
Safe Reinforcement Learning by Imagining the Near
Future

Garrett Thomas
Stanford University

gwthomas@stanford.edu

Yuping Luo
Princeton University

yupingl@cs.princeton.edu

Tengyu Ma
Stanford University

tengyuma@stanford.edu

Abstract

Safe reinforcement learning is a promising path toward applying reinforcement
learning algorithms to real-world problems, where suboptimal behaviors may lead
to actual negative consequences. In this work, we focus on the setting where
unsafe states can be avoided by planning ahead a short time into the future. In
this setting, a model-based agent with a sufficiently accurate model can avoid
unsafe states. We devise a model-based algorithm that heavily penalizes unsafe
trajectories, and derive guarantees that our algorithm can avoid unsafe states under
certain assumptions. Experiments demonstrate that our algorithm can achieve
competitive rewards with fewer safety violations in several continuous control
tasks.

1 Introduction

Reinforcement learning (RL) enables the discovery of effective policies for sequential decision-
making tasks via trial and error [Mnih et al., 2015, Gu et al., 2016, Bellemare et al., 2020]. However,
in domains such as robotics, healthcare, and autonomous driving, certain kinds of mistakes pose
danger to people and/or objects in the environment. Hence there is an emphasis on the safety of the
policy, both at execution time and while interacting with the environment during learning. This issue,
referred to as safe exploration, is considered an important problem in AI safety [Amodei et al., 2016].

In this work, we advocate a model-based approach to safety, meaning that we estimate the dynamics of
the system to be controlled and use the model for planning (or more accurately, policy improvement).
The primary motivation for this is that a model-based method has the potential to anticipate safety
violations before they occur. Often in real-world applications, the engineer has an idea of what
states should be considered violations of safety: for example, a robot colliding rapidly with itself or
surrounding objects, a car driving on the wrong side of the road, or a patient’s blood glucose levels
spiking.Yet model-free algorithms typically lack the ability to incorporate such prior knowledge and
must encounter some safety violations before learning to avoid them.

We begin with the premise that in practice, forward prediction for relatively few timesteps is sufficient
to avoid safety violations. Consider the illustrative example in Figure 1, in which an agent controls
the acceleration (and thereby, speed) of a car by pressing the gas or brake (or nothing). Note that
there is an upper bound on how far into the future the agent would have to plan to foresee and (if
possible) avoid any collision, namely, the amount of time it takes to bring the car to a complete stop.

Assuming that the horizon required for detecting unsafe situations is not too large, we show how
to construct a reward function with the property that an optimal policy will never incur a safety
violation. A short prediction horizon is also beneficial for model-based RL, as the well-known issue
of compounding error plagues long-horizon prediction [Asadi et al., 2019]: imperfect predictions
are fed back into the model as inputs (possibly outside the distribution of inputs in the training data),
leading to progressively worse accuracy as the prediction horizon increases.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Figure 1: An illustrative example. The agent controls the speed of a car by pressing the accelerator or
brake (or neither), attempting to avoid any obstacles such as other cars or people in the road. The top
car has not yet come into contact with the pedestrian, but cannot avoid the pedestrian from its current
position and speed, even if it brakes immediately. The bottom car can slow down before hitting the
pedestrian. If the bottom car plans several steps into the future, it could reduce its speed to avoid the
“irrecoverable” situation faced by the top car.

Our main contribution is a model-based algorithm that utilizes a reward penalty – the
value of which is prescribed by our theoretical analysis – to guarantee safety (under
some assumptions). Experiments indicate that the practical instantiation of our algorithm,
Safe Model-Based Policy Optimization (SMBPO), effectively reduces the number of safety viola-
tions on several continuous control tasks, achieving a comparable performance with far fewer
safety violations compared to several model-free safe RL algorithms. Code is made available at
https://github.com/gwthomas/Safe-MBPO.

2 Background

In this work, we consider a deterministic1 Markov decision process (MDP) M = (S,A, T, r, �),
where S is the state space, A the action space, T : S ⇥A! S the transition dynamics, r : S ⇥A!
[rmin, rmax] the reward function, and � 2 [0, 1) the discount factor. A policy ⇡ : S ! �(A)
determines what action to take at each state. A trajectory is a sequence of states and actions
⌧ = (s0, a0, r0, s1, a1, r1, . . .) where st+1 = T (st, at) and rt = r(st, at).

Typically, the goal is to find a policy which maximizes the expected discounted return ⌘(⇡) =
E⇡[

P1
t=0 �

t
rt]. The notation E⇡ denotes that actions are sampled according to at ⇠ ⇡(st). The

initial state s0 is drawn from an initial distribution which we assume to be fixed and leave out of the
notation for simplicity.

The Q function Q
⇡(s, a) = E⇡[

P1
t=0 �

t
rt | s0 = s, a0 = a] quantifies the conditional performance

of a policy ⇡ assuming it starts in a specific state s and takes action a, and the value function V
⇡(s) =

Ea⇠⇡(s)[Q
⇡(s, a)] averages this quantity over actions. The values of the best possible policies are

denoted Q
⇤(s, a) = max⇡ Q⇡(s, a) and V

⇤(s) = max⇡ V ⇡(s). The function Q
⇤ has the important

property that any optimal policy ⇡⇤ 2 argmax⇡ ⌘(⇡) must satisfy P(a⇤ 2 argmaxa Q⇤(s, a)) = 1
for all states s and actions a⇤ ⇠ ⇡⇤(s). Q⇤ is the unique fixed point of the Bellman operator

B⇤
Q(s, a) = r(s, a) + �max

a0
Q(s0, a0) where s

0 = T (s, a) (1)

In model-based RL, the algorithm estimates a dynamics model bT using the data observed so far, then
uses the model for planning or data augmentation. The theoretical justification for model-based RL is
typically based some version of the “simulation lemma”, which roughly states that if bT ⇡ T then
⌘̂(⇡) ⇡ ⌘(⇡) [Kearns and Singh, 2002, Luo et al., 2018].

1Determinism makes safety essentially trivial in tabular MDPs. We focus on tasks with continuous state
and/or action spaces. See Appendix A.2 for a possible extension of our approach to stochastic dynamics.

2

https://github.com/gwthomas/Safe-MBPO

3 Method

In this work, we train safe policies by modifying the reward function to penalize safety violations.
We assume that the engineer specifies Sunsafe, the set of states which are considered safety violations.

We must also account for the existence of states which are not themselves unsafe, but lead inevitably
to unsafe states regardless of what actions are taken.
Definition 3.1. A state s is said to be

• a safety violation if s 2 Sunsafe.

• irrecoverable if s 62 Sunsafe but for any sequence of actions a0, a1, a2, . . . , the trajectory
defined by s0 = s and st+1 = T (st, at) for all t 2 N satisfies st̄ 2 Sunsafe for some t̄ 2 N.

• unsafe if it is unsafe or irrecoverable, or safe otherwise.

We remark that these definitions are similar to those introduced in prior work on safe RL [Hans et al.,
2008]. Crucially, we do not assume that the engineer specifies which states are (ir)recoverable, as that
would require knowledge of the system dynamics. However, we do assume that a safety violation
must come fairly soon after entering an irrecoverable region:
Assumption 3.1. There exists a horizon H

⇤ 2 N such that, for any irrecoverable states s, any
sequence of actions a0, . . . , aH⇤�1 will lead to an unsafe state. That is, if s0 = s and st+1 = T (st, at)
for all t 2 {0, . . . , H⇤ � 1}, then st̄ 2 Sunsafe for some t̄ 2 {1, . . . , H⇤}.

This assumption rules out the possibility that a state leads inevitably to termination but takes an
arbitrarily long time to do so. The implication of this assumption is that a perfect lookahead planner
which considers the next H steps into the future can avoid not only the unsafe states, but also any
irrecoverable states, with some positive probability.

3.1 Reward penalty framework

Now we present a reward penalty framework for guaranteeing safety. Let fMC = (S,A, eT , r̃, �) be
an MDP with reward function and dynamics

�
r̃(s, a), eT (s, a)

�
=

⇢
(r(s, a), T (s, a)) s 62 Sunsafe

(�C, s) s 2 Sunsafe
(2)

where the terminal cost C 2 R is a constant (more on this below). That is, unsafe states are “absorbing”
in that they transition back into themselves and receive the reward of �C regardless of what action is
taken.

The basis of our approach is to determine how large C must be so that the Q values of actions leading
to unsafe states are less than the Q values of safe actions.
Lemma 3.1. Suppose that Assumption 3.1 holds, and let

C >
rmax � rmin

�H
⇤ � rmax. (3)

Then for any state s, if a is a safe action (i.e. T (s, a) is a safe state) and a
0 is an unsafe action (i.e.

T (s, a) is unsafe), it holds that eQ⇤(s, a) > eQ⇤(s, a0), where eQ⇤ is the Q⇤ function for the MDP fMC .

Proof. Since a
0 is unsafe, it leads to an unsafe state in at most H⇤ steps by assumption. Thus the

discounted reward obtained is at most
H

⇤�1X

t=0

�
t
rmax +

1X

t=H⇤

�
t(�C) =

rmax(1� �H
⇤
)� C�

H
⇤

1� � (4)

By comparison, the safe action a leads to another safe state, where it can be guaranteed to never
encounter a safety violation. The reward of staying within the safe region forever must be at least
rmin
1�� . Thus, it suffices to choose C large enough that

rmax(1� �H
⇤
)� C�

H
⇤

1� � <
rmin

1� � (5)

Rearranging, we arrive at the condition stated.

3

The important consequence of this result is that an optimal policy for this MDP fM will always take
safe actions. However, in practice we cannot compute eQ⇤ without knowing the dynamics model T .
Therefore we extend our result to the model-based setting where the dynamics are imperfect.

3.2 Extension to model-based rollouts

We prove safety for the following theoretical setup. Suppose we have a dynamics model that outputs
sets of states bT (s, a) ✓ S to account for uncertainty.
Definition 3.2. We say that a set-valued dynamics model bT : S ⇥ A ! P(S)2 is calibrated if
T (s, a) 2 bT (s, a) for all (s, a) 2 S ⇥A.

We define the Bellmin operator:
B⇤

Q(s, a) = r̃(s, a) + � min
s02bT (s,a)

max
a0

Q(s0, a0) (6)

Lemma 3.2. The Bellmin operator B⇤ is a �-contraction in the1-norm.

The proof is deferred to Appendix A.1. As a consequence Lemma 3.2 and Banach’s fixed-point
theorem, B⇤ has a unique fixed point Q⇤ which can be obtained by iteration. This fixed point is a
lower bound on the true Q function if the model is calibrated:
Lemma 3.3. If bT is calibrated in the sense of Definition 3.2, then Q

⇤(s, a)  eQ⇤(s, a) for all (s, a).

Proof. Let B̃⇤ denote the Bellman operator with reward function r̃. First, observe that for any
Q,Q

0 : S ⇥ A ! R, Q  Q
0 pointwise implies B⇤

Q  B⇤
Q

0 pointwise because we have
r̃(s, a) + �maxa0 Q(s0, a0)  r̃(s, a) + �maxa0 Q

0(s0, a0) pointwise and the min defining B⇤

includes the true s
0 = T (s, a).

Now let Q0 be any inital Q function. Define eQk = (B̃⇤)kQ0 and Q
k
= (B⇤)kQ0. An inductive

argument coupled with the previous observation shows that Q
k
 eQk pointwise for all k 2 N. Hence,

taking the limits eQ⇤ = limk!1 eQk and Q
⇤ = limk!1 Q

k
, we obtain Q

⇤  eQ⇤ pointwise.

Now we are ready to present our main theoretical result.
Theorem 3.1. Let bT be a calibrated dynamics model and ⇡⇤(s) = argmaxa Q

⇤(s, a) the greedy
policy with respect to Q

⇤. Assume that Assumption 3.1 holds. Then for any s 2 S , if there exists an
action a such that Q⇤(s, a) � rmin

1�� , then ⇡⇤(s) is a safe action.

Proof. Lemma 3.2 implies that Q⇤(s, a)  eQ⇤(s, a) for all (s, a) 2 S ⇥A.

As shown in the proof of Lemma 3.1, any unsafe action a
0 satisfies

Q
⇤(s, a0)  eQ⇤(s, a0)  rmax(1� �H

⇤
)� C�

H
⇤

1� � (7)

Similarly if Q⇤(s, a) � rmin
1�� , we also have

rmin

1� �  Q
⇤(s, a)  eQ⇤(s, a) (8)

so a is a safe action. Taking C as in inequality (3) guarantees that Q⇤(s, a) > Q
⇤(s, a0), so the

greedy policy ⇡⇤ will choose a over a0.

This theorem gives us a way to establish safety using only short-horizon predictions. The conclusion
conditionally holds for any state s, but for s far from the observed states, we expect that bT (s, a)
likely has to contain many states in order to satisfy the assumption that it contains the true next
state, so that Q⇤(s, a) will be very small and we may not have any action such that Q⇤(s, a) � rmin

1�� .
However, it is plausible to believe that there can be such an a for the set of states in the replay buffer,
{s : (s, a, r, s0) 2 D}.

2P(X) is the powerset of a set X .

4

Algorithm 1 Safe Model-Based Policy Optimization (SMBPO)
Require: Horizon H

1: Initialize empty buffers D and bD, an ensemble of probabilistic dynamics { bT✓i}Ni=1, policy ⇡�, critic Q .
2: Collect initial data using random policy, add to D.
3: for episode 1, 2, . . . do
4: Collect episode using ⇡�; add the samples to D. Let ` be the length of the episode.
5: Re-fit models { bT✓i}Ni=1 by several epochs of SGD on L bT (✓i) defined in (9)
6: Compute empirical rmin and rmax, and update C according to (3).
7: for ` times do
8: for nrollout times (in parallel) do
9: Sample s ⇠ D.

10: Startin from s, roll out H steps using ⇡� and { bT✓i}; add the samples to bD.
11: for nactor times do
12: Draw samples from D [bD.
13: Update Q by SGD on LQ() defined in (10) and target parameters ̄ according to (12).
14: Update ⇡� by SGD on L⇡(�) defined in (13).

3.3 Practical algorithm

Based (mostly) on the framework described in the previous section, we develop a deep model-
based RL algorithm. We build on practices established in previous deep model-based algorithms,
particularly MBPO [Janner et al., 2019] a state-of-the-art model-based algorithm (which does not
emphasize safety).

The algorithm, dubbed Safe Model-Based Policy Optimization (SMBPO), is described in Algo-
rithm 1. It follows a common pattern used by online model-based algorithms: alternate between
collecting data, re-fitting the dynamics models, and improving the policy.

Following prior work [Chua et al., 2018, Janner et al., 2019], we employ an ensemble of (diagonal)
Gaussian dynamics models { bT✓i}Ni=1, where bTi(s, a) = N (µ✓i(s, a), diag(�

2
✓i
(s, a))), in an attempt

to capture both aleatoric and epistemic uncertainties. Each model is trained via maximum likelihood
on all the data observed so far:

LbT (✓i) = �E(s,a,r,s0)⇠D log bT✓i(s0, r | s, a) (9)
However, random differences in initialization and mini-batch order while training lead to different
models. The model ensemble can be used to generate uncertainty-aware predictions. For example, a
set-valued prediction can be computed using the means bT (s, a) = {µ✓i(s, a)}Ni=1.

The models are used to generate additional samples for fitting the Q function and updating the policy.
In MBPO, this takes the form of short model-based rollouts, starting from states in D, to reduce
the risk of compounding error. At each step in the rollout, a model bTi is randomly chosen from the
ensemble and used to predict the next state. The rollout horizon H is chosen as a hyperparameter,
and ideally exceeds the (unknown) H⇤ from Assumption 3.1. In principle, one can simply increase
H to ensure it is large enough, but this increases the opportunity for compounding error.

MBPO is based on the soft actor-critic (SAC) algorithm, a widely used off-policy maximum-entropy
actor-critic algorithm [Haarnoja et al., 2018a]. The Q function is updated by taking one or more SGD
steps on the objective

LQ() = E(s,a,r,s0)⇠D[bD[(Q (s, a)� (r + �V
 ̄
(s0))2] (10)

where V
 ̄
(s0) =

⇢
�C/(1� �) s

0 2 Sunsafe

Ea0⇠⇡(s0)[Q ̄
(s0, a0)� ↵ log ⇡�(a0 | s0)] s

0 62 Sunsafe
(11)

The scalar ↵ is a hyperparameter of SAC which controls the tradeoff between entropy and reward.
We tune ↵ using the procedure suggested by Haarnoja et al. [2018b].

The ̄ are parameters of a “target” Q function which is updated via an exponential moving average
towards :

 ̄ ⌧ + (1� ⌧) ̄ (12)
for a hyperparameter ⌧ 2 (0, 1) which is often chosen small, e.g., 0.005. This is a common practice
used to promote stability in deep RL, originating from Lillicrap et al. [2015]. We also employ the

5

(a) Hopper (b) Cheetah-no-flip (c) Ant (d) Humanoid

Figure 2: We show examples of failure states for the control tasks considered in experiments.

clipped double-Q method [Fujimoto et al., 2018] in which two copies of the parameters (1 and 2)
and target parameters (̄1 and ̄2) are maintained, and the target value in equation (11) is computed
using mini=1,2 Q ̄i

(s0, a0).

Note that in (10), we are fitting to the average TD target across models, rather than the min, even
though we proved Theorem 3.2 using the Bellmin operator. We found that taking the average worked
better empirically, likely because the min was overly conservative and harmed exploration.

The policy is updated by taking one or more steps to minimize

L⇡(�) = E
s⇠D[bD,a⇠⇡�(s)

[↵ log ⇡�(a | s)�Q (s, a)]. (13)

4 Experiments

In the experimental evaluation, we compare our algorithm to several model-free safe RL algorithms,
as well as MBPO, on various continuous control tasks based on the MuJoCo simulator [Todorov
et al., 2012]. Additional experimental details, including hyperparameter selection, are given in
Appendix A.3.

4.1 Tasks

The tasks are described below:

• Hopper: Standard hopper environment from OpenAI Gym, except with the “alive bonus” (a
constant) removed from the reward so that the task reward does not implicitly encode the safety
objective. The safety condition is the usual termination condition for this task, which corresponds
to the robot falling over.

• Cheetah-no-flip: The standard half-cheetah environment from OpenAI Gym, with a safety condi-
tion: the robot’s head should not come into contact with the ground.

• Ant, Humanoid: Standard ant and humanoid environments from OpenAI Gym, except with the
alive bonuses removed, and contact forces removed from the observation (as these are difficut to
model). The safety condition is the usual termination condition for this task, which corresponds to
the robot falling over.

For all of the tasks, the reward corresponds to positive movement along the x-axis (minus some small
cost on action magnitude), and safety violations cause the current episode to terminate. See Figure 2
for visualizations of the termination conditions.

4.2 Algorithms

We compare against the following algorithms:

• MBPO: Corresponds to SMBPO with C = 0.
• MBPO+bonus: The same as MBPO, except adding back in the alive bonus which was subtracted

out of the reward.

6

Figure 3: Undiscounted return of policy vs. total safety violations. We run 5 seeds for each algorithm
independently and average the results. The curves indicate mean of different seeds and the shaded
areas indicate one standard deviation centered at the mean.

• Recovery RL, model-free (RRL-MF): Trains a critic to estimate the safety separately from the
reward, as well as a recovery policy which is invoked when the critic predicts risk of a safety
violation.

• Lagrangian relaxation (LR): Forms a Lagrangian to implement a constraint on the risk, updating
the dual variable via dual gradient descent.

• Safety Q-functions for RL (SQRL): Also formulates a Lagrangian relaxation, and uses a filter to
reject actions which are too risky according to the safety critic.

• Reward constrained policy optimization (RCPO): Uses policy gradient to optimize a reward
function which is penalized according to the safety critic.

All of the above algorithms except for MBPO are as implemented in the Recovery RL paper
[Thananjeyan et al., 2020] and its publicly available codebase3. We follow the hyperparameter tuning
procedure described in their paper; see Appendix A.3 for more details. A recent work [Bharadhwaj
et al., 2020] can also serve as a baseline but the code has not been released.

Our algorithm requires very little hyperparameter tuning. We use � = 0.99 in all experiments. We
tried both H = 5 and H = 10 and found that H = 10 works slightly better, so we use H = 10 in all
experiments.

4.3 Results

The main criterion in which we are interested is performance (return) vs. the cumulative number of
safety violations. The results are plotted in Figure 3. We see that our algorithm performs favorably
compared to model-free alternatives in terms of this tradeoff, achieving similar or better performance
with a fraction of the violations.

3https://github.com/abalakrishna123/recovery-rl

7

https://github.com/abalakrishna123/recovery-rl

(a) Performance with varying C (b) Cumulative safety violations with varying C

Figure 4: Increasing the terminal cost C makes exploration more conservative, leading to fewer safety
violations but potentially harming performance. This is what we expected: A larger C focuses more
on the safety requirement and learns more conservatively. Note that an epoch corresponds to 1000
samples.

MBPO is competitive in terms of sample efficiency but incurs more safety violations because it isn’t
designed explicitly to avoid them.

We also show in Figure 4 that hard-coding the value of C leads to an intuitive tradeoff between
performance and safety violations. With a larger C, SMBPO incurs substantially fewer safety
violations, although the total rewards are learned slower.

5 Related Work

Safe Reinforcement Learning Many of the prior works correct the action locally, that is, changing
the action when the action is detected to lead to an unsafe state. Dalal et al. [2018] linearizes the
dynamics and adds a layer on the top of the policy for correction. Bharadhwaj et al. [2020] uses
rejection sampling to ensure the action meets the safety requirement. Thananjeyan et al. [2020] either
trains a backup policy which is only used to guarantee safety, or uses model-predictive control (MPC)
to find the best action sequence. MPC could also be applied in the short-horizon setting that we
consider here, but it involves high runtime cost that may not be acceptable for real-time robotics
control. Also, MPC only optimizes for rewards under the short horizon and can lead to suboptimal
performance on tasks that require longer-term considerations [Tamar et al., 2017].

Other works aim to solve the constrained MDP more efficiently and better, with Lagrangian methods
being applied widely. The Lagrangian multipliers can be a fixed hyperparameter, or adjusted by the
algorithm [Tessler et al., 2018, Stooke et al., 2020]. The policy training might also have issues. The
issue that the policy might change too fast so that it’s no longer safe is addressed by building a trust
region of policies [Achiam et al., 2017, Zanger et al., 2021] and further projecting to a safer policy
[Yang et al., 2020], and another issue of too optimistic policy is addressed by Bharadhwaj et al. [2020]
by using conservative policy updates. Expert information can greatly improve the training-time safety.
Srinivasan et al. [2020], Thananjeyan et al. [2020] are provided offline data, while Turchetta et al.
[2020] is provided interventions which are invoked at dangerous states and achieves zeros safety
violations during training.

Returnability is also considered by Eysenbach et al. [2018] in practice, which trains a policy to return
to the initial state, or by Roderick et al. [2021] in theory, which designs a PAC algorithm to train
a policy without safety violations. Bansal et al. [2017] gives a brief overview of Hamilton-Jacobi
Reachability and its recent progress.

Model-based Reinforcement Learning Model-based reinforcement learning, which additionally
learns the dynamics model, has gained its popularity due to its superior sample efficiency. Kurutach
et al. [2018] uses an ensemble of models to produce imaginary samples to regularize leaerning and

8

reduce instability. The use of model ensemble is further explored by Chua et al. [2018], which studies
different methods to sample trajectories from the model ensemble. Based on Chua et al. [2018],
Wang and Ba [2019] combines policy networks with online learning. Luo et al. [2019] derives a lower
bound of the policy in the real environment given its performance in the learned dynamics model,
and then optimizes the lower bound stochastically. Our work is based on Janner et al. [2019], which
shows the learned dynamics model doesn’t generalize well for long horizon and proposes to use short
model-generated rollouts instead of a full episodes. Dong et al. [2020] studies the expressivity of Q
function and model and shows that at some environments, the model is much easier to learn than the
Q function.

6 Conclusion

We consider the problem of safe exploration in reinforcement learning, where the goal is to discover
a policy that maximizes the expected return, but additionally desire the training process to incur
minimal safety violations. In this work, we assume access to a user-specified function which can
be queried to determine whether or not a given state is safe. We have proposed a model-based
algorithm that can exploit this information to anticipate safety violations before they happen and
thereby avoid them. Our theoretical analysis shows that safety violations could be avoided with
a sufficiently large penalty and accurate dynamics model. Empirically, our algorithm compares
favorably to state-of-the-art model-free safe exploration methods in terms of the tradeoff between
performance and total safety violations, and in terms of sample complexity.

Acknowledgements

TM acknowledges support of Google Faculty Award, NSF IIS 2045685, the Sloan Fellowship, and
JD.com. YL is supported by NSF, ONR, Simons Foundation, Schmidt Foundation, DARPA and
SRC.

References
Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In

International Conference on Machine Learning, pages 22–31. PMLR, 2017.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michael L. Littman. Combating the
compounding-error problem with a multi-step model. arXiv preprint, abs/1905.13320, 2019.
URL http://arxiv.org/abs/1905.13320.

Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi reachability: A brief
overview and recent advances. In 2017 IEEE 56th Annual Conference on Decision and Control
(CDC), pages 2242–2253. IEEE, 2017.

Marc G. Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C. Machado,
Subhodeep Moitra, Sameera S. Ponda, and Ziyu Wang. Autonomous navigation of stratospheric
balloons using reinforcement learning. page 77–82, 2020.

Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
Animesh Garg. Conservative safety critics for exploration. arXiv preprint arXiv:2010.14497, 2020.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. arXiv preprint arXiv:1805.12114,
2018.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

Kefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, and Tengyu Ma. On the expressivity of neural
networks for deep reinforcement learning. In International Conference on Machine Learning,
pages 2627–2637. PMLR, 2020.

9

http://arxiv.org/abs/1905.13320

B Eysenbach, S Gu, J Ibarz, and S Levine. Leave no trace: Learning to reset for safe and autonomous
reinforcement learning. In 6th International Conference on Learning Representations (ICLR 2018).
OpenReview. net, 2018.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pages 1587–1596. PMLR,
2018.

Shixiang Gu, Ethan Holly, Timothy P. Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation. abs/1610.00633, 2016. URL http://arxiv.org/abs/1610.00633.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pages 1861–1870, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
and applications. In International Conference on Machine Learning, pages 1861–1870, 2018b.

Alexander Hans, Daniel Schneegaß, Anton Maximilian Schäfer, and Steffen Udluft. Safe exploration
for reinforcement learning. In ESANN, pages 143–148. Citeseer, 2008.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. arXiv preprint arXiv:1906.08253, 2019.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 49(2-3):209–232, 2002.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. arXiv preprint
arXiv:1807.03858, 2018.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. In Interna-
tional Conference on Learning Representations, 2019. URL https://openreview.net/forum?

id=BJe1E2R5KX.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

Melrose Roderick, Vaishnavh Nagarajan, and Zico Kolter. Provably safe pac-mdp exploration using
analogies. In International Conference on Artificial Intelligence and Statistics, pages 1216–1224.
PMLR, 2021.

10

http://arxiv.org/abs/1610.00633
https://openreview.net/forum?id=BJe1E2R5KX
https://openreview.net/forum?id=BJe1E2R5KX
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Krishnan Srinivasan, Benjamin Eysenbach, Sehoon Ha, Jie Tan, and Chelsea Finn. Learning to be
safe: Deep rl with a safety critic. arXiv preprint arXiv:2010.14603, 2020.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
pid lagrangian methods. In International Conference on Machine Learning, pages 9133–9143.
PMLR, 2020.

Aviv Tamar, Garrett Thomas, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. Learning from the
hindsight plan — episodic mpc improvement. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pages 336–343, 2017. doi: 10.1109/ICRA.2017.7989043.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Brijen Thananjeyan, Ashwin Balakrishna, Suraj Nair, Michael Luo, Krishnan Srinivasan, Minho
Hwang, Joseph E Gonzalez, Julian Ibarz, Chelsea Finn, and Ken Goldberg. Recovery rl: Safe
reinforcement learning with learned recovery zones. arXiv preprint arXiv:2010.15920, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE, 2012.

Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal. Safe rein-
forcement learning via curriculum induction. arXiv preprint arXiv:2006.12136, 2020.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. arXiv preprint
arXiv:1906.08649, 2019.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Accelerating safe
reinforcement learning with constraint-mismatched policies. arXiv preprint arXiv:2006.11645,
2020.

Moritz A Zanger, Karam Daaboul, and J Marius Zöllner. Safe continuous control with constrained
model-based policy optimization. arXiv preprint arXiv:2104.06922, 2021.

11

	Introduction
	Background
	Method
	Reward penalty framework
	Extension to model-based rollouts
	Practical algorithm

	Experiments
	Tasks
	Algorithms
	Results

	Related Work
	Conclusion
	Appendix
	Proofs
	Extension to stochastic dynamics
	Analysis

	Implementation details and hyperparameters

