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Abstract 6 

Estimating RNA modifications from Nanopore direct RNA sequencing data is an important 7 

task for the RNA research community. Current computational methods could not provide 8 

satisfactory results due to the inaccurate segmentation of the raw signal. We develop a new 9 

method, SegPore, that utilizes a molecular jiggling translocation hypothesis to segment the 10 

raw signal. SegPore is a pure white-box model with a superior interpretability, which 11 

significantly reduces structured noise in the raw signal. Based on the improved signal 12 

segmentation, SegPore+m6Anet has achieved state-of-the-art performance in m6A 13 

identification. Additionally, we demonstrate SegPore’s interpretable results and decent 14 

performances on inosine modification estimation and RNA secondary structure estimation. An 15 

interesting discovery in RNA structure estimation is that the end points of the reads take place 16 

at the start of stem structures along the reverse transcription direction. Our results indicate 17 

SegPore’s capability to concurrently estimate multiple modifications at the individual molecule 18 

level from the same Nanopore direct RNA sequencing data, as well as shed light on RNA 19 

structure estimation from a novel angle. 20 

Introduction 21 

RNA modifications play important roles in different diseases, such as Acute Myeloid Leukemia  22 

(Yankova, Aspris and Tzelepis 2021) and Fragile X Syndrome (Prieto, Folci and Martin 2020), 23 

as well as biological processes, such as cell differentiation (Bellodi et al. 2013; Lee et al. 2019) 24 

and immune response (Quin et al. 2021). To date, researchers have identified over 150 25 
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different types of RNA modifications (Boccaletto et al. 2022; Chen, Owens and Liu 2023; 26 

Zimna et al. 2023; Ohira and Suzuki 2024), highlighting the complexity and diversity of RNA 27 

regulation. RNA modifications are pivotal for RNA secondary structures, e.g., modifications in 28 

tRNA are essential for accurate and efficient decoding of the mRNA codons into proteins 29 

(Agris et al. 2017). N1-methylpseudouridine (m1Ψ) is used to enhance the efficacy of COVID-30 

19 mRNA vaccines (Nance and Meier 2021), which showcases the practical applications of 31 

RNA modifications.   32 

 33 

To identify RNA modifications, researchers generally resort to immunoprecipitation methods 34 

such as MeRIP-Seq (Meyer et al. 2012), miCLIP (Linder et al. 2015) and m6ACE-Seq (Koh, 35 

Goh and Goh 2019), where a m6A antibody is used to target m6A in these protocols. Like 36 

ChIP-seq, we could infer m6A locations on the transcripts from the generated next-generation 37 

sequencing (NGS) data. RNA structure estimation protocols such as SHAPE-MaP (Siegfried 38 

et al. 2014) follow a similar idea by attaching chemical adducts to nucleotides in loop regions 39 

but not stem structures, where the chemical adducts are treated as modifications. A reactivity 40 

score profile obtained from the sequencing data is then used to estimate the RNA structure. 41 

However, there are several limitations of these NGS-based RNA modification estimation 42 

methods. First, a modification-specific antibody is needed for each modification, while there 43 

are more than 150 modifications. Second, these methods could not directly measure RNA 44 

modifications, i.e., they infer m6A locations on transcripts from the NGS data. As a result, 45 

researchers could not get modification estimations on single molecules. The direct RNA 46 

sequencing (DRS) of Oxford Nanopore Technologies (ONT) is a new sequencing technology 47 

that could address both challenges. 48 

 49 

The direct RNA sequencing measures the current intensity as an RNA molecule translocates 50 

through the pore. For ONT pore version R9.4, five nucleotides reside in the pore, which is 51 

termed as 5mer (Jain et al. 2018). The 5mer blocks certain numbers of ions passing through 52 

the pore, the amount of which is measured as the current intensity in a unit of time. During the 53 
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translocation process, each 5mer stays in the pore for a short period, and the current 54 

measurement varies around a baseline level. Due to differences in size, shape, order, and 55 

chemical properties of the nucleotides of a 5mer, the current level varies across different 56 

5mers. The basic idea of Nanopore sequencing is to infer the original nucleotides from the 57 

currents of different 5mers. As a reference, ONT has provided the mean and standard 58 

deviation (std) of the current intensity for each 5mer of RNA based on their training data. Since 59 

nucleotides with a larger size could block more ions, e.g., Adenine and Guanine, their current 60 

signal levels are lower than Cytosine and Uridine.  61 

 62 

The raw signal of DRS could be utilized to estimate RNA modifications and RNA structures. 63 

DRS directly records the raw current signals for each nucleotide on the RNA molecule. For a 64 

normal nucleotide and its modification, e.g., Adenosine and m6A, different current signals are 65 

generated due to their chemical property difference. In theory, we could infer each nucleotide 66 

and its modification state from the raw signals of a RNA molecule. Given the capability of 67 

estimating RNA modifications, researchers could estimate RNA structures from DRS data 68 

(Stephenson et al. 2022). However, these tasks are challenging from the computational 69 

perspective. 70 

 71 

The central computational problem of DRS is the segmentation of raw current signal. The raw 72 

current signal is split into segments and assigned to corresponding 5mers, which determines 73 

the RNA sequence, as well as the modifications. Current mainstream methods for segmenting 74 

raw signals are represented by Nanopolish (Loman, Quick and Simpson 2015; Simpson et al. 75 

2017) and Tombo (Stoiber et al. 2017).  Nanopolish employs a Hidden Markow Model (HMM) 76 

for the raw signal segmentation, while Tombo segments the raw signal by scanning for large 77 

signal shifts. Due to the lack of the RNA translocation process modelling, these methods could 78 

not provide accurate segmentation results. Consequently, the derived raw signal segments 79 

contain unwanted noises that deteriorate the performance of downstream tasks such as RNA 80 

modification and structure estimation.  81 
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The second challenge is that an RNA modification may only induce a minor change in the 82 

current signal of the corresponding 5mer. This means we can only distinguish 5mers with 83 

significant changes in their current signal, i.e., those with a high signal-to-noise ratio. This 84 

problem would be mitigated if we could reduce the noise level in the current signal. In other 85 

words, downstream tasks such as estimation of RNA modifications and structures, may 86 

achieve a better performance given the de-noised raw signal segments. Therefore, it is 87 

necessary to model the physical DRS process to gain a better understanding of the noises, 88 

which is missing in current RNA modification estimation methods. 89 

 90 

Moreover, current RNA modification methods are hindered by limitations in data availability 91 

and interpretability. Present RNA modification detection methods can be classified into two 92 

groups: comparison-mode group and single-mode group  (Zhong et al. 2023). The 93 

comparison-mode group, such as DiffErr (Parker et al. 2020), DRUMMER (Price et al. 2020), 94 

xPore (Pratanwanich et al. 2021) and  Nanocompore (Leger et al. 2021), compares modified 95 

and unmodified samples, which requires both modification-abundant and modification-sparse 96 

datasets for the model training. The single-mode group, such as m6Anet (Hendra et al. 2022), 97 

employs deep neural networks (DNN) to classify modified and unmodified nucleotides by 98 

feeding various features (e.g., mean, std, dwell time) of the raw signal segments provided by 99 

Nanopolish or Tombo. The training data are generated from modification-abundant samples, 100 

where the signal segment features are used as input and estimated modifications given by 101 

NGS-base methods are used as the labels. Note that current methods are modification-102 

specific, i.e. one method only handles one type of modification. As a result, the amount of 103 

training data increases linearly as the number of RNA modification types to be studied. 104 

Additionally, we may not be able to generate the training data due to technical reasons, e.g. 105 

removing a certain type of RNA modification from the samples. The RNA modification 106 

estimation task would be much simpler if we could take the mean of a raw signal segment and 107 

compare it against a reference table to determine its modification state. This brings out the 108 

interpretability problem of current DNN-based methods, which utilize the input features in a 109 
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complicated way for the modification estimation. It is impossible to gain straightforward 110 

interpretations why an input raw signal segment corresponds to its estimated modification 111 

state.  112 

 113 

To address the above challenges, we have developed SegPore, which is capable of 114 

diminishing noise using a novel signal segmentation algorithm and offers the flexibility to 115 

estimate various modifications by a customized 5mer parameter table. Due to the change of 116 

the segmentation algorithm, we have re-implemented almost all components of the traditional 117 

RNA modification estimation workflow. SegPore consists of (1) a hierarchical hidden Markov 118 

model (HHMM) for segmenting the raw current signal of DRS, (2) alignment algorithms for 119 

aligning raw current signal segments with reference sequence, and (3) a Gaussian mixture 120 

model (GMM) for RNA modification estimation. SegPore provides interpretable segmentation 121 

results, which facilitates various downstream analyses. We demonstrate its capabilities in the 122 

estimation of RNA modifications (m6A and inosine) and RNA secondary structure.  123 

Results 124 

RNA translocation hypothesis 125 

It is challenging to segment the raw current signal due to its complexity. To solve this problem, 126 

we need to know how exactly the RNA molecule moves through the pore. In traditional 127 

basecalling algorithms such as Guppy and Albacore, we implicitly assume that the RNA 128 

molecule is translocated through the pore by the motor protein in a monotonic fashion, i.e., 129 

the RNA is pulled through the pore unidirectionally. In the DNN training process of Guppy and 130 

Albacore, we try to align the current signal with the reference RNA sequence. The alignment 131 

is unidirectional, which is the source of the implicit monotonic translocating assumption. 132 
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However, the raw current data suggests that the motor protein translocates RNA back and 133 

forth. Fig. 1B shows several example fragments of DRS raw current signal (Zhong et al. 2023), 134 

each of which roughly corresponds to three neighboring 5mers. The highlighted spikes have 135 

similar current intensities, either as the previous 5mer or the next 5mer. Similar patterns are 136 

widely observed across the whole data. This suggests that the RNA molecule may move 137 

forward and backward while passing through the pore. This observation can also be supported 138 

by previous reports (Caldwell and Spies 2017; Craig et al. 2017), in which the helicase (the 139 

motor protein) translocates the DNA strand through the nanopore in a back-and-forth manner.  140 

 141 

Based on the reported kinetic model (Craig et al. 2017), we hypothesize that the RNA is 142 

translocated through the pore in a jiggling manner. On average, the motor protein sequentially 143 

translocates 5mers on the RNA strand forward, and each 5mer resides in the pore for a short 144 
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Figure 1.  RNA translocation hypothesis. (A) Jiggling RNA translocation hypothesis. Top panel shows the raw 
current signal of Nanopore direct RNA sequencing. The gray areas are SegPore estimated transition blocks. 
Here we focus on three neighboring 5mers and consider the center 5mer (CTACG) as the current 5mer. The 
RNA molecule might be translocated forward or backward for a short period during the translocation process of 
the current 5mer. If the RNA molecule is pulled backward, the previous 5mer (“prev” state) is placed in the pore 
and the current signal is similar to the previous 5mer’s baseline (mean and std highlighted by red lines and 
shades). If the RNA is pushed forward, the current signal is similar to the next 5mer’s baseline (“prev” state). (B) 
Example raw current signals that supports this jiggling hypothesis, with dash rectangles highlighting relevant 
base blocks. Measurements assigned to the previous and next 5mer are highlighted as red and blue points. It 
is obvious to observe that red points are close to the previous 5mer’s baseline and blue points are close to the 
next 5mer’s baseline. The raw current signals were extracted from mESC WT samples of the training data in 
the m6A benchmark experiment. 
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time. During the short period of a single 5mer, the motor protein may swiftly drive the RNA 145 

molecule forward and backward by 0.5~1 nucleotide in the translocation process of the current 146 

5mer (Fig. 1A), which makes the measured current intensity occasionally similar to the 147 

previous or the next 5mer. When the motor protein does not move the RNA molecule, we 148 

assume that the 5mer inside the pore oscillates thermodynamically, generating current 149 

intensities around its baseline. Additionally, we assume there is a sharp change in the current 150 

intensity between two consecutive 5mers, which serves as their boundary. 151 

 152 

We also assume that the raw current signal of a read can be segmented into a series of 153 

alternating base and transition blocks (Fig. 1). In the ideal case, a base block corresponds to 154 

the base state where the 5mer resides in the pore and jiggles between neighboring 5mers, 155 

i.e., the current 5mer can transiently jump to the previous or the next 5mer. A transition block 156 

corresponds to the transition state between two consecutive base states where one 5mer 157 

translocates to the next 5mer in the pore. The current signal should be relatively flat in the 158 

base blocks, while a sharp change is expected in the transition blocks. In practice, the number 159 

of transition blocks is generally overestimated since we are not able to distinguish the 160 

transitions within a base block and between base blocks. As a result, multiple base blocks 161 

may correspond to only one 5mer, which is determined by the SegPore alignment algorithms. 162 

SegPore Workflow 163 

The SegPore workflow (Fig. 2) contains six steps: (1) preprocess fast5 files to pair the raw 164 

current signal segments with reference RNA sequence fragments, (2) segment each raw 165 

current signal using the hierarchical hidden Markov model (HHMM) into base and transition 166 

blocks, (3) align the derived base blocks with the paired RNA sequence, (4) estimate the 167 

modification state for each 5mer of the RNA sequence, (5) fit a two-component Gaussian 168 

Mixture Model (GMM) for each unique 5mer across different RNA reference sequences, and 169 

(6) use results of step 5 to update relevant parameters. Step 3~6 will iterate several times until 170 
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the estimated parameters stabilize. Detailed descriptions are provided in Methods and 171 

Supplementary Note 1-3.  172 

 

 

 

 

 

 

 

 

 

The final outcomes of SegPore are the “eventalign” and modification state estimation. The 173 

SegPore eventalign is similar to the output of Nanopolish “eventalign” command, which is the 174 

pairing between raw current signal segments and 5mers of the corresponding RNA reference 175 

sequences. For selected 5mers, SegPore outputs the modification rate for each site and the 176 

modification state of the given site on each read. The key element of SegPore is the 5mer 177 

parameter table, which specifies the mean and std of each 5mer in an unmodified or modified 178 

state (Fig. 2A). Since the peaks (modified and unmodified state) are separable for a limited 179 
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Figure 2.  SegPore workflow. (A) The general workflow. First, basecalling and mapping are performed using 
Guppy and Minimap2 such that a raw current signal fragment is paired with a reference sequence fragment. 
Meanwhile, the raw current signal of a read is split into segments by HHMM and an estimated mean (𝜇𝜇𝑖𝑖) is 
derived for each segment. Then, the current signal segments (𝜎𝜎𝑖𝑖 ) are aligned with the 5mer list of the 
corresponding reference sequence fragment using the full/partial alignment algorithm, given a 5mer parameter 
table. Here we use A𝑗𝑗 to denote A at 𝑗𝑗th position on the reference. Next, all aligned to the same 5mer at different 
genomic locations are pooled together and a two-component GMM is fitted to re-estimate the 5mer parameters. 
One GMM component models the unmodified state and the other models the modified state, while the hidden 
variable of the GMM specifies the modification state of the 5mer on each read. The parameter estimation process 
is iterated several times on the training data to gain a stable estimation of the 5mer parameter table. The final 
5mer parameter table is used for estimating the modification states on the test data.  (B) Hierarchical hidden 
Markov model. The outer HMM partitions current signal into alternating base blocks and transition blocks. An 
inner HMM approximates the emission probability of a base block by considering neighboring 5mers. A linear 
model approximates the emission probability of a transition block. (C) Full/partial alignment algorithms. Each row 
is an estimated mean of a base block given by HHMM. Each column is a 5mer of the reference sequence. One 
5mer can be aligned to multiple means. (D) Gaussian mixture model (GMM) for estimating modification states. 
The green component codes the unmodified state of a given 5mer. The blue component codes the modified 
state of the given 5mer. Each component has three parameters: mean (𝜇𝜇), std (𝜎𝜎) and weight (𝜔𝜔). 
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number of 5mers, we could only obtain the modification parameters for these 5mers in 5mer 180 

parameter table, i.e. SegPore could not provide the modification state estimation for other 181 

5mers. 182 

m6A identification 183 

We demonstrate SegPore’s performance on raw data segmentation and m6A identification 184 

using independent public datasets as training and test data. It is well known that there are 18 185 

DRACH (where D denotes A, G or U, and H denotes A, C or U) motifs for m6A (Linder et al. 186 

2015). In this study, we concentrate on estimating the m6A modification on the DRACH motif. 187 

 188 

We first estimate the 5mer parameter table of m6A modification from the training data using 189 

public Nanopore direct RNA sequencing (DRS) data from three wild type samples of HEK293T 190 

cells (Pratanwanich et al. 2021). To get the 5mer parameter table for m6A modification, we 191 

concatenate fast5 files of all samples and run the full SegPore workflow. We iterate the 192 

parameter estimation process five times to gain a stabilized 5mer parameter table, which 193 

contains modification parameters for ten 5mers. Their modification state distribution 194 

significantly differs from the unmodified state distribution, with moderate support of read 195 

counts and genomics locations. 196 

 197 

Next, we perform segmentation and m6A identification on test data, which is the DRS data 198 

from wild type mouse embryonic stem cells (mESCs) in a benchmark study (Zhong et al. 2023). 199 

Zhong et al. benchmarked a set of tools with different input requirements. Considering the 200 

similarity of the methods and input requirements, we select single-mode tools as baselines: 201 

Tombo, MINES (Lorenz et al. 2020), Nanom6A (Gao et al. 2021), m6Anet, and Epinano (Liu 202 

et al. 2019). We process the test data using standard SegPore workflow with 5mer parameter 203 

table estimated from the training data. As a result, we get SegPore eventalign for all 5mers, 204 

modification rates for selected sites (differentiable motifs), modification states of these sites 205 
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on each read. To demonstrate the performance of SegPore eventalign on downstream tasks, 206 

we feed the SegPore eventalign results to m6Anet, which is termed as SegPore+m6Anet. 207 

 

 

 

 

 

SegPore demonstrates the improved segmentation results compared with Nanopolish. Fig. 208 

3A shows the eventalign results of Nanopolish and SegPore at an example genomic location 209 

with m6A modifications. The histogram shows the distribution of the raw signal segment mean 210 

of all reads mapped to the genomic location. Compared with Nanopolish eventalign results, 211 

the bimodal distribution is more obvious in SegPore results. We next pooled all reads mapped 212 

to modification genomic locations (based on the ground truth) for the classical m6A motif 213 

“GGACT”. Fig. 3B illustrates the current signal distribution over all reads mapped to these 214 

locations, where prominent peaks are observed in SegPore but not in Nanopolish. The results 215 

suggest that SegPore is able to remove a certain degree of noise from the raw current signal, 216 

which makes the modification distribution clearer.  217 

 218 

SegPore exhibits decent performance on m6A identification on the test data. Given the ground 219 

truth miCLIP2 (Kortel et al. 2021) data, we calculate the area under the curve (AUC) of the 220 

receiver operating characteristic (ROC) curve and precision-recall (PR) curve for each 221 

A B E

C D

Figure 3.  m6A identification. (A) Histogram of current signal mapped to an example modified genomic location 
(chr10:128548315, GGACT) across all reads in training data given by Nanopolish (left) and SegPore (right). 
(B) Histogram of current signal mapped to GGACT at all annotated m6A genomic locations of the training data 
given by Nanopolish (left) and SegPore (right). (C) Benchmark results on all DRACH motifs.  (D) Benchmark 
results on six selected motifs. (E) Modification rate of selected genomic locations (upper panel) and modification 
states of all reads mapped to an example gene (ENSMUSG00000003153, lower panel). The black borders in 
the heatmap highlight the bi-clustering results. 
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method. Fig. 3C shows the benchmark results on all DRACH motifs, where SegPore+m6Anet 222 

shows the best performance (ROC AUC=89.2%, PR AUC=43.0%). Next, we demonstrate 223 

SegPore’s modification estimation performance on selected 5mers. We selected six m6A 224 

motifs (“GGACT”, “GGACA”, “GGACC”, “AGACA”, “AGACC”, “AGACT”) based on the 225 

following two criteria (1) modified and unmodified peaks are significantly different and (2) the 226 

5mer is both abundant in the training and test data (Supplementary Fig. 1). As shown in Fig. 227 

3D, SegPore’s ROC AUC is 82.8%, where the best is 89.2% (SegPore+m6Anet). SegPore’s 228 

PR AUC is 37.6%, where the best is 48.0% (Nanopolish+m6Anet). The results suggest the 229 

decent performance of SegPore in m6A identification. 230 

 231 

SegPore naturally identifies m6A modifications at the single molecule level. Fig. 3E 232 

demonstrates high modification genomic locations (modification rate > 0.1, also supported by 233 

ground truth) of an example gene ENSMUSG00000003153, where rows are reads and 234 

columns are genomic locations. Biclustering was performed on the heatmap to illustrate the 235 

modification patterns, which resulted in 6 clusters of the reads and 3 clusters of the genomic 236 

locations. The heatmap suggests that modifications at the 6th, 7th, and 8th genomic locations 237 

are specific to cluster 4, 5, 6 of the reads, which correspond to different modification 238 

mechanisms. It is also obvious that the majority of reads at the 3rd and 5th genomic locations 239 

are modified across other clusters. 240 

Inosine identification 241 

Thanks to the flexibility of the 5mer parameter table, SegPore can be easily extended to 242 

estimate other RNA modifications using the same computational framework. We next test the 243 

performance of SegPore on inosine identification, which is another RNA modification of 244 

adenine (Slotkin and Nishikura 2013; Nishikura 2016; Eisenberg and Levanon 2018; Nguyen 245 

et al. 2022). The in virto transcription (IVT) data and H9 human embryonic stem cells (hESCs) 246 

data in a public dataset (Nguyen et al. 2022) were used for this task. The 5mer parameter 247 

table of inosine was obtained from IVT data, and the H9 data was for testing. 248 
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First, we explain the training process. The IVT data contained eight pure-G samples and eight 249 

pure-I samples, which were merged into one pure-G and one pure-I sample, respectively.  The 250 

pure-G sample was an unmodified sample where A, C, G, U nucleotides were used in the 251 

synthesis of a designed RNA molecule. The designed sequence contains 81 different XXGXX 252 

5mers, where X is A, C or U/T. The pure-I sample was a modified sample where A, C, I 253 

(inosine), U were used for synthesizing the same RNA molecule. The “G” nucleotides in the 254 

RNA sequence could either be replaced by A or I nucleotides, which provided data to infer 255 

distributions of 5mers in the form of XXA/IXX. We run standard SegPore workflow on the pure-256 

G sample and pure-I sample to get a stabilized 5mer parameter table, which contains 257 

modification states for 61 selected 5mers (Supplementary Fig. 2A). Note that the mean of 258 

XXGXX and XXAXX are fixed, whose values are specified by the 5mer parameter table of 259 

ONT.  260 

 261 

The derived 5mer parameter table nicely depicts the selected 5mer distributions. Fig. 4A 262 

shows three example patterns of 5mer distributions, which are the densities derived from raw 263 

signal segments aligned to the selected 5mers on the reference sequence. We obtain the 264 

XXGXX distributions from the pure-G sample and XXA/IXX distributions from the pure-I 265 

sample. For the pure-G sample, we expect only one peak for XXGXX, while we expect two 266 

peaks for XXAXX and XXIXX in the pure-I sample. There are three general patterns: (1) G is 267 

replaced by A or I in the pure-I sample, but we cannot differentiate the peaks of XXAXX and 268 

XXIXX (top panel) (2) G is replaced by A or I, and the peaks of A and I can be clearly identified 269 

(center panel) (3) G is only replaced by I and the peak of I is significantly different to the ONT 270 

reference A peak (bottom panel). The selected 5mers belong to the second and third patterns 271 

(Supplementary Fig. 2A). Supplementary Fig. 2B shows that the mean of XXIXX is generally 272 

between that of XXAXX and XXGXX, which agrees with the findings in the original publication 273 

(Nguyen et al. 2022). 274 
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We test the performance of SegPore on H9 DRS data, which consists of ten wild type samples. 275 

We used the 5mer table estimated from the training data and ran the standard SegPore 276 

workflow on H9 data, which provides the modification rate of each genomic location that 277 

matches the selected 5mers. Due to data availability, we only find the ground truth of locations 278 

on Chromosome 3 and 11 from the original publication (Nguyen et al. 2022). Out of these 279 

locations, 37 inosine modification sites match our selected 5mers, which are used as the 280 

positive control, and 241 unmodified sites match our selected 5mers, which are used as the 281 

negative control. Fig. 4b shows the current signal distribution of one selected 5mer CAACA 282 

by pooling all relevant sites on positive control, which exhibits two clear peaks for CAACA and 283 

CAICA. This suggests a high consistency of 5mer distributions between the IVT data and the 284 

H9 data. Fig. 4C shows the modification rate distribution in the positive and negative controls. 285 

It can be seen that the modification rates of positive control are higher than that of negative 286 

control on average (t-test, p-value=2.22e-11). 287 

XXGXX

XXAXX

XXIXX

XXAXX  or  XXIXX

Distributions from ONT
Distributions estimated

Pattern 1 

A B

C

CAACA / CAICA

IVT data H9 data

CAACA distributions from ONT

CAICA distributions estimated  from IVT data

Modification rate on H9 data

Pattern 2 

Pattern 3 

pure-G 
sample 

pure-I 
sample 

pure-G 
sample 

pure-I 
sample 

pure-G 
sample 

pure-I 
sample 

              AAHCC                              AAHTC                             ACHTT                                 CCHTT                               CTHTT 

            ATHTT                                 CCHAT                             TAHTT                                TCHTC                               TTHTA 

          ATHCA                                CAHCA                             CCHCC                             CTHAA                           TCHAC 
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3*std

AAGCC 

AAACC / AAICC 

ATGTT 

ATATT  

ATGCA 

ATITT
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Figure 4.  Inosine identification. (A) Current signal distributions of example 5mers in IVT data, which are 
classified into three patterns. The shaded area is the smoothed density of current signal of a given 5mer across 
different reads and different genomic locations. The fitted Gaussian density curves are given by estimated 
5mer parameters. For each pattern, the top panel shows the distributions for 5mers like XXGXX (X is A, C, 
T/U) in the pure-G sample, while the bottom panel shows distributions of the same 5mers with the center 
nucleotide replaced by A or I. These examples represent three patterns of 5mers: (1) 5mers that show no 
difference between A and I (2) 5mers that show significant difference between A and I and (3) 5mers that show 
significant difference between A and I, but the component weight of A is low. (B) Current signal distribution of 
example 5mers CAACA or CAICA pooled from different reads and different genomic locations in IVT data 
(training data) and H9 data (test data).  (C) Modification rate distributions in positive control (inosine 
modification sites) and negative control (unmodified sites). Modification states are given by the ground truth. 
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RNA structure estimation 288 

RNA structure can be probed by sequencing based approaches such as SHAPE-MaP and 289 

nanoSHAPE. Their idea is to treat the RNA molecules with chemical adducts, which are only 290 

attached to single stranded parts but not double stranded parts of RNA molecules. The 291 

chemically treated RNA is then subjected to short-read sequencing (SHAPE-Map) or 292 

Nanopore sequencing (nanoSHAPE). In short-read sequencing, a nucleotide attached by an 293 

adduct turns out to be a mutation, while it is recognized as a modification in Nanopore 294 

sequencing. The mutation rate or modification rate is then transformed to a reactivity score 295 

that is utilized by the RNAfold software (Lorenz et al. 2011) to generate RNA structure.  296 

 297 

SegPore can be used to identify the modifications and predict RNA structure from Nanopore 298 

sequencing data. As an illustration, we analyze the public Nanopore sequencing data of pri-299 

miR-17~92 RNA in the nanoSHAPE (Stephenson et al. 2022),  for which the ground truth 300 

structure (based on SHAPE-MaP) is available. In this dataset, we choose Nanopore 301 

sequencing data of two samples: one in vitro transcribed (IVT) sample with no modifications 302 

and one adduct treated sample with modifications. Following standard SegPore workflow, we 303 

first segment raw current signals of reads in both samples. Since all reads are from the same 304 

reference sequence, we directly align the derived signal segments with 5mers of the pri-miR-305 

17~92 reference sequence. Then, for each location (5mer) of the reference sequence, we fit 306 

a two-component Gaussian mixture model to all signal segments aligned to that location in 307 

both samples, with one component representing the unmodified state and the other 308 

representing the modified state. Next, we estimate the modification rate and reactivity score 309 

for each location of the reference sequence based on the fitted GMM parameters. In the end, 310 

pri-miR-17~92 RNA sequence and the reactivity scores are fed into RNAfold software (Lorenz 311 

et al. 2011) to generate the final RNA structure.  312 
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The RNA structure given by SegPore nicely agrees with the ground truth (SHAPE-MaP), as 313 

shown in Fig. 5B. The conserved six hairpin structures, each marked by a dashed line in the 314 

center, are almost identical between SegPore and SHAPE-MaP predictions. Six example sites 315 

in the loop part from each hairpin structure are selected to illustrate the modifications in Fig. 316 

5A, where a large component of modification (highlighted in red) is observed in the modified 317 

sample. This result is consistent with the expected outcome of the SHAPE protocol as the 318 

loops are single stranded, where adducts are attached and recognized as modifications. The 319 

reactivity scores of SHAPE-MaP and SegPore are similar (Fig. 5C), and peaks are located at 320 

similar sites. It can be seen that peak regions in Fig. 5C generally correspond to single 321 

stranded regions with no base pairing in Fig. 5B. 322 

 323 
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     ATGTG                             AGATT                            AGAAG                           TAGTT                                  TATTC                                TTCTG   
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Figure 5.  RNA (pri-miR-17∼92) structure estimation using SegPore. (A) Six example sites chosen from the loop 
part of six conserved hairpin structures, with the corresponding 5mers displayed at the bottom. The top panel is 
from the unmodified sample (in vitro transcription) and the lower panel is from the modified sample (adduct 
treated), whose modified component is highlighted in red. (B) Arc diagrams of RNA structure based on SHAPE-
Map (blue) and SegPore (green). X-axis is the 5’-3’ location on the reference sequence. (C) Reactivity scores of 
SHAPE-MaP and SegPore. A high reactivity score is associated with a high modification rate in the modified 
sample. (D) SegPore predicted RNA structure, with different colors denoting peak regions in the alignment end 
location distribution. The crossings indicate the stem structures near potential stop locations during reverse 
transcription. The numbers indicate the 5’-3’ locations of the nucleotides. The reverse transcription is from 3’ to 
5’, i.e. from location 951 to 1. (E) The same arc diagrams as (B) with peak regions highlighted. (F) Alignment end 
location distribution for both the unmodified and modified samples. X-axis indicates 5’-3’ locations on the 
reference sequence. Y-axis is the probability density. 
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After aligning the raw signal with the reference sequence, large amounts of reads in both 324 

unmodified (86.3%) and modified samples (95.7%) do not cover the full-length reference 325 

sequence. We are curious about the cause and examine the distribution of the alignment end 326 

locations on the reference sequence. Fig. 5F shows that the distributions are very similar 327 

between the unmodified and modified samples, which precludes the adduct modifications from 328 

being the cause. Comparing the peak regions in Fig. 5F with the RNA structure in Fig. 5D and 329 

Fig. 5E, we find that the peak regions are generally located right before stem structures, i.e., 330 

a stretch of paired bases. Note that the reverse transcription starts from 3’ to 5’, it is obvious 331 

that the peak regions are right next to the downstream stem structures, the start locations of 332 

which are highlighted by crossing signs in Fig. 5D. 333 

 334 

The above finding suggests that peaks are associated with reverse transcription in the 335 

Nanopore sequencing library preparation. Here, we hypothesize that the reverse transcriptase 336 

enzyme loses its momentum when it hits stem structures highlighted by crossings in Fig. 5D, 337 

as it takes lots of energy to unwind the stem structures. When the reverse transcriptase 338 

enzyme stalls on the RNA molecule, we hypothesize that the RNA molecule fractures near 339 

the stalled locations due to the thermodynamic movements of the reverse transcriptase 340 

enzyme. Therefore, a partial read corresponds to a fractured RNA molecule in the reverse 341 

transcription. 342 

Discussion 343 

The key computational problem in DRS is how to segment the raw current signal. We 344 

developed a segmentation algorithm that utilized the jiggling property in the physical process 345 

of DRS and demonstrated that the segmentation led to cleaner current signals in m6A, inosine 346 

identification, as well as RNA structure estimation. We have shown that m6Anet achieved 347 

better performances based on SegPore’s improved segmentation. We believe that the de-348 

noised current signals will be beneficial for other downstream tasks. However, some open 349 

questions remain to be addressed in the future. In SegPore, we assume a drastic change 350 
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between two consecutive 5mers, which may hold for 5mers with large difference in their 351 

current baselines but may not hold for those with small difference. Another question is the 352 

physical meaning of derived base blocks. In the ideal case, one base block corresponds to 353 

one 5mer, while multiple base blocks are aligned with one 5mer in the real case. One guess 354 

is that the HHMM may partition the current signal of one 5mer into several base blocks, during 355 

which the 5mer may oscillate between different sub-states, i.e., each sub-state of the same 356 

5mer has different baselines. 357 

 358 

Different from DNN-based methods, SegPore offers great interpretability to the estimation of 359 

RNA modifications, which makes it applicable to different modifications. SegPore codes 360 

current intensity levels for different 5mers in a parameter table, where unmodified and modified 361 

5mers are modeled using two Gaussian distributions. Given 5mer parameter tables of different 362 

RNA modifications, e.g., m6A, inosine, pseudouridine, etc., we can estimate various 363 

modifications from the same DRS data. Since we directly model the current level of 5mers 364 

with RNA modifications, SegPore naturally provides the modification states on the single RNA 365 

molecule level. This capability will be particularly powerful for studying RNA modifications in 366 

various disease contexts. However, the amount of 5mers with significant changes in their 367 

modification states is relatively small. We may need larger training data to improve the 368 

accuracy and expand 5mers to 7mers or 9mers to consider more context information, on which 369 

significant baseline change might be observed on more kmers. 370 

 371 

In RNA structure experiment, we also found there was an association between the end points 372 

of reads and the stem structures of the RNA molecule. We hypothesize that the RNA molecule 373 

fractures are near the stem structures. If stronger stem structures are associated with a larger 374 

proportion of partial reads, we may use this information to probe the binding energy of the 375 

stems and incorporate it in the RNA structure estimation, which is a unique angle provided by 376 

DRS. SegPore differs from the original structure estimation method NanoSHAPE in the 377 

following aspects (1) we use SegPore’s segmentation results instead of Nanopolish’s, (2) we 378 
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estimate RNA modifications using GMM while NanoSHAPE uses outlier detection, and (3) the 379 

reactivity score profiles are calculated differently. Due to the improved segmentation, SegPore 380 

increased the mapping rate of full-length RNA sequences. In our experiment, SegPore 381 

identified 21% of reads to be full-length, while Nanopolish only identified 5%.      382 

 383 

Computation speed is another concern in handling the fast5 files. We implemented a GPU-384 

accelerated inference algorithm in SegPore, which has a 10~20 fold speedup compared with 385 

the CPU-based implementation. We believe that the GPU-implementation will unlock the full 386 

potential of SegPore for a wider range of downstream tasks and larger datasets. 387 

Methods 388 

5mer parameter table  389 

We download the kmer models “r9.4_180mv_70bps_5mer_RNA” from GitHub repository of 390 

ONT (https://github.com/nanoporetech/kmer_models). The columns “level_mean” and 391 

“level_stdv” were used as the mean and std for unmodified 5mers in a parameter table. We 392 

denoted it as the 5mer parameter table of ONT, which was used for initialization in SegPore.   393 

SegPore workflow 394 

Preprocessing 395 

We first perform basecalling of the input fast5 file using Guppy. Then we map the basecalled 396 

sequence to the reference sequences using Minimap2 (Li 2018). After that, we obtain the 397 

paired raw current signal segments and corresponding fragments of the reference sequence 398 

using Nanopolish eventalign. Meanwhile, we obtain the raw current signal segments 399 

corresponding to the polyA tail. Finally, we standardize the raw current signal of each read 400 

based on its polyA tail, such that the mean and std of the polyA tail are the same across 401 

different reads. 402 
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Signal Segmentation via hierarchical Hidden Markov model 403 

The RNA translocation hypothesis naturally leads to a hierarchical hidden Markov model 404 

(HHMM) for segmenting the raw current signal. As shown in Fig. 2B, our HHMM has two 405 

layers. The outer HMM divides the raw current signal into alternating base and transition 406 

blocks, as indicated by hidden states “B” and “T” in Fig. 2B. The inner HMM models a single 407 

base block and a linear model is used for each transition block. The inner HMM has four 408 

hidden states: “prev”, “next”, “curr”, “noise”. The “prev”, “next”, “curr” states refer to previous, 409 

next and current 5mer in the pore, while “noise” refers to random noise. Each raw current 410 

measurement is then emitted from one of these hidden states. The linear model with a large 411 

absolute slope is used to model the sharp changes in the transition block. 412 

 413 

Given the raw current signal y of a read, we denote the hidden states of the outer hidden HMM 414 

by g . y and g are divided into 2 1K +  blocks c , where ( )y k , ( )g k correspond to k th block and415 

{ }1 2 2 1( , ,..., ,..., ), " "," "c k K kc c c c c B T+= ∈ . Note that blocks with odd index are base blocks, i.e. 416 

1,3,5,..., 2 1k K= + , whereas blocks with even index are transition blocks. The likelihood of 417 

HHMM is given by 418 

 ( , ) ( | ) ( )   y g y g gp p p=  (1) 419 
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g g g
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where
1i i

outer
g gT
−

is the transition matrix of the outer HMM and
1

outer
gπ is the probability for the first 423 

hidden state. It is obviously seen that the left side of the Eq. 2 are emission probabilities, and 424 

the right side are the transition probabilities.  It is not possible to directly compute the emission 425 

probabilities of the outer HMM (Eq. 3) since there exist dependencies for the current signal 426 
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measurements within a base or transition block. Therefore, we use the inner HMM and linear 427 

model (Eq. 4) to handle the dependencies and approximate emission probabilities.  428 

 429 

The inner HMM models the transitions between the hidden states “prev”, “next”, “curr”, and 430 

“noise”. For “prev”, “next”, “curr” states, we use the Gaussian distribution as their emission 431 

distribution. Uniform distribution is used as the emission distribution for the “noise” state. Given 432 

these specifications, we can calculate the marginal likelihood of the inner HMM using the 433 

Forward-Backward algorithm, which is used to approximate the emission probabilities of the 434 

base blocks in the outer HMM. Similarly, we can approximate the emission probabilities of the 435 

transition blocks using the likelihood of the standard linear model. 436 

 437 

For any given g , we can calculate the joint likelihood (Eq. 1). Therefore, we enumerate 438 

different configurations of g and choose the one with the highest likelihood. Detailed model 439 

description is provided in Supplementary Note 1.  440 

 441 

The parameter inference is challenging given the massive data size of fast5 files, which are 442 

generally on the level of terabytes (TB). We developed a GPU-based inference algorithm to 443 

accelerate the inference process. A detailed description of the GPU-accelerated inference 444 

algorithm is provided in Supplementary Note 2. 445 

 446 

In the end, we segment the raw current signal of a read into alternating base and transition 447 

blocks, where one or multiple base blocks may correspond to only one 5mer. For each base 448 

block, it has a mean and std parameter (Gaussian distribution). The mean values of the base 449 

blocks are used as input for the downstream alignment tasks.  450 

Alignment of raw signal segment with reference sequence 451 

After segmenting the raw current signal of a read into base and transition blocks using HHMM, 452 

we align the means of base blocks with the 5mer list of the reference sequence.  453 
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The alignment has three different matching cases. The first case is that one base block 454 

matches with one 5mer, which means the base block follows the Gaussian distribution of the 455 

given 5mer. Note that the 5mer might have two states: unmodified and modified. The 456 

corresponding Gaussian parameters can be found in the 5mer parameter table. The second 457 

case is the one base block matches with an indel “-”, which means there is an inserted 458 

nucleotide in the read. The third case is that an indel (0.0) matches with a 5mer, which means 459 

there is a deleted nucleotide in the read.  460 

 461 

Our score function in the alignment models the matching cases as follows. For the first case, 462 

we calculate the probability of the base block mean sampled from the unmodified 5mer 463 

Gaussian distribution, as well as the modified 5mer Gaussian distribution. The larger 464 

probability is used as the match score in this case. For the second or third case, we treat it as 465 

noise and use a fixed uniform distribution to calculate the match score. 466 

 467 

In our alignment, another significant difference with the classical global alignment algorithm is 468 

that one or multiple base blocks could be aligned with one 5mer. Given the base block means469 

1 2( ), ,..., ,...,μ i mµ µ µ µ= and 5mer list 1 2( ), ,..., ,...,s j ns s s s= , we define ( 1) ( 1)m n+ × + the score 470 

matrix as M  (Fig. 2C). The first row and column of M are reserved for indels “0.0” and “-”, 471 

which represent indels of the base block and 5mer, respectively. We denote the score function 472 

by f . The recursion formula of the dynamic programming alignment algorithm is given by 473 
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µ

− − +

− +

− + −

− +

= 

. (5) 474 

It can be seen that we can still align iµ with js after we have aligned 1iµ − with js , which fulfills 475 

the special consideration that one or multiple base blocks might be aligned with one 5mer. 476 

 477 
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There are two different types of alignment algorithms given the score matrix M : the full 478 

alignment algorithm and the partial alignment algorithm (Fig. 2C). The full alignment algorithm 479 

tries to align the full list of base block means with the full list of 5mer list, which is similar to the 480 

classical global alignment algorithm. This is implemented by tracing back from the ( 1, 1)m n+ +  481 

position of the score matrix. The partial alignment algorithm tries to align the full list of the base 482 

blocks with the first part of the 5mer list. It differs from the full alignment algorithm in two 483 

aspects: (1) no indel is allowed in both the base block means and the 5mer list, and (2) trace 484 

back the maximum value of the last row of the score matrix M . A detailed description of the 485 

full and partial alignment algorithm is provided in Supplementary Note 1.  486 

 487 

The output of the alignment algorithm is the eventalign, which contains the pairing between 488 

the base blocks and 5mer list of reference sequences for each read (Fig. 2C). 489 

Modification estimation 490 

After obtaining the eventalign results, we estimate the modification state of each motif using 491 

the 5mer parameter table. If the 5mer is in the modification state, the probability of the base 492 

block mean under the modified 5mer Gaussian distribution should be higher than that 493 

calculated using unmodified 5mer parameters, and vice versa. Since one 5mer may be aligned 494 

with multiple base blocks, we merge all the aligned base blocks and take the weighted mean 495 

as the single base block mean aligned with the given 5mer, which provides us the modification 496 

state of each site of a read. We then pool all reads mapped to the same genomic location on 497 

the reference sequence to get the modification rate of the genomic location, which is the 498 

proportion of reads in modification state. Detailed description of the modification state 499 

estimation is provided in Supplementary Note 1.  500 

GMM for 5mer parameter table re-estimation 501 

To gain better alignment results and more accurate modification estimation, we use GMM to 502 

fine-tune the 5mer parameter table iteratively. As shown in Fig. 2A, the row of the 5mer 503 
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parameter table are 5mers and the columns are the mean and std of the unmodified and 504 

modified states. We denote a 5mer by 𝑠𝑠 and its relevant parameters by 𝜇𝜇𝑠𝑠,𝑢𝑢𝑢𝑢, 𝛿𝛿𝑠𝑠,𝑢𝑢𝑢𝑢, 𝜇𝜇𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, 505 

𝛿𝛿𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚.  506 

 507 

Given the alignment results of all reads, we extract all base block means that are aligned to 508 

the same 5mer s on different reads and across different genomic locations with high 509 

modification rates. Next, we fit a two-component GMM to the collected base blocks 510 

corresponding to 5mer 𝑠𝑠, with the first component mean fixed to 𝜇𝜇𝑠𝑠,𝑢𝑢𝑢𝑢. From the GMM, we 511 

have the updated 𝛿𝛿𝑠𝑠,𝑢𝑢𝑢𝑢, 𝜔𝜔𝑠𝑠,𝑢𝑢𝑢𝑢, 𝜇𝜇𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, 𝛿𝛿𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, and 𝜔𝜔𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚, where 𝜔𝜔𝑠𝑠,𝑢𝑢𝑢𝑢, 𝜔𝜔𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 are the weights 512 

for unmodified and modified components. Then, we manually update the 5mer parameter table 513 

based on some heuristics such that the modified 5mer distribution is significantly different from 514 

that of unmodified 5mer distribution. Detailed description of the GMM re-estimation process is 515 

provided in Supplementary Note 1.  516 

 517 

The re-estimation of 5mer parameter table is only performed on the training data. We initialize 518 

the 5mer parameter table using the 5mer parameter table provided by ONT. Every time after 519 

we gain the updated 5mer parameter table, we run the SegPore workflow from the alignment 520 

again. The process is repeated 3 to 5 times in general, after which the 5mer parameter table 521 

is stabilized. After that, the 5mer parameter table is fixed. For testing data, we estimate the 522 

RNA modification states using the fixed 5mer parameter table. 523 

m6A benchmark 524 

The HEK293T wild type (WT) samples were downloaded from ENA database under accession 525 

number PRJEB40872, while the HCT116 samples were downloaded from ENA PRJEB44348. 526 

The reference sequence (Homo_sapiens.GRCh38.cdna.ncrna_wtChrIs_modified.fa) were 527 

downloaded from https://doi.org/10.5281/zenodo.4587661. The ground truth data were 528 

obtained from Supplementary Data 1 of Pratanwanich, P.N. et al. (Pratanwanich et al. 2021). 529 

Fast5 files of the test dataset (mESC WT samples, mESCs_Mettl3_WT_fast5.tar.gz) were 530 
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downloaded from NCBI Sequence Read Archive (SRA) database under accession number 531 

SRP166020.  532 

 533 

During training, the 5mer parameter table was initialized using ONT. Standard SegPore 534 

workflow is performed on the training data (HEK293T WT samples), where the full alignment 535 

algorithm is used. The 5mer parameter table estimation was iterated five times. During the 536 

training, reads were first mapped to cDNA, then converted to genomic locations on the 537 

reference genome using Ensembl GTF file (GRCh38, v9), after that the same 5mer at different 538 

genomic locations were pooled together. We select 5mers with significant modifications if its 539 

read coverage is greater than 1,500 and the distance between two components means in the 540 

GMM is greater than 5. The modification parameters were specified for ten significant 5mers, 541 

as illustrated in Supplementary Fig. 1A.  542 

 543 

With the estimated 5mer parameter table from the training data, we ran SegPore workflow on 544 

the test data. Transcript sequences of GENCODE release version M18 were used as the 545 

reference sequence for mapping, where the GTF file 546 

(gencode.vM18.chr_patch_hapl_scaff.annotation.gtf) downloaded from GENCODE was used 547 

to convert transcript locations to genomic locations. Note that we do not estimate 5mer 548 

parameter table for test data, and the modification states for each read are estimated only 549 

once. Due to the difference between human and mouse, only six out of ten selected 5mers 550 

have m6A annotations in the ground truth of the test data (Supplementary Fig. 1C). For a 551 

genomic location to be considered as a m6A modification site, we require that it must 552 

correspond to one of the six common 5mers and the read coverage must be greater than 20. 553 

For SegPore, the modification rate of each genomic location was used to derive the ROC and 554 

PR curves in the benchmark study.  555 

 556 

In the SegPore+m6Anet analysis, we fine-tuned the m6Anet using the SegPore eventalign 557 

results to demonstrate its improved performance on m6A identification. Based on the pre-558 
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trained m6Anet network (https://github.com/GoekeLab/m6anet, model version: 559 

HCT116_RNA002), we fine-tuned it using SegPore eventalign results of HCT116 samples. 560 

SegPore eventalign provides the pairing between each genomic location and its 561 

corresponding raw signal segment, from which it generates the normalized mean 𝜇𝜇𝑖𝑖, std 𝜎𝜎𝑖𝑖, 562 

dwell time 𝑙𝑙𝑖𝑖 . For genomic location 𝑖𝑖 , m6Anet extracts a feature vector 𝑥𝑥𝑖𝑖 =563 

{𝜇𝜇𝑖𝑖−1,𝜎𝜎𝑖𝑖−1, 𝑙𝑙𝑖𝑖−1, 𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖 , 𝑙𝑙𝑖𝑖 ,𝜇𝜇𝑖𝑖+1,𝜎𝜎𝑖𝑖+1, 𝑙𝑙𝑖𝑖+1} to be used as the input of m6Anet.  Feature vectors of 564 

80% genomic locations were used as the training set and the rest 20% were used as the 565 

validation set. We run 100 epochs to fine-tuning m6Anet and selected the model that performs 566 

the best on the validation set. 567 

 568 

The ground truth, performances of other methods (Tombo v1.5.1, Nanom6A v2.0, m6Anet 569 

v1.0, and Epinano v1.2.0) of mESCs were obtained through personal communications with 570 

Prof. Luo Guanzheng, who is the corresponding author of the referenced benchmark study 571 

(Zhong et al. 2023).  572 

Inosine identification experiments 573 

Raw nanopore sequencing data of in virto transcription data (training data)  and H9 human 574 

embryonic stem cells (test data) were downloaded from NCBI Sequence Read Archive under 575 

accession number SRP363295. The training data consists of eight pure-G samples 576 

(Accessions: SRX18177003, SRX14536452, SRX14536451, SRX14536450, SRX14536449, 577 

SRX14536448, SRX14536447, and SRX14536446), eight pure-I samples (Accessions: 578 

SRX18176999, SRX14535372, SRX14535371, SRX14535370, SRX14535369, 579 

SRX14535368, SRX14535367, and SRX14535366 ), and three reference sequences for 580 

synthetic RNA can be download from Supplementary Table 5 of the original publication 581 

(Nguyen et al. 2022). The test data consists of ten H9 WT embryo samples (Accessions: 582 

SRX14436756, SRX14436755, SRX14436754, SRX14436753, SRX14436752, 583 

SRX14448128, SRX14448125, SRX14448129, SRX14604385, and SRX14604391). The 584 
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reference sequence for the test data is the human GRCh37 cDNA sequences downloaded 585 

from the Ensembl database. 586 

 587 

Standard SegPore workflow was performed on the training data, where four iterations were 588 

used to derive the 5mer parameter table. Considering that there is only one transcript per 589 

sample in the IVT data, the partial alignment algorithm is used in the training. The designed 590 

reference sequences of the IVT data contain 81 different 5mers in the form of XXGXX, where 591 

X is A, C or U/T. We manually classify the 81 5mers into three patterns (Supplementary Fig. 592 

2a), which contain 20, 23, 38 5mers, respectively. For Pattern 2, a two-component GMM is 593 

fitted to the data with the unmodified component mean fixed. For Pattern 3, a single Gaussian 594 

distribution is fitted to the data with the constraint that the std should not exceed 3.0. The final 595 

5mer parameter table after training contains modification parameters for 61 5mers (Pattern 2 596 

and 3).  597 

 598 

The derived 5mer parameter table was then used to identify inosine from the test data (H9 599 

data). Ensembl GTF file (GRCh37, v87) was used to convert transcript locations to genomic 600 

locations. For a genomic location to be considered an inosine modification site, its read 601 

coverage must be larger than 10. Due to the availability of data, we can only download the 602 

ground truth on Chromosome 3 and 11 (test_H9_regression_allannotatedsites_0to1.RData) 603 

for the test data from the code repository of the original publication (Nguyen et al. 2022), which 604 

contains the modification rates of 4,934 genomic locations. From these genomic locations, we 605 

selected sites with a modification rate greater than 0.1 as the positive control, and sites with a 606 

modification rate equal to 0 as the negative control. As a result, 1,007 sites were retained from 607 

the ground truth, consisting of 129 positive sites (37 unique 5mers) and 878 negative sites. 608 

Out of the 37 unique 5mers in the positive control of the ground truth, there are 18 overlapping 609 

5mers with the 61 selected 5mers (Pattern 2 and 3) in the training. The sites that match the 610 

18 overlapping 5mers were kept, after that we retained sites with read coverage larger than 611 
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10, resulting in 37 positive sites and 241 negative sites. SegPore estimated modification rates 612 

of these sites were extracted to generate Fig. 4C.  613 

RNA structure estimation 614 

The raw DRS data of pri-miR-17~92 is downloaded from NCBI under accession number 615 

PRJNA634693, which contains an unmodified sample (in vitro transcription) and several 616 

modified RNA samples treated using 5, 20, 50, 75, 100, 150, or 200 mM AcIm. The IVT sample 617 

(unmodified RNA) and the 150mM AcIm sample (modified RNA) were used in this experiment. 618 

 619 

Standard SegPore workflow is performed on both samples and partial alignment algorithm is 620 

used. From the alignment results, we find a large proportion of the reads (∼90%, 621 

Supplementary Note 3) do not cover the whole reference sequence. Therefore, we analysis 622 

the alignment end position distribution. For getting more accurate reactivity score in RNA 623 

structure estimation, we fine-tuned the parameters for unmodified distribution and modified 624 

distribution on each site of the reference sequence. Finally, the normalized reactivity score is 625 

fed into the RNAfold (v2.4.13) (Vienna) web server to predict the RNA structure and R-chie 626 

(Tsybulskyi, Mounir and Meyer 2020) is used for displaying base pairing (arc). More details 627 

are provided in Supplementary Note 3. 628 

Data Access 629 

The data utilized in this study are obtained from publicly available repositories. Details 630 

regarding the accession number and data processing can be found in Methods. The source 631 

code is hosted on GitHub (https://github.com/guangzhaocs/SegPore). 632 

Acknowledgements 633 

We would like to thank Prof. Zhijie Tan from Wuhan University for a useful discussion about 634 

the molecule dynamics of Nanopore sequencing, Dr. Dan Zhang from Sichuan University for 635 

helpful tutorials about traditional Nanopore analysis workflows. We would like to thank 636 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.01.11.575207doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/bioproject/634693
https://github.com/guangzhaocs/SegPore
https://doi.org/10.1101/2024.01.11.575207
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

Research Council of Finland grants (NO. 335858, 358086) to GC and LC. GC and LC 637 

acknowledge the computational resources provided by the Aalto Science-IT project. We also 638 

thank Prof. Luo Guanzheng for sharing the m6A benchmark baseline results. 639 

Author Contributions 640 

GC developed the methods and performed the analyses. AV provided advice about statistical 641 

modelling and manuscript writing. LC conceptualized and supervised the project. GC and LC 642 

co-implemented the SegPore workflow, co-wrote the manuscript. All authors read and 643 

approved the manuscript.  644 

Competing Interest Statement 645 

The authors declare no competing interests. 646 

Supplementary Information 647 

Supplementary Figure 1: m6A identification kmer motif statistics. 648 

Supplementary Figure 2: Inosine identification kmer patterns.  649 

Supplementary Note 1: SegPore workflow. 650 

Supplementary Note 2: GPU-accelerated Hierarchical Hidden Markov Model parameter 651 

inference. 652 

Supplementary Note 3: SegPore for RNA structure estimation. 653 

References 654 

Agris PF, Narendran A, Sarachan K, Vare VYP, Eruysal E. 2017. The Importance of Being 655 

Modified: The Role of RNA Modifications in Translational Fidelity. Enzymes 41: 1-50. 656 

Bellodi C, McMahon M, Contreras A, Juliano D, Kopmar N, Nakamura T, Maltby D, 657 

Burlingame A, Savage SA, Shimamura A, Ruggero D. 2013. H/ACA small RNA 658 

dysfunctions in disease reveal key roles for noncoding RNA modifications in 659 

hematopoietic stem cell differentiation. Cell Rep 3: 1493-1502. 660 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.01.11.575207doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.11.575207
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

Boccaletto P, Stefaniak F, Ray A, Cappannini A, Mukherjee S, Purta E, Kurkowska M, 661 

Shirvanizadeh N, Destefanis E, Groza P et al. 2022. MODOMICS: a database of 662 

RNA modification pathways. 2021 update. Nucleic Acids Res 50: D231-D235. 663 

Caldwell CC, Spies M. 2017. Helicase SPRNTing through the nanopore. Proc Natl Acad Sci 664 

U S A 114: 11809-11811. 665 

Chen AY, Owens MC, Liu KF. 2023. Coordination of RNA modifications in the brain and 666 

beyond. Mol Psychiatry 28: 2737-2749. 667 

Craig JM, Laszlo AH, Brinkerhoff H, Derrington IM, Noakes MT, Nova IC, Tickman BI, 668 

Doering K, de Leeuw NF, Gundlach JH. 2017. Revealing dynamics of helicase 669 

translocation on single-stranded DNA using high-resolution nanopore tweezers. Proc 670 

Natl Acad Sci U S A 114: 11932-11937. 671 

Eisenberg E, Levanon EY. 2018. A-to-I RNA editing - immune protector and transcriptome 672 

diversifier. Nat Rev Genet 19: 473-490. 673 

Gao Y, Liu X, Wu B, Wang H, Xi F, Kohnen MV, Reddy ASN, Gu L. 2021. Quantitative 674 

profiling of N(6)-methyladenosine at single-base resolution in stem-differentiating 675 

xylem of Populus trichocarpa using Nanopore direct RNA sequencing. Genome Biol 676 

22: 22. 677 

Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT, 678 

Fiddes IT et al. 2018. Nanopore sequencing and assembly of a human genome with 679 

ultra-long reads. Nat Biotechnol 36: 338-345. 680 

Koh CWQ, Goh YT, Goh WSS. 2019. Atlas of quantitative single-base-resolution N(6)-681 

methyl-adenine methylomes. Nat Commun 10: 5636. 682 

Kortel N, Ruckle C, Zhou Y, Busch A, Hoch-Kraft P, Sutandy FXR, Haase J, Pradhan M, 683 

Musheev M, Ostareck D et al. 2021. Deep and accurate detection of m6A RNA 684 

modifications using miCLIP2 and m6Aboost machine learning. Nucleic Acids Res 49: 685 

e92. 686 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.01.11.575207doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.11.575207
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

Lee H, Bao S, Qian Y, Geula S, Leslie J, Zhang C, Hanna JH, Ding L. 2019. Stage-specific 687 

requirement for Mettl3-dependent m(6)A mRNA methylation during haematopoietic 688 

stem cell differentiation. Nat Cell Biol 21: 700-709. 689 

Leger A, Amaral PP, Pandolfini L, Capitanchik C, Capraro F, Miano V, Migliori V, Toolan-690 

Kerr P, Sideri T, Enright AJ et al. 2021. RNA modifications detection by comparative 691 

Nanopore direct RNA sequencing. Nat Commun 12: 7198. 692 

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34: 3094-693 

3100. 694 

Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey SR. 2015. Single-695 

nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat 696 

Methods 12: 767-772. 697 

Liu H, Begik O, Lucas MC, Ramirez JM, Mason CE, Wiener D, Schwartz S, Mattick JS, 698 

Smith MA, Novoa EM. 2019. Accurate detection of m(6)A RNA modifications in 699 

native RNA sequences. Nat Commun 10: 4079. 700 

Loman NJ, Quick J, Simpson JT. 2015. A complete bacterial genome assembled de novo 701 

using only nanopore sequencing data. Nat Methods 12: 733-735. 702 

Lorenz DA, Sathe S, Einstein JM, Yeo GW. 2020. Direct RNA sequencing enables m(6)A 703 

detection in endogenous transcript isoforms at base-specific resolution. RNA 26: 19-704 

28. 705 

Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker 706 

IL. 2011. ViennaRNA Package 2.0. Algorithms Mol Biol 6: 26. 707 

Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. 2012. Comprehensive 708 

analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. 709 

Cell 149: 1635-1646. 710 

Nance KD, Meier JL. 2021. Modifications in an Emergency: The Role of N1-711 

Methylpseudouridine in COVID-19 Vaccines. ACS Cent Sci 7: 748-756. 712 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.01.11.575207doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.11.575207
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

Nguyen TA, Heng JWJ, Kaewsapsak P, Kok EPL, Stanojevic D, Liu H, Cardilla A, Praditya 713 

A, Yi Z, Lin M et al. 2022. Direct identification of A-to-I editing sites with nanopore 714 

native RNA sequencing. Nat Methods 19: 833-844. 715 

Nishikura K. 2016. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol 716 

Cell Biol 17: 83-96. 717 

Ohira T, Suzuki T. 2024. Transfer RNA modifications and cellular thermotolerance. Mol Cell 718 

84: 94-106. 719 

Parker MT, Knop K, Sherwood AV, Schurch NJ, Mackinnon K, Gould PD, Hall AJ, Barton 720 

GJ, Simpson GG. 2020. Nanopore direct RNA sequencing maps the complexity of 721 

Arabidopsis mRNA processing and m(6)A modification. Elife 9. 722 

Pratanwanich PN, Yao F, Chen Y, Koh CWQ, Wan YK, Hendra C, Poon P, Goh YT, Yap 723 

PML, Chooi JY et al. 2021. Identification of differential RNA modifications from 724 

nanopore direct RNA sequencing with xPore. Nat Biotechnol 39: 1394-1402. 725 

Price AM, Hayer KE, McIntyre ABR, Gokhale NS, Abebe JS, Della Fera AN, Mason CE, 726 

Horner SM, Wilson AC, Depledge DP, Weitzman MD. 2020. Direct RNA sequencing 727 

reveals m(6)A modifications on adenovirus RNA are necessary for efficient splicing. 728 

Nat Commun 11: 6016. 729 

Prieto M, Folci A, Martin S. 2020. Post-translational modifications of the Fragile X Mental 730 

Retardation Protein in neuronal function and dysfunction. Mol Psychiatry 25: 1688-731 

1703. 732 

Quin J, Sedmik J, Vukic D, Khan A, Keegan LP, O'Connell MA. 2021. ADAR RNA 733 

Modifications, the Epitranscriptome and Innate Immunity. Trends Biochem Sci 46: 734 

758-771. 735 

Siegfried NA, Busan S, Rice GM, Nelson JA, Weeks KM. 2014. RNA motif discovery by 736 

SHAPE and mutational profiling (SHAPE-MaP). Nat Methods 11: 959-965. 737 

Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. 2017. Detecting DNA 738 

cytosine methylation using nanopore sequencing. Nat Methods 14: 407-410. 739 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.01.11.575207doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.11.575207
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

Slotkin W, Nishikura K. 2013. Adenosine-to-inosine RNA editing and human disease. 740 

Genome Med 5: 105. 741 

Stephenson W, Razaghi R, Busan S, Weeks KM, Timp W, Smibert P. 2022. Direct detection 742 

of RNA modifications and structure using single-molecule nanopore sequencing. Cell 743 

Genom 2. 744 

Stoiber M, Quick J, Egan R, Eun Lee J, Celniker S, Neely RK, Loman N, Pennacchio LA, 745 

Brown J. 2017. De novo Identification of DNA Modifications Enabled by Genome-746 

Guided Nanopore Signal Processing. biorxiv doi:10.1101/094672. 747 

Tsybulskyi V, Mounir M, Meyer IM. 2020. R-chie: a web server and R package for visualizing 748 

cis and trans RNA–RNA, RNA–DNA and DNA–DNA interactions. Nucleic Acids 749 

Research 48: e105-e105. 750 

Yankova E, Aspris D, Tzelepis K. 2021. The N6-methyladenosine RNA modification in acute 751 

myeloid leukemia. Curr Opin Hematol 28: 80-85. 752 

Zhong ZD, Xie YY, Chen HX, Lan YL, Liu XH, Ji JY, Wu F, Jin L, Chen J, Mak DW et al. 753 

2023. Systematic comparison of tools used for m(6)A mapping from nanopore direct 754 

RNA sequencing. Nat Commun 14: 1906. 755 

Zimna M, Dolata J, Szweykowska-Kulinska Z, Jarmolowski A. 2023. The expanding role of 756 

RNA modifications in plant RNA polymerase II transcripts: highlights and 757 

perspectives. J Exp Bot 74: 3975-3986. 758 

 759 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2024. ; https://doi.org/10.1101/2024.01.11.575207doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.11.575207
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Introduction
	Results
	RNA translocation hypothesis
	SegPore Workflow
	m6A identification
	Inosine identification
	RNA structure estimation

	Discussion
	Methods
	5mer parameter table
	SegPore workflow
	Preprocessing
	Signal Segmentation via hierarchical Hidden Markov model
	Alignment of raw signal segment with reference sequence
	Modification estimation
	GMM for 5mer parameter table re-estimation

	m6A benchmark
	Inosine identification experiments
	RNA structure estimation

	Data Access
	Acknowledgements
	Author Contributions
	Competing Interest Statement
	Supplementary Information
	References

