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Abstract

Hemodynamics has a substantial influence on normal cardiovascular growth and
disease formation, but requires time-consuming simulations to obtain. Deep Learn-
ing algorithms to rapidly predict hemodynamics parameters can be very useful,
but their development is hindered by the lack of large dataset on anatomic ge-
ometries and associated fluid dynamics. This paper presents a new large-scale
dataset of intracranial aneurysm (IA) geometries and hemodynamics to support
the development of neural operators to solve geometry-dependent flow governing
partial differential equations. The dataset includes 14,000 steady-flow cases and
730 pulsatile-flow cases simulated with computational fluid dynamics. All cases
are computed using a laminar flow setup with more than 3 million cells. Boundary
conditions are defined as a parabolic velocity profile with a realistic waveform
over time at the inlet, and geometry-dependent mass flow split ratios at the two
downstream outlets. The geometries are generated by a deep generative model
trained on a cohort of 109 real IAs located at the middle cerebral artery bifurcation,
capturing a wide range of geometric variations in both aneurysm sacs and parent
vessels. Simulation results shows substantial influence of geometry on fluid forces
and flow patterns. In addition to surface mesh files, the dataset provides volume
data of velocity, pressure, and wall shear stresses (WSS). For transient cases, spatial
and temporal gradients of velocity and pressure are also included. The dataset is
tested with PointNet and graph U-Nets for WSS prediction, which showed relative
L2 loss of 4.67% for normalized WSS pattern.

∗The first and second authors contributed equally to this work.
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1 Introduction

For many vascular diseases, there has been a long history of investigating fluid mechanics behaviors
aimed at improving surgical decision-making and post-operative treatment (1). However, a significant
gap remains between biomechanics research and its adoption in clinical practice. A clear example of
this gap is intracranial aneurysm (IA)—a condition where a weakness in the vessel wall leads to a
bulge that carries a potentially lethal risk of rupture (2). Despite extensive research in biomechanics
and several meta studies suggesting a correlation between biomechanical markers and aneurysm
instability (3), these markers have yet to be accepted or utilized by physicians. In practice, physicians
continue to rely primarily on morphological markers (4) to assess rupture risk, even though such
systems (5) have been reported to suffer from high false-positive rates (up to 56%) (6).

One of the key reasons for this gap is that fluid dynamics simulations are time-consuming and require
specialized expertise. As a result, physicians are unable to obtain fluid dynamics data in sufficiently
large sample sizes to evaluate the clinical utility of biomechanics markers, preventing their adoption
of it. As such, it would be useful to develop deep learning models for rapid prediction of flow
dynamics in disease morphologies. Driven by this clinical demand, the concept of predicting CFD
solutions directly from vascular geometries has gained significant momentum in recent years. In
terms of application domains, models have been developed for coronary arteries (7), aorta (8), aortic
aneurysms (9), and the left ventricle (10). From a methodological perspective, both supervised and
self-supervised models are actively being explored. Representative work in the supervised category
includes a family of geometry-informed neural operators (10; 11; 12; 13), while self-supervised
approaches—such as (14; 15; 16)—leverage physics-informed training. Both approaches require a
substantial dataset for training and/or validation.

Unfortunately, available datasets in the bioengineering domain to support such tasks are far from sat-
isfactory. Most existing studies—particularly those focused on theoretical model development—rely
on idealized geometry datasets. For instance, simple harmonic functions are employed in (15) and
(16) to represent the 3D geometries of coronary arteries. Similarly, models in the geometry-informed
neural operator family are often evaluated on highly simplified and impractical geometric domains
(11), limiting their translational relevance to real-world applications. This limitation largely stems
from the inherent difficulty of assembling a sufficient range of patient-specific geometries. As shown
in Table 1, most available datasets contain only a few hundred geometries. Moreover, generating the
corresponding CFD solutions demands significant High-Performance Computing (HPC) resources
and considerable human expertise to design, tune, and maintain an efficient simulation workflow.

In addition to being limited in scale, several existing datasets suffer from other notable shortcomings.
For example, (17) provides real aneurysm sac geometries, but attaches them to a single idealized
mother vessel, resulting in globally unphysiological vascular structures with no variation. Similarly,
while (18) offers a large-scale dataset, over 95% of them are manually deformed from real shapes
rather than being generated through data-driven approaches, and the parent vessels were not generated
even though they are critical to flow behaviors. To address the shortage of realistic 3D hemodynamics
data and to offer a more physiological and large-scale alternative, we introduce a new dataset of IA
geometries with associated hemodynamics. The main contributions are summarized as follows:

• We provide the first large hemodynamics dataset of both IA 3D geometry and its detailed
hemodynamics where both aneurysm pouch and parent vessels are modelled. Geometries
show decent diversity representative of that of clinical data.

• A relatively large amount of geometries are provided compared to existing datasets in the
bioengineering community. We include 14,000 steady cases and 730 pulsatile cases.

• In addition to the volume data, we provide wall shear stress (WSS) solution on IA sac
surfaces with a consistent mesh graph structure (connectivity), allowing easier downstream
deep learning processing.

2 Case Description

2.1 Geometry

Unlike existing datasets which create geometry variations by manually warping real shapes (9; 18),
we use a generative model AneuG (19) that learns the geometry distribution from a real IA cohort.
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Table 1: Reivew on hemodynamics datasets

Dataset Anatomical region Size Geometry source
Faisal et al.(9) Aortic aneurysm 230 Manually generated from 23 real shapes.
AnXplore(17) Intracranial aneurysm 101 Real IA sac geometries merged with the

same idealized mother vessel.
Aneumo(18) Intracranial aneurysm 10,000 9,534 synthetic shapes manually generated

from 466 real shapes.
AneuG-Flow

(Ours)
Intracranial aneurysm
(with parent vessels) 14,000 Synthetic shapes generated with a generative

model trained on a cohort of 116 real shapes.

Figure 1: Geometry configuration. a: Flow configuration. b: UMAP of aneurysm sac geometries.

AneuG leverages the technique of Graph Harmonic Deform (GHD) (20) to encode the spatial warping
of real IA shapes with respect to a canonical shape into a sequence of tokens. The distribution of
tokens are then approximated with a two-stage Variational Autoencoder (VAE). More details can
be found in (19) and (20). AneuG generates both the aneurysm sac and its parent vessels, with the
latter being conditioned on the former. This approach allows us to create diverse physiological IA
shapes for CFD simulations, while existing works such as (17) fails to capture the joint distribution
of aneurysm sacs and their parent vessels. AneuG uses data from the AneuX morphology database
(21), an open-access, multi-centric database combining data from three European projects: AneuX
project, @neurIST project and Aneurisk. As reported in (21), all patients/participants provided
written informed consent to participate in the study.

As shown in Fig. 1, we create IAs located at the bifurcation of the middle cerebral artery (MCA).
Such a topology contains one root vessel and two downstream vessel branches (referred to as the
inferior and superior branch). Compared to the inferior branch, the superior branch generally has
smaller radius and larger spatial angle with respect to the root vessel.

2.2 Mesh Generation Pipeline

We assembled a set of open-source repositories and commercial software automation scripts to
develop a fully automated pipeline for volume mesh generation. Low-resolution surface meshes
generated from AneuG were processed using Geomagic Wrap v2024.3.0 for remeshing and localized
smoothing. We then used the Vascular Modeling Toolkit (VMTK) to generate 3D volume meshes
(codes modified from (8)). For each case, 4 inflation layers were applied with a total thickness
equal to 0.5 times the local edge length near the wall. The final meshes contained an average of 3.4
million volume cells, which mesh convergence studies have shown to be sufficient (see supplementary
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materials for details). This pipeline is generalizable to vascular structures with a fixed number of
inlets and outlets. These automation codes can be found in (22).

2.3 Boundary Conditions

As shown in Fig. 1, we apply a parabolic velocity profile at the inlet with an average velocity
of 0.684m/s, as measured in (24). For the outlets, several studies have demonstrated that flow
split conditions more accurately represent physiological hemodynamics compared to fixed pressure
boundaries (25; 26). Following these work, we determine the mass flow split between the superior
and inferior branches using a modified form of Murray’s law:

Q1

Q2
=

(
D1

D2

)γ

(1)

where Q1 and Q2 are the outlet flow rates, D1 and D2 are the corresponding vessel diameters, and γ
is the flow split exponent. We follow (27) and choose γ = 2.45. This formulation ensures that the
outlet boundary conditions reflect geometry-dependent mass flow split.

Blood were assumed as imcompressible non-Newtonian fluid. We adopt the Carreau–Yasuda model
to account for the non-Newtonian behavior of blood:

µ(γ̇) = µ∞ + (µ0 − µ∞) [1 + (λγ̇)a]
n−1
a (2)

The model parameters are set as follows: zero-shear viscosity µ0 = 0.056Pa·s, infinite-shear
viscosity µ∞ = 0.00345Pa·s, time constant λ = 3.313 s, and power-law index n = 0.3568. The
Yasuda parameter is assumed to be a = 2 and the blood density is set to 1050 kg/m3.

An laminar flow setup was used, as the average Reynolds numbers in the root vessel and downstream
branches were approximately 410 and 330, respectively. And vessel walls were assumed as rigid
with a no-slip condition. Since measurements of blood pressure and flow velocity are not routinely
performed during the clinical management of intracranial aneurysms, an average waveform reported
in (28) was adopted for all transient simulations. The average inlet velocity was kept same across all
morphologies to ensure that aneurysms with larger parent vessels experienced higher mass flow rates.
The velocity waveform signal is included in our dataset. Each transient case was simulated over two
cardiac cycles using a time step of 0.001, s, which was confirmed to be sufficient through a time-step
convergence study. Only the results from the second cycle were extracted.

2.4 Solver and HPC Setup

All simulations were performed using ANSYS Fluent 2023R2 (ANSYS Inc., Canonsburg, PA, USA)
on the High-Performance Computing (HPC) Services at Imperial College London and National
University of Singapore. Simulations ran on AMD nodes, each contains 128 cores and 1TB RAM.
The Research Data Store at Imperial College London were used for data storage during the runs.
Each simulation was run on a single AMD node using 64 cores. Each case took approximately 3
minutes to mesh, and 2 minutes to solve the steady simulation. Transient cases each took around 10
hours to solve.

2.5 Graph structural consistency during CFD data extraction

In addition to the raw CFD solution data, we also provide additional post-processed WSS on
the surfaces of IA sacs as graphs. Each graph contains the same number of nodes and the same
connectivity, allowing easier implementation of downstream deep learning tasks. AneuG gnerates
surface meshes using a mesh morphing approach, where every case has exactly 3500 triangle faces for
the aneursym sac (19). As this mesh size is of low resolution, we subdivided each triangular element
by adding a new node at the center of the each edge and dividing the element into four new elements,
leading to 14,000 faces. WSS at nodes were then extracted through k-NN interpolation method from
[23]. Further subdivision can be performed if higher resolution is desired. The standardization of node
and connectivity structure allows a natural and easy node-to-node / edge-to-edge registration between
different IA cases, and facilitates deep learning processing. The associated graph connectivity is also
provided (see Table 2). Extraction codes are available at (22).
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Figure 2: Example of wall shear stress data.

3 Dataset Description

3.1 Geometry Variation

We follow (19) to generate synthetic shapes using pretrained checkpoint files. Latent features were
sampled from a 64-dimensional uniform distribution with a mean of 0 and a standard deviation of
2.5, and were subsequently passed through the decoder. We chose this setup because it covers over
98% of the latent space of a theoretically well-trained VAE. It is also the maximum deviation from
the latent space center that still yields physiologically plausible shapes. As shown in Fig. 1 b, diverse
aneurysm sac geometries are included.

3.2 Dataset Contents

A summary of the content of this dataset is provided in Table 2 and Table 3. For steady cases, we
assemble the solution data of all cases into one Pytorch .pth file while keeping geometry-dependent
files in separate case folders. As mentioned above, we also provide node-to-node registration for the
aneurysm sac region to construct a well-structured PyTorch tensor object. This tensor has the shape
of [B,N,C], where B, N , and C denote the number of cases, the number of surface nodes, and the
number of physics variables, respectively.

We also provide a list of downsampled node indexes and associated edge connection of downsampled
meshes obtained using the method described in (30). This downsampling approach preserves the
topological integrity of the shapes, whereas generating low-resolution k-NN graphs based solely on
Euclidean coordinates may introduce connections between points that are close in space but distant
in terms of surface geodesic distance. These graph structures can be used for U-Net-like structures
with graph convolution layers. A visualization is provided in Fig. 3.

For transient cases, we provide time-series data over one full cardiac cycle, as summarized in Table 3.
Solutions were extracted at 80 uniformly spaced time steps within the second cardiac cycle, resulting
in each PyTorch tensor object having the shape [T,N, 1], where T denotes the number of time steps
and N the number of nodes. PyTorch .pth files were saved separately within each case folder.
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Figure 3: Mesh downsampling.

Table 2: Dataset contents of steady cases

Solution data

File & Structure Keys Content

Raw_data.pth
List[Dict[str, Any]]

label List of solution variable names.
tensor PyTorch tensor object of solution data.
ghd GHD tokens (19) and rigid alignment checkpoints.
log Fluent residuals log.
case_name Case name.

Assembled_data.pth
Dict[str, Any]

tensor PyTorch tensor object of registered solution data.
tensor_norm Mean and standard deviation of registered data.
idx_list Vertex index list of downsampled surface meshes.
edge_index_list Edge connections of downsampled surface meshes.
ds_factors List of downsampling factors.

Geometry data (inside each case folder)

flowsplit_ratio.txt Mass flow split ratio between two outlets.
shape.obj Surface mesh generated by AneuG.

shape_remeshed.obj Post-processed surface mesh (by Geomagic).

3.3 How to access the dataset

The AneuG-Flow dataset is open-source under a CC BY-SA 4.0 license. It can be accessed and
downloaded directly from the Hugging Face Hub. Codes for processing the raw CFD data and
training the baselines are available at GitHub (23).

3.4 Limitations

We aim to provide a large-scale hemodynamics dataset to support the prediction of biomechanical
markers directly from patient-specific vascular geometries. However, several limitations remain. First,
the dataset includes a relatively small number of transient cases (730) compared to that of steady
cases (14,000), which may limit its utility for predicting temporal biomechanical markers such as
time-averaged wall shear stress and oscillatory shear index. Expanding the dataset with more transient
simulations is a priority for our future work. Second, the current dataset is limited to geometries with
a single inlet and two outlets. To improve generalizability, additional vascular topologies — such as
shapes with a single inlet and a single outlet — should be incorporated in the next phase. Finally, we
do not consider variations of boundary conditions at the moment, as measuring blood pressure and
mass flow waveform signals in the middle cerebral artery is not yet a routine in clinical practice.
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Table 3: Dataset contents of transient cases

Solution data (inside each case folder)

File & Structure Keys Content

blood_data.pt
Dict[str, Tensor]

various Volume solution data of the blood domain, includ-
ing spatial coordinates, velocity components, pres-
sure, viscosity, temporal derivative of pressure, and
spatial derivatives of velocity components.

wall_data.pt
Dict[str, Tensor]

various solution data of the surface domain, including spa-
tial coordinates, Wall shear stress components, and
the total wall shear stress magnitude.

Geometry data (inside each case folder)

same as Table 2

4 ML Evaluation

We demonstrate a simple regression task as an application of the dataset. Given the geometries of
IAs, we train several baseline models to predict the steady-state WSS map on the aneurysm sac.
Leveraging the surface node-to-node registration described in Section 2.5, we construct input graphs
with the same connectivity across different cases, each containing 13,902 nodes and 14,000 triangles.
The network is designed to output WSS vector components in the x, y, and z directions. We use 80%
of the steady-state cases for training and the remaining 20% for testing.

Networks & loss function design. We adopt a U-Net-like structures for the models. Specifically,
we train a PointNet++ and three graph U-Nets: one using simple Graph Convolutional Networks
(GCN), another using Graph Attention Networks (GAT), and a third using Chebyshev Spectral Graph
Networks (ChebNet) as the core convolutional layers. For PointNet++, downsampling is performed
using farthest point sampling (FPS) (29). For graph U-Nets, a pre-computed set of downsampled
node indices and associated edge connections was used, as mentioned in Section 3.2. A visualization
of the mesh downsampling is provided in Fig. 3. In addition to the mean squared error (MSE) loss
computed on z-score-normalized wall shear stress (WSS), we also evaluate an MSE loss defined on
WSS values normalized using an power mapping:

Lexp = MSE
[
f(wpred), f(wtrue)

]
, f(w) =

(
α · w
wmax

)β

· 1
α

(3)

where w denotes the WSS components and f is the normalization function. α and β are manually
selected hyperparameters. For this task, we chose α = 100 and β = 2

3 . We introduce this loss term
because high WSS values often appear near the junction areas between the aneurysm sac and its
parent vessels. However, it is the low WSS distribution on the sac that is generally considered more
clinically significant by physicians (3). By applying such a nonlinear normalization to the WSS,
the model is encouraged to learn the overall spatial pattern of WSS rather than being dominated by
high-magnitude areas. As shown in Fig. 4, the normalized WSS exhibits reduced contrast between
high and low values, thereby emphasizing the underlying distribution pattern.

Metrics & Results. Each model is trained on a single NVIDIA RTX 3090 GPU for 24 hours, with
the learning rate decayed by a factor of 0.75 every 100 epochs. Model performance is evaluated
using the root mean square error (RMSE) and mean absolute error (MAE) computed on the WSS
values. In addition, both metrics and the relative L2 error are computed on WSS normalized using
Eq. (3), which reflects the model’s capability of predicting the spatial pattern of WSS. Prediction
performances are visualized for three random cases in Fig. 4. The model captures the global WSS
map on the aneurysm sac well. As expected, high WSS is observed near the junction between the sac
and the parent vessels, while low WSS appears around lobulated regions on the sac. Among different
network designs, the U-Net using ChebNet as the convolutional layer performs the best. During
training, the ChebNet kernel size was set to 3, and all networks were configured with identical depth
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Table 4: Model performance evaluated on WSS and Eq. (3)-normalized WSS.

Model WSS Normalized WSS
RMSE (Pa) MAE (Pa) RMSE MAE Relative L2 (%)

PointNet++ 0.204 0.122 0.0353 0.0263 5.39
U-Net (GCN) 0.199 0.114 0.0317 0.0233 4.82
U-Net (GAT) 0.213 0.120 0.0333 0.0242 5.04
U-Net (ChebNet) 0.191 0.108 0.0307 0.0223 4.67

Figure 4: Prediction of WSS and WSS normalized with Eq. (3) from the trained U-Net (GCN).

and channel dimensions. The better performance is likely attributable to the enhanced receptive field
of ChebNet, allowing more effective propagation of information across the mesh.

5 Relationship between morphological & biomechanical markers

We go beyond steady cases and investigate the relationship between morphological and biomechanical
markers with our transient data. For morphological markers, we include Aspect Ratio (AR), Size
Ratio (SR), and maximum sac height (Hmax) as they are generally accepted in existing physiology
research (4; 5). Further, We include Lobulation Index (LI) defined as the sac’s surface area divided by
its volume. We also compute the radius of a sphere with the same volume of the sac as it reflects the
3D size of the aneurysm, which we refer to as Equivalent Radius (ER). A detailed graphic definition
of these markers can be found in the supplementary material. For biomechanical markers, we consider
two of them: Oscillatory Shear Index (OSI) and Relative Residence Time (RRT) (31). OSI measures
the directional changes of wall shear stress throughout a cardiac cycle, defined as:

OSI =
1

2
×

(
1−

|
∫ T

0
τw(t)dt|∫ T

0
|τw(t)|dt

)
(4)

with values ranging from 0 (unidirectional flow) to 0.5 (oscillatory flow). Here τw(t) is the wall shear
stress vector. Relative Residence Time (RRT) combines both parameters to evaluate flow stagnation:

RRT =
1

(1− 2× OSI)× TAWSS
(5)
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where Time-Averaged Wall Shear Stress (TAWSS) is the average magnitude of wall shear stress over
a complete cardiac cycle, calculated as:

TAWSS =
1

T

∫ T

0

|τw(t)|dt (6)

It is generally considered dangerous when large OSI and RRT are observed on the aneurysm sac’s
surface. As shown in Fig. 5 and Fig. 6, most morphological markers demonstrated weak or statistically
insignificant correlations with both OSI and RRT averaged on the aneurysm sac. This suggests that
traditional morphological markers alone may be insufficient to capture the complex hemodynamic
behavior within aneurysmal sacs.

Figure 5: Morphological–biomechanical marker correlations (AR, SR, LI).

An interesting observation is the moderate but statistically significant negative correlation between
the lobulation index (LI) and both OSI (r = −0.24, p = 0.020) and RRT (r = −0.26, p = 0.013).
While this trend is statistically supported, it is counterintuitive. One would expect aneurysms with
higher LI to be associated with more chaotic and oscillatory flow patterns. A possible explanation is
that true daughter sacs—often linked to rupture risk and flow complexity—were relatively rare. And
the LI marker as defined here, may be elevated in aneurysms with elongated but smooth morphologies.
These cases could exhibit high surface-to-volume ratios without necessarily possessing complex
internal flow structures. Therefore, the specificity of LI as a marker may be limited. As this is an
preliminary investigation, further studies with larger and more diverse datasets are needed. In contrast,
the equivalent radius (ER), which reflects the size of the aneurysm sac based on its volume, showed a
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Figure 6: Morphological–biomechanical marker correlations (ER and Hmax)

moderate positive correlation with both OSI (r = 0.16, p = 0.129) and RRT (r = 0.26, p = 0.012).
This trend is intuitive, as a larger ER corresponds to a larger sac volume, increasing the likelihood of
developing slow and recirculating flow. Such regions are associated with disturbed hemodynamics
behaviors, including elevated oscillatory shear and prolonged residence time.

6 Conclusion

In this paper, we present a new large-scale and open-source dataset designed to support the devel-
opment of data-driven models for predicting hemodynamics from geometries. The dataset includes
14,000 steady-flow cases and 730 pulsatile-flow cases, each computed using high-resolution CFD sim-
ulations with anatomically physiological IA geometries. These geometries model both the aneurysm
sacs and their parent vessels as a joint distribution, addressing key limitations in previous datasets
that relied on idealized or manually deformed shapes (9; 18).

By leveraging a deep generative model trained on a real IA cohort, we capture a broad range of
physiologically plausible geometries representative of real-world anatomical variations. We provide
solution data including pressure, velocity, and WSS. Spatial gradients for velocity components and
temporal gradient for pressure are also provided. Initial experiments using PointNet and graph U-Nets
demonstrate the dataset’s utility in enabling WSS pattern prediction, achieving a best relative L2 error
of 4.67% on normalized WSS.

We hope this dataset will contribute to the biomechanics and machine learning communities, acceler-
ating the development of neural operators and other data-driven solvers for geometry-conditioned
partial differential equations.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Main contributions are covered in the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section 3.4.
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Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Full assumptions are covered in Section 2.3. Mesh and time-step convergence
analyses are covered in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [No]
Justification: We do not describe all details of the network design. However, we do provide
them in the codes.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Links can be found in Section 3.3.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [No]

Justification: We do not mention all details of the training. However, we provide them in the
codes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our dataset is simulated with synthetic geometries, we therefore do not have
statistical significance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Related information are reported in Section 2.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable.
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used for minor grammar checking, but not for any methodology parts.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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