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Abstract
Residual networks are an Euler discretization001
of solutions to Ordinary Differential Equa-002
tions (ODE). This paper explores a deeper re-003
lationship between Transformer and numeri-004
cal ODE methods. We first show that a resid-005
ual block of layers in Transformer can be de-006
scribed as a higher-order solution to ODE.007
Inspired by this, we design a new architec-008
ture, ODE Transformer, which is analogous009
to the Runge-Kutta method that is well moti-010
vated in ODE. As a natural extension to Trans-011
former, ODE Transformer is easy to imple-012
ment and efficient to use. Experimental results013
on the large-scale machine translation, abstrac-014
tive summarization, and grammar error cor-015
rection tasks demonstrate the high genericity016
of ODE Transformer. It can gain large im-017
provements in model performance over strong018
baselines (e.g., 30.77 and 44.11 BLEU scores019
on the WMT’14 English-German and English-020
French benchmarks) at a slight cost in infer-021
ence efficiency.022

1 Introduction023

Residual networks have been used with a great024

success as a standard method of easing information025

flow in multi-layer neural models (He et al., 2016;026

Vaswani et al., 2017). Given an input yt, models of027

this kind define the output of a layer t to be:028

yt+1 = yt + F (yt, θt) (1)029

where F (·, ·) is the function of the layer and θt is its030

parameter. Interestingly, recent work in machine031

learning (Weinan, 2017; Lu et al., 2018; Haber032

et al., 2018; Chang et al., 2018; Ruthotto and Haber,033

2019) points out that Eq. (1) is an Euler discretiza-034

tion of the Ordinary Differential Equation (ODE),035

like this:036

dy(t)

dt
= F (y(t), θ(t)) (2)037

where y(t) and θ(t) are continuous with respect to038

t. In this way, we can call Eq. (1) an ODE block.039
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Figure 1: Models with different ODE blocks.

This finding offers a new way of explaining resid- 040

ual networks in the view of numerical algorithms. 041

Then, one can think of a multi-layer network as 042

applying the Euler method (i.e., Eq. (1)) to solve 043

Eq. (2) subject to the initial conditions y(0) = y0 044

and θ(0) = θ0. 045

The solution of Eq. (2) has a sufficiently low 046

error bound (call it a stable solution) only if θ(t) 047

changes slow along t (Haber and Ruthotto, 2017; 048

Chen et al., 2018). But this assumption does not 049

always hold for state-of-the-art natural language 050

processing (NLP) systems, in which models are 051

non-linear and over-parameterized. For example, 052

language modeling and machine translation sys- 053

tems learn quite different parameters for different 054

layers, especially when the layers are close to the 055

model input (Vaswani et al., 2017; Dai et al., 2019). 056

Also, truncation errors are nonnegligible for the 057

Euler method because it is a first-order approxima- 058

tion to the true solution (He et al., 2019). These 059

problems make the situation worse, when more lay- 060

ers are stacked and errors are propagated through 061

the neural network. It might explain why recent 062

Machine Translation (MT) systems cannot benefit 063

from extremely deep models (Wang et al., 2019; 064

Liu et al., 2020a; Wei et al., 2020; Li et al., 2020). 065

This paper continues the line of research on the 066
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ODE-inspired method. The basic idea is to use067

a high-order method for more accurate numerical068

solutions to the ODE. This leads to a larger ODE069

block that generates a sequence of intermediate ap-070

proximations to the solution. We find that the larger071

ODE block is sufficient to take the role of several072

ODE blocks with first-order solutions. The benefit073

is obvious: the use of fewer ODE blocks lowers074

the risk of introducing errors in block switching,075

and the high-order method reduces the approxima-076

tion error in each ODE block. See Figure 1 for a077

comparison of different models.078

Our method is parameter-efficient because θ(t)079

is re-used within the same ODE block. As another080

“bonus", the model can be improved by learning081

coefficients of different intermediate approxima-082

tions in a block. We evaluate our method in strong083

Transformer systems, covering both the wide (and084

big) model and the deep model. For machine trans-085

lation tasks, ODE Transformer achieves 30.77 and086

44.11 BLEU scores on the WMT’14 En-De and087

En-Fr test sets, setting a new state-of-the-art on the088

WMT’14 En-Fr task. It also significantly outper-089

forms baselines on abstractive summarization and090

grammar error correction tasks.091

2 Transformer and ODEs092

We start with a description of Transformer, fol-093

lowed by its relationship with ODEs. We choose094

Transformer for our discussion and experiments095

because it is one of the state-of-the-art models in096

recent sentence generation tasks.097

2.1 Transformer098

Transformer is an example of the encoder-decoder099

paradigm (Vaswani et al., 2017). The encoder is100

a stack of identical layers. Each layer consists of101

a self-attention block and a feedforward network102

(FFN) block. Both of them equip with a residual103

connection and a layer normalization unit. Note104

that the term “block” is used in many different105

ways. In this paper, the term refers to any neural106

network that is enhanced by the residual connection107

(occasionally call it a residual block). Following108

the Pre-norm architecture (Wang et al., 2019), we109

define a block as110

yt+1 = yt +G(LN(yt), θt) (3)111

where LN(·) is the layer normalization function,1112

and G(·) is either the self-attention or feedforward113

1We drop the parameter of LN(·) for simplicity.

network. The decoder shares a similar architec- 114

ture, having an additional encoder-decoder atten- 115

tion block sandwiched between the self-attention 116

and FFN blocks. 117

2.2 Ordinary Differential Equations 118

An ordinary differential equation is an equation 119

involving a function y(t) of a variable t and its 120

derivatives. A simple form of ODE is an equation 121

that defines the first-order derivative of y(t), like 122

dy(t)

dt
= f(y(t), t) (4) 123

where f(y(t), t) defines a time-dependent vector 124

field if we know its value at all points of y and all 125

instants of time t. Eq. (4) covers a broad range 126

of problems, in that the change of a variable is de- 127

termined by its current value and a time variable t. 128

This formulation also works with Pre-norm Trans- 129

former blocks. For notational simplicity, we re- 130

define G(LN(yt), θt) as a new function F (yt, θt): 131

F (yt, θt) = G(LN(yt), θt)) (5) 132

We then relax yt and θt to continuous functions 133

y(t) and θ(t), and rewrite Eq. (3) to be: 134

y(t+ ∆t) = y(t) + ∆t · F (y(t), θ(t)) (6) 135

where ∆t is the change of t, and is general called 136

step size. Obviously, we have ∆t = 1 in Trans- 137

former. But we can adjust step size ∆t using a 138

limit, and have 139

lim
∆t→0

y(t+ ∆t)− y(t)

∆t
= F (y(t), θ(t)) (7) 140

Given the fact that lim∆t→0
y(t+∆t)−y(t)

∆t = dy(t)
dt , 141

Eq. (7) is an instance of Eq. (4). The only differ- 142

ence lies in that we introduce θ(t) into the right- 143

hand side of Eq. (4). Then, we say that a Pre-norm 144

Transformer block describes an ODE. It has been 145

found that Eq. (3) shares the same form as the Eu- 146

ler method of solving the ODE described in Eq. (7) 147

(Haber and Ruthotto, 2017). This establishes a re- 148

lationship between Transformer and ODEs, in that, 149

given F (·, ·) and learned parameters {θt}, the for- 150

ward pass of a multi-block Transformer is a process 151

of running the Euler method for several steps. 152

3 The ODE Transformer 153

In numerical methods of ODEs, we want to en- 154

sure the precise solutions to the ODEs in a mini- 155

mum number of computation steps. But the Euler 156
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method is not “precise” because it is a first-order157

method, and naturally with local truncation errors.158

The global error might be larger if we run it for159

a number of times.2 This is obviously the case160

for Transformer, especially when the multi-layer161

neural network arises a higher risk of unstability in162

solving the ODEs (Haber and Ruthotto, 2017).163

3.1 High-Order ODE Solvers164

Here we use the Runge-Kutta methods for a higher165

order solution to ODEs (Runge, 1895; Kutta, 1901;166

Butcher, 1996; Ascher and Petzold, 1998). They167

are a classic family of iterative methods with dif-168

ferent orders of precision.3 More formally, the ex-169

plicit Runge-Kutta methods of an n-step solution170

is defined to be:171

yt+1 = yt +

n∑
i=1

γiFi (8)172

F1 = hf(yt, t) (9)173

Fi = hf(yt +
i−1∑
j=1

βijFj , t+ αih) (10)174

where h is the step size and could be simply 1 in175

most cases. Fi is an intermediate approximation176

to the solution at step t+ αih. α, β and γ are co-177

efficients which can be determined by the Taylor178

series of yt+1 (Butcher, 1963). Eq. (10) describes a179

sequence of solution approximations {F1, ..., Fn}180

over n steps {t + α1h, ..., t + αnh}. These ap-181

proximations are then interpolated to form the final182

solution, as in Eq. (8).183

The Runge-Kutta methods are straightforwardly184

applicable to the design of a Transformer block. All185

we need is to replace the function f (see Eq. (10))186

with the function F (see Eq. (5)). The advantage187

is that the function F is re-used in a block. Also,188

the model parameter θt can be shared within the189

block.4 In this way, one can omit t + αih in Eq.190

(10), and compute Fi by191

Fi = F (yt +
i−1∑
j=1

βijFj , θt) (11)192

2The global error is what we would ordinarily call the error:
the difference between y(t) and the true solution. The local
error is the error introduced in a single step: the difference
between y(t) and the solution obtained by assuming that y(t−
1) is the true solution

3A p-order numerical method means that the global trun-
cation error is proportional to p power of the step size.

4Although we could distinguish the parameters at different
steps in a block, we found that it did not help and made the
model difficult to learn.

This makes the system more parameter-efficient. 193

As would be shown in our experiments, the high- 194

order Runge-Kutta methods can learn strong NMT 195

systems with significantly smaller models. 196

The Runge-Kutta methods are general. For ex- 197

ample, the Euler method is a first-order instance 198

of them. For a second-order Runge-Kutta (RK2) 199

block, we have 200

yt+1 = yt +
1

2
(F1 + F2) (12) 201

F1 = F (yt, θt) (13) 202

F2 = F (yt + F1, θt) (14) 203

This is also known as the improved Euler method. 204

Likewise, we can define a fourth-order Runge- 205

Kutta (RK4) block to be: 206

yt+1 = yt + 207

1

6
(F1 + 2F2 + 2F3 + F4) (15) 208

F1 = F (yt, θt) (16) 209

F2 = F (yt +
1

2
F1, θt) (17) 210

F3 = F (yt +
1

2
F2, θt) (18) 211

F4 = F (yt + F3, θt) (19) 212

See Figure 2 for a comparison of different 213

Runge-Kutta blocks. It should be noted that the 214

method presented here can be interpreted from 215

the perspective of representation refinement (Greff 216

et al., 2017). It provides a way for a function to 217

update the function itself. For example, Universal 218

Transformer refines the representation of the input 219

sequence using the same function and the same pa- 220

rameters in a block-wise manner (Dehghani et al., 221

2019). Here we show that inner block refinements 222

can be modeled with a good theoretical support. 223

3.2 Coefficient Learning 224

In our preliminary experiments, the RK2 and RK4 225

methods yielded promising BLEU improvements 226

when the model was shallow. But it was found that 227

the improvements did not persist for deeper models. 228

To figure out why this happened, let us review the 229

Runge-Kutta methods from the angle of training. 230

Take the RK2 method as an example. We rewrite 231

Eq. (12) by substituting F1 and F2, as follow 232

yt+1 = yt +
1

2
F (yt, θt) + 233

1

2
F (yt + F (yt, θt), θt) (20) 234
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Figure 2: Architectures of ODE Transformer blocks.

Let E be the loss of training, L be the number235

blocks of the model, and yL be the model output.236

The gradient of E at yt is237

∂E
∂yt

=
∂E
∂yL
· 1

2L−t
·
L−1∏
k=t

(1 + gk) (21)238

where239

gk =
(

1 +
∂F (yk, θk)

∂yk

)
·240 (

1 +
∂F (yk + F (yk, θk), θk)

∂yk + F (yk, θk)

)
(22)241

Seen from Eq. (21), ∂E
∂yt

is proportional to the242

factor 1
2L−t

. This leads to a higher risk of gradient243

vanishing when L is larger.244

The problem somehow attributes to the small245

coefficients of Fi, that is, γ1 = γ2 = 1
2 . A natural246

idea is to empirically set γi = 1 to eliminate the247

product factor of less than 1 in gradient compu-248

tation, although this is not theoretically grounded249

in standard Runge-Kutta methods. We rewrite Eq.250

(20) with the new coefficients, as follows251

yt+1 = yt + F (yt, θt) +252

F (yt + F (yt, θt), θt) (23)253

Then, we have the gradient, like this254

∂E
∂yt

=
∂E
∂yL
·
L−1∏
k=t

gk (24)255

This model is easy to optimize because ∂E
∂yL

can be256

passed to lower-level blocks with no scales. Note257

that, the methods here are instances of parameter258

sharing (Dehghani et al., 2019; Lan et al., 2020). 259

For example, in each ODE block, we use the same 260

function F with the same parameter θt for all in- 261

termediate steps. Setting γi = 1 is a further step 262

towards this because Fi is passed to next steps with 263

the same scale. Here we call it implicit parameter 264

sharing. 265

Another way of scaling Fi to further improve 266

ODE functions is to learn the coefficients automati- 267

cally on the training data. The simplest method is to 268

initialize γi = 1 and independently optimize each 269

scale. It helps the system learn the way of flowing 270

Fi in a block. Based on it, scaling Fi by a weighted 271

gate mechanism (Srivastava et al., 2015) empiri- 272

cally achieves the best performance (see Section 273

4). Take RK2-block as an instance, the concatena- 274

tion of F1 and F2 is transformed to a scalar (0, 1) 275

through a sigmoid gate, then the block output yt+1 276

is 277

yt+1 = yt + g · F1 + (1− g) · F2 (25) 278

g = sigmoid([F1, F2] ·W + b) (26) 279

where [, ] denotes the concatenation operation and 280

W, b are learnable parameters. We call it RK2- 281

block (learnable γi), and the architecture is shown 282

in Figure 2 (d). This kind of formulation offers a 283

more flexible way to decide which part contributes 284

more and is also easy to be optimized. Moreover, 285

we also summarize the comparison of various scal- 286

ing functions in Appendix C. 287

3.3 Efficiency Discussion 288

ODE Transformer is efficient to use. As we only 289

apply the ODE design schema into the encoder 290

side, it only brings minor impacts on the inference 291

4



Model Layers WMT En-De WMT En-Fr

#Param Steps BLEU SBLEU #Param Steps BLEU SBLEU

Transformer (Vaswani et al., 2017) 6-6 213M 100K 28.40 - 222M 300K 41.00 -
MacaronNet (Lu et al., 2019) 6-6 - - 30.20 - - - - -
Depth growing (Wu et al., 2019) 8-8 270M 800K 29.92 - - - 43.27 -
Transformer-DLCL (Wang et al., 2019) 30-6 137M 50K 29.30 28.6 - - - -
Multiscale Collaborative (Wei et al., 2020) 18-6 512M 300K 30.56 - - - - -
ADMIN (Liu et al., 2020a) 60-12 262M 250K 30.01 29.5 - 250K 43.80 41.8
SDT (Li et al., 2020) 48-6 192M 50K 30.21 29.0 198M 100K 43.28 41.5
BERT-fused model (Zhu et al., 2020) 6-6 - - 30.75 - - - 43.78 -

Base and Deep Models

Residual-block 6-6 61M 50K 27.89 26.8 69M 100K 41.05 39.1
RK2-block 6-6 61M 50K 28.67 27.5 69M 100K 42.08 40.1
RK2-block (learnable γi) 6-6 61M 50K 28.89 27.7 69M 100K 42.31 40.3
RK4-block 6-6 61M 50K 29.03 27.9 69M 100K 42.56 40.6
Residual-block 24-6 118M 50K 29.43 28.3 123M 100K 42.67 40.6
RK2-block 24-6 118M 50K 29.85 28.7 123M 100K 43.04 41.1
RK2-block (learnable γi) 24-6 118M 50K 30.29 29.2 123M 100K 43.48 41.5
RK4-block 24-6 118M 50K 29.80 28.8 123M 100K 43.28 41.3

Wide Models

Residual-block-Big 6-6 211M 100K 29.21 28.1 221M 100K 42.89 40.9
RK2-block 6-6 211M 100K 30.11 29.0 221M 100K 43.34 41.3
RK2-block (learnable γi) 6-6 211M 100K 30.53 29.4 221M 100K 43.59 41.6
RK4-block 6-6 211M 100K 30.39 29.3 221M 100K 43.55 41.6
Residual-block-Big 12-6 286M 100K 29.91 28.9 297M 100K 43.22 41.2
RK2-block 12-6 286M 100K 30.58 29.4 297M 100K 43.88 42.0
RK2-block (learnable γi) 12-6 286M 100K 30.77 29.6 297M 100K 44.11 42.2
RK4-block 12-6 286M 100K 30.55 29.4 297M 100K 43.81 41.9

Table 1: Comparison with the state-of-the-arts on the WMT En-De and WMT En-Fr tasks. We both report the
tokenized BLEU and SacreBLEU scores for comparison with previous work.

Model Params Epochs BLEU

Transformer in Mehta et al. (2020) 62M 170 34.30
DeLight (Mehta et al., 2020) 53M 170 34.70
Int Transformer†(Lin et al., 2020) - - 32.60
Transformer (Our impl.) 69M 20 33.49
RK2-block (learnable γi) 69M 20 34.94
RK2-block-Big (learnable γi) 226M 20 35.28

Table 2: Results on the WMT En-Ro task. † indicates
the related information is not reported.

speed due to the autoregressive decoding schema.292

Another concern here is the memory consumption.293

ODE Transformer consumes more memory than294

the baseline in the same depth since we need to295

store the intermediate approximations in the for-296

ward pass. But the additional consumption is less297

than that of the baseline who has the same com-298

putation cost. We give a quantitative analysis in299

Section 5.300

4 Experimental Results301

Due to the limited space, the details of experimental302

setups could be found in Appendix A and B.303

Model Params BLEU

Transformer (Vaswani et al., 2017) 62M 27.30
Evolved Transformer (So et al., 2019) 46M 27.70
Lite Transformer† (Wu et al., 2020) - 26.50
DeLight (Mehta et al., 2020) 37M 27.60
RK2-block (learnable γi, H=256, L=28) 37M 28.24
RK2-block (learnable γi, H=256, L=18) 29M 27.84

Table 3: The comparison of model efficiency on the
WMT En-De task.

Results of En-De and En-Fr Table 1 compares 304

ODE Transformer with several state-of-the-art sys- 305

tems. Both RK2-block and RK4-block outper- 306

form the baselines by a large margin with different 307

model capacities. For example, RK2-block obtains 308

a +1.00 BLEU improvement with the base configu- 309

ration when the depth is 6. RK4-block yields a gain 310

of 0.17 BLEU points on top of RK2-block. This 311

observation empirically validates the conjecture 312

that high-order ODE functions are more efficient. 313

When we switch to deep models, our method is 314

more parameter efficient. E.g., RK2-block is com- 315

parable with a strong 48-layer system (Li et al., 316

2020) with half of the encoder depth. Similarly, 317
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Model Summarization Correction

RG-1 RG-2 RG-L Prec. Recall F0.5

Liu et al. (2020b) 41.00 18.30 37.90 66.80 35.00 56.60
Residual-block 40.47 17.73 37.29 67.97 32.17 55.61
RK2-block 41.58 18.57 38.41 68.21 35.30 57.49
RK4-block 41.83 18.84 38.68 66.20 38.13 57.71

Table 4: Results of ODE Transformer on the summa-
rization and correction tasks.

wide models can also benefit from the enlarging318

layer depth (Wei et al., 2020; Li et al., 2020). RK2-319

block achieves BLEU scores of 30.77 and 44.11320

on the En-De and the En-Fr tasks, significantly sur-321

passing the standard Big model by 1.32 and 0.70322

BLEU points. This sets a new state-of-the-art on323

these tasks with fewer parameters.324

Results of En-Ro Table 2 exhibits model param-325

eters, total training steps and BLEU scores of sev-326

eral strong systems on the En-Ro task. Again, ODE327

Transformer outperforms these baselines. As stated328

in (Mehta et al., 2020), they trained the model up329

to 170 epochs and obtained a BLEU score of 34.70330

through the DeLight model. However, the obser-331

vation here is quite different. The validation PPL332

begins to increase after 20 epochs. Thus, our base-333

line is slightly inferior to theirs, but matches the334

result reported in Lin et al. (2020). ODE blocks335

achieve even better performance with DeLight336

within much less training cost. For a bigger model337

(line 6), it obtains a BLEU score of 35.28.338

Parameter Efficiency Table 3 summaries the re-339

sults of several efficient Transformer variants, in-340

cluding Lite Transformer (Wu et al., 2020), De-341

Light (Mehta et al., 2020) and a light version of342

the Evolved Transformer (So et al., 2019). As ex-343

pected, ODE Transformer is promising for smaller344

models. It is comparable in BLEU with DeLight345

but having 9M fewer parameters. Under the same346

model capacity, it outperforms DeLight by 0.64347

BLEU points. It may offer a new choice for deploy-348

ing NMT systems on edge devices.349

Results of Summarization and Correction We350

also evaluated the ODE Transformer on another351

two sequence generation tasks. Table 4 shows that352

both RK2-block and RK4-block outperform the353

baselines by a margin. Similarly, RK4-block is354

more superior to RK2-block when the model is355

shallow. More results and case studies could be356

found in Appendix C.357

Model 1-Layer 2-Layer

Residual-Block 142.33 136.07
RK2-block 131.80 123.12
RK2-block (γi = 1) 132.67 123.90
RK2-block (learnable γi) 128.48 121.02
RK4-block 126.89 119.46

Table 5: Comparison of PPL on systems with different
ODE blocks.

Model Depth Inference Memory

Base Big Base Big

Residual-Block 6 147.1 98.7 7.2 13.2
Residual-Block 12 141.3 94.5 10.9 18.7
Residual-Block 24 122.0 87.3 14.1 23.5
RK2-Block 6 141.6 93.9 8.5 15.1
RK4-Block 6 124.8 87.1 9.7 18.2

Table 6: Comparison of inference speed (sentences/s)
and memory consumption (G).

5 Analysis 358

Here we investigate some interesting issues. For 359

simplicity to lengend, we call RK2-block with co- 360

efficients initialized by 1 as RK2-block-v1, and 361

learnable coefficients (Eq. (25) ) as RK2-block-v2. 362

Quantization of the Truncation Error Actu- 363

ally, we cannot obtain the “true” solution of each 364

block output in NMT, because we mainly exper- 365

imented on the encoder side. Instead, we tested 366

our system on the language modeling task, where 367

the perplexity between the single layer model out- 368

put and the ground truth could be regarded as the 369

truncation error with no error propagations. Ta- 370

ble 5 shows the perplexities on the Penn Tree- 371

bank dataset (Mikolov et al., 2011). All ODE 372

Transformer variants reduce the errors significantly. 373

RK4-order achieves the lowest PPL on both set- 374

tings. In addition, RK2-block can even obtain a 375

lower PPL than a 2-layer residual-block. The ob- 376

servation here again verifies larger ODE blocks 377

behave superior to the standard residual-block. 378

Inference Speed and Memory Consumption 379

Table 6 shows the comparison of inference speed 380

and memory consumption discussed in Section 381

3.3. Experimental results demonstrate the proposed 382

ODE design schema results in acceptable inference 383

speeds. And it is also memory friendly through the 384

memory comparison between the baseline and the 385

RK variants in both base and big configurations. 386
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WMT En-De task.

BLEU against Encoder Depth Figure 3 (left)387

depicts BLEU scores of several ODE Transformer388

variants and the baseline under different encoder389

depths. All ODE Transformer variants are signif-390

icantly superior to the baseline when depth ≤ 24391

. RK2-block-v2 almost achieves the best perfor-392

mance over all depths, especially when the model393

becomes deeper. Interestingly, Figure 3 confirms394

again that ODE Transformer is parameter efficient,395

e.g., a 6-layer RK2-block is comparable with the396

18-layer baseline system. Another finding here is397

RK4-block performs well on shallow models, but398

it is inferior to RK2-block when the depth is go-399

ing deep. This is because original coefficients may400

cause the optimization problem in the backward401

propagation in deep models (see Section 3.2). Also,402

Figure 3 (right) plots BLEU as a function of the403

model size when the hidden size is 256. The RK2404

method significantly surpasses the baseline using405

much fewer parameters.406

Ablation Study on Different F (·, ·) As stated in407

Section 3, the F (·, ·) function can either be SAN,408

FFN or both of them (SAN+FFN). As shown in409

Figure 4, high-order ODE works better with FFN410

than SAN. An explanation might be that the FFN411

component has more parameters than the SAN com-412

ponent.5 The model that treats FFN and SAN as a413

single ODE block behaves the best.414

5There are 2 · dmodel · 4dmodel parameters in FFN and
dmodel · 3dmodel + dmodel · dmodel in SAN.
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Figure 5: The comparison of training and validation
PPL on base and wide models.
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Figure 6: Visualization of the gradient norm of ODE
Transformers compared with the baseline.

Training and Validation Perplexity Figure 5 415

plots the training and validation PPL curves of RK 416

blocks and the baseline enhanced by RPR (Shaw 417

et al., 2018). RK2-block obtains lower training and 418

validation PPLs in both configurations (base and 419

wide models). 420

Visualization of the Gradient Norm We also 421

collect the gradient information of several well- 422

trained systems during training. Figure 6 plots the 423

gradient norm of RK2-block-v2, RK4-block and 424

the standard residual-block (baseline). As we can 425

see that Pre-Norm residual block is able to make 426

the training stable (Wang et al., 2019). Both RK2- 427

block-v2 and RK4-block provide richer signals due 428

to the implicit parameter sharing among interme- 429

diate approximations. The two learning curves 430

appear to be nearly the same, which is consistent 431

with the results in Table 1. 432

Comparison of Different ODE Design Schemas 433

Then, we take a comprehensive analysis of sev- 434

eral ODE design schemas. As stated in Lu et al. 435

(2018)’s work, several models in computer vision, 436

such as LeapfrogNet (He et al., 2019), PolyNet 437

(Zhang et al., 2017) and MultistepNet (Lu et al., 438

2018), can also be interpreted from the ODE per- 439

spective. The related ODE functions are summa- 440

rized in Table 7. We re-implemented these methods 441

using the same codebase for fair comparisons. We 442

conducted experiments following the base configu- 443

ration on the En-De task. 444
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Model Information Flow Related ODEs BLEU

Leapfrog (He et al., 2019) yt+1 = yt−1 + 2F (yt, θt) Multistep Euler 28.07
Multistep (Lu et al., 2018) yt+1 = kn · yt + (1− kn) · yt−1 + F (yt, θt) Multistep Euler 28.17
DLCL (Wang et al., 2019) yt+1 = y0 +

∑t
l=0WlF (yl, θl) Multistep Euler 27.78

PolyNet (Zhang et al., 2017) yt+1 = yt + F (yt, θt) + F (F (yt, θt), θt) Backward Euler 28.15
RK2-block yt+1 = yt +

1
2
F (yt, θt) +

1
2
F (yt + F (yt, θt), θt) Improved Euler 28.67

RK2-block (γi = 1) yt+1 = yt + F (yt, θt) + F (yt + F (yt, θt), θt) RK 2nd-order 28.77
RK2-block (learnable γi) yt+1 = yt + γ1 · F (yt, θt) + γ2 · F (yt + F (yt, θt), θt) RK 2nd-order 28.86
RK4-block yt+1 = yt +

1
6
F1 +

2
6
F2 +

2
6
F3 +

1
6
F4 RK 4th-order 29.03

Table 7: Comparison of several ODE-inspired design schemas on the En-De task. We re-implement and apply
these methods into Transformer. Note that yn denotes the model input of layer n. Due to the limited space, we use
Fi to denote the intermediate representation, where i ∈ [1, 4].

At time t, Multistep Euler methods requires pre-445

vious states, e.g. yt−1, to generate the current ap-446

proximation, instead of iterative refinements based447

on the current-time state. So these methods are448

heavier than ODE Transformer. Note that DLCL449

(Wang et al., 2019) can also be regarded as a mul-450

tistep Euler method, which is more competitive451

in deep Transformer. But there is just a modest452

improvement upon the shallow baseline. Theoreti-453

cally, the Backward Euler method is slightly better454

than the Forward Euler method in numerical analy-455

sis, but the improvement is marginal. Note that our456

ODE Transformer achieves consistent BLEU im-457

provements over the aforementioned methods. The458

reason is that such iterative refinements provide459

more efficient and effective parameters learning.460

6 Related Work461

Deep Transformer models Recently, deep462

Transformer has witnessed tremendous success in463

machine translation. A straightforward way is to464

shorten the path from upper-level layers to lower-465

level layers thus to alleviate the gradient vanishing466

or exploding problems (Bapna et al., 2018; Wang467

et al., 2019; Wu et al., 2019; Wei et al., 2020). For468

deeper models, the training cost is nonnegligible.469

To speed up the training, an alternative way is to470

train a shallow model first and progressively in-471

creasing the model depth (Li et al., 2020; Dong472

et al., 2020). Apart from the model architecture473

improvements, another way of easing the optimiza-474

tion is to utilize carefully designed parameter ini-475

tialization strategies (Zhang et al., 2019; Xu et al.,476

2020; Huang et al., 2020; Liu et al., 2020a). Note477

that ODE Transformer is orthogonal to the afore-478

mentioned methods, and we will test it on these479

methods in the future work.480

Ordinary Differential Equations The relation- 481

ship between ResNet and ODEs was first pro- 482

posed by Weinan (2017). This shows a brand- 483

new perspective on the design of effective deep 484

architectures. Moreover, the success of Neural 485

ODENet (Chen et al., 2018) have attracted re- 486

searchers. Some insightful architectures (Zhang 487

et al., 2017; Larsson et al., 2017; Lu et al., 2018; 488

He et al., 2019; Zhu and Fu, 2018; Lu et al., 2019; 489

Sander et al., 2021) can also be interpreted from 490

the ODE perspective. But, in NLP, it is still rare 491

to see studies on designing models from the ODE 492

perspective. Zhang et al. (2021) proposed contin- 493

uous self-attention models using the same merit 494

with neural ODE. Perhaps the most relevant work 495

with us is an (2021)’s work. They redesigned the 496

Transformer architecture from a multi-particle dy- 497

namic system view in terms of efficiency. Unlike 498

them, we show that the stacked first-order ODE 499

blocks may cause error accumulation, thus hinder- 500

ing the model performance. We address this issue 501

by introducing high-order blocks, and demonstrate 502

significant performance improvements on three se- 503

quence generation tasks, which is complementary 504

to Baier-Reinio and De Sterck (2020)’s work. 505

7 Conclusions 506

This paper explores the relationship between Trans- 507

former and ODEs. We propose ODE Transformer 508

to help the model benefit from high-order ODE 509

solutions. Experimental results on the three repre- 510

sentative sentence generations tasks (i.e., machine 511

translation, abstractive summarization, and gram- 512

matical error correction) show the effectiveness and 513

efficiency of ODE Transformer. It achieves 30.77 514

and 44.11 BLEU scores on the WMT’14 En-De 515

and En-Fr benchmarks, setting a new state-of-the- 516

art result on the En-Fr. 517
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A Experimental Setups861

Machine Translation We report results on three862

WMT benchmarks. For the WMT’14 English-863

German (En-De) task, the training data consisted864

of approximately 4.5M tokenized sentence pairs,865

as in (Vaswani et al., 2017). All sentences were866

segmented into sequences of sub-word units (Sen-867

nrich et al., 2016) with 32K merge operations using868

a shared vocabulary. We selected newstest2013869

as the validation data and newstest2014 as the870

test data. For the WMT’14 English-French (En-871

Fr) task, we used the dataset provided within872

Fairseq, i.e., 36M training sentence pairs from873

WMT’14. newstest2012+newstest2013 was the874

validation data and newstest2014 was the test data.875

For the WMT’16 English-Romanian (En-Ro) task,876

we replicated the setup of (Mehta et al., 2020),877

which used 600K/2K/2K sentence pairs for train-878

ing, evaluation and inference, respectively.879

Abstractive Summarization We also tested the880

models’s ability to process long sequences on881

the CNN-DailyMail summarization task (Nallapati882

et al., 2016; Hermann et al., 2015). The prepro-883

cessed method was the same as in (Ott et al., 2019).884

We used a shared BPE with 30K operations, result-885

ing in a vocabulary of 32, 580 entries. The evalu-886

ation metric was F1-Rouge (Lin, 2004) (Rouge-1,887

Rouge-2 and Rouge-L).888

Grammar Error Correction We borrowed the889

setup from Chollampatt and Ng (2018) and used the890

provided preprocessed script. Word-level dropout891

technique was also applied to prevent the overfit-892

ting problem.893

Language Modeling Here, we introduce the de-894

tails about the Penn Treebank dataset (Mikolov895

et al., 2011) and the corresponding configuration.896

It contains 88K, 3, 370 and 3, 761 sentences for897

training, validation and test. The vocabulary size898

was 10K. To evaluate the truncation error, we set899

the layer depth of the language model to 1 or 2 for900

a comprehensive comparison. Assume the layer901

depth is 1, then the loss between the block output902

and the ground-truth can be regarded as the trun- 903

cation error. It alleviates the influence of the error 904

accumulation across different layers. 905

Table 8 summarizes the details of our datasets. 906

We both present the sentences and tokens of each 907

task. For the En-De and En-Fr tasks, the datasets 908

used in this work could be found in Fairseq.6 909

For the En-Ro task, we used the preprocessed 910

dataset provided by DeLight.7 Note that we 911

only shared the target embedding and the soft- 912

max embedding instead of a shared vocabulary 913

between the source side and the target side. The 914

CNN/DailyMail dataset consists of CNN stories8 915

and Daily emails9. For the grammar error correc- 916

tion task (GEC), we conducted experiments on the 917

CONLL dataset 10. 918

B Training and Evaluation 919

Training As suggested in Li et al. (2020)’s work, 920

we adopted relative positional representation (RPR) 921

(Shaw et al., 2018) for stronger baselines. All ex- 922

periments were trained on 8 GPUs, with 4, 096 923

tokens on each GPU. For the En-De and the En- 924

Fr tasks, we employed the gradient accumulation 925

strategy with a step of 2 and 8, respectively. We 926

used the Adam optimizer (Kingma and Ba, 2015) 927

whose hyperparameters were set to (0.9, 0.997). 928

The hyperparameters including the learning rate, 929

the warmup step and the total training steps of three 930

tasks could be found in Table 8. It is noteworthy 931

that we trained Base/Deep and Big models for 50K 932

and 100K steps on the En-De task. We regarded 933

merging SAN and FFN as the default ODE block. 934

In addition, main results were the average of three 935

times running with different random seeds, and we 936

averaged the last 5/10 checkpoints for fair compar- 937

isons with previous work. 938

Since the proposed method is orthogonal to the 939

model capacity, we evaluated the ODE Transformer 940

on Base/Deep/Wide configurations, respectively. 941

The detail of each configuration is as follows: 942

• Base/Deep Model. The hidden size of self- 943

6https://github.com/pytorch/fairseq/
tree/master/examples/scaling_nmt

7https://github.com/sacmehta/delight/
blob/master/readme_files/nmt/wmt16_en2ro.
md

8https://drive.google.com/uc?export=
download&id=0BwmD_VLjROrfTHk4NFg2SndKcjQ

9https://drive.google.com/uc?export=
download&id=0BwmD_VLjROrfM1BxdkxVaTY2bWs

10https://www.cl.cam.ac.uk/research/nl/
bea2019st
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Model Vocab Dataset Training Inference

Train Dev Test Lr Warmup Batch Steps WD Beam LP

WMT’14 En-De 34040 4.5M 3000 3003 0.002 16000 80K 50K × 4 0.6
WMT’14 En-Fr 44424 35.7M 26822 3003 0.002 16000 320K 100K × 4 0.6
WMT’16 En-Ro 34976 602K 1999 1999 0.002 8000 80K 17K × 5 1.3
CNN/DailyMail 32584 287K 13368 11490 0.002 8000 160K 50K × 4 2.0
CONLL 33136 827K 5448 1312 0.0015 4000 160K 15K X 6 0.6

Table 8: Statistics of the datasets and hyperparameters for three sequence generation tasks. For the dataset, we
both report the vocabulary size, sentence numbers of training, validation and test sets. For the training, Lr denotes
the peaking learning rate and Warmup denotes the warmup step of the Adam optimizer. WD denotes whether we
applied word dropout. For the inference, Beam and LP denote the beam size and length penalty, respectively.

attention was 512, and the dimension of the944

inner-layer in FFN was 2, 048. We used 8945

heads for attention. For training, we set all946

dropout to 0.1 as default, including residual947

dropout, attention dropout, ReLU dropout. La-948

bel smoothing εls = 0.1 was applied to en-949

hance the generation ability of the model. For950

deep models, we only enlarged the encoder951

depth considering the inference speed.952

• Wide (or Big) Model. We used the same archi-953

tecture as Transformer-Base but with a larger954

hidden layer size 1, 024, more attention heads955

(16), and a larger feed forward inner-layer956

(4, 096 dimensions). The residual dropout957

was set to 0.3 for the En-De task and 0.1 for958

the En-Fr task.959

For the language modeling task, the hidden size960

was 512, and the filter size of the FFN was 2, 048.961

We set all the dropout rate as 0.1, including the962

residual dropout, attention dropout and the ReLU963

dropout. Each model was trained up to 20 epochs,964

and most models achieved the lowest PPL on the965

validation set when the epoch is 10. Then the vali-966

dation PPL began to increase, though the training967

PPL is still declining. The warmup step was 2, 000968

and the batch size was 4, 096. The max learning969

rate was set to 0.0007.970

Evaluation For machine translation, we mea-971

sured performance in terms of BLEU. Both tok-972

enized BLEU and SacreBLEU11 scores were re-973

ported on the En-De and En-Fr tasks. Also, we974

reported tokenized BLEU scores on the En-Ro975

task. In addition, we measured Rouge-1, Rouge-2,976

11BLEU+case.mixed+numrefs.1+smooth.exp+
tok.13a+version.1.2.12

Rouge-L for CNN/DailyMail and precision, recall, 977

F0.5 for CONLL. The beam size and length penalty 978

of each task are summarized in Table 8. 979

C Additional Results and Analyses 980

Comparison on the CNN/DailyMail Dataset 981

We summarize the previous results on the 982

CNN/DailyMail dataset (See Table 9). The perfor- 983

mance was evaluated by ROUGE-1, ROUGE-2 and 984

ROUGE-L, respectively. Intuitively, high-order 985

ODE functions can significantly improve on top of 986

the Euler method as well as several strong existing 987

models.12 Again, RK4-block beats the baseline 988

and RK2-block by up to 1.36 and 0.25 scores in 989

terms of ROUGE-1, respectively. 990

Comparison of Various Scaling Methods We 991

have emphasized the importance of automatic co- 992

efficient learning in Section 3.2. The forward 993

pass of RK2-block can be described as yt+1 = 994

yt + γ1 · F1 + γ2 · F2, where γ1 and γ2 are coeffi- 995

cients which can be numerical suggested or learn- 996

able. Here we exhibit the comparison of various 997

scaling methods on the WMT’14 En-De dataset, 998

and the results are listed in Table 10. We can see 999

that RK2-block (learnable γi) equips with single 1000

sigmoid gate (line 5 in Table 10) yields best re- 1001

sults on both shallow and deep configurations. The 1002

observation here reveals that appropriate scaling 1003

functions can further improve the RK2-block. Tanh 1004

activation even brings negative impacts on the per- 1005

formance, especially when the model is deep. A 1006

possible explanation is that Tanh produces a larger 1007

range ([−1, 1]) which is more difficult to optimize 1008

than the sigmoid function. 1009

12We only compared models without using pre-training.
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Model ROUGE-1 ROUGE-2 ROUGE-L

LEAD3 40.24 17.70 36.45
NEUSUM (Zhou et al., 2018) 41.59 19.01 37.98
PGNet (See et al., 2017) 39.53 17.28 36.38
Soft Fusion (Liu et al., 2020b) 41.00 18.30 37.90
Bottom-Up Summarization (Gehrmann et al., 2018) 41.22 18.68 38.34

Residual-block 40.47 17.73 37.29
RK2-block 41.58 18.57 38.41
RK4-block 41.83 18.84 38.68

Table 9: ROUGE scores of various models on the CNN/DailyMail dataset.

Model γ1 γ2 6-layer 24-layer

weight sharing 1 1 28.51 29.60
RK2-block 1/2 1/2 28.67 29.85
RK2-block (γi = 1) 1 1 28.77 30.01
RK2-block (learnable γi = 1) scalar scalar 28.80 30.13
RK2-block (learnable γi) sigmoid sigmoid 28.74 30.06
RK2-block (learnable γi) sigmoid (1 - sigmoid) 28.86 30.29
RK2-block (learnable γi) tanh tanh 28.45 29.47

Table 10: Comparison of various scaling functions on the WMT14’ En-De dataset.

Case Study on the GEC Task Table 11 sum-1010

marizes several cases from the GEC task. Here,1011

we take a comparison between the baseline and1012

the RK4-block due to its superiority on the GEC1013

task. We can clearly see that the proposed RK4-1014

block delivers more accurate corrections compared1015

with the baseline when handling subject verb agree-1016

ment (Case2), collocation (Case1, Case3), spelling1017

(Case4) and other issues. More specifically, Figure1018

7 illustrates the statistics of different error type an-1019

notated by ERRANT (Bryant et al., 2017), a gram-1020

matical ERRor ANnotation Toolkit designed to au-1021

tomatically annotate parallel error correction data.1022

More details please refer to Bryant et al. (2017)’s1023

work. With the help of ERRANT, we can carry out1024

a detailed error type analysis. As shown in Figure1025

7, RK4-block corrects the input in a more similar1026

way with the reference, though there is still a large1027

gap between them. Limited by the model ability,1028

the baseline sometimes even cannot generate the1029

right corrections, e.g. R:PUNCT and M:OTHER1030

cases.1031

D Comparison with Related Work1032

As we aforementioned, the ODE design schema1033

somehow shares a similar merit with the weight1034

sharing, especially when the coefficients are set to 1035

1. This is because we reuse the same function F 1036

to compute the intermediate approximation at each 1037

timestep, and it is also a effective way to apply 1038

the higher-order ODE into the Transformer archi- 1039

tecture. Compared with weight sharing (line 1 in 1040

Table 10), ODE Transformer variants can deliver 1041

better performance within the same computation 1042

cost, demonstrating the effectiveness of ODE de- 1043

sign schema. 1044

Next, we make a detail comparison between the 1045

proposed ODE Transformer and previous studies 1046

(Baier-Reinio and De Sterck, 2020; Zhu and Fu, 1047

2018; Zhang et al., 2021) to avoid the potential 1048

misunderstandings. 1049

Compared with RKNet RKNet (Zhu and Fu, 1050

2018) is mainly designed to improve the ResNet 1051

using implicit Runge-Kutta methods for vision 1052

tasks. There are some differences between ours 1053

and RKNet. (i) We mainly conduct experiments on 1054

sequence generation tasks, e.g. machine translation, 1055

abstract summarization, and grammar error correc- 1056

tion tasks. They focused on the image classification 1057

task. (ii) Except for the integration of ODE into 1058

the Transformer design schema, we also make an 1059

analysis on how to choose appropriate coefficients 1060
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Case1

Source What ’s more , various of cultures can be shown to us through social medias .
Reference What ’s more , various cultures can be shown to us through social media .

Baseline What ’s more , various cultures can be shown to us through social medias .
RK4 What ’s more , various cultures can be shown to us through social media .

Case2

Source Social media sites such as Facebook has allow us to share our pictures or even chat online with our
parents while we are overseas .

Reference Social media sites such as Facebook have allowed us to share our pictures or even chat online with our
parents while we are overseas .

Baseline Social media sites such as Facebook allow us to share our pictures or even chat online with our parents
while we are overseas .

RK4 Social media sites such as Facebook have allowed us to share our pictures or even chat online with our
parents while we are overseas .

Case3

Source On one side , it is obvioualy that many advantages have been brought to our lives .
Reference On the one hand , it is obvious that many advantages have been brought to our lives .

Baseline On one hand , it is obvious that many advantages have been brought to our lives .
RK4 On the one hand , it is obvious that many advantages have been brought to our lives .

Case4

Source Other than that , I believe that the stong bond we have with our family is the biggest pillar of support to
the carrier .

Reference Other than that , I believe that the strong bond we have with our family is the biggest pillar of support to
the carrier .

Baseline Other than that , I believe that the stong bond we have with our family is the biggest pillar of support to
the carrier .

RK4 Other than that , I believe that the strong bond we have with our family is the biggest pillar of support to
the carrier .

Table 11: Several examples from the GEC task. Here, source and reference denote the model input and the
correction result, respectively. Green words are good corrections, while Red words are bad corrections.
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of intermediate approximations. And we bridge1061

the relationship between the ODE design schema1062

with the explicit weight sharing. (iii) We also offer1063

an automatically coefficient learning method for1064

RK2-block which delivers the best performance in1065

different configurations.1066

Compared with N-ODE As we discussed in the1067

related work, our work is complementary to Baier-1068

Reinio and De Sterck (2020)’s work, that we empir-1069

ically demonstrate the effectiveness of integrating1070

ODE design schema into Transformer on several se-1071

quence generation tasks. This work may shed light1072

on the design of effective Transformer architec-1073

tures from the numerical perspective and provides1074

stronger baselines to the literature.1075

Compared with CSAODE The differences be-1076

tween these two work are summarized below: (i)1077

As we emphasized above, the benchmarks we ex-1078

perimented on are quite different. They mainly1079

validated the proposed CSAODE on text classifi-1080

cation and QA tasks. (ii) The proposed CSAODE1081

(Zhang et al., 2021) is an extension of neural ODE1082

(cheng et al., 2018), the motivation is quite differ-1083

ent. They aim to effectively calculate the contigu-1084

ous states of hidden features only via one-layer1085

parameters and proposed a self-attention solver to1086

fix the issue. While our motivation is to employ1087

higher-order ODE solutions to reduce the trunca-1088

tion errors produced by each layer. On the other1089

hand, CSAODE is still a single-layer model, and1090

ours is a multi-layer sequence-to-sequence model.1091

We also show the comparison of different compo-1092

nents based on higher-order ODE solutions (See1093

Figure 4). (iii) Single-layer model is not strong1094

enough to solve complicated tasks, e.g. machine1095

translation. However, when stacking several lay-1096

ers, we need to re-consider the error accumulation1097

among layers, that each layer is an individual ODE1098

solver. How to mitigate the error accumulation is1099

the main goal in this work, which is not discussed1100

in their work.1101

E Derivations of the Equation1102

Let E be the loss of training, L be the number1103

blocks of the model, and yL be the model output.1104

Here, we define1105

zk = yk + F (yk, θk) (27)1106

Then the information flow of the RK2 method1107

can be described as follows:1108

yk+1 = yk +
1

2
F (yk, θk) + 1109

1

2
F (yk + F (yk, θk), θk) 1110

= yk +
1

2
F (yk, θk) +

1

2
F (zk, θk)(28) 1111

where ∂zk
∂yk

= 1 + ∂F (yk,θk)
∂yk

. In this way, the detail 1112

derivation of Eq. (28) is as follows: 1113

∂yk+1

∂yk
= 1 +

1

2

∂F (yk, θk)

∂yk
+

1

2

∂F (zk, θk)

∂zk
· ∂zk
∂yk

1114

=
1

2
·
(

1 + 1 +
∂F (yk, θk)

∂yk
+
∂F (zk, θk)

∂zk
· 1115(

1 +
∂F (yk, θk)

∂yk

))
1116

=
1

2
·
(

1 +
(

1 +
∂F (zk, θk)

∂zk

)
· 1117(

1 +
∂F (yk, θk)

∂yk

))
(29) 1118

With the chain rule, the error E propagates from 1119

the top layer yL to layer yt by the following for- 1120

mula: 1121

∂E
∂yt

=
∂E
∂yL
· ∂yL
∂yL−1

· ∂yL−1

∂yL−2
· · · ∂yt+1

∂yt
(30) 1122

Here we have 1123

gk =
(

1 +
∂F (yk, θk)

∂yk

)
·
(

1 +
∂F (zk, θk)

∂zk

)
1124

Then, put the Eq. (30) into Eq. (29), the gradient 1125

of E at yt is 1126

∂E
∂yt

=
∂E
∂yL
· 1

2L−t
·
L−1∏
k=t

(1 + gk) (31) 1127

Similarly, we can easily obtain the gradient of 1128

RK2 method where γi = 1: 1129

∂E
∂yt

=
∂E
∂yL
· gL−1 · gL−2 · · · gt 1130

=
∂E
∂yL
·
L−1∏
k=t

gk (32) 1131

16


