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ABSTRACT

A unifying theme in Artificial Intelligence is learning an effective policy to control
an agent in an unknown environment in order to optimize a certain performance
measure. Off-policy methods can significantly improve the sample efficiency dur-
ing training since they allow an agent to learn from observed trajectories generated
by different behavior policies, without directly deploying the target policies in
the underlying environment. This paper studies off-policy evaluation from biased
offline data where (1) unobserved confounding bias cannot be ruled out a priori; or
(2) the observed trajectories do not overlap with intended behaviors of the learner,
i.e., the target and behavior policies do not share a common support. Specifically,
we first extend the Bellman’s equation to derive effective closed-form bounds over
value functions from the observational distribution contaminated with unobserved
confounding and no-overlap. Second, we propose two novel algorithms that use
eligibility traces to estimate these bounds from finite observational data. Compared
to other partial identification methods for off-policy evaluation in sequential envi-
ronments, these methods are model-free and do not rely on additional parametric
knowledge about the system dynamics in the underlying environment.

1 INTRODUCTION

A typical reinforcement learning agent learns from past data, i.e., from observed trajectories of
states, actions, and reward signals generated by the agent intervening in the underlying environment.
This data reflects the influence of the decision-making policy used to allocate actions based on the
observed state, which is called the behavior policy. This policy might be selected by the agent in the
past or by a different demonstrator operating in the same environment. Policy evaluation studies the
problem of evaluating the effectiveness of a candidate target policy from the combination of past data
and theoretical assumptions about the environment. When the behavior and target policies coincide,
the evaluation is called on-policy learning, in which the expected return of candidate policies given
the agent’s starting state (i.e., the value function) could be directly estimated with empirical means
(Sutton & Barto, 1998). In practice, however, the learner might have to learn about policies different
from the currently deployed one that generated the data, leading to the off-policy learning problem.

Off-policy learning is a popular area of research, as it allows for more efficient learning by using data
from different policies. Several algorithms have been proposed for off-policy evaluation from finite
observations, including Q-learning (Watkins, 1989; Watkins & Dayan, 1992), importance sampling
(Swaminathan & Joachims, 2015; Jiang & Li, 2016), and temporal difference (Precup et al., 2000;
Munos et al., 2016). These algorithms rely on two critical assumptions about the behavior policy.
First, no unobserved confounder affects the behavior policy’s selected action and the subsequent state
and reward. Second, the behavior policy is stochastic, covering all intended actions the target policy
selects given all observed states. When either of these assumptions does not hold, the effect of the
target policy is generally not identifiable, i.e., the model assumptions are insufficient to uniquely
determine the value function from the offline data (Pearl, 2000; Zhang & Bareinboim, 2019).

In recent times, researchers have been using partial identification methods to obtain reliable off-policy
evaluation in situations where there are unobserved confounders, and the behavior and target policies
have no common support (Kallus & Zhou, 2018; Zhang & Bareinboim, 2019; Kallus & Zhou, 2020;
Namkoong et al., 2020; Khan et al., 2023; Bruns-Smith & Zhou, 2023; Kausik et al., 2024). Partial
identification is a well-studied problem in causal inference (Balke & Pearl, 1997; Zhang et al., 2022),
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(a) MDP (b) Windy Gridworld

Figure 1: (a) Causal diagram representing the data-generating mechanisms in a Markov Decision
Process (MDP); (b) A windy gridworld environment where the red dot represents the agent and green
square is the goal state; the agent can take five actions - up, down, right, left, and stay-put;
the wind can blow in five direction - north, south, west, east, and no-wind.

econometrics (Imbens & Rubin, 1997; Poirier, 1998; Romano & Shaikh, 2008; Stoye, 2009; Bugni,
2010; Todem et al., 2010; Moon & Schorfheide, 2012), and dynamical systems (Bajari et al., 2007;
Norets & Tang, 2014; Dickstein & Morales, 2018; Morales et al., 2019; Berry & Compiani, 2023). It
enables the derivation of informative bounds on target effects from confounded observational data.
Among these works, researchers often employ a combination of approaches and constraints. These
include (1) the marginal sensitivity model presuming access to a bound over the odds ratio between
the nominal and actual behavioral policies (Kallus & Zhou, 2018; 2020; Namkoong et al., 2020;
Khan et al., 2023; Bruns-Smith & Zhou, 2023); (2) additional parametric assumptions about the
system dynamics (i.e., reward function and transition distribution) are invoked under which bounds
are derived (Khan et al., 2023; Kausik et al., 2024); (3) a model-based algorithm is applied, which
requires estimation of the underlying system dynamics (Zhang & Bareinboim, 2019); (4) the decision
horizon is finite, i.e., the agent only determines a finite number of actions (Kallus & Zhou, 2018;
Zhang & Bareinboim, 2019; Namkoong et al., 2020; Khan et al., 2023; Kausik et al., 2024). See
Appendix A for a more detailed survey on partial identification and robust reinforcement learning.

This paper studies model-free algorithms for robust off-policy evaluation from confounded offline
data generated by behavior policy with no-overlap support. We propose novel partial identification
algorithms using eligibility traces to obtain informative bounds over the expected return of candidate
policies from offline data generated from an unknown Markov decision process with an infinite
horizon. More specifically, our contributions are summarized as follows. (1) We extend the Bellman
equation that permits one to derive optimal bounds over target value functions from the observational
distribution generated by an unknown behavior policy. (2) We propose a causal off-policy temporal
difference algorithm (C-TD(λ)) using eligibility traces to estimate bounds over the state value
function from finite observations contaminated with unobserved confounding and no-overlap. (3) We
introduce an alternative eligibility traces algorithm following tree backup (C-TB(λ)) that obtains
bounds over the state-action value function from confounded observations. Finally, we evaluate our
proposed algorithms using extensive simulations in synthetic environments. Due to space constraints,
all proofs are provided in Appendix B; details on the experiment setup are provided in Appendix C.

Preliminaries and Notations We use capital letters to denote random variables (X), small letters for
their values (x) and DX for the domain of X . For an arbitrary set X , let |X| be its cardinality. Fix
indices i, j ∈ N. Let Xi:j stand for a sequence of variables {Xi, Xi+1, . . . , Xj}; Xi:j = ∅ if j < i.
We denote by P (X) represents a probability distribution over variables X . Similarly, P (Y | X)
represents a set of conditional distributions P (Y |X = x) for all realizations x. We will consistently
use P (x) as abbreviations for probabilities P (X = x); so does P (Y = y | X = x) = P (y | x).
Finally, 1Z=z is an indicator function that returns 1 if event Z = z holds true; otherwise, it returns 0.

An SCM M is a tuple ⟨V ,U ,F , P (U)⟩, where V is a set of endogenous variables and U is a set of
exogenous variables (Pearl, 2000; Bareinboim et al., 2022). F is a set of functions s.t. each fV ∈ F
decides values of an endogenous variable V ∈ V taking as argument a combination of other variables
in the system. That is, V ← fV (PAV ,UV ),PAV ⊆ V ,UV ⊆ U . Values of exogenous variables
U ∈ U are drawn from the exogenous distribution P (U). Naturally, M induces an observational
distribution P (V ). An intervention on a subset X ⊆ V , denoted by do(x), is an operation where
values of X are set to constants x, replacing the functions {fX : ∀X ∈ X} that would normally
determine their values. For an SCM M , let Mx be a submodel of M induced by intervention do(x).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

For a set Y ⊆ V , the interventional distribution Px (Y ) induced by do(x) is defined as the joint
distribution over Y in the submodel Mx, i.e., Px (Y ;M) ≜ P (Y ;Mx).

2 CHALLENGES OF CAUSAL INCONSISTENCY

We will focus on the policy evaluation problem of an agent operating in a Markov Decision Process
(MDP) (Puterman, 1994) over a series of interventions t = 1, 2, . . . . For every time step t, the agent
observes the current state St, performs an action do(Xt), receives a subsequent reward Yt, and moves
to the next state St+1. Values of the action Xt are selected by sampling from a stationary policy
π(x | s), which is a function mapping from the domain of the observed state St to the probability
space over the domain of action Xt. Let Ut be an unobserved noise independently drawn from an
exogenous distribution P (U). Values of the reward Yt and the next state St+1 are, respectively,
determined by structural functions yt ← fY (st, xt,ut) and st+1 ← fS(st, xt,ut), taking as input
the current state St, action Xt, and latent noise Ut; values of S1 are drawn from an initial distribution
P (S1). We will consistently use X , S, and Y to denote the domain of every action Xt, state St,
and reward Yt. Like a standard discrete MDP, domains of actions X and states S are assumed to be
finite; rewards are bounded in a real interval Y ≜ [a, b] ⊂ R. Naturally, the agent operating in this
environment defines an interventional distribution Pπ summarizing the consequences of its actions.

Fig. 1a shows a graphical representation (for now, without the highlighted bi-directed arrows) of this
data-generating process where nodes represent observed variables and directed arrows represent the
functional relationships between them. For every time step t > 1, the current state St “block” all
pathways from previous nodes (e.g., St−1) to the future nodes (e.g., St+1) (Pearl, 2000, Def. 1.2.3).
Applying the d-separation rules leads to the following independence relationships in distribution Pπ .
Definition 1 (Markov Property (Puterman, 1994)). For a distribution P∗ over a sequence of states
S1, S2, . . . , actions X1, X2, . . . , and rewards Y1, Y2, . . . , the Markov property holds if for every
t = 1, 2, . . . ,

(
S̄1:t−1, X̄1:t−1, Ȳ1:t−1 ⊥⊥ X̄t:∞, S̄t+1:∞, Ȳt:∞ | St

)
with regard to distribution P∗.

It follows from Def. 1 that for any horizon T , the distribution generated by a policy π factories as

Pπ (x̄1:T , s̄1:T , ȳ1:T ) = P (s1)

T∏
t=1

π(xt | st)T (st, xt, st+1)R(st, xt, yt) (1)

where the transition distribution T and the reward distributionR are interventional queries given by

T (st, xt, st+1) = Pxt
(st+1 | st) =

∫
ut

1st+1=fS(st,xt,ut)P (ut) (2)

R(st, xt, yt) = Pxt
(yt | st) =

∫
ut

1y=fY (st,xt,ut)P (ut) (3)

For convenience, we write the reward function R(s, x) as the expected value
∑

y yR(s, x, y). Fix
a discounted factor γ ∈ [0, 1]. A common objective for an agent is to optimize its cumulative
return Rt =

∑∞
i=0 γ

iYt+i. In analysis, we often evaluate the state value function Vπ(s), which is
the expected return given the agent’s starting state St = s. That is, Vπ(s) = Eπ [Rt | St = s]. A
similar state-action value function Qπ(s, x) is defined as the expected return starting from state s,
taking action x and thereafter following policy π, i.e., Qπ(s, x) = EXt←x,π [Rt | St = s]. One could
recursively evaluate the value function of any state s using the Bellman Equation (Bellman, 1966):

Vπ(s) =
∑
x

π(x | s)

(
R(s, x) + γ

∑
s′

T (s, x, s′)Vπ(s
′)

)
(4)

Similarly, an analogous equation for the state-action value function is

Qπ(s, x) = R(s, x) + γ
∑
s′

T (s, x, s′)Vπ(s
′) (5)

Off-Policy Evaluation Despite the effectiveness of planning algorithms, they require detailed
parametrization of the transition distribution T and the reward functionR, which are not accessible
in many real-world applications. This means that a learning process must take place. A common
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approach is off-policy learning, where the agent has access to observed trajectories generated by a
behavioral policy fX , different from the target policy π, operating in the same environment. More
specifically, for every time step t, the behavioral policy selects an action Xt ← fX(st,ut) based on
the current state St = st and latent noise Ut = ut. Fig. 1a shows the graphical representation of
the data-generating process of the behavior policy; the added bi-directed arrows, e.g., Xt ←→ Yt,
indicate the presence of an unobserved confounder U ∈ Ut affecting both the action Xt and outcome
Yt. We summarize observed trajectories of the behavior policy using the observational distribution P .

Off-policy evaluation attempts to estimate the effects of a candidate policy π(x|s) from the observa-
tional data generated by the behavior policy fX . Standard off-policy methods focus on the identifiable
setting where the target transition distribution T and reward functionR remain consistent in both the
interventional Pπ and observational distribution P . Formally,
Definition 2 (Causal Consistency). For an interventional distribution Pπ and an observational
distribution P satisfying the Markov property (Def. 1), the Causal Consistency holds with regard to
Pπ and P if the following statement holds, for every time step t = 1, 2, . . . ,

Pxt
(st+1 | st) = P (st+1 | st, xt) , and Pxt

(yt | st) = P (yt | st, xt) (6)

When Def. 2 holds, the learner could recover the parametrization of the transition distribution T
and reward functionR from the observational data, following the identification formula in Eq. (6).
Several off-policy algorithms have been proposed to estimate the effect of candidate policies from
finite observations under causal consistency (Watkins, 1989; Watkins & Dayan, 1992; Swaminathan
& Joachims, 2015; Jiang & Li, 2016; Precup et al., 2000; Munos et al., 2016).

There exist graphical criteria in the literature (Pearl & Robins, 1995; Shpitser et al., 2010; Perković
et al., 2015) to evaluate whether causal consistency (Def. 2) holds from causal knowledge of the
environment, including the celebrated backdoor criterion (Pearl, 2000, Def. 3.3.1). However, in
many practical applications, causal consistency could be fragile and does not necessarily hold due to
some violations in the generative process. These include: (1) there exists an unobserved confounder
affecting the action Xt and subsequent outcomes Yt, St+1 simultaneously (blue, dashed arrows in
Fig. 1a); (2) there is no overlap in the support between the target and behavior policies, i.e., the
propensity score P (xt | st) = 0 for some state-action pair st, xt. When either of these violations
occurs, applying standard off-policy methods may fail to recover the expected return of the target
policy, leading to estimation bias. The following example illustrates such challenges.
Example 1 (Windy Gridworld). Consider a Windy Gridworld described in Fig. 1b, where the red dot
represents the agent and the green square represents the goal state. The agent can take five actions
Xt - up, down, right, left, and stay-put. However, the agent’s movement is affected by the
wind; the direction of the wind Ut includes - north, south, west, east, and no-wind. For
every time step, the agent receives a constant reward Yt ← −1. The next state of the agent is shifted
by both its action and the wind direction through the mechanism St+1 ← St +Xt + Ut.

Our goal is to evaluate the expected return of a target policy π∗ described in Fig. 2a, which consistently
moves towards the goal state regardless of the wind direction. As an input, we have access to observed
trajectories generated by a behavior policy Xt ← fX(St, Ut), which could sense the wind and select
an action accordingly. For example, when the agent is located in the top-left corner (St = (0, 0))
and the wind is blowing south (Ut = (0, 1)), the behavior policy will decide to move right
(Xt = (1, 0)) so that the agent could get close to the center (St+1 = (1, 1)).

Figs. 2b to 2d shows the value function estimation obtained by standard off-policy methods, including
Q-Learning, one-step Temporal Difference (TD), and Eligibility Traces (TD(λ)). We also include
in Fig. 2e the ground truth value function computed from the underlying model parameters. The
simulation reveals that standard off-policy evaluation deviates from the ground truth return. In this
observational data, the wind direction Ut is thus an unobserved confounder affecting both the action
Xt and next state St+1, violating causal consistency. See Appendix C for additional discussions.

2.1 PARTIAL CAUSAL IDENTIFICATION IN MDPS

For the remainder of this section, we will introduce partial identification methods for off-policy
evaluation that is robust to the unobserved confounding and no-overlap. For every time step t =
1, 2, . . . , let the reward Yt be bounded in a real interval [a, b]. By applying a similar bounding strategy
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(a) Policy π∗ (b) Q-Learning (c) Off-Policy TD (d) Eligibility Trace (e) Vπ∗(s)

(f) Vπ∗(s) (g) Vπ∗(s) (h) Qπ∗(s, x∗) (i) Qπ∗(s, x∗) (j) Qπ∗(s, x∗)

Figure 2: (a) The target policy π∗ selecting an action based on the agent’s location. (b - d) Value
function estimation was obtained by standard off-policy methods. (e - g) The ground-truth state
value function computed from the model parametrization and its lower and upper bounds estimated
using the extended Bellman equation in Thm. 1. (h - j) The ground-truth state-action value function
computed from the model parametrization for actions x∗ ← π∗(s) selected by the target policy and
its lower and upper bounds computed from the extended Bellman equation in Thm. 2

in (Manski, 1990; Zhang & Bareinboim, 2019; Joshi et al., 2024), we derive the following bounds
over the transition distribution T and reward functionR, for every realization (s, x, s′) ∈ S ×X ×S ,

T (s, x, s′) ∈
[
T̃ (s, x, s′)P (x | s), T̃ (s, x, s′)P (x | s) + P (¬x | s)

]
(7)

R (s, x) ∈
[
R̃ (s, x)P (x | s) + aP (¬x | s), R̃ (s, x)P (x | s) + bP (¬x | s)

]
(8)

Among the above quantities, P (x | s) stands for the propensity score P (Xt = x | St = s) and
P (¬x | s) = 1 − P (x | s); T̃ and R̃ are the nominal transition distribution and reward function
computed from the observational distribution as follows:

T̃ (s, x, s′) = P (St+1 = s′ | St = s,Xt = x) , R̃ (s, x) = E [Yt | St = s,Xt = x] (9)

In order to bound the value function Vπ(s) at state s induced by a candidate policy π, one could
minimize/maximize the optimization program using the Bellman’s equation in Eq. (4) as the objective
function, subject to constraints in Eqs. (7) and (8). Interestingly, this optimization problem is
equivalent to a linear program; solving it leads to the following extended Bellman equation.

Theorem 1 (Causal Bellman Equation). For an MDP environment M with reward Yt ∈ [a, b] ⊆ R,
for any policy π(x | s), its state value function Vπ(s) ∈

[
Vπ(s), Vπ(s)

]
for every state s ∈ S , where

bounds Vπ, Vπ are solutions given by the following dynamic programs,1〈
Vπ(s), Vπ(s)

〉
=
∑
x

P (x | s)

(
π(x | s)

(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)
〈
Vπ(s

′), Vπ(s
′)
〉)

(10)

+π(¬x | s)
(
⟨a, b⟩+ γ

〈
min
s′

Vπ(s
′),max

s′
Vπ(s

′)
〉))

(11)

Thm. 1 can be seen as an extension of the Bellman equation using the confounded observational
distribution with no-overlap. For instance, in the lower bound Vπ(s), Eq. (10) follows the standard
iterative step in Bellman equation in Eq. (4), measuring the expected return when the target policy’s

1⟨a, b⟩ is a vector containing a lower bound a and an upper bound b. We highlight quantities that are different
from the standard Bellmen Equation.
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action coincides with the observed action selected by the behavior policy; Eq. (11) could be thought
as a regularizing term measuring the uncertainty due to unobserved confounding. Finally, both
terms are weighted by the nominal propensity score P (x | s) = P (Xt = x | St = s). The same
derivation also applies to the upper bound Vπ(s). An analogous extended Bellman equation bounding
the state-action value function from the observational distribution can also be derived as follows.
Theorem 2 (Causal Bellman Equation). For an MDP environment M with reward signals Yt ∈
[a, b] ⊆ R, for any policy π(x | s), its state-action value function Qπ ∈

[
Qπ(s, x), Qπ(s, x)

]
for

any state-action pair (s, x) ∈ S × X , where bounds Qπ, Qπ are given by as follows,〈
Qπ(s, x), Qπ(s, x)

〉
= P (x | s)

(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)
〈
Vπ(s

′), Vπ(s
′)
〉)

(12)

+P (¬x | s)
(
⟨a, b⟩+ γ

〈
min
s′

Vπ(s
′),max

s′
Vπ(s

′)
〉)

(13)

Among the bounds in Thm. 2, Eq. (12) is the standard iterative step of the Bellman equation in Eq. (5),
weighted by the score P (x | s). It estimates the expected return of performing action do(x) at state
s when such action matches the one selected by the behavior policy. Eq. (13) is a regularized term
accounting for uncertainties when the intervention do(x) is not observed in the offline data. Since
Thms. 1 and 2 are closed-form solutions of optimization programs and the observational constraints
in Eqs. (7) and (8) are tight, the extended Bellman’s equation bounds are sharp from offline data and
Markov property. This means they cannot be improved without additional assumptions.
Example 2 (Windy Gridworld Continued). Consider again the Windy Gridworld described in
Example 1. We compute the lower and upper bounds over the state value function following the
extended Bellman equation in Thm. 1, and provide them in Figs. 2f to 2g. We also include in Fig. 2h
the ground truth state-action value function for the action x∗ ← π∗(s) selected by the target policy.
The corresponding lower and upper bounds are shown in Figs. 2i to 2j, following the algorithmic
procedure described in Thm. 2. The analysis reveals that the derived bounds are consistent with the
ground truth value functions, corroborating the sufficiency of our proposed approach.

3 CONFOUNDING ROBUST ELIGIBILITY TRACES

The extended Bellman equations described so far require one to have precise estimations for the full
models of the nominal transition distribution Tobs, reward function Robs, and the propensity score
P (x | s). This section will introduce novel model-free algorithms, using eligibility traces (Sutton,
1988), to bound value functions from finite observational samples.

S1

X1

S2

s*

X2

S3

s*

π

1− π

π

1− π

...

Figure 3: Backup
diagram for
C-TD(λ).

We consider the episodic framework, where the agent interacts with the envi-
ronment for repeated episodes n = 1, 2, 3, . . . ; each episode contains a finite
number of time steps t = 1, 2, . . . , Tn. At each episode, the environment starts
at state s1 following the initial distribution P (S1). At each time step t, taking
the observed state st of the environment as input, the behavior policy selects
an action xt. In response to intervention do(xt), the environment produces a
subsequent reward yt and moves to the next observed state st+1. If the next
state st+1 is terminal, the episode terminates at time step Tn = t + 1; the
learner receives observational data {x̄1:Tn−1, s̄1:Tn

, ȳ1:Tn−1}.

3.1 CAUSAL TEMPORAL DIFFERENCE

We first introduce a novel augmentation procedure on the celebrated temporal
difference (TD, (Sutton, 1988; Precup et al., 2000)) that allows one to estimate
the bounds over state value functions, which we call the causal temporal
difference (C-TD). Fig. 3 shows the backup diagram illustrating the idea of our
proposed algorithm. Similar to the standard off-policy TD, our algorithm will update the estimation
of state value functions Vπ, Vπ using the sampled trajectories of transitions in the observational data.
It could use a finite number of n-step trajectories or the entire trajectory. Different from the standard
off-policy TD, our proposed algorithm does not weight each step of the transition using importance
sampling (or equivalently, inverse propensity weighting) since the true behavior policy fX (propensity
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Algorithm 1 Causal Temporal Difference (C-TD(λ))

Require: Observational data D and a candidate policy π(x | s).
1: Update the eligibility traces for all state s,

et(s) =

{
γλπ(xt−1 | st−1)et−1(s) if s ̸= st
γλπ(xt−1 | st−1)et−1(s) + 1 if s = st

(15)

where λ ∈ [0, 1] is an eligibility trace decay factor.
2: Compute the temporal difference error

δt = π(xt | st) (yt + γVt(st+1)) + π(¬xt | st) (w + γVt(s
∗))− Vt(st) (16)

3: Update the value function Vt+1(s)← Vt(s) + αet(s)δt for all state s.

Algorithm 2 Causal Tree-Backup (C-TB(λ))

Require: Observational data D and a candidate policy π(x|s).
1: Update the eligibility traces for all state-action pairs s, x,

et(s, x) =

{
γλπ(xt | st)1xt−1=xet−1(s, x) if s ̸= st
γλπ(xt | st)1xt−1=xet−1(s, x) + 1 if s = st

(17)

where λ ∈ [0, 1] is an eligibility trace decay factor.
2: Compute the temporal difference error for every action x

δt(x) =

{
yt + γ

∑
x′ π(x | st+1)Qt(st+1, x

′)−Qt(st, x) if x = xt

w + γ
∑

x′ π(x′ | s∗)Qt(s
∗, x′)−Qt(st, x) if x ̸= xt

(18)

3: Update the action-value function Qt+1(s, x)← Qt(s, x) + αet(s, x)δt(x) for all s, x.

score) is not recoverable from the observational data. Instead, C-TD weights each transition using
the target policy π and adjusts for the misalignment between the target and behavior policies using
an overestimation/underestimation of value function at state s∗. Such s∗ is set as the best-case state
associated with the highest value in our current estimation when computing upper bounds and the
worst-case state estimate for lower bounds.

To formally introduce the estimation algorithm, we first introduce some necessary notations. Let
N(s) denote the set of indices of episodes containing a state s ∈ S, and let tn(s) be the collection
of time steps in the n-th episode such that for every t ∈ tn(s), st = s. For any time step t, let
πt = π(xt | st) and ¬πt = 1− π(xt | st). We iteratively define the estimator for bounds over the
state value function Vπ(s) as follows, for any state s ∈ S,

V̂π(s) =
1

N

∑
n∈N(s)

∑
t∈t(s)

Tn−t∑
k=0

γk
(
πt+kyt+k + ¬πt+k

(
w + γV (s∗)

)) t+k−1∏
i=t

πi, (14)

Among the above equation, N represents the total number of occurrences for the even st = s in the
observational data. we set parameters w = a and V (s∗) = mins V (s) when estimating the lower
bound Vπ(s); parameters w = b and V (s∗) = maxs V (s) for the upper bound Vπ(s).

An eligibility-trace version of our proposed estimation strategy is described Alg. 1. The algorithm
keeps track of eligibility traces for every state in a similar manner to standard off-policy temporal
difference algorithms. The main difference is that here the eligibility trace is multiplied by the target
policy π(xt−1 | st−1) and a decay-rate λ, not including the nominal propensity score P (xt−1 | st−1).
When computing the temporal difference error, the algorithm adjusts for the misalignment between
the target and behavior policies by adding a regularized term w+γVt(s

∗), weighted by the probability
1− π(xt | st). We describe in Alg. 1 a version of C-TD(λ) using online update. This means that
the bounds estimate over value functions are updated at every time step. The offline version of the
algorithm will use the same temporal difference error and eligibility traces. However, the update only
occurs at the end of each episode; the increments and decrements are accumulated on the side, and
the value function estimates do not change during the episode.
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Theorem 3. For any behavior policy, for any choice of λ ∈ [0, 1] that does not depend on the actions
chosen at each state, let parameters w and s∗ be defined as follows: (1) Lower Bound Vπ: w = a

and s∗ = argmins Vt(s); (2) Upper Bound Vπ: w = b and s∗ = argmaxs Vt(s). Then, Alg. 1 with
offline updating converges with probability 1 to lower bound Vπ and upper bound Vπ, respectively,
under the usual step-size conditions on α.

(s, x)

S1

X1

s*
S2

X2

s*
S3

=
x

̸=
x

=
x

̸=
x

...

Figure 4: Backup
diagram for
C-TB(λ).

The proof of Thm. 3 first shows a contraction property for estimates V̂π, and
then follows the general convergence theorem in (Jaakkola et al., 1994).

3.2 CAUSAL TREE BACKUP

The algorithm described so far focuses on the estimation of the state value
functions. We next introduce a novel algorithm to bound the state-action value
function Qπ from finite observations.

Our algorithm is based on an augmentation on the standard tree backup (TB
(Precup et al., 2000)), which we call the causal tree backup (C-TB(λ)). The
main idea of this new algorithm is illustrated in the backup diagram of Fig. 4.
Similar to the standard tree backup, our algorithm updates the value estimates
for the action selected by the behavior policy at each time step based on the
subsequent reward and the current estimation for the value of the next state.
The algorithm then forms a new estimate for the target value function, using
the old value estimates for the actions not observed in the observational data
and the new estimated value for t-he action taken by the behavior policy. On
the other hand, the main differences include the following. (1) Eligibility traces
will not only be weighted by the target policy π(xt | st) using the observed
trajectories, but also an indicator function 1xt−1=x returning 1 if the previous
action xt−1 coincides with the target action x. (2) When the behavior policy takes the same action
xt = x as the target action, the update follows standard TB and uses the next sampled state st; when
the sampled action xt ̸= x differs from the target, our algorithm updates, instead, using the value
function associated with the next worst-case or best-case state s∗, corresponding to the estimation of
the lower bound and upper bound respectively. The n-step causal tree-backup estimator is defined as

Q̂π(s, x) =
1

N

∑
n∈N(s)

∑
t∈t(s)

γnQ(st+n, xt+n)

t+n−1∏
i=t

πi+11xi=x +

t+n∑
k=t

γk−t+1
t+k−1∏
i=t

πi+11xi=x

·

(
1xk=x

(
yk +

∑
x′ ̸=x

π(x′ | sk+1)Q(sk+1, x
′)

)
+ 1xk ̸=x

(
w +

∑
x′

π(x′ | s∗)Q(s∗, x′)

))
(19)

The above tree backup estimator also has a simple incremental implementation using eligibility traces.
An online version of this implementation is shown in Fig. 4.
Theorem 4. For any behavior policy, for any choice of λ ∈ [0, 1] that does not depend on the
actions chosen at each state, let parameters w and s∗ be defined as follows: (1) Lower Bound
Qπ: w = a and s∗ = argmins

∑
x′ π(x′ | s)Qt(s, x

′); (2) Upper Bound Qπ: w = b and
s∗ = argmaxs

∑
x′ π(x′ | s)Qt(s, x

′). Then, Alg. 2 with offline updating converges with probability
1 to lower bound Qπ and upper bound Qπ , respectively, under the usual step-size conditions on α.

The proof of the above theorem relies on a contraction property on the estimates Q̂π and follows
from the general convergence theorem in (Jaakkola et al., 1994).

4 EXPERIMENTS

We demonstrate our algorithms using different behavior policies in the Windy Gridworld described
in Example 1. Overall, we found that simulation results support our findings, and the proposed
algorithms consistently obtain informative bounds over value functions. Experiment 1 evaluates the
performance of our bounding strategy in the presence of unobserved confounding. Experiment 2 uses
data collected from a deterministic sub-optimal policy, violating the overlap. All experiments use
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(a) Policy π∗ (b) C-TD(λ) (c) C-TD(λ) (d) C-TB(λ) (e) C-TB(λ)

(f) Behavior Policy (g) Q-Learning (h) Off-Policy TD (i) Eligibility Trace (j) Vπ∗(s)

(k) C-TD(λ) (l) C-TD(λ) (m) Qπ∗(s, x∗) (n) C-TB(λ) (o) C-TB(λ)

Figure 5: Simulation results comparing causally enhanced off-policy algorithms using eligibility
traces (C-TD(λ) and C-TB(λ)) with standard off-policy methods. The offline data are collected
from (a - e) a confounded behavior policy affected by the unobserved confounder; and (f - o) a
deterministic behavior policy following sub-optimal actions.

5×104 offline observational samples, meaning that error bars are not significant, hence, not explicitly
shown; the decay factor λ = 0.5. See Appendix B for more details on the experimental setup.

Experiment 1. Consider again the learning setting described in Example 1 where the offline data
is contaminated with unobserved confounding bias, and the behavior policy selects actions based
on the agent’s state and the latent wind direction. We apply C-TD(λ) to derive bounds over the
state value function Vπ∗(s) and provide them in Figs. 5b and 5c. We also compute the bounds over
the state-action value function Qπ∗(s, x∗) for actions x∗ ← π∗(s) using C-TB(λ); the simulation
results are shown in Figs. 5d and 5e. The analysis reveals that our algorithm consistently recovers the
closed-form bounds containing the ground-truth value functions, as previously shown in Fig. 2.

Experiment 2. For the Windy Gridworld environment described in Example 1, suppose the data
is now collected by a deterministic behavior policy that always first moves towards the center and
then moves down toward the goal; its parametrization is provided in Fig. 5f. This means that the
overlap does not hold when the agent is located on either side of the top half of the board. We
apply standard off-policy algorithms to evaluate the effect of the target policy π∗ of Fig. 5a and
provide their evaluations in Figs. 5g to 5i. The propensity score is truncated using a small positive
real 0 < ϵ < 1 if P (x | s) = 0. We also compute bounds over the target value functions using our
proposed algorithms, C-TD(λ) and C-TB(λ), and provide their evaluations in Figs. 5k to 5l and
Figs. 5n to 5o respectively. By comparing with the ground-truth values in Figs. 5j and 5m, we found
that C-TD(λ) and C-TB(λ) can consistently obtain informative bounds; as expected, standard
off-policy methods are not robust against no-overlap and deviate significantly from the target effects.

5 CONCLUSION

This paper investigates off-policy evaluation in Markov Decision Processes from offline data collected
by a different behavior policy, where unobserved confounding bias and no-overlap cannot be ruled

9
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out a priori. This leads to violations of causal consistency (Def. 2), which could pose significant
challenges to standard off-policy algorithms. We first extend the celebrated Bellman’s equation
to derive informative bounds over values functions from the observational data, which are robust
against bias due to the presence of unobserved confounding and no-overlap. Based on these extended
equations, we propose two novel model-free off-policy algorithms using eligibility traces – one based
on the standard temporal difference (C-TD(λ)), and the other based on the tree-backup (C-TB(λ)).
These algorithms permit us to bound value functions from finite observations consistently.

ETHICS STATEMENT

This paper investigates the theoretical framework of robust off-policy evaluation from biased offline
data generated by a different behavior. Since unobserved confounding or no-overlap cannot be
ruled out a priori, the agent’s system dynamics in the environment cannot be fully identified from
the offline data. To address this challenge, we proposed novel off-policy algorithms that allow the
agent to derive informative bounds over value functions induced by a target policy from biased
offline data. A positive impact of this work is that we address the potential risk of policy learning
from offline data with the presence of unobserved confounding. Our framework is inherently robust
against confounding bias and may apply to various consequential domains involving complex human
interactions, including healthcare, marketing, finance, and autonomous driving. More broadly,
automated decision systems using causal inference methods prioritize safety and robustness during
their learning processes. Such requirements are increasingly essential since black-box AI systems are
prevalent, and our understanding of their potential implications is still limited.

REPRODUCIBILITY STATEMENT

The complete proof of all theoretical results presented in this paper, including Thms. 1 to 4, is
provided in Appendix B. Detailed descriptions of the experimental setup are included in Appendix C.
Readers can find all appendices as part of the supplementary text after the “References” section. All
the experiments are synthetic and do not introduce any new assets. Windy Gridworld is implemented
based on the Gymnasium framework (Towers et al., 2024).

REFERENCES

Kishan Panaganti Badrinath and Dileep Kalathil. Robust reinforcement learning using least squares
policy iteration with provable performance guarantees. In International Conference on Machine
Learning, pp. 511–520. PMLR, 2021.

Patrick Bajari, C Lanier Benkard, and Jonathan Levin. Estimating dynamic models of imperfect
competition. Econometrica, 75(5):1331–1370, 2007.

A. Balke and J. Pearl. Bounds on treatment effects from studies with imperfect compliance. Journal
of the American Statistical Association, 92(439):1172–1176, September 1997.

Elias Bareinboim, Juan D Correa, Duligur Ibeling, and Thomas Icard. On pearl’s hierarchy and the
foundations of causal inference. In Probabilistic and causal inference: the works of judea pearl,
pp. 507–556. 2022.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Steven T Berry and Giovanni Compiani. An instrumental variable approach to dynamic models. The
Review of Economic Studies, 90(4):1724–1758, 2023.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

David Bruns-Smith and Angela Zhou. Robust fitted-q-evaluation and iteration under sequentially
exogenous unobserved confounders. arXiv preprint arXiv:2302.00662, 2023.

Federico A Bugni. Bootstrap inference in partially identified models defined by moment inequalities:
Coverage of the identified set. Econometrica, 78(2):735–753, 2010.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Carlos Cinelli, Daniel Kumor, Bryant Chen, Judea Pearl, and Elias Bareinboim. Sensitivity analysis of
linear structural causal models. In International Conference on Machine Learning, pp. 1252–1261,
2019.

Michael J Dickstein and Eduardo Morales. What do exporters know? The Quarterly Journal of
Economics, 133(4):1753–1801, 2018.

Mohammad Ghavamzadeh, Marek Petrik, and Yinlam Chow. Safe policy improvement by minimizing
robust baseline regret. Advances in Neural Information Processing Systems, 29, 2016.

G Imbens and J Angrist. Estimation and identification of local average treatment effects. Economet-
rica, 62:467–475, 1994.

Guido W Imbens and Donald B Rubin. Bayesian inference for causal effects in randomized experi-
ments with noncompliance. The annals of statistics, pp. 305–327, 1997.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

Tommi Jaakkola, Satinder Singh, and Michael Jordan. Reinforcement learning algorithm for partially
observable markov decision problems. Advances in neural information processing systems, 7,
1994.

Andrew Jesson, Alyson Douglas, Peter Manshausen, Nicolai Meinshausen, Philip Stier, Yarin
Gal, and Uri Shalit. Scalable sensitivity and uncertainty analysis for causal-effect estimates of
continuous-valued interventions. arXiv preprint arXiv:2204.10022, 2022.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In
Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pp.
652–661, New York, New York, USA, 20–22 Jun 2016. PMLR. URL http://proceedings.
mlr.press/v48/jiang16.html.

Shalmali Joshi, Junzhe Zhang, and Elias Bareinboim. Towards safe policy learning under partial
identifiability: A causal approach. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 13004–13012, 2024.

Nathan Kallus and Angela Zhou. Confounding-robust policy improvement. In Proceedings of the
32nd International Conference on Neural Information Processing Systems, pp. 9289–9299, 2018.

Nathan Kallus and Angela Zhou. Confounding-robust policy evaluation in infinite-horizon reinforce-
ment learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 22293–22304. Curran Associates, Inc.,
2020.

Nathan Kallus, Xiaojie Mao, and Angela Zhou. Interval estimation of individual-level causal effects
under unobserved confounding. In The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 2281–2290. PMLR, 2019.

Chinmaya Kausik, Yangyi Lu, Kevin Tan, Maggie Makar, Yixin Wang, and Ambuj Tewari. Offline
policy evaluation and optimization under confounding. In International Conference on Artificial
Intelligence and Statistics, pp. 1459–1467. PMLR, 2024.

Samir Khan, Martin Saveski, and Johan Ugander. Off-policy evaluation beyond overlap: partial
identification through smoothness. arXiv preprint arXiv:2305.11812, 2023.

Shiau Hong Lim, Huan Xu, and Shie Mannor. Reinforcement learning in robust markov decision
processes. Advances in Neural Information Processing Systems, 26, 2013.

Shie Mannor, Ofir Mebel, and Huan Xu. Robust mdps with k-rectangular uncertainty. Mathematics
of Operations Research, 41(4):1484–1509, 2016.

C.F. Manski. Nonparametric bounds on treatment effects. American Economic Review, Papers and
Proceedings, 80:319–323, 1990.

11

http://proceedings.mlr.press/v48/jiang16.html
http://proceedings.mlr.press/v48/jiang16.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hyungsik Roger Moon and Frank Schorfheide. Bayesian and frequentist inference in partially
identified models. Econometrica, 80(2):755–782, 2012.

Eduardo Morales, Gloria Sheu, and Andrés Zahler. Extended gravity. The Review of economic
studies, 86(6):2668–2712, 2019.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems, pp. 1054–1062,
2016.

Hongseok Namkoong, Ramtin Keramati, Steve Yadlowsky, and Emma Brunskill. Off-policy policy
evaluation for sequential decisions under unobserved confounding. Advances in Neural Information
Processing Systems, 33:18819–18831, 2020.

Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

Andriy Norets and Xun Tang. Semiparametric inference in dynamic binary choice models. Review of
Economic Studies, 81(3):1229–1262, 2014.

Kishan Panaganti, Zaiyan Xu, Dileep Kalathil, and Mohammad Ghavamzadeh. Robust reinforcement
learning using offline data. Advances in neural information processing systems, 35:32211–32224,
2022.

J. Pearl and J.M. Robins. Probabilistic evaluation of sequential plans from causal models with
hidden variables. In P. Besnard and S. Hanks (eds.), Proceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence (UAI 1995), pp. 444–453. Morgan Kaufmann, San Francisco,
1995.

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, New York,
2000.
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A RELATED WORK

Our work builds upon the literature on the partial identification of causal effects, sensitivity analysis,
and robust reinforcement learning from offline data.

Partial Identification and Sensitivity Analysis Seminal work of Manski (1990) developed the
first bounds on causal effects in non-identifiable settings using observational data in the single-stage
treatment model with contextual information (i.e., a contextual bandit model). These bounds were then
expanded to the instrumental variable setting (Balke & Pearl, 1997; Imbens & Angrist, 1994) partially
identify counterfactual probabilities of causation (Tian & Pearl, 2000). More recently, (Zhang &
Bareinboim, 2021) improved the bounds for applicability to continuous outcomes. (Zhang et al., 2022)
established a general framework for estimating bounds on interventional and counterfactual effects.
While Zhang et al. (2022) develop informative bounds using both observational and experimental data,
they focus on general counterfactual queries by discretizing the exogenous latent space, formulating
bounds as polynomial programs over this discretization and a Bayesian framework to approximately
estimate bounds using MCMC.

Sensitivity analysis attempts to provide intervals on causal effects by assuming the level of confound-
ing, for example, via models such as Marginal Sensitivity analysis, which considers deviations in the
propensity score in relation to the estimated propensity (Rosenbaum, 2005; Richardson et al., 2014;
Todem et al., 2010; Vansteelandt et al., 2006; Kallus & Zhou, 2018; Kallus et al., 2019; Namkoong
et al., 2020; Jesson et al., 2022; Bruns-Smith & Zhou, 2023; Kausik et al., 2024). Other approaches
explore additional parametric assumptions about the structural functions, including linearity (Cinelli
et al., 2019) and Lipschitz continuity (Khan et al., 2023). Our work does not rely on additional func-
tional constraints on the underlying system dynamics. Instead, we focus on the settings of standard
discrete Markov Decision Processes (MDPs) with an infinite horizon. We develop robust off-policy
evaluation algorithms to estimate closed-form bounds over the discounted cumulative rewards of
candidate policies from offline observational data contaminated with unobserved confounding bias.

Robust Reinforcement Learning Unlike planning in a standard MDP, robust reinforcement
learning does not assume the parametrization of the transition probability function in the underlying
model to be precisely determined. Instead, it is contained in a set of model parameters which is
called the uncertainty set (Iyengar, 2005; Nilim & El Ghaoui, 2005; Xu & Mannor, 2010; Wiesemann
et al., 2013; Yu & Xu, 2015; Mannor et al., 2016; Petrik & Russel, 2019). The goal of the agent is
to learn a robust policy that performs the best under the worst possible case in the uncertainty set.
Similar problems have been studied under the rubrics of safe policy learning (Thomas et al., 2015;
Ghavamzadeh et al., 2016) or pessimistic reinforcement learning (Shi et al., 2022).2

Robust RL algorithms with provable guarantees have been proposed in tabular settings or under the
assumptions of linear functions (Lim et al., 2013; Tamar et al., 2014; Roy et al., 2017; Badrinath &
Kalathil, 2021; Wang & Zou, 2021). Combined with the computational framework of deep learning,
robust RL algorithms have been extended to complex, high-dimensional domains (Pinto et al., 2017;
Zhang et al., 2020). More recently, (Panaganti et al., 2022) proposed Robust Fitted Q-Iteration
(RFQI) to learn the best possible robust policy from offline data with theoretical guarantees on the
performance of the learned policy. Our work differs from robust RL methods since it does not
require a pre-specified uncertainty set of model parameters. Instead, we construct the ignorance
region over the underlying system dynamics from the confounded observational data using partial
causal identification. Based on the learned uncertainty set, we then derived closed-form bounds
over the value functions of the target policy. To the best of our knowledge, this is the first work that
develops off-policy algorithms using eligibility traces to obtain evaluations of candidate policies
from biased offline data, possibly contaminated with unmeasured confounding or no-overlap, with
provable guarantees on the convergence of learned evaluations.

2Indeed, the idea of planning over a convex set of model parameters have been explored in online reinforce-
ment learning. (Strehl & Littman, 2008) utilized an extended dynamic programming to learn an optimistic policy
over a confidence set of models to balance the trade-off between exploration and exploitation.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B PROOFS

This section provides proof of the main theoretical results provided in the paper.
Theorem 1 (Causal Bellman Equation). For an MDP environment M with reward Yt ∈ [a, b] ⊆ R,
for any policy π(x | s), its state value function Vπ(s) ∈

[
Vπ(s), Vπ(s)

]
for every state s ∈ S , where

bounds Vπ, Vπ are solutions given by the following dynamic programs,3〈
Vπ(s), Vπ(s)

〉
=
∑
x

P (x | s)

(
π(x | s)

(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)
〈
Vπ(s

′), Vπ(s
′)
〉)

(10)

+π(¬x | s)
(
⟨a, b⟩+ γ

〈
min
s′

Vπ(s
′),max

s′
Vπ(s

′)
〉))

(11)

Proof. Following the Bellman equation (Bellman, 1966), the state value function at state s ∈ S is
given by

Vπ(s) =
∑
x

π(x | s)

(
R(s, x) + γ

∑
s′

T (s, x, s′)Vπ(s
′)

)
(20)

Among the above quantities, the reward functionR is bounded from the observational distribution
(Manski, 1990) as follows,

R̃ (s, x)P (x | s) + aP (¬x | s) ≤ R (s, x) ≤ R̃ (s, x)P (x | s) + bP (¬x | s) (21)

where R̃ is the nominal reward function computed from the observational distribution and is defined
in Eq. (9). Replacing the reward functionR in Eq. (20) with the above lower bound gives

Vπ(s) ≥
∑
x

π(x | s)

(
R̃ (s, x)P (x | s) + aP (¬x | s) + γ

∑
s′

T (s, x, s′)Vπ(s
′)

)
+
∑
x

bπ(x | s)P (¬x | s)
(22)

Similarly, the transition distribution T can be bounded from the observational distribution (Manski,
1990),

T̃ (s, x, s′)P (x | s) ≤ T (s, x, s′) ≤ T̃ (s, x, s′)P (x | s) + P (¬x | s) (23)

and T̃ is the nominal transition distribution computed from the observational distribution defined in
Eq. (9). Minimizing the lower bound in Eq. (22) subject to the above observational constraints in
Eq. (23) and

∑
s′ T (s, x, s′) = 1 gives the following lower bound:

Vπ(s) ≥
∑
x

π(x | s)P (x | s)

(
R̃ (s, x) + aP (¬x | s) + γ

∑
s′

T̃ (s, x, s′)Vπ(s
′)

)
+
∑
x

π(x | s)P (¬x | s)
(
b+min

s′
Vπ(s

′)
) (24)

The above lower bound is achieved by setting the worst-case transition probability T (s, x, s∗) =
P (¬x | s) for state s∗ = argmins′ Vπ(s

′) and T (s, x, s′) = T̃ (s, x, s′)P (x | s) for all the other
state s′ ̸= s∗. Note that the second term of the above inequality could be further written as:∑

x

π(x | s)P (¬x | s)
(
a+min

s′
Vπ(s

′)
)

(25)

=
∑
x

π(x | s) (1− P (x | s))
(
a+min

s′
Vπ(s

′)
)

(26)

=
∑
x

π(x | s)
(
a+min

s′
Vπ(s

′)
)
−
∑
x

π(x | s)P (x | s)
(
a+min

s′
Vπ(s

′)
)

(27)

=
∑
x

P (x | s)
(
a+min

s′
Vπ(s

′)
)
−
∑
x

π(x | s)P (x | s)
(
a+min

s′
Vπ(s

′)
)

(28)

3⟨a, b⟩ is a vector containing a lower bound a and an upper bound b. We highlight quantities that are different
from the standard Bellmen Equation.
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The last step holds since for any constant real value C,
∑

x π(x | s)C =
∑

x P (x | s)C. The above
equation can be further written as∑

x

π(x | s)P (¬x | s)
(
a+min

s′
Vπ(s

′)
)
=
∑
x

π(¬x | s)P (x | s)
(
a+min

s′
Vπ(s

′)
)

(29)

Replacing the second term in Eq. (24) gives

Vπ(s) ≥
∑
x

π(x | s)P (x | s)

(
R̃ (s, x) + bP (¬x | s) + γ

∑
s′

T̃ (s, x, s′)Vπ(s
′)

)
+
∑
x

π(¬x | s)P (x | s)
(
a+min

s′
Vπ(s

′)
) (30)

After a few simplifications, we obtain

Vπ(s) ≥ P (x | s)

(
π(x | s)

(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)Vπ(s
′)

)

+π(¬x | s)
(
a+ γmin

s′
Vπ(s

′)

)) (31)

Finally, minimizing the value function Vπ subject to the above inequality gives the lower bound Vπ.
The upper bound Vπ over the state value function could be similarly derived.

Theorem 2 (Causal Bellman Equation). For an MDP environment M with reward signals Yt ∈
[a, b] ⊆ R, for any policy π(x | s), its state-action value function Qπ ∈

[
Qπ(s, x), Qπ(s, x)

]
for

any state-action pair (s, x) ∈ S × X , where bounds Qπ, Qπ are given by as follows,〈
Qπ(s, x), Qπ(s, x)

〉
= P (x | s)

(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)
〈
Vπ(s

′), Vπ(s
′)
〉)

(12)

+P (¬x | s)
(
⟨a, b⟩+ γ

〈
min
s′

Vπ(s
′),max

s′
Vπ(s

′)
〉)

(13)

Proof. Applying Bellman equation (Bellman, 1966) allows us to iteratively write the state-action
value function for any state-action pair (s, x) ∈ S × X as

Qπ(s, x) = R(s, x) + γ
∑
s′

T (s, x, s′)Vπ(s
′) (32)

where the reward functionR is bounded from the observational distribution (Manski, 1990) following
Eq. (21). Replacing the reward functionR in the above equation with the corresponding lower bound
gives

Qπ(s, x) ≥ P (x | s)
(
R̃(s, x) + γ

∑
s′

T (s, x, s′)Vπ(s
′)

)
+ aP (¬x | s) (33)

Similarly, the transition distribution T can be bounded from the observational distribution (Manski,
1990) following Eq. (23). Minimizing the lower bound in Eq. (33) subject to the above observational
constraints in Eq. (23) and

∑
s′ T (s, x, s′) = 1 gives the following solution:

Qπ(s, x) ≥ P (x | s)
(
R̃(s, x) + γ

∑
s′

T̃ (s, x, s′)Vπ(s
′)

)
+ P (¬x | s)

(
a+min

s′
Vπ(s

′)
)

(34)

This lower bound is achieved by setting the worst-case transition probability T (s, x, s∗) = P (¬x | s)
for state s∗ = argmins′ Vπ(s

′) and T (s, x, s′) = T̃ (s, x, s′)P (x | s) for all the other state s′ ̸= s∗.
Finally, notice that Vπ(s) is a function of Qπ(s, x) and is given by Vπ(s) =

∑
x π(x | s)Qπ(s, x).

Minimizing the state-action value function Qπ subject to the above inequality leads to the lower
bound Qπ . The upper bound Qπ could be similarly derived.
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Theorem 3. For any behavior policy, for any choice of λ ∈ [0, 1] that does not depend on the actions
chosen at each state, let parameters w and s∗ be defined as follows: (1) Lower Bound Vπ: w = a

and s∗ = argmins Vt(s); (2) Upper Bound Vπ: w = b and s∗ = argmaxs Vt(s). Then, Alg. 1 with
offline updating converges with probability 1 to lower bound Vπ and upper bound Vπ, respectively,
under the usual step-size conditions on α.

Proof. We will focus on the convergence of lower bound Vπ(s); the proof for the upper bound Vπ(s)
follows analogously. The proof is structured in two stages. First, we consider the truncated lower
bound estimates corresponding to Eq. (14), which sums the adjusted rewards obtained from the
environment for only n steps, then uses the current estimate of the value function lower bound to
approximate the remaining value:

Rt
(n) =

n−1∑
k=0

γk
(
πt+kyt+k + ¬πt+k

(
b+ γmin

s′
V (s′)

)) t+k−1∏
i=t

πi + γnV (st+n)

t+k−1∏
i=t

πi (35)

We need to show that Rt
(n) − Vπ is a contraction mapping in the max norm. If this is true for any

n, then by applying the general convergence theorem, the n-step return converges to Vπ. Then any
convex combination will also converge to Vπ . For example, any combination using a λ parameter in
the style of eligibility traces will converge to Vπ .

The expected value of the adjusted return with regard to the observational distribution for state s can
be expressed as follows 4:

E
[
Rt

(n) | St = s
]

(36)

=

n∑
k=1

∑
s̄1:k,x̄1:k,ȳ1:k

P (s̄1:k, x̄1:k, ȳ1:k) γ
k−1

(
πkyk + ¬πk

(
b+min

s′
V (s′)

)) k−1∏
i=1

πi (37)

+
∑

s̄1:n,x̄1:n

P (s̄1:n, x̄1:n) γ
nV (sn)

n−1∏
i=1

πi (38)

=

n∑
k=1

γk−1
∑

s̄1:k,x̄1:k

k−1∏
i=1

T̃ (si, xi, si+1)P (xi | si)π(xi | si) (39)

·
(
π(xk | sk)R̃(sk, xk) + ¬π(xk | sk)

(
b+ γmin

s′
V (s′)

))
(40)

+ γn
∑

s̄1:n,x̄1:n

n−1∏
i=1

T̃ (si, xi, si+1)P (xi | si)π(xi | si)V (sn) (41)

By applying the extended Bellman equation for the lower bound Vπ iteratively n times, we obtain:

Vπ(s) =

n∑
k=1

∑
s̄1:k,x̄1:k

γk−1
k−1∏
i=1

T̃ (si, xi, si+1)P (xi | si)π(xi | si) (42)

·
(
π(xk | sk)R̃(sk, xk) + ¬π(xk | sk)

(
b+ γmin

s′
Vπ(s

′)
))

(43)

+ γn
∑

s̄1:n,x̄1:n

n−1∏
i=1

T̃ (si, xi, si+1)P (xi | si)π(xi | si)Vπ(sn) (44)

Therefore,

max
s

∣∣∣E [Rt
(n) | St = s

]
− Vπ(s)

∣∣∣ ≤ γmax
s

∣∣V (s)− Vπ(s)
∣∣ (45)

This means that any n-step return is a contraction in the max norm, and therefore, by applying
(Jaakkola et al., 1994, Theorem 1), it converges to Vπ(s).

4We abuse notation a bit and ignore the expected value operator E [·] outside.
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In the second stage, we show that by applying the updates of Alg. 1 for n successive steps, we
perform the same update by using the n-step adjusted return Rt

(n). The eligibility trace for state s
can be written as, for tn ∈ t(s),

et(s) = γt−tn
t∏

i=tn+1

πi. (46)

We have
n∑

k=1

et+k−1(s)δt+k−1(s) (47)

=

n∑
k=1

γk−1
t+k−1∏
i=t+1

πi

(
πt+k (yt+k + γV (st+k)) + πt+k

(
b+ γmin

s′
V (s′)

)
(48)

− V (st+k−1)
)

(49)

=

n−1∑
k=0

γk
(
πt+kyt+k + ¬πt+k

(
b+ γmin

s′
V (s′)

)) t+k−1∏
i=t

πi + γnV (st+n)

t+k−1∏
i=t

πi (50)

− V (st) (51)

= Rt
(n) − V (st) (52)

Since C-TD(λ) is equivalent to applying a convex mixture of n-step updates, and each update
converges to correct lower bounds Vπ for the state value functions, Alg. 1 converges to correct lower
bounds as well.

Theorem 4. For any behavior policy, for any choice of λ ∈ [0, 1] that does not depend on the
actions chosen at each state, let parameters w and s∗ be defined as follows: (1) Lower Bound
Qπ: w = a and s∗ = argmins

∑
x′ π(x′ | s)Qt(s, x

′); (2) Upper Bound Qπ: w = b and
s∗ = argmaxs

∑
x′ π(x′ | s)Qt(s, x

′). Then, Alg. 2 with offline updating converges with probability
1 to lower bound Qπ and upper bound Qπ , respectively, under the usual step-size conditions on α.

Proof. We will focus on the convergence of lower bound Qπ(s, x); the proof for the upper bound
Qπ(s, x) follows analogously. This proof is structured in two stages. Let Qn denote the n-step tree
backup estimator defined in Eq. (19). First we show that E [Qn(s, x)] −Qπ(s, x) is a contraction
using a proof by induction.

Let Q be the current estimate of the lower bound for the value function. For n = 1,

max
s,x

∣∣E [Q1(s, x)]−Qπ(s, x)
∣∣ (53)

= max
s,x

∣∣∣∣P (x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)
∑
x′

π(x′ | s′)Q(s′, x′)

)
(54)

+ P (¬x | s)
(
b+ γmin

s′

∑
x′

π(x′ | s′)Q(s′, x′)

)
(55)

− P (x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)
∑
x′

π(x′ | s′)Qπ(s
′, x′)

)
(56)

− P (¬x | s)
(
b+ γmin

s′

∑
x′

π(x′ | s′)Qπ(s
′, x′)

)∣∣∣∣ (57)

≤ γmax
s,x

∣∣Q(s, x)−Qπ(s, x)
∣∣ (58)

For the induction step, we assume that

max
s,x

∣∣E [Qn(s, x)]−Qπ(s, x)
∣∣ ≤ γmax

s,x

∣∣Q(s, x)−Qπ(s, x)
∣∣ (59)
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Next we want to show that the same holds for Qn+1(s, x). We can rewrite Qn+1(s, x) as follows,

Qn+1(s, x) = 1xt=x

(
yt +

∑
x′

(
1x′ ̸=xπ(x

′ | st+1)Q(st+1, x
′) + 1x′=xQn(st+1, x)

))
(60)

+ 1xt ̸=x

(
w +

∑
x′

π(x′ | s∗)Q(s∗, x′)

)
(61)

We must have

max
s,x

∣∣E [Qn+1(s, x)]−Qπ(s, x)
∣∣ (62)

= max
s,x

∣∣∣∣P (x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)
∑
x′

π(x′ | s′) (63)

1x′ ̸=xQ(s′, x′) + 1x′=xE [Qn(s
′, x)]

)
(64)

+ P (¬x | s)
(
b+ γmin

s′

∑
x′

π(x′ | s′)Q(s′, x′)

)
(65)

− P (x | s)
(
R̃ (s, x) + γ

∑
s′,x′

T̃ (s, x, s′)
∑
x′

π(x′ | s′)Qπ(s
′, x′)

)
(66)

− P (¬x | s)
(
b+ γmin

s′

∑
x′

π(x′ | s′)Qπ(s
′, x′)

)∣∣∣∣ (67)

≤ γmax
s,x

∣∣∣∣P (x | s)γ
∑
s′,x′

T̃ (s, x, s′)
∑
x′

π(x′ | s′)1x′ ̸=x

(
Q(s′, x′)−Qπ(s

′, x′)
)

(68)

+ 1x′=xE
[(
Qn(s

′, x)−Qπ(s
′, x′)

)]
(69)

+ P (¬x | s)min
s′

∑
x′

π(x′ | s′)
(
Q(s′, x′)−Qπ(s

′, x′)
) ∣∣∣∣ (70)

≤ γmax
s,x

∣∣Q(s, x)−Qπ(s, x)
∣∣ (71)

By applying (Jaakkola et al., 1994, Theorem 1), we can conclude that any n-step adjusted return
converges to the correct lower bound for the state-action value function. Since all the n-step returns
converge to Qπ , any convex linear combination of n-step returns also converges to Qπ .

For the second part of the proof, we show that C-TB(λ) with λ = 1 for n steps is equivalent to
using Qn. The eligibility trace for a state-action pair (s, x) can be rewritten as:

et(s, x) = γk
t+k−1∏
i=t+1

πi+11xi=x. (72)

By adding and subtracting the weighted action value πt+k1xt+k=x for the action taken on each step
from the return, and regrouping, we have

Q(st, x) +

n∑
k=1

γk−1
t+k−1∏
i=t+1

πi+11xi=x

(
1xt+k=x

(
yt+k +

∑
x′ ̸=x

π(x′ | st+k+1)Q(st+k+1, x
′)

)
(73)

+ 1xt+k ̸=x

(
w +min

s′

∑
x′

π(x′ | s′)Q(s′, x′)

)
−Q(st+k, x)

)
(74)

= Q(st, x) +

n∑
k=1

et+k(st, x)δt+k(x) (75)

This concludes the proof.
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u = west
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u = north
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0.6 0.1 0.1 0.1 0.1

Figure 6: Trajectories sampled from the interventional transition distribution T .

C EXPERIMENTAL SETUPS

In this section, we provide details on the experimental setups and additional discussion on the simula-
tion environment. All experiments were performed on a 2021 MacBook Pro with 16GB memory,
implemented in Python. The simulation environment is built upon the Gymnasium framework
(Brockman et al., 2016). We plan to release the source code with the camera-ready version of the
manuscript.

Figure 7: Agent’s
state in Windy Grid-
world environment.

Windy Gridworld Our simulation builds on the Windy Gridworld environ-
ment described in Fig. 1b, where the red dot represents the agent and the green
square represents the goal state. The agent’s location is represented using a
vector (i, j) where i ∈ {0, 1, 2} is the column index, and j ∈ {0, 1, 2} is the
row index. So the agent’s starting state is (0, 0) and the goal state is (1, 2).
Fig. 7 shows the detailed state representation for each location in the gridworld.

The agent can take five actions x ∈ X - up, down, right, left, and
stay-put, corresponding to vector (0,−1), (0, 1), (1, 0), (−1, 0), and (0, 0)
respectively. Meanwhile, the agent’s movement is also affected by a wind; the
wind direction u ∈ U include - north, south, east, west, and no-wind,
corresponding to vector (0,−1), (0, 1), (1, 0), (−1, 0), and (0, 0) respectively.
Table 1 summarizes the detailed parametrization for the agent’s action and the wind direction. For

Action x up down right left stay-put

Wind u north south east west no-wind

Vector v (0,−1) (0, 1) (1, 0) (−1, 0) (0, 0)

Table 1: Vector representations for the agent’s action X and the wind direction U .
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Figure 8: Trajectories sampled from the observational transition distribution T̃ induced by a con-
founded behavior policy fX .

every time step t = 1, 2, . . . , the wind Ut can blow in directions north, south, east, west with
equal probabilities of 10%; otherwise, the weather is nice and there is no-wind. That is,

∀i ∈ {−1, 1}, P (Ut = (i, 0)) = P (Ut = (0, i)) = 0.1, and P (Ut = (0, 0)) = 0.6 (76)

At every time step t, the agent receives a constant reward Yt ← −1. The next state of the agent is
shifted by both its action and the wind direction through the mechanism

St+1 ← max {min {St +Xt + Ut, (2, 2)} , (0, 0)} . (77)

In other words, the agent’s next state St+1 is a vector sum of the agent’s current location St, its action
Xt, and the wind direction Ut, truncated by the board’s boundary i = 0, 2 and j = 0, 2. For instance,
we show in Fig. 6 the system dynamics for the agent’s interactions with the gridworld environment
at from the location s = (0, 0), taking the action down (x = (0, 1)). In this case, when the wind is
blowing towards south (u = (0, 1)), the agent’s location will be shifted by both the action x and the
windy direction u, and moves to the bottom left corner s′ = (0, 2) at the next time step. Since among
all wind directions, u = east is the only latent state moving the agent to the center s′ = (0, 2), we
must have the following evaluation for the interventional distribution PXt

(St+1 | St),

PXt←(0,1) (St+1 = (0, 2) | St = (0, 0)) = P (Ut = (1, 0)) (78)

= 0.1 (79)

That is, the agent’s transition distribution T (s, x, s′) = 0.1 when starting from s = (0, 1), taking
action x = (0, 1), and moving to the next state s′ = (0, 2).

Confounded Behavior Policy Consider now an off-policy learning task in the windy gridworld,
where the agent’s goal is to evaluate the expected return of a target policy π∗ described in Fig. 2a.
Following such a policy π∗, the agent will consistently move towards the goal state s = (1, 2) from
its current location, regardless of the wind direction.

The detailed parametrization of the agent’s system dynamics in the windy gridworld remains unknown.
Instead, its has access to observed trajectories generated by a behavior policy x← fX(s, u) which
could sense the wind and select an action accordingly; Fig. 9 provides a detailed description for this
behavior policy. For example, when the agent is located in the top-left corner (s = (0, 0)) and the
wind is blowing south (s = (0, 1)), the behavior policy x← fX(s, u) will decide to move right
(x = (1, 0)) so that the agent could get to the center (s′ = (1, 1)).
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(a) no wind (b) east (c) south (d) west (e) north

Figure 9: A confounded behavior policy fX selecting values based on the agent’s location S and the
latent wind direction U .

Consequently, the wind direction Ut becomes an unobserved confounder in the generative process for
the offline observational data, affecting the allocated action Xt and the next state St+1 simultaneously.
The presence of unobserved confounders lead to violations of causal consistency (Def. 2). To witness,
Fig. 8 shows observed trajectories in the offline data when the agent starts from state s = (0, 0).
When the weather is nice (no-wind) or the wind u is blowing towards east or west, the behavior
policy selects action x = down, similar to the interventional trajectories of Fig. 6. On the other
hand, when the wind is blowing towards north or south, the behavior policy selects action
x = right, moving the agent towards the center of the board. Among all the possible next state in
the observational data, we find that the agent will never reach the bottom left corner s = (0, 2). This
means that when evaluating the observational distribution P (St+1 | St, Xt), we must have

P (St+1 = (0, 2) | St = (0, 0), Xt = (0, 1)) = 0 (80)

In other words, the nominal transition distribution T̃ (s, x, s′) = 0 when one observes the agent
starting from s = (0, 1), taking action x = (0, 1), and moving to the next state s′ = (0, 2). Comparing
the evaluations in Eqs. (79) and (80), we find that Pxt (st+1 | st) ̸= P (st+1 | st, xt), that is, causal
consistency (Def. 2) does not hold between the agent’s system dynamics in windy gridworld and the
observational distribution generated by the confounded behavior policy in Fig. 9.
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