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ABSTRACT

This work aims to improve the efficiency of vision transformers (ViTs). While
ViTs use computationally expensive self-attention operations in every layer, we
identify that these operations are highly correlated across layers – a key redun-
dancy that causes unnecessary computations. Based on this observation, we pro-
pose SKIPAT, a method to reuse self-attention computation from preceding layers
to approximate attention at one or more subsequent layers. To ensure that reusing
self-attention blocks across layers does not degrade the performance, we intro-
duce a simple parametric function, which outperforms the baseline transformer’s
performance while running computationally faster. We show that SKIPAT is
agnostic to transformer architecture and is effective in image classification, se-
mantic segmentation, image denoising, and video denoising. We achieve im-
proved throughput at the same-or-higher accuracy levels in all these tasks.
Code can be found at https://github.com/Qualcomm-AI-research/
skip-attention

1 INTRODUCTION

The transformer architecture (Vaswani et al., 2017) has become an important and highly influential
model family, due to its simplicity, scalability, and its wide range of applications. While originally
stemming from the domain of natural language processing (NLP), with the advent of the Vision
transformer (ViT) (Dosovitskiy et al., 2020), this has become a standard architecture in computer
vision, setting various state-of-the-art (SoTA) performances on tasks ranging from representation
learning, semantic segmentation, object detection and video understanding (Caron et al., 2021; Liu
et al., 2021; Carion et al., 2020; Liang et al., 2022; Girdhar et al., 2019).

However, the original formulation of the transformer includes a quadratic computational complexity
with respect to the number of input tokens. Given that this number typically ranges from 142 for
image classification all the way to 1282 = 16K for image denoising, this constraint on memory
and compute severely limits its applicability. To tackle this problem, there have been three sets of
approaches. The first leverages redundancies across input tokens and simply reduces computation by
efficient sampling, e.g., dropping or merging redundant tokens (Tang et al., 2022; Fayyaz et al., 2022;
Yin et al., 2022). This, however, means that the final output of the ViT is not spatially continuous
and can thus not be used beyond image-level applications such as semantic segmentation or object
localization. The second set of approaches aims to cheaply estimate the attention computation, but
generally at the cost of reduced performances (Yu et al., 2022; Chu et al., 2021).

In this work, we propose a novel, so far unexplored approach to solving this problem: simply ap-
proximating the computationally expensive blocks of the transformer with a much faster, simpler
parametric function. To arrive at this solution, we first thoroughly analyse the crucial multi-head
self-attention (MSA) block of the ViT. Through this analysis, we find that the attention of the CLS
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Figure 1: Performance of SKIPAT across 5 different tasks. Our novel SKIPAT method achieves
superior accuracy vs. efficiency trade-off over the baseline transformer on a wide array of tasks.
Circle areas are proportional to parameter count.

tokens to the spatial patches has a very high correlation across the transformer’s blocks, thus leading
to unnecessary computations. This motivates our approach to leverage attention from an early part of
the model and simply reuse it for deeper blocks – basically “skipping” subsequent SA calculations
instead of recomputing them at every layer.

Based on this, we go one step further and explore if the entire MSA block of a layer can be skipped by
reusing the representation from previous layers. We find that a simple parametric function inspired
from ResneXt’s depth-wise convolutions (Xie et al., 2017) can outperform the baseline performance
– while being computationally faster in terms of throughput and FLOPs. Previous works that use
convolutions for improving efficiency in transformers have proposed merging convolution layers
with transformer blocks (Graham et al., 2021), refining MSA representations by introducing convo-
lutions inside MSA blocks (Zhou et al., 2021a;b), or replacing MSA blocks with MLP layers (Pan
et al., 2022c). In contrast, we propose to leverage redundancies across MSA blocks and approxi-
mate them wholly using parametric functions. SKIPAT is general-purpose and can be applied to a
ViT in any context: Figure 1 shows that our novel parametric function achieves superior accuracy
vs. efficiency trade-off compared to the baseline transformer on a wide variety of tasks, datasets,
and model sizes. SKIPAT is architecture agnostic and can be applied to isotropic, hierarchical, and
hybrid transformer architectures resulting in superior performances than the baseline.

In summary, our main contributions are as follows:

1. We propose a novel plug-in module that can be placed in any ViT architecture for reducing
the costly O(n2) Self-Attention computations

2. We show that SKIPAT is agnostic to transformer architecture and achieves state-of-the-art
performances in throughput at same-or-better accuracies for ImageNet, Pascal-VOC2012,
SIDD, DAVIS and ADE20K (in the latter of which we obtain 40% speedup)

3. We further demonstrate the generality of our method by obtaining a 26% reduction in self-
supervised pretraining time (at no downstream accuracy loss) and by demonstrating supe-
rior on-device latency

4. Finally, we analyse the sources of performance gains and extensively ablate our method to
provide a model family which can be used for trading off accuracy and throughput
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Figure 2: Attention correlation. Mean of the attention heads from the CLS token of a pretrained
ViT-T/16 at different layers from the validation set of ImageNet-1K. Numbers below each attention
map indicates the cosine similarity of A[CLS]

l with A[CLS]
l−1 .

2 RELATED WORK

Great effort has been made to improve the efficiency of vision transformers (ViT) (Dosovitskiy et al.,
2020) from multiple aspects:
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Token sampling improves the efficiency either by restructuring images during the tokenization
step (Yuan et al., 2021; Han et al., 2021), pruning the redundant tokens over training (Kong et al.,
2022; Tang et al., 2022) or dynamically at inference (Yin et al., 2022; Rao et al., 2021; Fayyaz et al.,
2022; Chen et al., 2021). Despite their effectiveness in reducing the computational cost in image
classification, token sampling methods are hardly applicable to dense prediction tasks, e.g. semantic
segmentation and image denoising, where the output image should be spatially continuous. Our
approach is complementary to these methods and achieves on-par or higher performance on both
classification and dense prediction tasks.

How do they improve efficiency? Token Hybrid Efficient SKIPAT
sampling network attention

Does the method satisfy each property?

Improve throughput during inference? ✓ ✓ ✗ ✓
Generalize to dense prediction tasks? ✗ ✓ ✓ ✓
Tackle quadratic complexity of self-attention? ✗ ✗ ✓ ✓
Generalize to different transformer backbones? ✗ ✗ ✗ ✓

Table 1: SKIPAT vs. vision transformers. Compari-
son between SKIPAT and methods that improve the effi-
ciency of vision transformers. Among the listed methods,
only SKIPAT satisfies all the listed properties.

Hybrid architectures such as Uni-
former (Li et al., 2022), Mobile-
ViT (Mehta & Rastegari, 2021), and
others (Liu et al., 2022; Pan et al.,
2022a; Mehta & Rastegari, 2022), in-
corporate efficient convolutional mod-
ules into vision transformers. These ar-
chitectures achieve this by employing
MobileNet blocks in Uniformer, Mo-
bileNetV2 blocks in MobileViT, or us-
ing stacks of convolutions in the image
tokenization step (Graham et al., 2021;
Wu et al., 2021). Other approaches dis-
entangle high and low-frequency representations in MSA blocks (Pan et al., 2022b) or replace MSA
blocks in the early layers of the network with MLP layers (Pan et al., 2022c). In our work, we
use convolutions to accelerate the computation of vision transformers. However, instead of crafting
custom blocks, as done in (Mehta & Rastegari, 2021; Pan et al., 2022a; Mehta & Rastegari, 2022; Li
et al., 2022; Pan et al., 2022c), we approximate entire MSA block using convolutions. This enables
us to apply our method across isotropic, hierarchical, and hybrid transformer architectures. We com-
pare SKIPAT with the existing methods relevant to improving the efficiency of vision transformers
in Table 1 and show that among the listed methods, only SKIPAT shows all the listed properties.

Efficient attention methods aim to reduce the quadratic complexity of the self-attention operation
in vision transformers. Several approaches have been proposed, such as global downsampling of
key and value embeddings (Wang et al., 2021a; 2022a; Wu et al., 2021), performing self-attention
in local windows (Liu et al., 2021), alternating between local and global self-attentions (Chu et al.,
2021; Mehta & Rastegari, 2021; Pan et al., 2022a), or replacing self-attention with a simple pool-
ing (Yu et al., 2022). However, reducing self-attention to a local neighborhood limits their ability to
model long-range dependencies, leading to significant performance degradation with only moderate
speedups (Zhang et al., 2021). In addition, some methods, such as cyclic shift in Swin (Liu et al.,
2021), lack efficient support, thus reducing actual efficiency gains in terms of latency. In contrast,
our method relies on a few blocks with strong, yet inefficient self-attention operators and lighter,
accurate attention estimators in other blocks. As the estimators only use standard convolutional op-
erations, our method translates to actual latency gains. The approach of using convolution layers is
similar to (Zhou et al., 2021b;a), that introduce convolutions inside MSA to refine attention maps.
However, adding a convolution operation at every layer increases computation overhead. Addition-
ally, (Xiao et al., 2019; Wang et al., 2021b; Ying et al., 2021) observed redundancies in attention
maps for NLP tasks. Instead of copying attention maps, we propose an efficient parametric function
that achieves high throughput while maintaining high model performance in vision tasks.

3 SKIP-ATTENTION

3.1 PRELIMINARIES

Vision Transformer. Let x ∈ Rh×w×c be an input image, where h × w is the spatial resolution
and c is the number of channels. The image is first tokenized into n = hw/p2 non-overlapping
patches, where p×p is patch size. Each patch is projected into an embedding zi ∈ Rd using a linear
layer to obtain the tokenized image:

Z0 = (z1; . . . ; zn) ∈ Rn×d (1)
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Here, “; ” denotes row-wise stacking. Positional embeddings are added to Z0 to retain positional
information. The token embeddings are then input to a L = {1, . . . , L} layer transformer whose
output is denoted as ZL. In the supervised setting, a learnable token z[CLS] ∈ Rd is prepended to the
tokenized image in (1) as Z0 := (z[CLS];Z0) ∈ R(n+1)×d.

Transformer Layer. Every layer of the transformer consists of a multi-head self attention (MSA)
block followed by a multi-layer perceptron (MLP) block. In the MSA block, the input, Zl−1 ∈
Rn×d, for l ∈ L, is first projected into three learnable embeddings {Q,K, V } ∈ Rn×d. The
attention matrix A, is calculated as

A := σ

(
QKT

√
d

)
∈ Rn×n (2)

where σ(.) denotes the row-wise softmax operation. The “multi-head” in MSA is defined by con-
sidering h attention heads where each head is a sequence of n × d

h matrix. The attention heads are
reprojected back to n× d using a linear layer which is combined with the value matrix as

ZMSA := AV ∈ Rn×d (3)

The output representations from the MSA block is then input to the MLP block which comprises
two linear layers separated by a GeLU activation (Hendrycks & Gimpel, 2016). At a given layer l,
the computational flow of representations through a transformer block is denoted as

Zl ← ZMSA
l + Zl−1, (4)

Zl ← MLP(Zl) + Zl. (5)

Both the MSA and MLP blocks have residual connections with layer normalization (LN) (Ba et al.,
2016). While MSA blocks in each layer of the transformer learn representations independently, in
the next subsection, we show that empirically there exist high correlation across these layers.

3.2 MOTIVATION: LAYER CORRELATION ANALYSIS

(a) CKA of 𝐴[CLS] (b) CKA of 𝑍[MSA]
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Figure 3: CKA analysis of A[CLS] and ZMSA across differ-
ent layers of pretrained ViT-T/16. Vanilla ViT-T/16 has
high correlation across both attention maps (layer 3 to
10) and ZMSA (layer 2 to 8)

Attention-map correlation. The
MSA block in ViT encodes the similar-
ity of each patch to every other patch as
an n×n attention matrix. This operator
is computationally expensive with
O(n2) complexity (2). As ViTs scale
up, i.e., as n increases, the complexity
grows quadratically and this operation
becomes a bottleneck. Recent NLP
works (Vig & Belinkov, 2019; Vig,
2019) have shown that self-attention
across adjacent layers in SoTA language
models exhibit very high correlation.
This raises the question – is it worth to
compute self-attention at every layer of
a vision transformer?

To address this question, we analyze the correlation of the self-attention maps across different layers
of ViT. As shown in Figure 2, the self-attention maps from the class token, A[CLS], exhibit high cor-
relation especially in the intermediate layers. The cosine similarity between A[CLS]

l−1 and A[CLS]
l can

be as high as 0.97, as indicated in the bottom of each attention map in Figure 2. We observe similar
behavior from other token embeddings, which we analyze in the supplementary material. To quan-
tify this correlation, we compute the Centered Kernel Alignment (CKA) (Kornblith et al., 2019;
Cortes et al., 2012) between A[CLS]

i and A[CLS]
j for every i, j ∈ L across all validation samples

of ImageNet-1K. CKA measures the similarity between representations obtained from intermediate
layers of the network, where a high value of CKA indicates high correlation between the represen-
tations. From Figure 3 (a), we observe that ViT-T has a high correlation across A[CLS], especially
from layers 3 through 10.
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Figure 4: SKIPAT framework We illustrate SKIPAT on ViT (Dosovitskiy et al., 2020). The
SKIPAT parametric function (Φ) uses representations of the MSA block (in solid color) ZMSA

l−1

as input, which undergoes a series of transformations. An element-wise summation (
⊕

) with the
output of the MLP block from layer l−1 and ẐMSA

l is used as input to the MLP block at layer l. The
MSA operation (crossed out) is thus not computed and is discarded from the computational graph.
With SKIPAT the total number of layers remains unchanged.

Feature correlation. In ViTs, the high correlation is not just limited to A[CLS], but the represen-
tation from MSA blocks, ZMSA, also show high correlation throughout the model (Raghu et al.,
2022). To analyze the similarity across these representations, we compute the CKA between ZMSA

i

and ZMSA
j for every i, j ∈ L. We observe from Figure 3 (b), that ZMSA also have high similarity

across adjacent layers of the model especially in the earlier layers, i.e., from layer 2 through 8.

3.3 IMPROVING EFFICIENCY BY SKIPPING ATTENTION

Based on our observation of high representation similarity across MSA blocks of a transformer
(subsection 3.2), we propose to leverage the correlation across both the attention matrix and the
representations from the MSA block to improve the efficiency of vision transformers. Instead of
computing the MSA operation (3) independently at every layer, we explore a simple and effective
strategy to utilize dependencies across the features from these layers.

In particular, we propose to skip MSA computation in one or more layers of a transformer by reusing
representations from its adjacent layers. We term this operation as Skip Attention or SKIPAT. As
the compute and memory benefit from skipping the entire MSA block is greater than skipping just
the self-attention operation (O(n2d+nd2) vs.O(n2d)), in this paper we focus on former. However,
instead of directly reusing features, i.e., copying the features from the source MSA block to one or
more adjacent MSA blocks, we introduce a parametric function. The parametric function ensures
that directly reusing features does not affect the translation invariance and equivariance in these
MSA blocks and acts as a strong regularizer to improve model generalization.

SKIPAT parametric function Let Φ : Rn×d → Rn×d denote the parametric function that maps
output of the MSA block from l − 1 to l as ẐMSA

l := Φ(ZMSA
l−1 ). Here, ẐMSA

l is the approximation
of ZMSA

l . The parametric function can be as simple as an identity function, where ZMSA
l−1 is directly

reused. Instead of computing MSA operation at l, we use ZMSA
l−1 as the input to the MLP block at l.

When using an identity function, due to the absence of MSA operation at l, the relation across tokens
is no longer encoded in the attention matrix, which affects representation learning. To mitigate this,
we introduce the SKIPAT parametric function inspired from ResNeXt (Xie et al., 2017) as shown
in Figure 4, to encode local relations among tokens. The SKIPAT parametric function consists of
two linear layers and a depth-wise convolution (DwC) (Chollet, 2017) in between, as follows:

ẐMSA
l := ECA

(
FC2

(
DwC

(
FC1(Z

MSA
l−1 )

)))
(6)

In the case of supervised learning, we first separate the CLS embeddings from ZMSA ∈ R(n+1)×d

into class embeddings ZMSA
C ∈ Rd and the patch embeddings to ZMSA

P ∈ Rn×d. The patch em-
beddings are then input to the first linear layer FC1 : Rn×d → Rn×2d, which expands the channel
dimension. This is followed by DwC : R

√
n×

√
n×2d → R

√
n×

√
n×2d with kernel r × r. Note that

before the DwC operation, we spatially reshape the input matrix to a feature tensor. Han et al. (Han
et al., 2022) shows that the behavior of depth-wise convolution operation resembles local attention,
which helps learn translation equivalent representations and also reduces the complexity of the para-
metric function. The output of the DwC is then flattened back to a vector and fed to the last FC layer
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FC2 : Rn×2d → Rn×d which reduces the channel dimension back to its initial dimension d. We
use GeLU activations after FC1 and DwC. Following (Wang et al., 2020), we use efficient channel
attention module (ECA) after FC2 to enhance the cross-channel dependencies. The ECA module
first aggregates the features along the channel dimension using global average pooling (GAP). A
1 × 1 convolution with adaptive kernel size proportional to channel dimension is applied followed
by sigmoid activation. This operation of the ECA module enhances cross-channel dependencies.
We then concatenate the embedding of the class-token with the output of the ECA to obtain ẐMSA

l .

SKIPAT framework. The overall framework of SKIPAT is illustrated in Figure 4. SKIPAT can be
incorporated into any transformer architecture which we empirically show in section 4. Depending
on the architecture, one can skip the MSA operation in one or more layers of the transformer. In
ViT, as we empirically observe that representations from the MSA block, ZMSA, have high correla-
tions from layer 2 through 7 (subsection 3.2), we employ the SKIPAT parametric function in these
layers. This means that we use the ZMSA

2 as input to the SKIPAT parametric function and skip MSA
operations in layers 3-8. Instead, the features from the output of the SKIPAT parametric function is
used as input to the MLP block. The computation flow of representations is now:

Zl ← Φ(ZMSA
l−1 ) + Zl−1 (7)

Zl ← MLP(Zl) + Zl (8)

Due to the presence of residual connections in the MSA and MLP blocks, which is standard in
ViT (Dosovitskiy et al., 2020), the MLP blocks at layer 3 through 8 learn representations inde-
pendently and cannot be discarded from the computational graph. It is important to note that,
with SKIPAT the total number of layers in ViT remain unchanged, but there are fewer MSA blocks.

Complexity: MSA vs. SKIPAT The self-attention operation involves three operations. Firstly, the
token embeddings are projected into query, key and value embeddings, secondly, attention matrix A
is computed as dot product between Q and K and finally, the output representations are computed
as dot product between A and V . This results in a complexity of O(4nd2 + n2d). Since d≪ n, the
complexity of MSA block can be reduced to O(n2d).

The SKIPAT parametric function consists of two linear layers and one depth-wise convolution, which
results in a O(2nd2 + r2nd) complexity, where r × r is the kernel size of the DwC operation. The
overall complexity of SKIPAT can be reduced to O(nd2) since r2 ≪ d. Thus, SKIPAT has fewer
FLOPs than MSA block as O(nd2) < O(n2d) when n increases as transformers scale up.

4 EXPERIMENTS

4.1 COMPARISON WITH STATE-OF-THE-ART

Image Classification We use isotropic transformer architectures like ViT-T/16 (Dosovitskiy et al.,
2020), ViT-S/16 (Dosovitskiy et al., 2020), ViT-B/16 (Dosovitskiy et al., 2020), hierarchical archi-
tectures like PvT-T (Wang et al., 2021a), PvT-S (Wang et al., 2021a) and hybrid architectures like
LIT-T (Pan et al., 2022c) and LIT-S (Pan et al., 2022c) as our backbone on ImageNet-1K. For fair
comparisons, we follow the experimental settings in (Touvron et al., 2021), (Wang et al., 2021a)
and (Pan et al., 2022c) to train ViT, PvT and LIT respectively. For ViT, we evaluate SKIPAT against
SoTA methods: A-ViT (Yin et al., 2022), ATS (Fayyaz et al., 2022), PS-ViT (Tang et al., 2022), and
Rev-Vit (Mangalam et al., 2022). To the best of our knowledge, these are all the works that improve
the efficiency of ViT without modifying its underlying architecture.

From Table 2a, we observe that SKIPAT achieves the best accuracy vs. efficiency trade-off compared
to all SoTA methods on different transformer backbones. Notably, we outperform different variants
of ViT by 0.1% to 0.4% and improve throughput by 19%, to 25% . Interestingly, SoTA methods
achieve lower accuracy or are on-par with the baseline. Since SKIPAT uses a parametric function to
skip computing MSA blocks, our reduction in number of parameters and in FLOPs is comparable to
the SoTA. Dehghani et al. (Dehghani et al., 2022) highlight the significance of using throughput as
a metric to measure model efficiency: as the reduction in FLOPs does not necessarily correspond to
improvements in latency, as it does not take into account the degree of parallelism or other hardware
details. In line with this argument, we observe that while SoTA methods such as ATS (Fayyaz et al.,
2022) achieve large reduction in FLOPs, they have lower throughput when compared to SKIPAT.

6



Published as a conference paper at ICLR 2024

BACKBONE METHOD TOP-1↑ PARAM↓ GFLOPS↓ THROUGHPUT↑
(%) (×106) (IM/S ×103)

ViT 72.8 5.7 1.2 5.8
ViT-T/16 A-ViT 71.0 5.7 0.8 6.3

ATS 72.7 5.7 0.9 6.1
PS-ViT 72.6 – 0.7 6.6

SKIPAT 73.3 5.8 1.1 6.9

ViT 79.8 22.4 4.6 3.2
A-ViT 78.6 22.4 3.6 3.4

ViT-S/16 ATS 79.7 22.4 2.9 3.3
PS-ViT 79.4 – 2.6 3.9
Rev-ViT 79.8 22.4 4.6 3.6

SKIPAT 80.0 22.1 4.0 3.8

ViT 81.8 87.3 17.6 1.2
SViTE 81.6 52.0 11.5 1.3

ViT-B/16 Rev-ViT 81.5 87.3 17.6 1.2
PS-ViT 81.5 – 9.8 1.6

SKIPAT 82.2 86.7 15.2 1.5

PvT-T PvT-T 75.1 13 1.9 1.5
SKIPAT 76.1 12 1.7 1.8

PvT-S PvT-S 79.8 25 3.8 1.3
SKIPAT 80.1 23 3.4 1.6

LIT-v2-S 82.0 28 3.7 1.4

LIT-T LIT-T 81.1 19 3.6 1.3
SKIPAT 81.4 18 3.4 1.4

LIT-S LIT-S 81.5 27 4.1 1.3
SKIPAT 82.0 25 3.6 1.5

(a) Image classification on ImageNet-1K.

METHOD 224 × 224 384 × 384

ViT-T/16 5.65 20.49
ViT-T/16 + SKIPAT 4.76 15.22

(b) On-device latency (msec)

METHOD JACCARD↑ CORLOC↑
ViT-T 32.2 39.5
ViT-T + SKIPAT 38.0 41.5

ViT-S 29.0 40.6
ViT-S + SKIPAT 34.0 41.2

ViT-B 33.6 36.4
ViT-B + SKIPAT 36.8 37.2

baseline

SKIPAT

(c) Unsupervised object discovery

Table 2: (a) Accuracy vs. efficiency comparison of SKIPAT with SoTA methods for image resolution
224× 224. For all the methods, we measure throughput (image/sec) with a batch size of 1024 on a
single NVIDIA A100 GPU, averaged over the validation set of ImageNet-1K. Additional compar-
isons are give in Table 7. (b) On-device latency of vanilla ViT vs. SKIPAT for different image res-
olutions on a Samsung Galaxy S22 powered by Qualcomm Snapdragon 8 Gen 1. (c) Unsuperivsed
object discovery using Jaccard similarity and Correct Localization (CorLoc), on the validation set of
Pascal VOC2012. Image sources (from left to right): valley train (licensed under CC BY-SA 4.0),
fishing boat (licensed under CC BY-SA 4.0), near Snowshill (licensed under CC BY-SA 4.0)

We also observe from Table 2a that SKIPAT improves the performance of pyramid architectures PvT-
T by 1.0% and improves throughput by 19%. On average, SKIPAT outperforms variants of PvT with
20% gain in throughput. We also observe that SKIPAT enhances the performance of hybrid archi-
tectures LIT with an average gain of 12% in throughput. Additionally, LIT-S + SKIPAT achieves the
same accuracy as baseline LIT-v2-S but with fewer parameters, FLOPs, and 7% gain in throughput.
Thus, we show the ability of SKIPAT to generalize to different transformer backbones.

Visualizing attention maps and ZMSA correlation. We analyze the effect of the SKIPAT parametric
function by visualizing the mean of attention heads of the CLS token from the last four layers of
ViT-T/16. From Figure 5a, we observe that while attention maps from vanilla ViT (last two layers)
do not solely attend to the object, the attention maps from SKIPAT accurately focuses on the object.
It is interesting to note that, the attention maps from SKIPAT are also capable of attending to multiple
objects in the image (Figure 5a: second example). The CKA of the representations from the MSA
block in Figure 5b, shows that ZMSA has lower correlation across layers except between the layers
where the MSA operation is skipped (layer 3 to 8). However, unlike vanilla ViT (Figure 3 (b)) the
correlation from each layer to every other layer is quite low. This shows that our SKIPAT parametric
function acts as a strong regularizer and thus improves the representations of the model.

Unsupervised object discovery. We further analyze whether pretrained ViTs can attend to seman-
tically meaningful regions of the image when evaluated on a different dataset without fine-tuning it.
We follow (Caron et al., 2021), and visualize the segmentation masks produced from the final layer
of the pretrained SKIPAT on the Pascal-VOC12 (Everingham et al.). From Table 2(c),we observe
that while vanilla ViT-S/16 does not accurately attend to the object, SKIPAT is able to localize ob-
jects quite accurately without any fine-tuning. To quantify this observation, using Jaccard similarity
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METHOD BACKBONE MIOU↑ GFLOPS↓ THROUGHPUT↑
ResNet-101 (Yu et al., 2022) 40.7 261 24.1

Semantic FPN (Kirillov et al., 2019) PoolFormer-S36 (Yu et al., 2022) 42.0 191 8.4
PoolFormer-M36 (Yu et al., 2022) 42.4 271 5.4

ResNet-18 (He et al., 2016) 39.9 886 17.1
ResNet-101 (He et al., 2016) 44.9 1031 12.0
Swin-T (Liu et al., 2021) 45.8 945 14.2
ConvNeXt-T (Liu et al., 2022) 46.7 939 15.7

UperNet (Xiao et al., 2018) ViT-T (Dosovitskiy et al., 2020) 37.3 212 24.1
ViT-T + SKIPAT 40.6 173 34.7
ViT-S (Dosovitskiy et al., 2020) 44.4 360 19.5
ViT-S + SKIPAT 45.3 283 27.2
ViT-B (Dosovitskiy et al., 2020) 45.6 787 11.1
ViT-B + SKIPAT 46.3 633 15.5

Table 3: Semantic Segmentation on ADE20K. All models are pretrained on ImageNet-1k and fine-
tuned on ADE20K. Following Swin (Liu et al., 2021) and ConvNeXt (Liu et al., 2022), we report
mIoU with multi-scale testing. FLOPs and throughput are calculated on the input size of 2048×512.
Throughput of all models are measured with a batch size of 1 on a single NVIDIA A100 GPU,
averaged over 100 forward passes.

and CorLoc (Melas-Kyriazi et al., 2022). As shown in Table 2(c), SKIPAT outperforms different
variants of vanilla ViT with a significant gap in terms of Jaccard similarity and CorLoc.
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(a) Visualizing A[CLS]
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(b) CKA analysis of SKIPAT

Figure 5: (a) Mean of the attention of different heads from A[CLS] from last four layers of ViT-T/16
on the validation set of ImageNet-1K. Attention maps shows SKIPAT localizes the object better than
vanilla ViT. (b) CKA analysis of SKIPAT shows that ZMSA has lower correlation between layers.
The high correlation is between consecutive layers 2 through 8, where the MSA operation is skipped.

Performance on mobile device. To verify the efficiency of SKIPAT on low-power devices, we
measure its inference time (averaged over 20 iterations) on a Samsung Galaxy S22 device powered
by Qualcomm Snapdragon 8 Gen 1 Mobile Platform* with a Qualcomm HexagonTM processor for
image resolutions of 224 × 224 and 384 × 384 using ViT-T/16. The inference is performed on
Neural Processing Unit in 8-bit precision. As shown in Table 2b, SKIPAT improves the runtime by
19% for image size of 224 × 224. The gain is even larger at 34% for image resolution 384 × 384,
since the number of token increases. Thus, skipping computationally-heavy MSA blocks increases
throughput by large margins and is confirmed even on mobile hardware.
Semantic Segmentation on ADE20K We show the performance of SKIPAT to dense prediction
tasks such as semantic segmentation on ADE20K (Zhou et al., 2017). We follow (Liu et al., 2022;
2021) and use MMSegmentation (Contributors, 2020). We observe from Table 3, that SKIPAT out-
performs all variants of ViT with 15% fewer FLOPs and 25% improved throughput. Interestingly,
SKIPAT-S (ViT-S + SKIPAT) achieves 8% higher mIoU while being faster than ViT-T. Furthermore,
SKIPAT-S has comparable mIoU with Swin-T (Liu et al., 2021) whilst having 3× fewer FLOPs

*Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its
subsidiaries.
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METHOD PSNR↑ SSIM↑ GFLOPS↓ THROUGHPUT↑
UNet (Ronneberger et al., 2015) 39.65 - 35 –
DAGL (Mou et al., 2021) 38.94 0.953 255 –
DeamNet (Ren et al., 2021) 39.47 0.957 145 –
MPRNet (Zamir et al., 2021) 39.71 0.958 573 –
NBNet (Cheng et al., 2021) 39.75 0.959 91 –
Restormer (Zamir et al., 2022) 40.02 0.960 140 –

Uformer-T (Wang et al., 2022b) 39.66 – 12 17.6
Uformer-T + SKIPAT 39.69 0.959 11 22.2

Uformer-S (Wang et al., 2022b) 39.77 0.959 44 15.1
Uformer-S + SKIPAT 39.84 0.960 39 18.9

Uformer-B (Wang et al., 2022b) 39.89 0.960 89 9.2
Uformer-B + SKIPAT 39.94 0.960 77 10.9

Table 4: Image denoising on SIDD dataset using PSNR and SSIM (Wang et al., 2004) as the evalua-
tion metrics in the RGB space. FLOPs and throughput are calculated on the input size of 256× 256,
on a single NVIDIA V100 GPU, averaged over the test set of SIDD.

and being 1.7× faster. Comparing to fully convolution-based architectures, SKIPAT-T (ViT-T +
SKIPAT) is on par with ResNet-18 in mIoU while having 4.7× fewer FLOPs and being 1.8× faster.

Image Denoising SKIPAT can also generalize to low-level tasks such as image denoising on
SIDD (Abdelhamed et al., 2018b), which consists of images with real-world noise. We ap-
ply SKIPAT to Uformer (Wang et al., 2022b), a SoTA image denoising model, which is a U-shaped
hierarchical network with Swin transformer blocks as the encoder and decoder. Detailed implemen-
tation of SKIPAT on Uformer is in the Appendix. Following the settings in (Wang et al., 2022b),
we observe in Table 4 that SKIPAT outperforms the baseline Uformer variants with the 25% higher
throughput on average. Furthermore, we observe that SKIPAT-B (Uformer-B + SKIPAT) achieves
comparable performance with Restormer (Zamir et al., 2022), in terms of PSNR and SSIM, while
having 2× fewer FLOPs. Thus, we show the ability of SKIPAT to generalize to different tasks and
also across architectures. Experiments on video denoising are provided in the Appendix.

4.2 ABLATIONS

FUNCTION KERNEL CHANNEL TOP-1↑ THROUGHPUT↑
Φ EXPANSION (%) (img/sec ×103)

ViT-T - - 65.8 5.8

IDENTITY - - 61.1 8.5
CONV 5 × 5 - 65.4 5.2
DWC 5 × 5 - 65.6 7.8

3 × 3 67.1 7.3
SKIPAT 5 × 5 2 67.7 6.9

7 × 7 67.4 6.6

0.5 64.4 7.4
SKIPAT 5 × 5 1 65.9 7.2

2 67.7 6.9

Table 5: Ablations using ViT-T/16 on ImageNet-1K for
100 epochs. We measure throughput (image/sec) with
a batch size of 1024 on a single NVIDIA A100 GPU,
averaged over the validation set of ImageNet-1K.

All ablations are performed using ViT-
T/16 on ImageNet-1K for 100 epochs to
reduce the training time. Unless spec-
ified, following SKIPAT we skip the
MSA blocks from layer 3 through 8 for
all ablations. Additional ablations are
provided in the supplementary material.

Parametric function Φ. We study the
effect of different parametric functions.
As discussed in subsection 3.3, Φ can be
as simple as an identity function, where
we directly reuse representations from a
previous MSA block into one of more
subsequent MSA blocks. From Table 5,
using an identity function results in a
4.7% drop in top-1 accuracy while be-
ing 47% faster than baseline ViT. Using
a convolution or DwC (Chollet, 2017) with kernel size 5 × 5 as a parametric function leads to the
same performance as the baseline. However, DwC is 0.2% better and 50% faster than convolution,
and 34% faster than the baseline. SKIPAT parametric function outperforms all.

Kernel size. By default SKIPAT uses a DwC with kernel size of 5× 5. As shown in Table 5, using
a 3× 3 kernel is faster than default SKIPAT by 6%, but it is 0.6% worse in accuracy. A larger kernel
size has poor accuracy and lower throughout. Irrespective of the kernel size, SKIPAT outperforms
the baseline ViT-T by at least 1.4%, showing its ability to encode cross-token interactions.
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Channel expansion. In the SKIPAT , the first linear layer FC1, expands the channel dimension from
d → 2d. Table 5 shows the impact of channel dimension, i.e., when the channel expansion ratio of
FC1 is 1.0 (d → d) and 0.5 (d → d/2). We observe that while the lower channel expansion ratio
improves the throughput, it performs worse than default SKIPAT. This could be due to sub-optimal
representations encoded by the DwC due to fewer filters.

5 CONCLUSION

We proposed SKIPAT, a plug-in module that can be used in any ViT architecture to reduce self-
attention computations. SKIPAT leverages the dependency across MSA blocks and bypasses atten-
tion computation by re-using attention from previous MSA blocks. We introduced a simple and
light parametric function that does not affect the inductive bias encoded in MSA. The SKIPAT func-
tion captures cross-token relations and outperforms the baseline while being computationally faster
in terms of throughput and FLOPs. We plugged SKIPAT in different transformer architectures and
showed its effectiveness on 7 different tasks.
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6 IMPLEMENTATION DETAILS

6.1 HYPER-PARAMETERS

ImageNet-1K: Image classification. We train SKIPAT on the ILSVRC-2012 dataset (Deng
et al., 2009) with 1000 classes (referred as ImageNet-1K). We follow the experimental settings
of DeIT (Touvron et al., 2021) and use the codebase from the timm library (Wightman, 2019) to
train ViT-T, ViT-S and ViT-B. We use the default 16 × 16 patch size, using an image resolution of
224× 224 with total number of tokens n = 196. We train baseline ViT and SKIPAT for 300 epochs
from scratch on 4 NVIDIA A100 GPUs using batch sizes of 2048 for ViT-T and 1024 for ViT-S and
ViT-B.

ImageNet-1K: Self-supervised learning. We follow the experimental settings of DINO (Caron
et al., 2021) and pre-train DINO and SKIPAT on ImageNet-1K using ViT-S/16 as the backbone.
While likely the hyperparameters could be tuned further for our proposed SKIPAT method, we
use same hyper-parameters for both the baseline and ours, yielding a conservative estimate of our
model’s performance. We pre-train both methods from scratch for 100 epochs using 4 NVIDIA
A100 GPUs. For linear-probing, we freeze the backbone from the pre-training stage and fine-tune
the classifier for 100 epochs, exactly as done in (Caron et al., 2021).

Pascal-VOC2012: Unsupervised object segmentation. We use the Pascal VOC 2012 (Evering-
ham et al.) validation set for this experiment, containing 1449 images. We follow DINO and obtain
unsupervised segmentation masks by thresholding the averaged self-attention map (extracted from
the last layer of a pretrained ViT/SKIPAT model) to keep 80% of the mass. The Jaccard similarity J
between a predicted mask, P , and ground-truth mask, G, is defined as:

J(P,G) =
G ∩ P

G ∪ P
We report Jaccard similarity, averaged over all the samples.

ADE20K: Semantic segmentation. We evaluate SKIPAT on ADE20K (Zhou et al., 2017), a
widely-used semantic segmentation dataset, covering 150 semantic categories. The dataset includes
20K and 2K images in the training and validation set, respectively. Different variants of SKIPAT are
evaluated using UperNet (Xiao et al., 2018) as the backbone. We use our ImageNet-1K pretrained
model to initialize the backbone and Kaiming (He et al., 2015) initialization for other layers. We
use AdamW (Loshchilov & Hutter, 2017), with an initial learning rate of 6e − 5, weight decay of
1e−2, and linear warmup of 1500 iterations. All models are trained for 160K iterations with a batch
size of 16 using MMSegmentation repo (Contributors, 2020). We keep the same hyper-parameters
for SKIPAT and ViT.

SIDD: Image denoising. We follow the experimental settings in Uformer (Wang et al., 2022b)
and train SKIPAT on the Smartphone Image Denoising Dataset (SIDD) (Abdelhamed et al., 2018a)
which consists of real-world noise. The training samples are first randomly cropped to 128 × 128
patches and input to the model, which is trained for 250 epochs using batch size 32. The model is
then evaluated on images of size 256× 256.

DAVIS: Video denoising. We further apply our model to the temporal task of video denoising.
We adopt the same U-shape encoder-decoder based architecture of UFormer. As the encoder and
decoder backbone, we use UniFormer (Li et al., 2022). We train the model on noise level σ = 30
using Charbonnier loss (Charbonnier et al., 1994) on patches of 7 × 128 × 128 using a multiple-
input, multiple-output (MIMO) paradigm (Liang et al., 2022) (i.e., the model outputs 7 reconstructed
frames from 7 input frames). During inference, a video is divided into 3D patches of 7× 128× 128
with an overlap of 10 pixels. Each patch is fed to the model and the outputs are merged to obtain the
final denoised video. Following (Tassano et al., 2020), PSNR is calculated as averaged over videos.
We use the same training hyper-parameters as image denoising.

6.2 ARCHITECTURE

Image Classification. All baseline ViT variants have 12 layers in total, which remains unchanged
with SKIPAT. Following the CKA analysis of ZMSA in Figure 3(b) of our main paper, we skip
computing the MSA blocks in layer 3 through 8 for all ViT variants and retrain it from scratch.
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Figure 6: Framework of SKIPAT on Uformer Instead of standard MSA block in ViT, Uformer uses
window self-attention (WSA) block similar to Swin Transformer. We skip WSA block in the layers
close to the bottleneck.

Image Denoising. We apply SKIPAT to Uformer (Li et al., 2022) a SoTA image denoising model.
Uformer is a U-shaped hierarchical network with Swin transformer blocks as the encoder and de-
coder, and skip connections between them. In SKIPAT, we skip window self-attention (WSA) block
in each decoder block by reusing attention of the corresponding encoder block via SKIPAT paramet-
ric function. Let ZWSAe

l ∈ Rn×c denote the output of the WSA block at layer l from the encoder
and Zd

l−1 ∈ Rn×c denote the output of the layer l− 1 from the decoder of Uformer. The input to the
WSA block (which is skipped) at layer l of the decoder is given by

ẐWSAd

l = Φ(ZWSAe

l ;Zd
l−1) ∈ Rn×2c (9)

Here, “;” denotes concatenation along the channel dimension. We show the framework of SKIPAT on
Uformer in Figure 6

6.3 VIDEO DENOISING

We apply our model to the temporal task of video denoising. As encoder and decoder backbone, we
use UniFormer (Li et al., 2022), a U-shaped hybrid encoder-decoder architecture with 3D convo-
lutions and spatio-temporal global self-attention blocks. The encoder of UniFormer comprises two
3D convolution layers followed by two spatio-temporal transformer layers with global self-attention
(MSA) blocks. A downsampling operation is used after every layer in the encoder. The decoder is
symmetric to the encoder with two transformer layers followed by two 3D convolution layers with
an upsampling operation between each layer. Similar to Uformer, skip connections are used between
encoder and decoder. Similar to image denoising, we skip MSA blocks in the decoder, however, sim-
ply adopt a naive SKIPAT, where we reuse window self-attention matrix, A, of the corresponding
encoder block using an Identity function. Let Ae

l ∈ Rn×n denote the self-attention matrix at layer l
from the encoder. The self-attention in the decoder stage at layer l is given by Ad

l = I(Ae
l ) ∈ Rn×n,

where I(.) is the identity function. We empirically observe that reusing attention works better in
this task, and shows the ability of our method to be applied for different scenarios. We follow the
experimental settings in (Tassano et al., 2020) and train SKIPAT on DAVIS (Pont-Tuset et al., 2017)
dataset. We train using Charbonnier loss (Charbonnier et al., 1994) on patches of 7×128×128 using
a multiple-input, multiple-output (MIMO) paradigm (i.e. the model outputs 7 reconstructed frames
from 7 input frames) for noise level σ = 30. From Table 6, we observe that SKIPAT performs on par
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METHOD FastDVDNet PaCNet VRT UniFormer UniFormer+
(Tassano et al., 2020) (Vaksman et al., 2021) (Liang et al., 2022) (Li et al., 2022) SKIPAT

PSNR↑ 34.04 34.79 36.52 35.24 35.16
GFLOPS↓ 41.9 34.8 708.8 93.2 77.1

Table 6: Video denoising Quantitative comparison (average RGB channel PSNR) with state-of-the-
art methods for video denoising on DAVIS, with additive noise level σ = 30. FLOPs are calculated
per frame per patch size of 256× 256.

BACKBONE METHOD TOP-1 PARAM GFLOPS THROUGHPUT

(%) (×106) (img/sec ×103)

T2T-ViT (Yuan et al., 2021) 71.7 5.8 1.1 –
ConvNeXt (iso) (Liu et al., 2022) 72.7 5.7 1.1 5.8

ViT (Dosovitskiy et al., 2020) 72.8 5.7 1.2 5.8
A-ViT (Yin et al., 2022) 71.0 5.7 0.8 6.3
Dynamic ViT (Rao et al., 2021) 70.9 – 0.9 6.1

ViT-T/16 SViTE (Chen et al., 2021) 71.7 4.0 0.9 6.2
SPViT (Kong et al., 2022) 72.7 5.7 0.9 6.7
ATS (Fayyaz et al., 2022) 72.7 5.7 0.9 6.1
PS-ViT (Tang et al., 2022) 72.6 – 0.7 6.6
HVT (Pan et al., 2021) 70.2 5.7 0.7 7.2

SKIPAT 72.9 5.8 1.1 6.9

ConvNext-T (Liu et al., 2022) 82.1 29.0 4.5 2.6
ConvNeXt (iso) (Liu et al., 2022) 79.7 22.4 4.3 3.3
Swin-T (Liu et al., 2021) 81.3 28.3 4.5 2.5
T2T-ViT (Yuan et al., 2021) 80.7 21.5 5.2 –
CoaT-Lite-S (Xu et al., 2021) 81.9 20 4.0 –
CoAtNet-0 (Dai et al., 2021) 81.6 25 4.2 –
Poolformer-S24 (Yu et al., 2022) 80.3 21.0 3.4 –
Twins-SVT-S (Chu et al., 2021) 81.7 24.0 2.8 –
MobileViT-S (Mehta & Rastegari, 2021) 78.4 5.6 2.0 –
PVT (Wang et al., 2021a) 79.8 24.5 3.8 –

ViT-S/16 ViT (Dosovitskiy et al., 2020) 79.8 22.4 4.6 3.2
A-ViT (Yin et al., 2022) 78.6 22.4 3.6 3.4
Dynamic ViT (Rao et al., 2021) 78.3 23.1 3.4 3.6
SViTE (Chen et al., 2021) 80.2 13.1 2.7 3.5
ATS (Fayyaz et al., 2022) 79.7 22.4 2.9 3.3
PS-ViT (Tang et al., 2022) 79.4 – 2.6 3.9
SPViT (Kong et al., 2022) 79.3 22.1 2.7 3.5
Rev-ViT (Mangalam et al., 2022) 79.8 22.4 4.6 3.6
HVT(Pan et al., 2021) 78.0 22.5 2.4 4.1
UniFormer-S (Li et al., 2022) 82.9 3.6 1.8 –
EdgeViT-S (Pan et al., 2022a) 81.0 1.9 – –

SKIPAT 80.2 22.1 4.0 3.8

Swin-S (Liu et al., 2021) 83.5 88.0 15.4 1.0
Twins-SVT-B (Chu et al., 2021) 83.2 56.0 8.6 –
PVT (Wang et al., 2021a) 81.7 61.4 9.8 –
ConvNeXt (iso) (Liu et al., 2022) 82.0 87.3 16.9 1.3

ViT-B/16 ViT (Dosovitskiy et al., 2020) 81.8 87.3 17.6 1.2
SViTE (Chen et al., 2021) 81.6 52.0 11.5 1.3
Rev-ViT (Mangalam et al., 2022) 81.5 87.3 17.6 1.2
PS-ViT (Tang et al., 2022) 81.5 – 9.8 1.6

SKIPAT 82.2 86.7 15.2 1.5

Table 7: Image classification on ImageNet-1K. Accuracy vs. efficiency comparison of SKIPAT with
SoTA methods for image resolution 224 × 224. For all the methods, we measure throughput (im-
age/sec) with a batch size of 1024 on a single NVIDIA A100 GPU, averaged over the validation set
of ImageNet-1K.

with baseline Uniformer, while having 17% fewer FLOPs. This shows that SKIPAT can generalize
to temporal tasks.

7 ADDITIONAL EXPERIMENTS

3
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Image classification. Here we extend our SoTA comparison with methods that go beyond vanilla
ViT architectures. These methods include hierarchical (Swin, PVT, Poolformer, MobileViT, Twins-
SVT) and Hybrid (ConvNext, CoAT) architectures. We provide the complete set of SoTA methods
that improve the efficiency of ViT either by token sampling (extending Table 1 in our main paper),
using hybrid architectures or window self-attention blocks in Table 7. Apart from methods that
perform efficient token sampling, none of the other methods are directly comparable because they
modify the underlying architecture of ViT, either by using window self-attention blocks or reducing
the overall number of transformer layers.

Self-Supervised Learning with DINO Next, we show the generality of SKIPAT as its use in the
backbone for self-supervised representation learning (SSL), using DINO (Caron et al., 2021). Since,
SSL methods are quite expensive in the pretraining stage in terms of compute and training time, we
illustrate that SKIPAT achieves comparable performance to using a ViT but with shorter training
time. Following the experimental settings of DINO (Caron et al., 2021), we use ViT-S/16 (Dosovit-
skiy et al., 2020) as our student and teacher networks with SKIPAT parametric function. We pretrain
both baseline and ours using DINO for 100 epochs. We observe that SKIPAT achieves almost the
same performance as fully trained DINO with around 26% less training time (73.3% in 96 GPU-
hours vs. 73.6% in 131 GPU-hours). When trained on 100 epochs, we observe that SKIPAT outper-
forms DINO by 0.5% (74.1% vs. 73.6%).

Unsupervised segmentation of DINO. We follow DINO (Caron et al., 2021) and evaluate
the performance of baseline DINO vs. SKIPAT on unsupervised object segmentation on Pascal-
VOC2012 (Everingham et al.) dataset. We follow the experimental setting as discussed in section 6
and observe that baseline DINO has a Jaccard similarity of 45.3 while SKIPAT achieves 44.7. While
SKIPAT outperforms DINO on image classification by 0.5%, we achieve comparable performance
in terms of unsupervised object segmentation.

8 ADDITIONAL ABLATIONS

Reusing self-attention. As mentioned in Subsection 3.3, we skip the ZMSA in SKIPAT as the
compute and memory benefit from skipping the entire MSA block is greater than skipping just the
self-attention operation. Here we study the effect of skipping just the self-attention operation. Let
Al−1 denote the self-attention matrix at layer l − 1, then the self-attention matrix at layer l is given
by Âl = I(Al−1). Similar to SKIPAT we skip computing the self-attention matrix from layers 3
through 8. As parametric function Φ, we use an identity mapping and train ViT-T/16 from scratch
for 100 epochs on ImageNet-1K. We observe from Table 9, that skipping the self-attention matrix
results in a top-1 accuracy of 63.2% which is 2.1% higher than the skipping ZMSA with an identity
function (61.1% - Table 7 of main paper). However, skipping self-attention matrix results in 20%
decrease in throughput (8500→ 6800 images/sec) as compared to using an identity function to skip
MSA block. It is interesting to note that skipping self-attention matrix results in a lower drop in
performance as compared to skipping MSA block. However, applying a parametric function to skip
self-attention can be challenging due to the properties of the self-attention matrix, and we leave this
to future work.

SKIPAT in pretrained model. As mentioned in subsection 6.2, we train SKIPAT with all variants
of ViT from scratch. For completeness, we also study the effect of skipping the self-attention matrix
and the MSA block on a pretrained ViT-T using an Identity function, without retraining. We observe
from Table 9 that skipping the self-attention computation in layers 3 through 8, results in a top-1
accuracy of 53.9%, while skipping MSA blocks results in top-1 accuracy of 47.8%. It is interesting
to note that the drop in top-1 accuracy from skipping self-attention is merely 19% (72.8→ 53.9) on
average and does not result in an extremely large drop as one might expect. This shows that there
indeed exists high correlation across self-attention and ZMSA, which SKIPAT utilizes to improve the
efficiency of the ViTs.

Skipping MSA in alternate configuration. Instead of skipping the MSA opera-
tion in the layers 3 − 8, we study the effect of skipping MSA operation at l ∈
{3, 5, 7, 9}, {3, 4, 5, 6}, {3, 4, 5, 6, 7, 8, 9, 10} instead of default {3, 4, 5, 6, 7, 8} in Table 8. We ob-
serve the default configuration outperforms the baseline ViT by 1.9% (65.8 vs. 67.7%) while being
computationally faster in terms of throughput.
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METHOD LAYERS TOP-1 THROUGHPUT

(img/sec ×103)

ViT-T – 65.8 5.8

SKIPAT {3,4,5,6} 67.4 6.3
{3,5,7,9} 67.5 6.3

{3,4,5,6,7,8,9,10} 64.2 7.3

SKIPAT (default) {3,4,5,6,7,8} 67.7 6.9

Table 8: Ablations using ViT-T/16 on ImageNet-1K for 100 epochs studying different layers that
can be approximated.

METHOD TRAINING TOP-1 (%) THROUGHPUT

A ✓ 63.2 6800
ZMSA ✓ 61.1 8500

A ✗ 53.9 6800
ZMSA ✗ 47.8 8500

Table 9: Ablations on the effect of skipping the self-attention, A, and the MSA block, ZMSA. In
the first two rows, models are trained for 100 epochs. In the last two rows we use a pretrained ViT-
T/16 and simply skip computations in blocks 3-8 during inference. For all the experiments with use
Identity function as Φ.

9 CKA ANALYSIS OF ATTENTION FROM VIT-T
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Figure 7: CKA analysis of A for all tokens from
pretrained vanilla ViT-T/16 on the validation set of
ImageNet-1K. We observe a high correlation for all to-
kens in A from layers 1 to 8.

As discussed in Section 3.2 of our main
paper, we analyze the CKA of the self-
attention matrix for all tokens between
different layers of ViT-T/16 pretrained
on ImageNet-1K. Since in the super-
vised setting A ∈ R(n+1)×(n+1), we
first remove the CLS token to obtain
AP ∈ Rn×n. We then compute the
CKA of AP

l for l ∈ L. We visualiza-
tion the attention maps for two random
patches in Figure 8. We observe simi-
lar correlation patterns as observed for
CLS token. We akso observe from Fig-
ure 7, that there exists a high correla-
tion across all the tokens from the self-
attention matrix. Thus, reusing self-
attention from different layers of the
ViT can improve the overall throughput
while yielding comparable accuracy as
the baseline ViT.
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Figure 8: Mean of the attention heads from the CLS, n/2th and n/4th patch of a pretrained ViT-T/16
from the validation set of ImageNet-1K. n = 196 = number of patches.
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