. At junctures where the
reasoner requires experiential support, a context-dependent hook activates the weaver to synthesize
and externalize pertinent knowledge as a usable memory. To be more specific, recall from Equa-
tion (5) that after the Ttrigger signals the need for memory at step j, Wweaver accepts Ht,<j (as the
hook) and generates a latent token sequence Mt (as the memory) for πθ.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Instantiation. We instantiateWweaver using anthoer LoRA adapter attached to πθ. Formally, given
the incoming hook Ht,<j ∈ R(j−1)×dmodel , the weaver outputs a latent memory matrix: Mt =

Wθ′

weaver(Ht,<j) ∈ RK×dmodel , where K denotes the fixed length of the latent memory sequence and
θ′ are the trainable LoRA parameters. The synthesized Mt is first projected through a linear layer
to align it with the reasoner’s token-embedding space, and is then prepended to the current hidden
states of πθ to guide subsequent token generation, as described in Equation (6).

Training Recipe. The training of Wweaver proceeds over a batch of past trajectories H =
{(xi, τi)}Ni=1. Distinct from conventional agent tuning, which directly integrates experiential data
into the parameters of πθ (Chen et al., 2025; Yin et al., 2024), MemGen internalizes experiential
knowledge solely intoWweaver, which ensures that πθ’s general capabilities remain intact.

Crucially, this separation makes MemGen agnostic to optimization strategies and compatible with
diverse LLM backbones. Whether employing supervised fine-tuning (SFT) or RL-based objectives
such as GRPO or DAPO, the weaver can be updated under a unified goal: optimizing the generation
process of latent memory so as to maximize downstream reward. Formally, let ΠWθ′ ,T

θ (· | x) denote
the process of rolling out a trajectory for a task x by πθ in conjunction with weaverWθ′ and trigger
T . Given a reward functional R, the objective updates only θ′ by maximizing the expected reward:

max
θlora

E(xi,τi)∼H E
τ∼Π

W
θ′ ,T

θ
(·|xi)

[
R(xi, τ)

]
, (10)

where the gradients from R are propagated solely to θ′, thereby equipping the weaver to supply
precisely the memories that improve end-to-end performance without altering πθ. Equation (10)
enables Wweaver to absorb diverse experiential signals and externalize them as dynamic, context-
sensitive latent memories, independent of the architectural or training paradigm of the base reasoner.
In practice, we first train the memory weaver using a random inserter as a lightweight surrogate for
the trigger, and then freeze the trained weaver and proceed to train the trigger. For a complete
description of the training procedure, please refer to Appendix D.1.

Integration with Retrieval-based Memory. Although the memory generation above primarily
draws on the weaver’s parametric knowledge, it can be combined with external memory sources.
When triggered, any retrieval-based system (e.g., MemoryBank, ExpeL) can provide textual mem-
ory, which is merged with the hook Ht,<j and fed intoW to produce latent memory. This allowsW
to integrate internal knowledge and external information, supplying the reasoner with richer memory
support. Implementation details and results are placed in Appendix F.

5 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions:
• (RQ1) Can MemGen surpass both parametric and retrieval-based memory?
• (RQ2) Is the memory learnt by MemGen generalizable across task domains? And why?
• (RQ3) Can MemGen facilitate continual learning and mitigate catastrophic forgetting?
• (RQ4) Does MemGen implicitly evolve human-like memory hierachy?

5.1 EXPERIMENTAL SETUP

Evaluation and Benchmarks. Our evaluation covers nine datasets from five domains, including
❶ web search: TriviaQA (Joshi et al., 2017) and PopQA (Mallen et al., 2023); ❷ embodied action:
ALFWorld (Shridhar et al., 2021); ❸ math reasoning: AQuA (Ling et al., 2017), GSM8K (Cobbe
et al., 2021), and MATH (Hendrycks et al., 2021); ❹ scientific reasoning: GPQA (Rein et al., 2023);
and ❺ coding: KodCode (Xu et al., 2025d) and BigCodeBench (Jain et al., 2024).

Baselines. We compare MemGen against twelve baselines, categorized into four groups: (I)
Prompt-based methods: Vanilla model, CoT (Wei et al., 2023); (II) Parametric memory, where
experiential knowledge directly modifies model parameters via: SFT, GRPO (DeepSeek-AI et al.,
2025), REINFORCE (Williams, 1992), REINFORCE++ (Hu et al., 2025a), Agent-FLAN (Chen
et al., 2024b); (III) Retrieval-based memory, where processing tasks sequentially and storing the
experiences in an external database, represented by MemoryBank (Zhong et al., 2023), ExpeL (Zhao
et al., 2024), Agent Workflow Memory (AWM) (Wang et al., 2024c); and (IV) Latent computation,
where leveraging latent tokens as carriers of experiential knowledge, including SoftCoT (Xu et al.,
2025c) and Co-processor (Liu et al., 2024).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results on SmolLM3-3B and Qwen3-8B. All values represent the performance metric for
each task (e.g., accuracy %). We highlight the best and second best results.
Backbone Method ALFWorld TrivialQA PopQA KodCode BigCodeBench GPQA GSM8K MATH

SmolLM3-3B

Vanilla 18.96 10.47 8.23 37.05 35.96 9.35 47.63 16.22
CoT 17.60 12.88 9.95 38.45 39.42 20.70 58.91 56.33

SFT 32.36 55.25 37.22 59.25 40.79 19.70 63.48 45.65
GRPO 55.35 65.88 45.16 68.48 72.44 22.73 80.03 61.23
REINFORCE 53.13 63.20 46.81 65.53 67.14 23.44 82.03 58.75
REINFORCE++ 53.95 63.20 44.10 65.90 68.80 22.73 81.50 59.89
Agent-FLAN 34.00 56.70 39.50 56.80 37.20 17.80 59.60 36.84

ExpeL 36.18 46.20 28.16 51.14 40.22 15.15 56.23 38.11
MemoryBank 32.80 43.30 25.81 44.50 31.80 10.20 58.30 43.53
AWM 40.50 49.80 29.60 - - - - -

SoftCoT 35.03 50.38 34.90 59.20 39.10 17.22 56.34 44.62
Co-processor 38.36 53.28 38.96 56.25 45.40 20.10 57.60 38.81

MemGen SFT 50.60 68.13 42.34 62.65 42.99 26.75 70.42 57.44
MemGen GRPO 63.60 79.30 58.60 72.85 74.24 25.20 83.47 63.65

Qwen3-8B

Vanilla 58.93 52.18 34.13 49.10 33.33 38.18 89.48 79.82
CoT 57.10 53.80 33.20 51.25 35.59 35.15 87.67 78.24

SFT 83.59 74.55 51.12 64.75 41.33 40.33 90.76 81.35
GRPO 85.60 76.15 58.90 73.35 70.24 39.54 92.30 83.54
REINFORCE 82.10 75.22 57.96 72.11 70.20 37.12 91.25 83.27
REINFORCE++ 84.80 75.90 58.30 72.90 71.88 37.68 91.90 85.24
Agent-FLAN 80.32 70.32 50.08 62.99 43.40 39.50 87.60 80.05

ExpeL 78.97 65.54 40.33 57.20 34.23 35.15 86.20 77.40
MemoryBank 70.41 60.56 41.60 56.39 40.61 35.66 90.35 80.35
AWM 80.33 69.30 43.69 - - - - -

SoftCoT 75.60 59.42 39.42 63.28 38.27 39.60 86.30 76.23
Co-processor 73.28 61.42 45.55 64.90 42.19 39.15 76.23 79.20

MemGen SFT 85.82 77.22 54.65 66.15 40.35 43.23 91.25 83.30
MemGen GRPO 90.60 80.65 62.30 76.16 75.56 40.24 93.20 88.24

Implementation Details. We select LLM backbones of varying sizes and sources, including
Qwen-2.5-1.5B (Yang et al., 2024a), HuggingFace’s SmolLM3-3B (HuggingFace, 2025), and
Qwen3-8B (Yang et al., 2025). The length of each latent memory sequence K is set among
{2, 4, 8}. As described in Equation (10), MemGen does not rely on a specific optimization algorithm,
so we implement two variants: MemGen SFT and MemGen GRPO, in which the weaver is updated using
SFT and GRPO signals. Details on these variants are provided in Appendix C. More training setup
and parameter configurations are listed in Appendix D.

5.2 MAIN RESTULS

[For RQ1] MemGen provides high-performing memory across domains. As shown in Tables 1
and 4, existing baselines exhibit clear limitations in cross-domain adaptivity. Retrieval-based memo-
ries (e.g., ExpeL, MemoryBank, AWM) occasionally surpass parazmetric tuning in embodied action;
for instance, AWM reaches 36.18% on ALFWorld with SmolLM3-3B, exceeding SFT by 3.15%.
Yet their effectiveness deteriorates on reasoning-intensive tasks: ExpeL achieves only 8.12% on
GPQA+Qwen2.5-1.5B, and even underperforms the vanilla model by 6.9% on TriviaQA, under-
scoring its heavy reliance on backbone capacity. Parametric finetuning methods display the opposite
tendency: they excel in structured domains such as code generation, where REINFORCE++ reaches
63.33% on KodCode with Qwen2.5-1.5B, but remain weak in knowledge-intensive reasoning,
with GPQA below 14%. In contrast, MemGen consistently advances performance across all do-
mains. For example, on ALFWorld+SmolLM3-3B, MemGen SFT and MemGen GRPO attain 50.60%
and 63.60%, improving over vanilla by 31.64% and 44.64%, respectively. Similar gains appear
with the larger Qwen3-8B, where MemGen GRPO achieves +27.06% on KodCode and +28.17%
on PopQA, surpassing GRPO by up to 3.4%. Overall, the dynamic memory insertion of MemGen
delivers substantial improvements across diverse task domains.

[For RQ2] MemGen Exhibits Strong Cross-Domain Generalization. To evaluate whether the
memory learned by MemGen can transfer across tasks, we train MemGen on one dataset and test it
on several others. We include two out-of-domain datasets, ScienceWorld (Wang et al., 2022) and
FEVER (Thorne et al., 2018), to further probe this. As shown in Figures 3, 9 and 10, baselines such
as SFT and MemoryBank achieve gains within their training domains (e.g., on ALFWorld, SFT
+14.1% and MemoryBank +5.4% compared with vanilla), yet fail to generalize, with performance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: The generalization study of MemGen. We train MemGen SFT on one dataset (ALFWorld or
TriviaQA) and evaluate it on four datasets (TriviaQA, ALFWorld, ScienceWorld, and FEVER).
dropping sharply on FEVER by 16.2%. In contrast, MemGen not only attains substantial in-domain
improvements (24.55% → 58.16% on KodCode, Figure 10), but also exhibits effective transfer:
when trained on KodCode, performance on MATH rises from 36.6%→ 54.2%. Having empirically
validated MemGen’s generalizability, a question naturally arises: what underlies this capability?

0 20 40 60 80 100
Relative Insertion Position (%)

0

20

40

60

80

100

120

M
em

or
y

In
vo

ca
ti

on
 C

ou
nt

GSM8K (Avg: 86.07)
GPQA (Avg: 46.87)
KodCode (Avg: 21.02)

Figure 4: Memory invocation frequency
across benchmarks at inference (trained on
MemGen SFT+Qwen3-8B +GSM8K).

[For RQ2] The Memory Trigger Intelligently De-
termines When to Activate Memory Insertion, Mit-
igating Domain Conflict. After training MemGen on
GSM8K, we evaluate 150 samples each from GSM8K,
KodCode, and GPQA, visualizing the frequency with
which the memory trigger invoked the memory weaver
at each relative position in the model output. We ob-
serve that the invocation frequency varies across domains
and correlates directly with performance in Figure 9:
GSM8K exhibits the largest improvement (+19.64%)
and maximal invocations, GPQA achieves moderate gains
(+6.06%) with medium invocations, and KodCode shows
the smallest improvement (+3.1%) with the fewest invo-
cations. This indicates that MemGen autonomously assesses, based on task-specific context, when
memory insertion will be beneficial, invoking the weaver less frequently in unfamiliar domains.
[For RQ3] MemGen Effectively Mitigates Catastrophic Forgetting. In Table 5, we sequentially
train on four datasets and evaluate on all benchmarks after each stage, where MemGen exhibits
stronger knowledge retention ability compared to baseline methods. For example, unlike SFT which
primarily improves performance on the most recent task (54.10% on KodCode but only 2.53% on
GPQA), MemGen demonstrates more balanced cross-task generalization, attaining 38.43% on AQuA
and 21.72% on GPQA after GSM8K training. Finally, it mitigates forgetting on earlier tasks, pre-
serving 40.34% on AQuA following KodCode training compared to 27.14% for ExpeL and 28.61%
for SFT, indicating a more stable continual learning ability. More analysis is in Appendix E.1.

5.3 FRAMEWORK ANALYSIS

Having established the expressive capabilities of MemGen, we further investigate its underlying
mechanisms: what do the learned latent memories look like? Do they have specialized functions?
[For RQ4] The Latent Memory Is Machine-Native and Human-Unreadable. We first visu-
alized the latent memory sequences learned by MemGen across different datasets using t-SNE in
Figures 5 and 11. As shown in Figure 5 (Left), sequences from distinct domains form separate
distributions, with related domains clustering closely (e.g., KodCode and BigCodeBench, GSM8K
and MATH). Examining latent memories within the same dataset, we observed pronounced clus-
tering patterns (as shown in Figure 5 (Middle and Right)). To explore potential commonalities
within these clusters, we forcibly decoded the latent tokens. Although the decoded sequences are
not human-readable, they exhibit intriguing regularities: many tokens within a cluster share struc-
tural conventions. For example, Cluster 0 in TriviaQA frequently follows the pattern “[...]SOC”,
whereas Cluster 3 in GSM8K often adopts the format “[...] pick”. A large corpus of latent
memory tokens is provided in Appendix G. Despite these sequences being machine-native and
human-unreadable, we further investigate whether their underlying semantics can be interpreted.

[For RQ4] MemGen Implicitly Learns a Human-like Memory Hierarchy. To uncover the func-
tional roles of different latent memory clusters, we conducted a post-hoc intervention study. Follow-
ing the taxonomy from (Song et al., 2025), we study eight distinct types of agent failure, including

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

MATH

GSM8K

TriviaQA

ALFWorld

KodCode

BCB

Latent Memory Visualization
(on TriviaQA)

Latent Memory Visualization
(on GSM8K)

Latent Memory Visualization
(across all benchmarks)

[…]SOC

[…]JaB

INGER[…]

гpaHИ[…]

LTR[…]

[…]_pick

[…] kindergetAs […]

[…]_check

Figure 5: (Left) t-SNE visualization of latent memories generated by MemGen +Qwen3-8B across datasets;
(Middle and Right) Latent memory visualization within the TriviaQA and GSM8K datasets, clustered using
K-means. The text at each cluster center represents the common pattern shared by many memory sequences in
the cluster, such as Cluster 0 in GSM8K, where many sequences end with “ check”.

Figure 6: (Left) Parameter sensitivity analysis on the latent memory length K; (Right) Effects of selectively
removing latent memory clusters on different agent failure modes on the TriviaQA dataset.

planning errors, tool response/parsing failures, answer formatting mistakes, etc, providing a struc-
tured framework to assess how memory influences performance. During evaluation, we selectively
removed latent tokens close to a specific cluster while keeping others intact, measuring the resulting
changes in these failure modes. Details on (1) the visualization process, (2) failure mode annotation,
and (3) token filtration are in Appendix H. As shown in Figure 6 (Right), distinct memory clusters
exhibit varying influence on failure modes and can be mapped to different memory functions:

• Planning Memory supports high-level task planning and strategic reasoning. Removal of Cluster
2 substantially increases planning and compositional reasoning failures, indicating that this cluster
is crucial for guiding the LLM agent’s decision-making and sequencing of reasoning steps.

• Procedural Memory captures task-specific operational knowledge, such as tool usage and for-
matting ability. Cluster 3 corresponds to this role, as its removal leads to a marked increase in tool
response errors, parsing failures, and answer formatting mistakes.

• Working Memory manages the retention and effective use of prior context to maintain reason-
ing consistency. Clusters 1 and 4 contribute to this function: for instance, removing Cluster 1’s
memory tokens results in more frequent task misunderstandings and think-act inconsistency.

Nevertheless, these memory clusters are not entirely independent: for example, removing Cluster 1
also negatively affects planning ability, indicating that these memory faculties interact and jointly
enable the LLM to leverage past experience effectively. This analysis reveals that MemGen sponta-
neously organizes latent memory into a structured, human-like hierarchy.

Ablation Study & Sensitivity Analysis. We conduct a sensitivity analysis on the length of the
latent memory sequence K, as shown in Figure 6 (Left). It can be observed that as the latent token
length increases from 2 → 32, MemGen ’s performance correspondingly improves, likely reflecting
the expanded memory capacity. We then perform an ablation study on the memory trigger module
in Table 6, demonstrating the necessity of a dedicatedly trained trigger for effective memory invo-
cation. Furthermore, we analyze different training paradigms of the memory weaver in Table 7. For
additional results and discussions, please refer to Appendix E.3.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Efficiency Analysis. To confirm that the memory insertion process of MemGen does not introduce
significant inference overhead, we show in Appendix E.3.3 that, while achieving up to 57.66%
performance improvement over vanilla LLMs, the per-query inference delay remains consistently
below the baseline, ranging from 24% to 94% of the vanilla LLM latency. This clearly demonstrates
that MemGen delivers substantial performance gains without compromising efficiency.

6 CONCLUSION

In this work, we introduced MemGen, a dynamic and generative memory framework designed for
LLM Agents. By interleaving reasoning with memory synthesis through a reinforcement-learned
memory trigger and a generative memory weaver, MemGen transcends the limitations of paramet-
ric and retrieval-based paradigms. Extensive experiments showcase substantial performance gains,
robust cross-domain generalization, strong continual learning ability, and MemGen’s explicitly mod-
eled memory hierarchy (i.e., planning, procedural, and working memory). These results suggest a
promising path toward self-evolving LLM agents capable of fluid and reconstructive intelligence.

ETHICS STATEMENT

This work presents a latent memory architecture designed for LLM agents. All experiments are con-
ducted on publicly available academic benchmarks across reasoning, scientific problem-solving, and
embodied tasks, without deployment in real-world decision-making or safety-critical applications.
Therefore, we believe this research does not pose direct ethical risks.

REPRODUCIBILITY STATEMENT

We aim to ensure the reproducibility of our work by releasing an anonymous repository linked in
the abstract, as well as detailing experimental settings (hyperparameters, LLM backbones, etc.) in
§5.1 and appendix D.

REFERENCES

Anthropic. On the Biology of a Large Language Model. https://transformer-circuits.
pub/2025/attribution-graphs/biology.html, 2025. [Accessed 24-08-2025].

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024. URL
https://arxiv.org/abs/2401.10774.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
Fireact: Toward language agent fine-tuning, 2023. URL https://arxiv.org/abs/2310.
05915.

Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xiaozhe Ren, Yimeng Chen, Xin Jiang, Zhenguo
Li, Weiyang Liu, and Chao Huang. Sepllm: Accelerate large language models by compressing
one segment into one separator. arXiv preprint arXiv:2412.12094, 2024a.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
models, 2024b. URL https://arxiv.org/abs/2403.12881.

Zhixun Chen, Ming Li, Yuxuan Huang, Yali Du, Meng Fang, and Tianyi Zhou. Atlas: Agent tuning
via learning critical steps, 2025. URL https://arxiv.org/abs/2503.02197.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory, 2025. URL https://arxiv.
org/abs/2504.19413.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

10

https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2310.05915
https://arxiv.org/abs/2403.12881
https://arxiv.org/abs/2503.02197
https://arxiv.org/abs/2504.19413
https://arxiv.org/abs/2504.19413

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi,
Xiao Wang, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui Zheng, Tao Gui, Qi Zhang, and Xuanjing
Huang. Loramoe: Alleviate world knowledge forgetting in large language models via moe-style
plugin, 2024. URL https://arxiv.org/abs/2312.09979.

Runnan Fang, Yuan Liang, Xiaobin Wang, Jialong Wu, Shuofei Qiao, Pengjun Xie, Fei Huang,
Huajun Chen, and Ningyu Zhang. Memp: Exploring agent procedural memory. arXiv preprint
arXiv:2508.06433, 2025.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization
through refinement tuning, 2025. URL https://arxiv.org/abs/2501.01702.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm infer-
ence using lookahead decoding, 2024. URL https://arxiv.org/abs/2402.02057.

Huanang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, Hongru Wang, Han Xiao, Yuhang Zhou, Shaokun Zhang,
Jiayi Zhang, Jinyu Xiang, Yixiong Fang, Qiwen Zhao, Dongrui Liu, Qihan Ren, Cheng Qian,
Zhenhailong Wang, Minda Hu, Huazheng Wang, Qingyun Wu, Heng Ji, and Mengdi Wang. A
survey of self-evolving agents: On path to artificial super intelligence, 2025. URL https:
//arxiv.org/abs/2507.21046.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong. Prompt
cache: Modular attention reuse for low-latency inference. Proceedings of Machine Learning and
Systems, 6:325–338, 2024.

Raghavv Goel, Sudhanshu Agrawal, Mukul Gagrani, Junyoung Park, Yifan Zao, He Zhang, Tian
Liu, Yiping Yang, Xin Yuan, Jiuyan Lu, Chris Lott, and Mingu Lee. Vocabtrim: Vocabulary
pruning for efficient speculative decoding in llms, 2025. URL https://arxiv.org/abs/
2506.22694.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2312.09979
https://arxiv.org/abs/2501.01702
https://arxiv.org/abs/2402.02057
https://arxiv.org/abs/2507.21046
https://arxiv.org/abs/2507.21046
https://arxiv.org/abs/2506.22694
https://arxiv.org/abs/2506.22694

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens, 2024. URL
https://arxiv.org/abs/2310.02226.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024. URL https:
//arxiv.org/abs/2412.06769.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Hongkang Yang Hongkang Yang, Zehao Lin Zehao Lin, Wenjin Wang Wenjin Wang, Hao Wu
Hao Wu, Zhiyu Li Zhiyu Li, Bo Tang Bo Tang, Wenqiang Wei Wenqiang Wei, Jinbo Wang
Jinbo Wang, Zeyun Tang Zeyun Tang, Shichao Song Shichao Song, Chenyang Xi Chenyang Xi,
Yu Yu Yu Yu, Kai Chen Kai Chen, Feiyu Xiong Feiyu Xiong, Linpeng Tang Linpeng Tang, and
Weinan E Weinan E. Memory3: Language modeling with explicit memory. Journal of Ma-
chine Learning, 3(3):300–346, January 2024. ISSN 2790-203X. doi: 10.4208/jml.240708. URL
http://dx.doi.org/10.4208/jml.240708.

Jian Hu, Jason Klein Liu, Haotian Xu, and Wei Shen. Reinforce++: An efficient rlhf algorithm with
robustness to both prompt and reward models, 2025a. URL https://arxiv.org/abs/
2501.03262.

Zhiyuan Hu, Yibo Wang, Hanze Dong, Yuhui Xu, Amrita Saha, Caiming Xiong, Bryan Hooi, and
Junnan Li. Beyond’aha!’: Toward systematic meta-abilities alignment in large reasoning models.
arXiv preprint arXiv:2505.10554, 2025b.

HuggingFace. SmolLM3: smol, multilingual, long-context reasoner — huggingface.co. https:
//huggingface.co/blog/smollm3, 2025. [Accessed 23-09-2025].

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin Liu, Xuanzhe Liu, and Xin Jin.
Ragcache: Efficient knowledge caching for retrieval-augmented generation. arXiv preprint
arXiv:2404.12457, 2024.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/
P17-1147/.

Hengli Li, Chenxi Li, Tong Wu, Xuekai Zhu, Yuxuan Wang, Zhaoxin Yu, Eric Hanchen Jiang,
Song-Chun Zhu, Zixia Jia, Ying Nian Wu, and Zilong Zheng. Seek in the dark: Reasoning via
test-time instance-level policy gradient in latent space, 2025a. URL https://arxiv.org/
abs/2505.13308.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty, 2025b. URL https://arxiv.org/abs/2401.15077.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, and Arthur Szlam. Deliberation in latent space via
differentiable cache augmentation. arXiv preprint arXiv:2412.17747, 2024.

12

https://arxiv.org/abs/2310.02226
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2103.03874
http://dx.doi.org/10.4208/jml.240708
https://arxiv.org/abs/2501.03262
https://arxiv.org/abs/2501.03262
https://huggingface.co/blog/smollm3
https://huggingface.co/blog/smollm3
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://aclanthology.org/P17-1147/
https://aclanthology.org/P17-1147/
https://arxiv.org/abs/2505.13308
https://arxiv.org/abs/2505.13308
https://arxiv.org/abs/2401.15077

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hanjun Luo, Shenyu Dai, Chiming Ni, Xinfeng Li, Guibin Zhang, Kun Wang, Tongliang Liu, and
Hanan Salam. Agentauditor: Human-level safety and security evaluation for llm agents, 2025a.
URL https://arxiv.org/abs/2506.00641.

Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak,
Colin Cai, Shang Zhu Tarun Venkat, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran
Li, Raluca Ada Popa, Koushik Sen, and Ion Stoica. Deepswe: Training a state-of-the-art
coding agent from scratch by scaling rl. https://pretty-radio-b75.notion.site/
DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33,
2025b. Notion Blog.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
When not to trust language models: Investigating effectiveness of parametric and non-parametric
memories, 2023. URL https://arxiv.org/abs/2212.10511.

Dan P McAdams. The psychology of life stories. Review of general psychology, 5(2):100–122,
2001.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
Gonzalez. Memgpt: Towards llms as operating systems, 2024. URL https://arxiv.org/
abs/2310.08560.

Dmitrii Pantiukhin, Boris Shapkin, Ivan Kuznetsov, Antonia Anna Jost, and Nikolay Koldunov. Ac-
celerating earth science discovery via multi-agent llm systems, 2025. URL https://arxiv.
org/abs/2503.05854.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs, 2025. URL https://arxiv.
org/abs/2504.13958.

Jiahao Qiu, Xinzhe Juan, Yimin Wang, Ling Yang, Xuan Qi, Tongcheng Zhang, Jiacheng Guo, Yifu
Lu, Zixin Yao, Hongru Wang, Shilong Liu, Xun Jiang, Liu Leqi, and Mengdi Wang. Agentdistill:
Training-free agent distillation with generalizable mcp boxes, 2025a. URL https://arxiv.
org/abs/2506.14728.

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang,
Zixin Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan
Huang, Shilong Liu, Hongru Wang, and Mengdi Wang. Alita: Generalist agent enabling scal-
able agentic reasoning with minimal predefinition and maximal self-evolution, 2025b. URL
https://arxiv.org/abs/2505.20286.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

Shuo Ren, Pu Jian, Zhenjiang Ren, Chunlin Leng, Can Xie, and Jiajun Zhang. Towards scientific
intelligence: A survey of llm-based scientific agents, 2025. URL https://arxiv.org/
abs/2503.24047.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
chain-of-thought into continuous space via self-distillation. arXiv preprint arXiv:2502.21074,
2025a.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
chain-of-thought into continuous space via self-distillation, 2025b. URL https://arxiv.
org/abs/2502.21074.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning, 2021.
URL https://arxiv.org/abs/2010.03768.

13

https://arxiv.org/abs/2506.00641
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://pretty-radio-b75.notion.site/DeepSWE-Training-a-Fully-Open-sourced-State-of-the-Art-Coding-Agent-by-Scaling-RL-22281902c1468193aabbe9a8c59bbe33
https://arxiv.org/abs/2212.10511
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2310.08560
https://arxiv.org/abs/2503.05854
https://arxiv.org/abs/2503.05854
https://arxiv.org/abs/2504.13958
https://arxiv.org/abs/2504.13958
https://arxiv.org/abs/2506.14728
https://arxiv.org/abs/2506.14728
https://arxiv.org/abs/2505.20286
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2503.24047
https://arxiv.org/abs/2503.24047
https://arxiv.org/abs/2502.21074
https://arxiv.org/abs/2502.21074
https://arxiv.org/abs/2010.03768

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Joykirat Singh, Raghav Magazine, Yash Pandya, and Akshay Nambi. Agentic reasoning and tool
integration for llms via reinforcement learning, 2025. URL https://arxiv.org/abs/
2505.01441.

Peiyang Song, Pengrui Han, and Noah Goodman. A survey on large language model reasoning
failures. In 2nd AI for Math Workshop @ ICML 2025, 2025. URL https://openreview.
net/forum?id=hsgMn4KBFG.

Eleanor Spens and Neil Burgess. A generative model of memory construction and consolidation.
Nature human behaviour, 8(3):526–543, 2024.

Weihang Su, Yichen Tang, Qingyao Ai, Junxi Yan, Changyue Wang, Hongning Wang, Ziyi Ye,
Yujia Zhou, and Yiqun Liu. Parametric retrieval augmented generation, 2025. URL https:
//arxiv.org/abs/2501.15915.

Yuchang Sun, Yanxi Chen, Yaliang Li, and Bolin Ding. Enhancing latent computation in transform-
ers with latent tokens, 2025. URL https://arxiv.org/abs/2505.12629.

Jihoon Tack, Jaehyung Kim, Eric Mitchell, Jinwoo Shin, Yee Whye Teh, and Jonathan Richard
Schwarz. Online adaptation of language models with a memory of amortized contexts, 2024.
URL https://arxiv.org/abs/2403.04317.

Wenhui Tan, Jiaze Li, Jianzhong Ju, Zhenbo Luo, Jian Luan, and Ruihua Song. Think silently, think
fast: Dynamic latent compression of llm reasoning chains, 2025. URL https://arxiv.org/
abs/2505.16552.

Xiangru Tang, Tianrui Qin, Tianhao Peng, Ziyang Zhou, Daniel Shao, Tingting Du, Xinming Wei,
Peng Xia, Fang Wu, He Zhu, Ge Zhang, Jiaheng Liu, Xingyao Wang, Sirui Hong, Chenglin Wu,
Hao Cheng, Chi Wang, and Wangchunshu Zhou. Agent kb: Leveraging cross-domain experience
for agentic problem solving, 2025. URL https://arxiv.org/abs/2507.06229.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a large-scale
dataset for fact extraction and verification. arXiv preprint arXiv:1803.05355, 2018.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
language models, 2024a. URL https://arxiv.org/abs/2405.14768.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Scienceworld:
Is your agent smarter than a 5th grader?, 2022. URL https://arxiv.org/abs/2203.
07540.

Xiaoqiang Wang, Suyuchen Wang, Yun Zhu, and Bang Liu. R3Mem: Bridging memory reten-
tion and retrieval via reversible compression. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational
Linguistics: ACL 2025, pp. 4541–4557, Vienna, Austria, July 2025a. Association for Compu-
tational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.235. URL
https://aclanthology.org/2025.findings-acl.235/.

Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang, Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng
Li, Xian Li, Bing Yin, et al. Memoryllm: Towards self-updatable large language models. arXiv
preprint arXiv:2402.04624, 2024b.

Yu Wang, Dmitry Krotov, Yuanzhe Hu, Yifan Gao, Wangchunshu Zhou, Julian McAuley, Dan Gut-
freund, Rogerio Feris, and Zexue He. M+: Extending memoryllm with scalable long-term mem-
ory, 2025b. URL https://arxiv.org/abs/2502.00592.

Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and
Heng Ji. Mobile-agent-e: Self-evolving mobile assistant for complex tasks, 2025c. URL https:
//arxiv.org/abs/2501.11733.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory,
2024c. URL https://arxiv.org/abs/2409.07429.

14

https://arxiv.org/abs/2505.01441
https://arxiv.org/abs/2505.01441
https://openreview.net/forum?id=hsgMn4KBFG
https://openreview.net/forum?id=hsgMn4KBFG
https://arxiv.org/abs/2501.15915
https://arxiv.org/abs/2501.15915
https://arxiv.org/abs/2505.12629
https://arxiv.org/abs/2403.04317
https://arxiv.org/abs/2505.16552
https://arxiv.org/abs/2505.16552
https://arxiv.org/abs/2507.06229
https://arxiv.org/abs/2405.14768
https://arxiv.org/abs/2203.07540
https://arxiv.org/abs/2203.07540
https://aclanthology.org/2025.findings-acl.235/
https://arxiv.org/abs/2502.00592
https://arxiv.org/abs/2501.11733
https://arxiv.org/abs/2501.11733
https://arxiv.org/abs/2409.07429

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Yifan Wei, Xiaoyan Yu, Yixuan Weng, Tengfei Pan, Angsheng Li, and Li Du. Autotir: Autonomous
tools integrated reasoning via reinforcement learning, 2025. URL https://arxiv.org/
abs/2507.21836.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Mingyuan Wu, Jingcheng Yang, Jize Jiang, Meitang Li, Kaizhuo Yan, Hanchao Yu, Minjia Zhang,
Chengxiang Zhai, and Klara Nahrstedt. Vtool-r1: Vlms learn to think with images via rein-
forcement learning on multimodal tool use, 2025a. URL https://arxiv.org/abs/2505.
19255.

Yaxiong Wu, Sheng Liang, Chen Zhang, Yichao Wang, Yongyue Zhang, Huifeng Guo, Ruiming
Tang, and Yong Liu. From human memory to ai memory: A survey on memory mechanisms in
the era of llms, 2025b. URL https://arxiv.org/abs/2504.15965.

Zidi Xiong, Yuping Lin, Wenya Xie, Pengfei He, Jiliang Tang, Himabindu Lakkaraju, and Zhen Xi-
ang. How memory management impacts llm agents: An empirical study of experience-following
behavior, 2025. URL https://arxiv.org/abs/2505.16067.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic
memory for llm agents, 2025a. URL https://arxiv.org/abs/2502.12110.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot: Soft chain-of-thought for efficient
reasoning with llms, 2025b. URL https://arxiv.org/abs/2502.12134.

Yige Xu, Xu Guo, Zhiwei Zeng, and Chunyan Miao. Softcot++: Test-time scaling with soft chain-
of-thought reasoning, 2025c. URL https://arxiv.org/abs/2505.11484.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A di-
verse, challenging, and verifiable synthetic dataset for coding, 2025d. URL https://arxiv.
org/abs/2503.02951.

Zifan Xu, Haozhu Wang, Dmitriy Bespalov, Xuan Wang, Peter Stone, and Yanjun Qi. Latent skill
discovery for chain-of-thought reasoning. arXiv preprint arXiv:2312.04684, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024a.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, and Bo Zheng et al. Qwen3
technical report, 2025. URL https://arxiv.org/abs/2505.09388.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024b. URL https://arxiv.org/abs/2405.15793.

Yi Yang, Yixuan Tang, and Kar Yan Tam. Investlm: A large language model for investment using
financial domain instruction tuning, 2023. URL https://arxiv.org/abs/2309.13064.

Weiran Yao, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Yihao Feng, Le Xue, Rithesh
Murthy, Zeyuan Chen, Jianguo Zhang, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caim-
ing Xiong, and Silvio Savarese. Retroformer: Retrospective large language agents with policy
gradient optimization, 2024. URL https://arxiv.org/abs/2308.02151.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. Agent lumos: Unified and modular training for open-source language agents,
2024. URL https://arxiv.org/abs/2311.05657.

15

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2507.21836
https://arxiv.org/abs/2507.21836
https://arxiv.org/abs/2505.19255
https://arxiv.org/abs/2505.19255
https://arxiv.org/abs/2504.15965
https://arxiv.org/abs/2505.16067
https://arxiv.org/abs/2502.12110
https://arxiv.org/abs/2502.12134
https://arxiv.org/abs/2505.11484
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2309.13064
https://arxiv.org/abs/2308.02151
https://arxiv.org/abs/2311.05657

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Hongli Yu, Tinghong Chen, Jiangtao Feng, Jiangjie Chen, Weinan Dai, Qiying Yu, Ya-Qin Zhang,
Wei-Ying Ma, Jingjing Liu, Mingxuan Wang, and Hao Zhou. Memagent: Reshaping long-context
llm with multi-conv rl-based memory agent, 2025. URL https://arxiv.org/abs/2507.
02259.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttun-
ing: Enabling generalized agent abilities for llms, 2023. URL https://arxiv.org/abs/
2310.12823.

Guibin Zhang, Muxin Fu, Guancheng Wan, Miao Yu, Kun Wang, and Shuicheng Yan. G-memory:
Tracing hierarchical memory for multi-agent systems, 2025a. URL https://arxiv.org/
abs/2506.07398.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Ming Zhu, Juntao Tan, Thai
Hoang, Zuxin Liu, Liangwei Yang, Yihao Feng, Shirley Kokane, Tulika Awalgaonkar, Juan Car-
los Niebles, Silvio Savarese, Shelby Heinecke, Huan Wang, and Caiming Xiong. Agento-
hana: Design unified data and training pipeline for effective agent learning, 2024a. URL
https://arxiv.org/abs/2402.15506.

Yang Zhang, Wenxin Xu, Xiaoyan Zhao, Wenjie Wang, Fuli Feng, Xiangnan He, and Tat-Seng
Chua. Reinforced latent reasoning for llm-based recommendation, 2025b. URL https://
arxiv.org/abs/2505.19092.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong,
and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents,
2024b. URL https://arxiv.org/abs/2404.13501.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
agents are experiential learners, 2024. URL https://arxiv.org/abs/2308.10144.

Boyuan Zheng, Michael Y. Fatemi, Xiaolong Jin, Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song,
Yu Gu, Jayanth Srinivasa, Gaowen Liu, Graham Neubig, and Yu Su. Skillweaver: Web agents
can self-improve by discovering and honing skills, 2025. URL https://arxiv.org/abs/
2504.07079.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory, 2023. URL https://arxiv.org/abs/2305.
10250.

Zijian Zhou, Ao Qu, Zhaoxuan Wu, Sunghwan Kim, Alok Prakash, Daniela Rus, Jinhua Zhao,
Bryan Kian Hsiang Low, and Paul Pu Liang. Mem1: Learning to synergize memory and reasoning
for efficient long-horizon agents, 2025. URL https://arxiv.org/abs/2506.15841.

Rui-Jie Zhu, Tianhao Peng, Tianhao Cheng, Xingwei Qu, Jinfa Huang, Dawei Zhu, Hao Wang,
Kaiwen Xue, Xuanliang Zhang, Yong Shan, et al. A survey on latent reasoning. arXiv preprint
arXiv:2507.06203, 2025.

A USE OF LARGE LANGUAGE MODELS

In preparing this work, we employed large language models (LLMs) to assist with: polishing the
writing, conducting literature reviews, and creating visualizations.

B ADDITIONAL RELATED WORKS

LLM Decoding & RL. Two additional topics that relate to our work are LLM decoding and re-
inforcement learning (RL). From the decoding perspective, MemGen dynamically generates and in-
serts latent tokens, which shares similarity with speculative decoding where a drafter model receives
the current decoding context and produces subsequent drafted tokens (Cai et al., 2024; Fu et al.,
2024; Li et al., 2025b; Goel et al., 2025). . However, these methods primarily aim to accelerate

16

https://arxiv.org/abs/2507.02259
https://arxiv.org/abs/2507.02259
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2310.12823
https://arxiv.org/abs/2506.07398
https://arxiv.org/abs/2506.07398
https://arxiv.org/abs/2402.15506
https://arxiv.org/abs/2505.19092
https://arxiv.org/abs/2505.19092
https://arxiv.org/abs/2404.13501
https://arxiv.org/abs/2308.10144
https://arxiv.org/abs/2504.07079
https://arxiv.org/abs/2504.07079
https://arxiv.org/abs/2305.10250
https://arxiv.org/abs/2305.10250
https://arxiv.org/abs/2506.15841

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

LLM inference, whereas MemGen focuses on leveraging latent states as effective carriers of mem-
ory. From the RL perspective, MemGen employs rule-based RL to train the memory trigger, which
is closely related to reinforcement learning with variable reward (RLVR), including GRPO from
DeepSeek-R1 (DeepSeek-AI et al., 2025) and its various derivatives (Qian et al., 2025; Wu et al.,
2025a; Wei et al., 2025; Fu et al., 2025). While there exist efforts combining RL with agent memory,
to our knowledge, most do not address self-improving memory; for example, MemAgent (Yu et al.,
2025) and MEM1 (Zhou et al., 2025) focus on handling long-context inputs rather than evolving
memory mechanisms.

Latent Memory We further extend our discussion by incorporating related work on latent memory
mechanisms: R3Mem (Wang et al., 2025a) introduces a reversible, hierarchical memory architec-
ture that integrates efficient long-term information retention with faithful retrieval, achieving state-
of-the-art performance in long-context modeling, retrieval-augmented generation, and prolonged
interactive tasks.

C OPTIMIZATION ALGORITHM DETAILS

In this section, we provide a detailed exposition of the optimization algorithms for training the
memory weaver,Wweaver, as mentioned in §4.3. The core principle, as established in Equation (10),
is to update only the weaver’s parameters, denoted as θ′, while keeping the reasoner πθ frozen. This
modularity allows MemGen to be compatible with various optimization paradigms. We detail the
specific implementations for Supervised Fine-Tuning (SFT) and a reinforcement learning approach,
Group Relative Policy Optimization (GRPO).

C.1 COMBINING MemGen WITH SFT

The objective of Supervised Fine-Tuning is to train the memory weaver to generate latent mem-
ories that guide the frozen reasoner πθ to replicate the behavior observed in a dataset of high-
quality demonstration trajectories. We leverage the provided history of past experiences, H =
{(xi, τ

∗
i)}Ni=1, where each τ∗i is treated as an expert demonstration.

Each expert trajectory τ∗i consists of a sequence of states and actions, τ∗i = (si,0, a
∗
i,0, si,1, a

∗
i,1, . . .).

Each expert action a∗i,t is a sequence of tokens, a∗i,t = (z∗i,t,1, z
∗
i,t,2, . . . , z

∗
i,t,Lt

). The goal is to
maximize the conditional log-likelihood of generating these expert token sequences.

During the training of the weaver, both the reasoner πθ and the memory trigger T are held fixed. At
each token generation step j where the trigger activates, the weaverWθ′ takes the reasoner’s hidden
states Hi,t,<j as input and produces a latent memory Mi,t. The reasoner then generates the next
token conditioned on this memory. The SFT objective is to adjust the weaver’s parameters θ′ to
maximize the probability of the ground-truth token z∗i,t,j .

Formally, the optimization problem is to minimize the negative log-likelihood of the expert trajec-
tories, averaged over the dataset H. The loss function for the weaver’s parameters θ′ is defined
as:

LSFT(θ
′) = −E(xi,τ∗

i)∼H

Ti−1∑
t=0

Lt∑
j=1

log πθ(z
∗
i,t,j | si,t, z∗i,t,<j ,Mi,t,j)

 , (11)

where the latent memory Mi,t,j is synthesized by the weaver at that specific step:

Mi,t,j =Wθ′(Hi,t,<j). (12)

Note that the generation of Mi,t,j only occurs if the fixed trigger T determines an invocation is
needed at step j. In steps where no memory is invoked, the conditioning term Mi,t,j is omitted. The
gradients are computed exclusively with respect to the weaver’s parameters θ′ and used to update
them via gradient descent:

θ′ ← θ′ − η∇θ′LSFT(θ
′), (13)

where η is the learning rate. Through this process, the memory weaver learns to synthesize latent
memories that effectively steer the frozen reasoner’s generative process to align with the training
data’s behavior, thereby internalizing the knowledge from the demonstration data without corrupting
the general capabilities of the core LLM.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.2 COMBING MemGen WITH GRPO

The memory weaver can also be trained using a reinforcement learning objective. We specifically
adapt the GRPO algorithm. The training process begins by sampling a batch of tasks from the ex-
perience history H. For each task xi, we use the policy Π

Wθ′ ,T
θ (composed of the frozen reasoner

πθ and the current memory weaverWθ′) to generate a group of K distinct trajectories, denoted as
Gi = {τi,1, τi,2, . . . , τi,K}. Each trajectory is generated by the agent’s interaction with the environ-
ment and results in a final reward R(τi,k), evaluated by the reward function. Going forward, GRPO
computes a group-relative baseline by averaging the rewards of all trajectories within the group Gi:

R̄(Gi) =
1

K

K∑
k=1

R(τi,k). (14)

The advantage for a specific trajectory τi,k is then its reward relative to this baseline:

A(τi,k) = R(τi,k)− R̄(Gi). (15)

This formulation allows the weaver to learn by differentiating between better and worse outcomes
within a set of its own generations, promoting policies that produce trajectories with above-average
rewards. The final objective function, maximized with respect to the weaver’s parameters θ′, is:

JGRPO(θ
′) = E

xi∼H,Gi∼Π
W

θ′ ,T
θ

[
1

K

K∑
k=1

A(τi,k) logΠ
Wθ′ ,T
θ (τi,k | xi)− β KL

(
Π

Wθ′ ,T
θ (· | xi) ∥ Πref(· | xi)

)]
,

(16)
where Πref is a fixed reference policy and β is a coefficient controlling the strength of the KL regu-
larization. The gradients are computed only for the weaver’s parameters θ′, thus refining its ability
to synthesize impactful latent memories while preserving the integrity of the core reasoner.

C.3 MEMORY TRIGGER TRAINING DETAILS

We now detail the training procedure of the memory trigger T ϕ
trigger. During this stage, the reasoner

πθ and the memory weaverWθ′ remain frozen, and only the trigger parameters ϕ are updated. For
each task xi with initial environment state s0, we generate trajectories under the composed policy
induced by πθ,Wθ′ , and T ϕ

trigger. At each decoding step t and token position j where zt,j ∈ D, the
trigger observes the hidden-state prefix Ht,<j and samples a binary action

dt,j ∼ πϕ(d | Ht,<j) := Bernoulli
(
pt,j

)
, pt,j = σ

(
T ϕ

trigger(Ht,<j)
)
, (17)

where dt,j = 1 corresponds to INVOKE. If invoked, the decoder pauses and the weaver synthesizes
a latent memory Mt from Ht,<j , after which generation resumes based on the augmented context.
Let Ii denote the set of activated positions in trajectory τi, and let d̃i = {dt,j}(t,j)∈Ii

be the trigger
decisions within that rollout. After completing the episode, the environment returns a scalar reward
R(τi), which we assign uniformly to all decisions in d̃i.

To discourage excessively frequent invocation, we introduce a sparsity-inducing penalty. For a group
of rollouts generated from the same task xi, we identify the high-reward subset

Hhigh = {i : R(τi) ≥ mediank R(τk)}, (18)

and compute the reference activation level

p̄ =
1

|Hhigh|
∑

i∈Hhigh

1

|Ii|
∑

(t,j)∈Ii

dt,j , (19)

which estimates the typical invocation frequency among successful trajectories. The trigger is
trained to maximize the reward while penalizing activations above p̄:

max
ϕ

Eτi∼πθ, d̃i∼T ϕ
trigger

[
R(τi)− λ

∑
(t,j)∈Ii

max
(
0, dt,j − p̄

)]
, (20)

where λ > 0 controls the sparsity regularization strength.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We optimize this objective following a GRPO-style procedure. For each task prompt, we generate a
group of G trajectories {τ (g)i }Gg=1 (we set G = 8 in practice; Table 3). We compute per-trajectory

rewards R(τ
(g)
i) and construct normalized advantages

A
(g)
i =

R(τ
(g)
i)− µi

σi
, µi =

1
G

G∑
g=1

R(τ
(g)
i), σi =

√√√√ 1
G

G∑
g=1

(R(τ
(g)
i)− µi)2,

thus measuring each rollout’s performance relative to the group. The trigger parameters are then
updated by maximizing a GRPO-style surrogate objective:

max
ϕ

1

G

G∑
g=1

∑
(t,j)∈I(g)

i

log πϕ

(
d
(g)
t,j | H

(g)
t,<j

)
A

(g)
i − βKL

(
πϕ ∥πϕold

)
.

After each update, we set πϕold
← πϕ and repeat. This objective allows the trigger to learn to invoke

memory only at critical points that improve group-relative performance while maintaining sparsity.

D EXPERIMENTAL DETAILS

D.1 TRAINING DATASET SETUP

For all datasets except PopQA, we utilize their official training sets to train both the memory weaver
and memory trigger. Specifically, we first train the memory weaver in isolation. Since the trigger
module is not yet available at this stage, latent memory tokens are randomly inserted at punctuation
marks during training to provide diverse learning signals. Once the memory weaver is adequately
trained, we proceed to train the memory trigger, enabling it to learn when to invoke memory (with
the memory weaver fixed). For PopQA, which lacks a dedicated training set, we instead leverage the
trained model on TriviaQA and directly evaluate on PopQA. The dataset statistics are summarized
in Table 2.

Table 2: Dataset Statistics.

Dataset Name Train Size Test Size Note
ALFWorld 3.32K 134 From AgentBank-ALFWorld
TriviaQA 4.13K 7.9K From AgentBank-TriviaQA
PopQA - 14.3K -
KodCode 8K 2K KodCode-Light-RL-10K
BigCodeBench 912 228 -
GPQA 448 198 GPQA-Diamond for testing
GSM8K 7.47K 1K -
MATH 1.6K 500 -

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.2 PARAMETER CONFIGURATIONS

Table 3: Hyperparameters used in the training of MemGen.

Settings Hyperparameters

Training(SFT)

train batch size = 4
learning rate = 1e-5
epochs = 2
warmup ratio = 0.1
optim = adamw torch
schedular = cosine

Training(GRPO)

rollout batch size = 8
train batch size = 8
epochs = 2
beta = 0.0
num iterations = 1
learning rate = 1e-5
warmup ratio = 0.1
optim = adamw torch
schedular = cosine

LoRA

r = 16
lora alpha = 32
target modules = [q proj, v proj]
lora dropout = 0.1
bias = none
task type = CAUSAL LM

Optimization
adam offload
flash attn
deepspeed enable sleep

E EXTRA RESULTS

Table 4: Results on Qwen2.5-1.5B. All values represent the performance metric for each task (e.g.,
accuracy %). We highlight the best and second best results.

Method ALFWorld TrivialQA PopQA KodCode BigCodeBench GPQA GSM8K MATH

Q
w
e
n
2
.
5
-
1
.
5
B

Vanilla 22.54 32.10 16.08 24.55 40.35 11.62 39.51 36.63
CoT 18.30 28.67 18.39 32.32 38.59 15.67 56.79 45.22

SFT 36.57 63.84 39.20 55.83 37.72 11.11 54.83 38.84
GRPO 43.55 68.21 43.15 62.11 70.34 15.65 68.10 47.42
REINFORCE 43.25 66.50 41.87 60.20 67.80 12.50 67.40 46.89
REINFORCE++ 43.66 66.90 44.69 63.33 69.50 13.80 69.04 47.33
Agent-FLAN 35.80 64.28 38.90 56.21 43.83 9.35 53.02 29.82

ExpeL 28.96 25.20 20.20 31.15 39.78 8.12 45.12 38.12
MemoryBank 27.89 38.14 22.78 37.93 35.87 13.87 47.88 30.47
AWM 30.42 55.69 32.54 - - - - -

SoftCoT 33.07 62.22 38.78 55.13 36.10 9.31 54.50 38.55
Co-processor 35.66 64.78 40.12 56.65 38.10 12.12 57.12 37.40

MemGen SFT 40.30 65.02 41.28 58.16 42.47 18.28 58.15 47.12
MemGen GRPO 54.27 73.42 49.28 65.43 72.81 18.18 73.39 53.36

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E.1 CONTINUAL LEARNING RESULT

The results in Table 5 indicate three main findings. First, MemGen exhibits stronger knowledge re-
tention and forward transfer than SFT and ExpeL. For example, when trained on GPQA, MemGen
reaches 47.96% on GSM8K and 28.80% on KodCode, surpassing SFT at 45.74% and 18.50% by
margins of +2.22% and +10.30%, respectively. Similarly, when trained on KodCode, MemGen
maintains 40.34% on AQuA and 20.09% on GPQA, whereas SFT yields 28.61% and 2.53%. Sec-
ond, MemGen demonstrates more balanced cross-task generalization. Unlike SFT, which primarily
improves performance on the most recent task (e.g., 54.10% on KodCode but only 2.53% on GPQA),
MemGen achieves competitive results across tasks. After training on GSM8K, it attains 38.43% on
AQuA and 21.72% on GPQA, both higher than SFT and ExpeL, suggesting that latent memory
captures task-invariant reasoning. Third, MemGen effectively mitigates forgetting on earlier tasks.
After sequential training on KodCode, it preserves 40.34% on AQuA compared to 27.14% of ExpeL
and 28.61% of SFT, showing stronger robustness to catastrophic forgetting. These findings suggest
that MemGen provides a more stable and transferable mechanism for continual learning.

E.2 TRIGGER FREQUENCY VISUALIZATION

More visualizations of the trigger frequency are displayed in Figures 7 and 8, where we paired
Qwen2.5-1.5B or SmolLM3-3B with the GSM8K dataset and tested on subsets of GSM8K,
KodCode, and GPQA (each subset having the same number of samples). We then tallied the fre-
quency of memory trigger INVOKE judgments at each relative percentile position in the LLM output.

0 20 40 60 80 100
Relative Insertion Position (%)

0

20

40

60

80

100

120

M
em

or
y

In
vo

ca
ti

on
 C

ou
n

t

GSM8K (Avg: 75.17)

GPQA (Avg: 46.87)

KodCode (Avg: 51.70)

Figure 7: Memory invocation frequency across benchmarks at inference (trained on MemGen
SFT+Qwen2.5-1.5B +GSM8K).

E.3 FRAMEWORK ANALYSIS

E.3.1 ABLATION STUDY

To assess the effectiveness of the proposed memory trigger, we conduct an ablation study compar-
ing different memory invocation strategies, as summarized in Table 6. Specifically, Random denotes
a naı̈ve baseline where latent memory tokens are inserted at arbitrary token positions with a fixed
probability p. All delimiters activated represents a sentence-level strategy that invokes the memory
weaver at every delimiter position without any selection mechanism. Finally, MemGen’s dedicated
Trigger corresponds to our standard approach, where the memory weaver is activated by the trained
trigger Ttrigger. The results reveal several key observations. First, sentence-level intervention already
improves performance compared to random invocation. For instance, activating the weaver at all
delimiters yields 17.34%, 56.20%, and 64.15% on GPQA, Kodcode, and TriviaQA, respectively,
consistently outperforming all random baselines (e.g., p = 0.5 achieves only 16.66%, 52.95%, and
57.28%). This highlights the importance of aligning memory injection with semantic boundaries
rather than distributing it across the sequence. More importantly, our trained trigger achieves the
best overall performance, reaching 18.28%, 58.16%, and 65.02% on the three benchmarks. This

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100
Relative Insertion Position (%)

0

20

40

60

80

100

120

140

160

M
em

or
y

In
vo

ca
ti

on
 C

ou
n

t

GSM8K (Avg: 74.49)

GPQA (Avg: 48.59)

KodCode (Avg: 27.96)

Figure 8: Memory invocation frequency across benchmarks at inference (trained on MemGen
SFT+SmolLM3-3B +GSM8K).

0 10 20 30 40 50 60

GSM8K

KodCode

GPQA

MATH

Trained on GSM8K

Vanilla
SFT
MemoryBank
MemGen

Figure 9: The generalization study of MemGen. We train MemGen SFT on GSM8K and evaluate it on
all four datasets.

0 10 20 30 40 50 60

GSM8K

KodCode

GPQA

MATH

Trained on KodCode
Vanilla
SFT
MemoryBank
MemGen

Figure 10: The generalization study of MemGen. We train MemGen SFT on KodCode and evaluate it
on all four datasets.

demonstrates that selective activation, i.e., deciding when and where to weave in memory, provides
the most effective support for reasoning, as it balances memory utility and interference more pre-
cisely than coarse-grained alternatives.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Continual learning results of Qwen2.5-1.5B-Instruct across four reasoning and
programming datasets (AQuA, GPQA, GSM8K, KodCode). The model is sequentially trained on
each dataset (AQuA→ GPQA→ GSM8K→ KodCode), and after each training stage, evaluation
is conducted on all four benchmarks.

Trained On
Method AQuA GPQA GSM8K KodCode

Vanilla 41.34 11.62 39.51 24.55

AQuA SFT 42.52 16.67 42.10 18.20
ExpeL 41.73 12.67 40.16 16.30
MemGen SFT 43.31 19.70 39.80 19.55

GPQA SFT 38.55 17.17 45.74 18.50
ExpeL 37.24 14.35 42.67 15.20
MemGen SFT 39.85 20.72 47.96 28.80

GSM8K SFT 33.46 13.13 52.31 19.45
ExpeL 34.89 12.42 48.78 13.65
MemGen SFT 38.43 21.72 55.67 19.75

KodCode SFT 28.61 2.53 24.14 54.10
ExpeL 27.14 6.23 31.44 48.35
MemGen SFT 40.34 20.09 53.72 52.95

Table 6: Ablation study of different memory invocation strategies. Random denotes a naı̈ve baseline
where latent memory tokens are inserted at arbitrary token positions with a fixed probability p. All
delimiters activated represents a sentence-level strategy that invokes the memory weaver at every de-
limiter position without any selection mechanism. Finally, MemGen’s dedicated Trigger corresponds
to our standard approach, where the memory weaver is activated by the trained trigger Ttrigger.

Memory Invocation Strategy GPQA Kodcode TriviaQA

Random (p = 0.2) 15.66 54.55 63.55
Random (p = 0.5) 16.66 52.95 57.28
Random (p = 0.8) 12.63 53.60 62.22
All delimiters activated 17.34 56.20 64.15
MemGen’s dedicated Trigger 18.28 58.16 65.02

E.3.2 ANALYSIS OF MEMORY WEAVER

We further investigate how the parameterization of the memory weaver influences downstream per-
formance. As shown in Table 7, increasing the number of trainable parameters by adopting a full-
parameter SFT setup surely enhances the weaver’s memory and learning capacity, leading to higher
task performance across benchmarks. Nevertheless, the LoRA-based instantiation already achieves
competitive results while retaining high parameter efficiency, demonstrating that even lightweight
adaptations can endow the weaver with sufficient capacity to generate effective latent memories.

E.3.3 EFFICIENCY ANALYSIS

Table 8 reports average inference time and task performance across three benchmarks. Both SFT
and MemGen drastically reduce per-task inference time compared with vanilla models due to fewer
tokens required to reach correct answers. For instance, on KodCode with Qwen2.5-1.5B, MemGen
SFT completes tasks in 2.94 s, a 75.4% reduction from 11.96 s for vanilla, while improving accuracy
by 33.61%. On ALFWorld+Qwen3-8B, MemGen SFT adds only 1.6% more time compared with
SFT (20.08 s vs 19.76 s) but increases accuracy from 83.59% to 85.82%. These results confirm that
MemGen efficiently enhances reasoning performance without incurring significant inference delays.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 7: Ablation study of the latent weaver. We instantiate MemGen SFT’s memory weaver with
LoRA of different ranks as well as full-parameter SFT.

Base LLM: Qwen2.5-1.5B-Instruct GPQA Kodcode TriviaQA

LoRA (r = 4) 17.16 54.85 63.04
LoRA (r = 6) 18.18 55.25 64.55
LoRA (r = 8) 17.67 55.75 64.10
LoRA (r = 16) 18.28 56.16 65.02
LoRA (r = 24) 18.67 57.20 65.40
LoRA (r = 32) 19.26 57.95 65.85

Full SFT 21.21 60.00 67.10

Table 8: Average per-task inference time (seconds) and task performance (accuracy %) across three
benchmarks. Performance improvement (%) of MemGen SFT over vanilla LLM is also reported.

Model & Method KodCode ALFWorld TriviaQA

Time (s) Acc (%) Time (s) Acc (%) Time (s) Acc (%)

Qwen2.5-1.5B

Vanilla 11.96 24.55 21.17 22.54 2.18 32.10
SFT 2.01 55.83 10.79 36.57 1.98 63.84
MemGen SFT 2.94 58.16 12.94 40.30 2.05 65.02
Improvement over Vanilla - +33.61 - +17.76 - +32.92

SmolLM-3B

Vanilla 13.12 37.05 34.82 18.96 4.26 10.47
SFT 3.04 59.25 12.88 32.36 3.05 55.25
MemGen SFT 3.48 62.65 14.69 50.60 3.16 68.13
Improvement over Vanilla - +25.60 - +31.64 - +57.66

Qwen3-8B

Vanilla 16.99 49.10 55.42 58.93 8.70 52.18
SFT 7.24 64.75 19.76 83.59 5.98 74.55
MemGen SFT 7.56 66.15 20.08 85.82 6.25 77.22
Improvement over Vanilla - +17.05 - +26.89 - +25.04

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.3.4 ABLATION OF MEMORY WEAVER: PAUSE TOKEN

To further assess the necessity of the memory weaver, we introduce a strong and conceptually
aligned baseline based on the pause token mechanism (Goyal et al., 2024). Pause tokens are a
small set of learned special tokens P = {<pause>1, . . . ,<pause>K} that instruct the model to
suspend outward generation while continuing to update its internal hidden states. Formally, inserting
a pause token <pause> at position j forces the model to compute a new hidden state

hj = fθ(hj−1, <pause>),

while suppressing any semantic output. A sequence of K pause tokens thus yields K steps of
latent computation over the current cognitive state. We train a set of K pause tokens (where K
exactly equals the number of generated latent tokens by memory weaver) under the same protocol
in Equation (10).

Results. We report the ablation results as follows:

Table 9: The performance comparison between MemGen and a variant by replacing mem-
ory weaver with learnt pause tokens on three benchmarks. The backbone is set as
Qwen2.5-1.5B-Instruct.

Method Kodcode TriviaQA GPQA
Trigger + Pause Token 49.50 56.30 13.80
Trigger + Weaver 58.16 65.02 18.28

As shown in Table 9, although pause tokens provide moderate gains, indicating that allowing the
model brief intervals of internal processing is beneficial, they consistently underperform the full
weaver-equipped system. We attribute this to the fixed, context-independent nature of pause tokens:
they cannot reconstruct or integrate task-relevant information in a targeted manner. In contrast, the
memory weaver produces context-sensitive latent memory vectors tailored to the reasoner’s current
cognitive state, leading to substantially stronger performance.

F INTEGRATION WITH RETRIEVAL-BASED MEMORY

F.1 FORMALIZING THE INTEGRATION PROCESS

While the primary mechanism of MemGen leverages the parametric knowledge encapsulated within
the memory weaver Wweaver, the framework is designed to be extensible, allowing for seamless
integration with external, retrieval-based memory systems. This hybrid approach enables the weaver
to synthesize latent memories that are informed by both its internalized experiences and a vast corpus
of external information, thereby providing a richer and more comprehensive context to the reasoner
πθ. LetMext denote an external memory database, and let R(·) be a retrieval function that, given a
natural language query, returns a set of relevant textual memory snippets. When the memory trigger
Ttrigger determines an invocation is necessary at the token-generation step j (i.e., dj = INVOKE), the
natural language text generated thus far serves as the query for the external memory system. This
query, denoted as qt,j , is produced by decoding the sequence of tokens generated up to that point:

qt,j = Decode(zt,<j). (21)

The retrieval process is then formalized as:

Ct = R(qt,j ;Mext), (22)

where Ct = {c1, c2, . . . , cP } is a set of P retrieved textual snippets. These snippets are subsequently
encoded into a sequence of embeddings, Et ∈ RLc×dmodel , where Lc is the total length of the encoded
text. This allows the weaver to process the retrieved information in its native latent space.

This retrieved information is subsequently merged with the reasoner’s internal cognitive state Ht,<j .
The combined context is then fed into the memory weaverWweaver to produce the final latent mem-
ory. The invocation of the weaver, as described in Equation (5), is thus modified to:

Mt =Wweaver([Ht,<j ;Et]), (23)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where [·; ·] denotes the concatenation of the hidden state sequences. This integrated process allows
Wweaver to reconstruct both internal parametric knowledge and externally retrieved information into
a compact, potent latent memory Mt for the reasoner.

F.2 EXPERIMENTAL RESULTS

As shown in Table 10, even when MemGen’s own parametric memory is disabled (which means
that merely the retrieved textual snippets are fed into Wweaver), MemGen significantly enhances the
retrieval baseline, boosting performance on ALFWorld from 36.18% to 45.60% and on PopQA
from 28.16% to 39.50%. This demonstrates that MemGen serves as a powerful synthesizer, not
merely appending but actively reconstructing externally retrieved information into a more potent,
task-relevant latent memory, thereby underscoring the necessity of a generative memory mechanism.
Most notably, when the weaver’s internal parametric memory is enabled alongside external retrieval,
performance is dramatically amplified, achieving scores of 75.90% on ALFWorld and 76.40% on
TriviaQA. This highlights the powerful synergy achieved when the memory weaver is empowered
to dynamically integrate its own internalized experiences with external textual knowledge.

Table 10: Performance results when integrating MemGen with a retrieval-based memory baseline,
ExpeL. The backbone LLM is set as SmolLM3-3B.

Method ALFWorld TriviaQA PopQA

Vanilla LLM 18.96 10.47 8.23
ExpeL 36.18 46.20 28.16
MemGen + ExpeL (w/o parametric memory) 45.60 53.20 39.50
MemGen + ExpeL (w/ parametric memory) 75.90 76.40 60.23

G LATENT MEMORY TOKEN DEMONSTRATION

Cases from TriviaQA

Case 1
system prompt
Answer the given question. You must conduct reasoning inside <think> and </think> first

every time you get new information. After reasoning, if you find you lack some
knowledge, you can call a search engine by <search> query </search> and it will
return the top searched results between <information> and </information>. You can
search as many times as your want. If you find no further external knowledge
needed, you can directly provide the answer inside <answer> and </answer>, without
detailed illustrations. For example, <answer> Beijing </answer>.

user prompt
Which Lloyd Webber musical premiered in the US on 10th December 1993?

assistant output
[UPPORT...’,eniable certif]<think> I need to find out which Lloyd Webber musical

premiered in the US on 10th December 1993. </think>
[essengeryyyyMMddELCOME certif]<search> Lloyd Webber musical premiered in the US on 10

th December 1993 </search>

user prompt
<observation> Doc 1(Title: "Andrew Lloyd Webber") opened at the Adelphi Theatre in

London on 12 July 1993, and ran for 1,529 performances ... </observation>

assistant output
[essengeryyyyMMddELCOME

certif]<think> The search results indicate that "Sunset Boulevard" is the Lloyd
Webber musical that premiered in the US on 10th December 1993. </think>

[UPPORT...’,eniable certif]<answer> Sunset Boulevard </answer>

Case 2
system prompt
Answer the given question. You must conduct reasoning inside <think> and </think> first

every time you get new information. After reasoning, if you find you lack some
knowledge, you can call a search engine by <search> query </search> and it will
return the top searched results between <information> and </information>. You can
search as many times as your want. If you find no further external knowledge

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

needed, you can directly provide the answer inside <answer> and </answer>, without
detailed illustrations. For example, <answer> Beijing </answer>.

user prompt
Who had a 70s No 1 hit with Kiss You All Over?

assistant output
[UPPORT...’,eniable certif]<think> I need to search who had a 70s No 1 hit with the

song "Kiss You All Over." </think>
[essengeryyyyMMddELCOME

certif]<search> who had a 70s No 1 hit with Kiss You All Over? </search>

user prompt
<observation> Doc 1(Title: "Kiss You All Over") Exile’s only big hit in the pop rock

market (they would later have great success on the country music charts)... </
observation>

assistant output
[essengerUPPORT’options certif]<think> The song "Kiss You All Over" was a 70s No 1 hit

with the band Exile. </think>
[UPPORT...’,eniable certif]<answer> Exile </answer>

Case 3
system prompt
Answer the given question. You must conduct reasoning inside <think> and </think> first

every time you get new information. After reasoning, if you find you lack some
knowledge, you can call a search engine by <search> query </search> and it will
return the top searched results between <information> and </information>. You can
search as many times as your want. If you find no further external knowledge
needed, you can directly provide the answer inside <answer> and </answer>, without
detailed illustrations. For example, <answer> Beijing </answer>.

user prompt
What was the name of Michael Jackson’s autobiography written in 1988?

assistant output
[UPPORTUPPORTeniable certif]<think> I need to search for the name of Michael Jackson’s

autobiography written in 1988. </think>
[UPPORT...’,eniable certif]<search> Michael Jackson autobiography 1988 </search>

user prompt
<observation> Doc 1(Title: "Michael Jackson") of 4.4 million people. In 1988, Jackson

released his only autobiography, ""Moonwalk"", which took four years to complete
and sold 200,000 copies... </observation>

assistant output
[cmsUPPORT’options Certif]<think> The name of Michael Jackson’s autobiography written

in 1988 is "Moonwalk". </think>
[UPPORTUPPORTeniable certif]<answer> Moonwalk </answer>

Case 4
system prompt
Answer the given question. You must conduct reasoning inside <think> and </think> first

every time you get new information. After reasoning, if you find you lack some
knowledge, you can call a search engine by <search> query </search> and it will
return the top searched results between <information> and </information>. You can
search as many times as your want. If you find no further external knowledge
needed, you can directly provide the answer inside <answer> and </answer>, without
detailed illustrations. For example, <answer> Beijing </answer>.

user prompt
Which volcano in Tanzania is the highest mountain in Africa?

assistant output
[UPPORT...’,eniable certif]<think> I need to search for the highest mountain in Africa,

which is located in Tanzania. </think>
[UPPORTUPPORTeniable certif]<search> highest mountain in Africa in Tanzania </search>

user prompt
<observation> Doc 1(Title: "Mount Kilimanjaro") Mount Kilimanjaro Mount Kilimanjaro or

just Kilimanjaro (), with its three volcanic cones, ""Kibo"", ""Mawenzi"", and ""
Shira"", is a dormant volcano in Tanzania... </observation>

assistant output
[essengeryyyyMMddeniable certif]<think> The highest mountain in Africa located in

Tanzania is Mount Kilimanjaro. </think>
[UPPORT...’,eniable certif]<answer> Mount Kilimanjaro </answer>

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Cases from KodCode

Case 1
MODEL INPUT:
Write an efficient and correct Python function to solve the following problem.Question:

Write a function that takes a list of integers and returns a new list containing
only the even integers from the original list, sorted in non-decreasing order. The
list can contain negative numbers and is not necessarily sorted. If the input
list is empty or contains no even integers, the function should return an empty
list.

MODEL OUTPUT:
[keyword-kindërgetAs-slide]def even_sorted(lst):
[.keyword pick] """
[LTRetical] Returns a new list containing only the even integers from the original list

,
sorted in non-decreasing order.

[.keyword pick] """
[LTRetical] even_numbers = [num for num in lst if num % 2 == 0]
[.keyword pick] even_numbers.sort()
[.keywordetical] return even_numbers<|im_end|>

Case 2
MODEL INPUT:
Write an efficient and correct Python function to solve the following problem.Question:

Write a python function to find the first maximum and the second maximum number
in an array. If the array has less than two unique elements, return ‘None‘ for the
missing values.

MODEL OUTPUT:
[keyword-kindërgetAs-slide]def find_first_max_second_max(arr):

"""
[.keywordetical] Returns the first and second maximum numbers in the array.

If the array has less than two unique elements,[.keyword_pick] returns None for the
missing values.

[.keyword pick] """
if len(arr) < 2:

[.keyword pick] return None,[.keyword pick] None

[.keywordetical] unique_elements = set(arr)
[.keyword pick] if len(unique_elements) < 2:
[.keywordetical] return None,[.keyword pick] None

[.keywordetical] first_max = max(unique_elements)
second_max = max(unique_elements, default=None)

return first_max, second_max<|im_end|>

Case 3
MODEL INPUT:
Write an efficient and correct Python function to solve the following problem.Question:

Given a list of integers, write a function that returns the length of the longest
contiguous subarray where all elements have the same value. The function should
also return the value of the elements in this subarray. Consider the output to be
a tuple where the first element is the length of the longest subarray and the
second element is the value of the elements in the subarray.

For example, consider the following list as input,
numbers = [1, 2, 2, 3, 3, 3, 2, 2, 2, 2, 1, 1]

Expected Output: (4, 2)

MODEL OUTPUT:
[kindgetAs?-kindërgetAs-slide]def longest_subarray_with_same_value(numbers):

"""
[.keyword pick] Returns the length of the longest contiguous subarray where all

elements have the same value.
[.keyword pick] The function also returns the value of the elements in this subarray.
[LTR pick] """
[LTRetical] if not numbers:
[.keyword pick] return (0, None)

max_length = 1
[.keyword pick] current_length = 1

max_value = numbers[0]
current_value = numbers[0]

[.keyword pick] for i in range(1,[LTR pick] len(numbers)):
[LTR pick] if numbers[i] == current_value:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

current_length += 1
else:

if current_length > max_length:
[LTR pick] max_length = current_length

max_value = current_value
current_length = 1
current_value = numbers[i]

if current_length > max_length:
max_length = current_length
max_value = current_value

return (max_length, max_value)<|im_end|>

Cases from GSM8K

Case 1
MODEL INPUT:
Solve the math problem with proper reasoning, and make sure to put the FINAL ANSWER

inside \boxed{}.
Question: Billy sells DVDs. He has 8 customers on Tuesday. His first 3 customers buy

one DVD each. His next 2 customers buy 2 DVDs each. His last 3 customers don’t buy
any DVDs. How many DVDs did Billy sell on Tuesday?

MODEL OUTPUT:
[even. s. even even ...

even] Billy’s first 3 customers buy 3 * 1 = <<3*1=3>>3 DVDs.
[-gallery.]His next 2 customers buy 2 * 2 = <<2*2=4>>4 DVDs.
[-routing.]Billy sells 3 + 4 = <<3+4=7>>7 DVDs on Tuesday.\boxed{7}<|im_end|>

Case 2
MODEL INPUT:
Solve the math problem with proper reasoning, and make sure to put the FINAL ANSWER

inside \boxed{}.
Question: Henry made two stops during his 60-mile bike trip. He first stopped after 20

miles. His second stop was 15 miles before the end of the trip. How many miles did
he travel between his first and second stops?

MODEL OUTPUT:
[..... a even even even... even

]Henry traveled 60-15=<<60-15=45>>45 miles before his second stop.
[-android.]He traveled 20 miles before his first stop,[ecies.] so he traveled

45-20=<<45-20=25>>25 miles between his first and second stops.\boxed{25}<|im_end|>
[even.]The final answer is 25<|im_end|>

Case 3
MODEL INPUT:
Solve the math problem with proper reasoning, and make sure to put the FINAL ANSWER

inside \boxed{}.Question: A basket contains 25 oranges among which 1 is bad, 20%
are unripe, 2 are sour and the rest are good. How many oranges are good?

MODEL OUTPUT:
[. even.. pre. even even even... even

]The number of unripe oranges is 20/100*25 = <<20/100*25=5>>5
[-animate.]The number of sour oranges is 2
[-login.]The number of bad oranges is 1
[-login.]The number of good oranges is 25 - 5 - 2 - 1 = <<25-5-2-1=17>>17\boxed{17}<|

im_end|>

Cases from GSM8K Cluster

Cluster 1
Solve the math problem with proper reasoning, and make sure to put the FINAL ANSWER

inside \boxed{}.Question: Josh decides to try flipping a house. He buys a house
for $80,000 and then puts in $50,000 in repairs. This increased the value of the
house by 150%. How much profit did he make?

[..... pre. even even even... even]The house was worth $80

Solve the math problem with proper reasoning, and make sure to put the FINAL ANSWER
inside \boxed{}.Question: James decides to run 3 sprints 3 times a week. He runs
60 meters each sprint. How many total meters does he run a week?

[..... out. even even even.. even even]He runs 3*60=<<3*60=180>>180 meters a day

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Solve the math problem with proper reasoning, and make sure to put the FINAL ANSWER
inside \boxed{}.Question: Kylar went to the store to buy glasses for his new
apartment. One glass costs $5, but every second glass costs only 60% of the price.
Kylar wants to buy 16 glasses. How much does he need to pay for them?

[.... pre... even... even]The first 16 glasses cost 16 * 5 = $<<16*5=80>>80

Solve the math problem with proper reasoning, and make sure to put the FINAL ANSWER
inside \boxed{}.Question: Toulouse has twice as many sheep as Charleston.
Charleston has 4 times as many sheep as Seattle. How many sheep do Toulouse,
Charleston, and Seattle have together if Seattle has 20 sheep?

[. even even. s. even even even.. even even
]Charleston has 4*20=<<4*20=80>>80 sheep.

Solve the math problem with proper reasoning, and make sure to put the FINAL ANSWER
inside \boxed{}.Question: John drives for 3 hours at a speed of 60 mph and then
turns around because he realizes he forgot something very important at home. He
tries to get home in 4 hours but spends the first 2 hours in standstill traffic.
He spends the next half-hour driving at a speed of 30mph, before being able to
drive the remaining time of the 4 hours going at 80 mph. How far is he from home
at the end of those 4 hours?

[...... even even even... even
]He drives 60*3 = <<60*3=180>>180 miles in the first 3 hours.

Cluster 2
Janet’s ducks lay 16 eggs per day,[-animate.] and she eats 3 eggs for breakfast every

morning

Wendi feeds her 20 chickens 15 cups of feed in the morning,[-animate.] 25 cups in the
afternoon

She sold half of what was left at the orange house,[-animate.] she had 1/2 left.

x = 162/18 = <<162/18=9>>9
[-animate.]Allen’s age is 11x = 11*9 = <<11*9=99>>99 years old now.

He runs 20 miles a day because 60/3=<<60/3=20>>20
[-animate.]He runs 10 miles the other two days because 20/2=<<20/2=10>>10

Cluster 3
It takes 2/2=<<2/2=1>>1 bolt of white fiber.
[ecies.]So it takes 2+1=<<2+1=3>>3 bolts in total.

The total cost of the five cell phones is $150 x 5 = $<<150*5=750>>750.
[even.]The interest for each unit is $150 x 2/100 = $<<150*2/100=3>>3.

The second level is 16*2=<<16*2=32>>32 square footage.
[even.]The third level is 32*2=<<32*2=64>>64 square footage.

20% of 20 students is 20 x 20/100 = <<20*20/100=4>>4 students.
[ecies.]The remaining students are 20 - 4 = <<20-4=16>>16 students.

If Artie rounds the price of petunias to the nearest dollar,[-animateecies] he will
sell them for $2 each.

Cluster 4
The groomer offers a 30% discount,[-loginecies] so the cost of the grooming is 100 -

(100 * 0.[ecies.]30) = $<<100-30=70>>70

If Dana skips at 3 miles per hour,[-login.] then she runs at 3 * 4 = <<3*4=12>>12 miles
per hour.

There were 140 * 2 = <<140*2=280>>280 emeralds in the chest.
[-login.]There were 175 + 140 + 280 = <<175+140+280=595>>595 gems in the chest.

There are 30+60 = <<30+60=90>>90 students at Dr.[-loginecies.] Wertz’s school.

Cecilia will feed her puppy 1 cup of dog food every day for 180 days,[-login.] so she
will use 180 cups of dog food in the first 180 days.

H MEMORY FUNCTIONAL STUDY

H.1 VISUALIZATION PROCESS

This section details the methodology employed to visualize the geometric structure of the latent
memory (as shown in Figures 5 and 11) and to identify semantically distinct clusters within it. The

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

MATH

GSM8K
TriviaQA

ALFWorld

KodCode

BCB

Latent Memory Visualization
(across all benchmarks)

GPQA

Latent Memory Visualization
(on TriviaQA)

Latent Memory Visualization
(on GSM8K)

Figure 11: (Up) t-SNE visualization of latent memories generated by MemGen +SmolLM3-3B
across datasets; (Down) Latent memory visualization within the TriviaQA and GSM8K datasets,
clustered using K-means.

process involves two primary stages: obtaining a fixed-dimensional representation for each memory
sequence and applying dimensionality reduction and clustering algorithms.

Sequence Representation. Let Dmem = {M1,M2, . . . ,MQ} be a corpus of Q latent memory
sequences collected from MemGen’s inference, where each sequence Mi = (mi,1, . . . ,mi,K) ∈
RK×dmodel consists of K token embeddings of dimension dmodel. To obtain a single, holistic vector
representation for each sequence, we compute its mean embedding m̄i ∈ Rdmodel :

m̄i =
1

K

K∑
l=1

mi,l. (24)

This procedure yields a set of high-dimensional representations M̄ = {m̄1, m̄2, . . . , m̄Q}, which
serves as the input for the subsequent analysis.

For visualization, we employed t-SNE (Maaten & Hinton, 2008) to project the high-dimensional
set M̄ into a two-dimensional space. Formally, this mapping can be expressed as yi ∈ R2 =
ft-SNE(m̄i). These 2D data points are then utilized for the scatter plot.

To quantitatively identify distinct functional groups, we applied the K-means algorithm directly to
the high-dimensional mean embeddings in M̄. This procedure partitions the memory representa-
tions into a predefined number of N discrete clusters, C = {C1, C2, . . . , CN} (we set N = 4).

H.2 FAILURE TAXONOMY DEFINITIONS

To systematically analyze the functional impact of different memory clusters, we adopt and refine
the failure taxonomy proposed by Song et al. (2025). Below, we provide precise definitions of

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

each failure category in the context of LLM-based agent behavior, which guide our annotation and
evaluation process:

• Planning Failure. This category refers to errors in high-level task decomposition and strategic
decision-making. The agent either formulates subgoals that do not align with the original objec-
tive, fails to plan intermediate steps necessary for task completion, or misorders the reasoning
sequence, leading to suboptimal or incomplete solutions.

• Compositional Reasoning. This type of failure occurs when the agent struggles to integrate
multiple pieces of information or reasoning steps into a coherent solution.

• Tool Parsing Error. This failure occurs when the agent’s generated output cannot be parsed
into a valid tool call. Typical patterns include malformed function signatures, missing required
arguments, or unrequired arguments in the invocation, which prevent the external tool from being
executed as intended.

• Tool Response Error. This category refers to errors that arise after a tool has been successfully
invoked. Either the tool itself returns incorrect or incomplete information, or the agent misuses or
misinterprets the returned content.

• Answer Formatting Failure. This category includes errors in the final presentation or structuring
of the output, despite the reasoning process being largely correct. Examples include incorrect
output format (e.g., unable to include the answers with in \boxed), violation of task-specific
response templates, or missing required components in the final answer.

• Demand Misunderstanding. This failure indicates that the agent has misinterpreted the user’s
intent or the task specification. It may solve a different problem from the one posed, ignore key
constraints, or pursue irrelevant objectives due to misunderstanding the instruction semantics.

• Think-Act Inconsistency. This type refers to a mismatch between the agent’s internal reasoning
and its subsequent action in ReAct mode. The agent may articulate a correct reasoning chain but
execute a contradictory action or produce a final answer inconsistent with its prior deliberation.

• False Belief captures cases where the agent maintains and reasons with inaccurate assumptions
about the external environment, user state, or task context.

H.3 ANNOTATING FAILURE MODES AND FILTERING LATENT MEMORY

Annotation of Failure Modes. We manually annotated agent failures on the TriviaQA dataset
based on the eight failure modes discussed above. Each trajectory generated by the agent was evalu-
ated by human annotators who assigned only one failure label if the agent’s behavior deviated from
a successful path. Trajectories exhibiting failures that did not fall into these predefined categories
were excluded from this specific analysis.

Inference-time Filtering of Latent Memory Clusters. The core of our intervention study in-
volved selectively removing the influence of a specific latent memory cluster during the agent’s
reasoning process. Our methodology is designed to be consistent with the clustering process itself,
which operates on sequence-level representations.

Let C = {C1, C2, . . . , CN} be the set of N latent memory clusters. These clusters were derived by
applying K-means to a collection of historical memory representations, where each representation
is the mean embedding of an entire latent memory sequence. For each cluster Ci ∈ C, we compute
its centroid µi ∈ Rdmodel by averaging these historical sequence representations within the cluster.

During inference, when the memory weaver synthesizes a new latent memory sequence Mt =
(mt,1, . . . ,mt,K) ∈ RK×dmodel , we first compute its single-vector representation, m̄new, by averag-
ing its constituent token embeddings:

m̄new =
1

K

K∑
l=1

mt,l. (25)

To determine the semantic affiliation of this new sequence, we compare its mean embedding m̄new
against a comprehensive reference set Ecomp = Evocab ∪ {µ1, . . . , µN}, where Evocab ∈ RV×dmodel

is the LLM’s vocabulary embedding matrix. We then identify the set of top-k nearest neighbors to
m̄new based on cosine similarity, denoted as Sk(m̄new). In our experiments, we set k = 10.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

To ablate the influence of a target cluster Cj , the entire latent memory sequence Mt is filtered (i.e.,
discarded and not prepended to the reasoner’s context) if the centroid of that cluster, µj , is present
within this top-k set. Formally, Mt is filtered if:

µj ∈ Sk(m̄new). (26)

This sequence-level filtering allows us to precisely ablate the contribution of a specific learned mem-
ory function and observe its impact on agent behavior.

H.4 COMPARISON BETWEEN LATENT TOKENS AND TRAJECTORIES

For each memory invocation at step j and timestep t, we construct three sets of embeddings within
the hidden representation space of the frozen reasoner πθ. First, we record the latent memory tokens
generated by the weaver,

Mt = [mt,1, . . . ,mt,K] ∈ RK×dmodel .

Second, we obtain the corresponding context hidden states that serve as the hook for memory gen-
eration,

Ht,<j = (ht,1, . . . ,ht,j−1) ∈ R(j−1)×dmodel ,

collected directly from the forward pass of πθ during online reasoning. Third, we take a past success-
ful trajectory τprev from H and replay it under teacher forcing through πθ, yielding its hidden-state
sequence

H̃traj = (h̃1, . . . , h̃L) ∈ RL×dmodel .

To enable joint visualization, we compute the mean embedding of each set:

m̄t =
1

K

K∑
k=1

mt,k, h̄ctx
t =

1

j − 1

j−1∑
k=1

ht,k, h̄traj =
1

L

L∑
ℓ=1

h̃ℓ.

Finally, we project the three averaged vectors

{m̄t, h̄
ctx
t , h̄traj}

from Rdmodel into two dimensions (via t-SNE) for visualization. The resulting visualizations are
shown in Figure 12.

Figure 12: The t-SNE visualizations among the learnt latent tokens, trajectory representations and
context representations. The left is drawn from KodCode dataset, and the right is from TriviaQA
dataset.

As shown in Figure 12, the trajectory and context embeddings occupy more similar regions of the
feature space, as both originate from transformations of human-readable tokens. In contrast, latent
memory tokens form a more machine-native and human-unreadable representation, resulting in a
substantially different embedding distribution.

We further quantify the geometric relationship between the three clusters by computing the Eu-
clidean distances between their centers in Rdmodel . For each invocation (t, j), we treat m̄t, h̄ctx

t , and
h̄traj as the centers of the latent-memory, context, and trajectory clusters, respectively, and compute
the pairwise distances

d
(t)
mem-ctx =

∥∥m̄t − h̄ctx
t

∥∥
2
, d

(t)
mem-traj =

∥∥m̄t − h̄traj
∥∥
2
, d

(t)
ctx-traj =

∥∥h̄ctx
t − h̄traj

∥∥
2
.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Aggregating over all invocations T , we report the mean distances

d̄mem-ctx =
1

|T |
∑
t∈T

d
(t)
mem-ctx, d̄mem-traj =

1

|T |
∑
t∈T

d
(t)
mem-traj, d̄ctx-traj =

1

|T |
∑
t∈T

d
(t)
ctx-traj,

which directly reflect how far the latent memory centers deviate from the context and replayed-
trajectory manifolds.

Table 11: Pairwise Euclidean distances between the centers of context, latent-memory (inserted),
and trajectory clusters.

Dataset context↔ inserted context↔ trajectory inserted↔ trajectory

GPQA 165.311 64.180 185.315
KodCode 227.108 96.831 197.105

From Table 11, the distances reveal a consistent geometric pattern: the context and trajectory centers
lie extremely close, while the generated latent memories occupy a distant region of the representa-
tion space, forming a well-separated cluster from both context and trajectory. This large separation
demonstrates that the weaver does not merely compress or replay past hidden states; instead, it syn-
thesizes novel latent structures that are parametrically reconstructed rather than retrieved, supporting
our claim that latent memory introduces genuinely new inferential content beyond the observed tra-
jectories.

34

	Introduction
	Related Work
	Preliminary
	Methodology
	MemGen: Interleaving Memory and Reasoning
	Memory Trigger: Learning to Invocate Memory
	Memory Weaver: Synthesizing and Inserting Latent Memory

	Experiments
	Experimental Setup
	Main Restuls
	Framework Analysis

	Conclusion
	Use of Large Language Models
	Additional Related Works
	blue Optimization Algorithm Details
	Combining MemGen with SFT
	Combing MemGen with GRPO
	Memory Trigger Training Details

	Experimental Details
	Training Dataset Setup
	Parameter Configurations

	Extra Results
	Continual Learning Result
	Trigger Frequency Visualization
	Framework Analysis
	Ablation Study
	Analysis of Memory Weaver
	Efficiency Analysis
	Ablation of Memory Weaver: Pause Token

	Integration with Retrieval-based Memory
	Formalizing the Integration Process
	Experimental Results

	Latent Memory Token Demonstration
	Memory Functional Study
	Visualization Process
	Failure Taxonomy Definitions
	Annotating Failure Modes and Filtering Latent Memory
	Comparison Between Latent Tokens and Trajectories

