
Learn to Think: Bootstrapping LLM Reasoning Capability Through Graph
Representation Learning

Hang Gao1,2∗ , Chenhao Zhang1,2,3∗ , Tie Wang4† , Junsuo Zhao1,2,3 , Fengge Wu1,2,3† , Changwen
Zheng1,2,3 and Huaping Liu5

1 Institute of Software, Chinese Academy of Sciences.
2 National Key Laboratory of Space Integrated Information System.

3 University of Chinese Academy of Sciences.
4 Peking University.

5 Tsinghua University.
{gaohang, zhangchenhao2024, fengge, changwen, junsuo}@iscas.ac.cn,

wangtie2021@stu.pku.edu.cn, hpliu@tsinghua.edu.cn

Abstract
Large Language Models (LLMs) have achieved re-
markable success across various domains. How-
ever, they still face significant challenges, includ-
ing high computational costs for training and limi-
tations in solving complex reasoning problems. Al-
though existing methods have extended the rea-
soning capabilities of LLMs through structured
paradigms, these approaches often rely on task-
specific prompts and predefined reasoning pro-
cesses, which constrain their flexibility and gener-
alizability. To address these limitations, we propose
a novel framework that leverages graph learning to
enable more flexible and adaptive reasoning capa-
bilities for LLMs. Specifically, this approach mod-
els the reasoning process of a problem as a graph
and employs LLM-based graph learning to guide
the adaptive generation of each reasoning step. To
further enhance the adaptability of the model, we
introduce a Graph Neural Network (GNN) mod-
ule to perform representation learning on the gen-
erated reasoning process, enabling real-time adjust-
ments to both the model and the prompt. Exper-
imental results demonstrate that this method sig-
nificantly improves reasoning performance across
multiple tasks without requiring additional training
or task-specific prompt design. Code can be found
in https://github.com/zch65458525/L2T.

1 Introduction
In recent years, LLMs [Radford et al., 2018] have achieved
remarkable success in fields such as natural language pro-
cessing [Brown et al., 2022], machine translation [Jiao et
al., 2022], and code generation [Ni et al., 2022]. However,
training these models requires substantial computational re-
sources and energy, resulting in high costs and environmental

∗Equal contribution.
†Corresponding authors.

impacts [Patterson et al., 2022]. As a result, efficiently uti-
lizing LLMs has become a key research focus, with prompt
engineering emerging as a critical technique [Liu et al., 2023;
Zhou et al., 2022; Sun et al., 2022]. By designing effec-
tive prompts, it is possible to optimize model performance
without additional training, making it a cost-effective and
straightforward approach. Notably, the Chain-of-Thought
(CoT) method [Wei et al., 2022] has demonstrated signifi-
cant improvements in tasks such as mathematical reasoning
and logical inference by guiding models through step-by-step
reasoning processes. CoT works by crafting prompts that
break down complex problems into logical steps, enabling the
model to solve them incrementally.

Prompts that do
not require task-
specific design

Context-adaptive
thought generation
strategies

Task-specific
prompts

Predefined
thought
generation
strategies

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

类别 1

系列4 系列 3 系列 2 系列 1

(a) Conventional Method.

Prompts that do
not require task-
specific design

Context-adaptive
thought generation
strategies

Task-specific
prompts

Predefined
thought
generation
strategies

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

类别 1

系列4 系列 3 系列 2 系列 1

(b) Our Proposed Method.

Figure 1: A comparison between our method and conventional
methods.

Based on Chain of Thoughts, numerous related meth-
ods have been proposed in recent years, including Tree
of Thoughts (ToT)[Chu et al., 2024], Graph of Thoughts
(GoT)[Besta et al., 2024], and Thread of Thoughts
(ThoT)[Zhou et al., 2023b]. These methods introduce more
complex thinking paradigms, such as tree structures, graph
structures, and thread-based reasoning, thereby further ex-
tending the reasoning capabilities of LLMs. Compared to
chain-based reasoning structures, these approaches have sig-
nificantly enhanced the breadth and depth of the cognition of
LLMs [Qiao et al., 2023]. They have played an active role
in optimizing the performance of LLMs [Hadi et al., 2024].
However, these methods still face several critical challenges.

ar
X

iv
:2

50
5.

06
32

1v
2

 [
cs

.L
G

]
 1

7
M

ay
 2

02
5

https://github.com/zch65458525/L2T

First, they lack adaptability to different contexts. Existing
approaches are often unable to make real-time adjustments to
models and prompts in response to dynamic changes in sce-
narios, resulting in limited flexibility and robustness when ad-
dressing diverse tasks [Chu et al., 2024]. Once the reasoning
process begins, LLMs typically follow a predefined prompt
and execute reasoning in a relatively fixed manner. This leads
to a second issue: these methods often require task-specific
prompt design to handle different tasks effectively, particu-
larly for those involving more complex reasoning processes.
This reliance is, to some extent, inevitable, as more intri-
cate reasoning demands highly precise and specific prompts
to effectively guide the model. Only with carefully crafted
prompts can the models fully exploit their extended reasoning
frameworks. Without sufficiently targeted prompts, their rea-
soning performance may degrade greatly, failing to achieve
the desired cognitive outcomes. This heavy dependence on
task-specific prompts poses a major limitation, severely un-
dermining the generalizability of such methods. One possi-
ble solution is to collect task-specific data and use fine-tuning
methods to train the LLM. However, this approach incurs sig-
nificant costs in industrial scenarios and is not feasible for
cases where only API access is available. Figure 1(a) pro-
vides a visual summary of these challenges.

Thus, a key question emerges: is there a way to address
different types of problems in a unified manner with-
out requiring LLM training or additional prompt design,
while also allowing the model to flexibly adjust based on
the problem and reasoning process? To achieve this, it is
essential to establish a suitable unified framework to model
the entire reasoning process of LLMs, enabling them to adopt
different modes of thinking at appropriate moments, much
like humans do.

To this end, we propose the Learn to Think (L2T) method,
which guides the LLM to “think” based on graph learning.
This method employs graphs to unify the representation of
the reasoning process of LLMs across different tasks. These
graphs are annotatable, enabling more effective representa-
tion and accurate prediction of reasoning strategies. Sub-
sequently, L2T utilizes a graph learning approach based on
LLMs to adaptively guide reasoning strategies for various
scenarios. By combining such an approach with the auto-
matic extraction of reasoning process formats and evaluation
criteria from task descriptions, L2T effectively handles di-
verse tasks without relying on task-specific prompts. Then,
L2T introduces a GNN-based reasoning mode selection mod-
ule to perform relatively lightweight representation learning
on the graph, facilitating the switch between different rea-
soning modes for LLMs. This enables real-time adjustments
during the reasoning process, and the GNN-based reasoning
mode selection module is further refined within a reinforce-
ment learning framework. Figure 1(b) illustrates the advan-
tages of the proposed method. In summary, our contributions
are as follows:

• We propose an LLM reasoning framework that can adapt
to different problems and develop reasoning pathways
without requiring task-specific prompts.

• By integrating a GNN-based reasoning mode selection

module, we enable real-time adjustment of the LLM rea-
soning strategies. Furthermore, the module can be con-
tinuously optimized through reinforcement learning.

• Extensive experiments are conducted to thoroughly val-
idate and analyze the proposed method.

2 Related Works
Prompt engineering. Prompt engineering for LLMs has
seen significant advancements, introducing innovative tech-
niques aimed at enhancing reasoning and reliability. Meth-
ods such as CoT [Wei et al., 2022] improve reasoning ca-
pabilities by incorporating intermediate steps, while self-
consistency [Wang et al., 2023] enhances reliability by ag-
gregating consistent outputs. Interactive question answer-
ing further enables dynamic interactions with the model, fa-
cilitating adaptive reasoning processes [Yao et al., 2023b;
Masson et al., 2024]. To mitigate hallucinations, Retrieval-
Augmented Generation (RAG) [Lewis et al., 2020] integrates
external retrieval mechanisms to ensure factual accuracy. Ad-
ditionally, methods like Chain-of-Verification (CoVe) [Dhuli-
awala et al., 2024], Chain-of-Note (CoN) [Yu et al., 2023],
and Chain-of-Knowledge (CoK) focus on step-by-step vali-
dation for robust reasoning. Furthermore, prompt engineer-
ing research has also explored areas such as user intent un-
derstanding [Diao et al., 2024], autonomous prompt selec-
tion [Zhou et al., 2023a], external tool integration [Paranjape
et al., 2023], and emotional control in responses [Li et al.,
2023].

Logic and reasoning within LLM prompting. Efforts to
enhance logic and reasoning in LLM prompting have intro-
duced various innovative methods. Auto-CoT [Zhang et al.,
2023] automates the generation of reasoning chains, while
Logical CoT (LogiCoT) [Zhao et al., 2024] leverages sym-
bolic logic for step-by-step verification. Prompt Sketching
[Beurer-Kellner et al., 2024] constrains outputs to predefined
logical structures, ensuring coherence and adherence to logi-
cal frameworks. Topological frameworks have also been ex-
plored, such as ToT [Yao et al., 2023a] and GoT [Besta et al.,
2024], which utilize hierarchical and graph-based structures,
respectively, to model complex reasoning processes. Algo-
rithm of Thoughts (AoT) [Sel et al., 2024] employs in-context
algorithmic examples to guide LLMs through structured rea-
soning pathways, while ThoT [Zhou et al., 2023b] generates
structured thought threads to decompose and address com-
plex problems. Although these methods have made signifi-
cant contributions, they typically follow predefined reasoning
processes and depend heavily on task-specific prompts, lim-
iting their adaptability and generalizability. In contrast, our
method addresses these limitations by enabling more flexible
and adaptive reasoning capabilities for LLMs.

3 Method
Our method consists of the following parts: first, represent-
ing the complete logical reasoning process of the LLM as a
specifically designed graph. Second, automatically generate
the format and evaluation criteria of the reasoning process,

Class = 1
Reasoning Process

Stop

Class = 1
Reasoning Process

Stop Class = 3
Final Result

Thoughts that have been processed

Thoughts yet to be processed

Figure 2: An example of the reasoning process graph. Each box contains a thought generated by the LLM, representing a node in the
reasoning process graph. The green boxes in the graph indicate the nodes currently being processed. We classify these nodes and used their
categories to guide the LLM’s next steps.

then employ a graph learning framework to process the rea-
soning process graph, thereby facilitating flexible and adap-
tive multi-step problem-solving that does not require task-
specific prompts. Finally, iteratively refining the proposed
reasoning model through reinforcement learning. We will
elaborate on them in detail.

3.1 Reasoning Process Graph
The conversation with the LLM consists of user messages
(prompts) and the LLM’s responses (thoughts). Extensive re-
search has been conducted on how to organize such prompts
and thoughts to optimize LLM performance [Liu et al., 2023],
leading to the proposal of various structures of thoughts,
such as chain structures [Wei et al., 2022], tree structures
[Yao et al., 2023a], graph structures [Besta et al., 2024],
etc. Among these, graphs are particularly effective for rep-
resenting the reasoning frameworks of most existing models,
as trees, chains, and other structures can be viewed as spe-
cial cases of graphs. Building on this, our approach employs
a specifically designed graph to represent logical reasoning,
which we refer to as the reasoning process graph.

Particularly, we represent the entire reasoning process of
an LLM as a reasoning process graph G = {V, E}, where V
denotes the set of nodes, with each node v ∈ V representing a
thought generated by the LLM. Similarly, E denotes the set of
edges, where each edge e ∈ E represents a connection from
one thought to its subsequent thought.

The set V can be partitioned into two subsets: Vpres and
Vhist. Here, Vpres represents the nodes corresponding to un-
processed thoughts and will serve as the basis for generating
subsequent thoughts. In contrast, Vhist represents the nodes
that have already been processed and will no longer be revis-
ited.

Each node v in Vpres is assigned a category label Yv , where
Yv ∈ {1, 2, 3, 4}. The meaning of each label is as follows:

• Label 1: Reasoning should not proceed based on node
v.

• Label 2: Reasoning should continue based on node v.

• Label 3: Node v should be output as the final result.

• Label 4: A backtracking operation should be performed
on node v, meaning that reasoning should continue
based on its parent node.

To assign specific labels to each node in Vpres, we utilize
LLM-based graph learning for node classification. These la-
bels are subsequently employed to guide the thought genera-
tion process. By leveraging this approach, L2T eliminates the
need for task-specific prompts to direct the reasoning process.
Instead, the labels effectively determine how the reasoning
proceeds. In the following sections, we will elaborate on this
process in detail. Figure 2 gives an illustration example for
the reasoning process graph.

3.2 Thought Generation Framework
Next, we introduce our thought generation framework. Since
the reasoning process is carried out step by step, we will ex-
plain in detail how reasoning is performed at the first step, the
intermediate k-th step, and the final step, respectively. The
overall framework is given in Figure 3.

First Step
In the first step, we begin by obtaining an initial state. Using
the LLM, we generate three components: the initial reason-
ing process graph G(1), the constraint format and examples
for the process, and the evaluation criteria for the generated
thoughts. Specifically, the initial reasoning process graph is
defined as G(1) = {V(1), E(1)}. In G(1), the subscript “1” in
parentheses corresponds to the iteration step one. V(1) and
E(1) represent the sets of nodes and edges in G(1), respec-
tively. At this stage, |V(1)| = 1 and E(1) = ∅, as G(1) con-
tains only a single initial node. The node in G(1) is assigned
to Vpres(1). The attribute of this node is the task description.

Additionally, we utilize the LLM to directly produce X fmt

that includes format descriptions and a set of corresponding
example answers for new thought generation. Furthermore,
based on the LLM, we extract relevant information Xeva from

...

...
Sample Subgraphs

Class 1
Class 2

Class 2

Node Classification
Prompt

Data Description

Reinforcement
Learning
Module

Output

Update

First
Step

k-th
Step

Final
Step

GNN
LLM

LLM

LLM

G(k-1)

G(k)

Task Description

Init Prompt

Result Evaluation Information X eva

Starting Node
G(1)

Form Examples X fmt

Genration Prompt

Data Description

Form Examples X fmt

Modify

G(final)

Result

Process Termination
Judgement : Fixed

: Updatable

Reasoning
Mode Choosing

(1) Reasoning Process Graph Node Classification

(2) GNN-based Reasoning Mode Selection (3) Thought Generation

Figure 3: The framework of the proposed method. All LLM modules uniformly utilize the same LLM.

the task description that pertains to the criteria for evaluat-
ing and scoring the quality of the model’s output. The above
design ensures that L2T can perform step-by-step reasoning
for complex problems in a unified format without relying on
task-specific prompts, while also providing a reasonable eval-
uation of task execution. Details of all L2T prompts can be
found in Appendix A.5.

k-th Step
For the k-th step, we generate the subsequent thoughts to con-
struct G(k) based on G(k−1). L2T first conducts reasoning
process graph node classification, then achieves GNN-based
reasoning mode selection. Based on the classification infor-
mation and the selected reasoning mode, L2T finally gener-
ates the thoughts. We will elaborate on the details in the fol-
lowing content.
(1) Reasoning process graph node classification. The
node classification is performed for all nodes within
Vpres(k−1). For each node v ∈ Vpres(k−1), we ex-
tract its corresponding subgraph G̃

(k−1)
v , where G̃

(k−1)
v =

{Ṽ(k−1)
v , Ẽ(k−1)

v }. Here, Ṽ(k−1)
v represents the set of all

nodes in G(k−1) that have paths pointing to node v with a
path length less than β, where β is a predefined hyperparam-
eter. The edge set Ẽ(k−1)

v is defined as:

Ẽ(k−1)
v ={

(u,w) ∈ E(k−1) | u ∈ Ṽ(k−1)
v , w ∈ Ṽ(k−1)

v

}
. (1)

Thus, G̃(k−1)
v is the induced subgraph of G(k−1) whose ver-

tex set is Ṽ(k−1)
v . The provided information will be utilized

as input to the LLM to perform node classification. Beyond
the node attributes, the topological relationships between the
target node v and other nodes will be annotated and expressed
in textual form. This annotation process is straightforward, as
the neighboring nodes primarily represent historical or back-
tracking information. The overall node classification process
can be mathematically expressed as follows:

Ẏ (k)
v = f

(
Snode, τ

(
{xu | u ∈ Ṽ(k−1)

v }, G̃(k−1)
v

))
, (2)

where Snode represents the prompts designed for node classi-
fication, Ẏ (k)

v denotes the estimated label, xu denotes the tex-
tual representation of the reasoning thought associated with
node u, f(·) denotes the LLM, and τ(·) is the function that
converts graph-related information into a descriptive textual
format. Further details regarding the implementation of τ(·)
are provided in Appendix A.3.
(2) GNN-based reasoning mode selection. Our GNN-
based reasoning mode selection module processes the graph
G(k−1) using a GNN [Kipf and Welling, 2017; Wu et al.,
2020] g(·), which is a deep learning model designed to pro-
cess and analyze graph-structured data by leveraging the
relationships between nodes and edges. The GNN takes
an attributed graph as input and outputs feature vectors for
each node. For the implementation of g(·), we utilize a
one-layer Graph Convolutional Network (GCN) [Kipf and
Welling, 2017] followed by a two-layer Multi-Layer Percep-
tron (MLP). During the aforementioned node classification,
each node v in G(k−1) save the final-layer representation hv

generated by the LLM as the node feature vector for this
stage. Here, hv is the representation corresponding to the

last output token in the answer sequence. These output repre-
sentations are subsequently transformed into vectors denoted
as a. Specifically, each reasoning node v(k) in Vpres(k) is as-
sociated with a vector a(k)v . The vector a(k)v consists of a set
of parameters, including adjustable prompt-related parame-
ters (e.g., the number of generated branches) as well as LLM
hyperparameters (e.g., the temperature parameter). Formally,
a
(k)
v is defined as:

a(k)v = A
(
g[v](G

(k−1))
)
, (3)

where A(·) denotes the function that outputs a
(k)
v based on

g[v](G
(k−1)), g[v](G(k−1)) is the GNN output representation

of node v at the (k − 1)-th step. In fact, A(·) implements the
Actor mechanism in the Actor-Critic algorithm [Konda and
Tsitsiklis, 1999], and the implementation details of this func-
tion will be elaborated in Section 3.3. We treat a(k)v as an
action of choosing a mode of reasoning, the model will be it-
eratively updated to optimize the selection of modes. Further
details regarding a

(k)
v can be found in Appendix A.4.

(3) Thought generation. Finally, we carry out thought gen-
eration. According to the classes described in section 3.1, for
a given node v, new nodes need to be generated only when
the label of v is 2, and the newly generated nodes are all child
nodes of v. For other types of nodes, only deletion, modifica-
tion, and adjustment of set membership are required, which
can be directly addressed through standardized processing on
G(k−1). The standardized processing can be implemented
through straightforward code development. Subsequently, we
input the prompts, pre-generated template examples, and the
textual description of node attributes into an LLM, enabling
it to generate the subsequent thought nodes when the label
of v is 2. The process of generating the textual features of a
child node u based on the content of its parent node v can be
formalized as follows:

xu = f(Sgen, x(k−1)
v , X fmt,a(k)v), (4)

where xu represents the textual features of the node u, and
Sgen denotes the prompt used for data generation. Note that a
portion of the prompt is determined by a

(k)
v , which also influ-

ences the hyperparameters of the LLM. Based on xu, along
with other standardized processing, the graph G(k) can then
be constructed. The newly generated child nodes, together
with the backtracked parent nodes, will form Vpres(k).

Final Step
The reasoning process concludes when the final result
emerges. This occurs when the current set, denoted as Vpres,
contains a node labeled as 3, signifying the appearance of the
final result. At this point, all intermediate steps and iterations
cease, and the process terminates.

Additionally, if all nodes in Vpres have their corresponding
thoughts labeled as 1 (indicating that reasoning stops at the
current thought), these thoughts will then be regenerated. If
they are still labeled as 1, the process will also terminate.

3.3 Update
We employ the Actor-Critic algorithm from reinforcement
learning to optimize and update the GNN-based reasoning

mode selection module, which comprises g(·) and A(·).
These components work together to produce the output a(k)v .
The Actor-Critic algorithm uses two models: the Actor,
which selects actions based on the policy, and the Critic,
which evaluates the actions by estimating the value function
to improve the policy. Please refer to Appendix D.2 and D.3
for detailed introductions. Assuming we are at the k-th step,
we first consider the case where there is only one node in
G(k−1) that needs to be processed, i.e., |Vpres(k)| = 1, and the
pending node is v. As mentioned in the previous section, at
step k, we regard a

(k)
v as an action of choosing the mode of

reasoning. At this point, g[v](G(k−1)), i.e., the GNN output
representation of node v at the (k − 1)-th step, is treated as
the input state.

The Actor, which is represented as A(·), is used to gener-
ate the action a

(k)
v , which represents the selected reasoning

mode. At the k-th step, we calculate an action distribution
π(a

(k)
v |g[v](G(k−1)); θactor) based on a single-layer MLP with

θactor as the parameters, and action a
(k)
v is sampled from this

distribution. The process can be formulated as:
a(k)v ∼ π(a(k)v |g[v](G(k−1)); θactor), (5)

π denotes the strategy distribution. The parameters of π
is output with the MLP, which takes g[v](G

(k−1)) as its in-
put. Next, we acquire an immediate reward rk and the next
state g[v](G

(k)). The reward rk is set to 100 if the generated
thought represents the final result. Otherwise, it is an integer
between 0 and 10, determined by the LLM based on G(k) and
Xeva. The detailed prompt used for this process is provided
in Appendix A.5.

The Critic evaluates the performance of the current strat-
egy by estimating the state value function V

(
g[v](G

(k−1))
)
,

which is also implemented using a single-layer MLP with
θcritic as the parameters.

We adopt the widely used PPO framework [Schulman et
al., 2017] for LLM training as the specific implementation of
the Actor-Critic algorithm, optimizing and updating the Ac-
tor and Critic that we have constructed. Through collabora-
tive optimization, the policy network gradually learns a better
strategy for selecting reasoning modes, enabling the model to
dynamically optimize inference efficiency and performance
under different graph states.

For graphs with multiple pending nodes, i.e., |Vpres(k)| >
1, each node is processed sequentially as different steps, with
optimization and updates performed individually.

4 Experiments
4.1 Comparison with State-of-the-Art Methods
Baselines
For our experiments, we utilized GPT-4o as the base model.
First, we directly compared our proposed L2T method with
the original output of GPT-4o[OpenAI, 2023] (denoted as
IO). Subsequently, we compared L2T with several advanced
LLM reasoning methods, including CoT [Wei et al., 2022],
ToT [Yao et al., 2023a], GoT [Besta et al., 2024], and AoT
[Sel et al., 2024]. Among these, we specifically analyzed both
the zero-shot and few-shot versions of CoT.

Method
3×3 Sudoku 4×4 Sudoku 5×5 Sudoku 4×4 Sudoku w/o TSP

Average Min Max Average Min Max Average Min Max Average Min Max
IO 43.85±10.44 4/13 8/13 24.62±10.50 0/13 4/13 10.77±6.41 0/13 3/13 24.62±10.50 0/13 4/13
CoT (zero-shot) 61.54±9.87 5/13 9/13 33.08±9.47 3/13 7/13 13.85±8.70 0/13 4/13 10.77±9.54 0/13 5/13
CoT (few-shot) 80.77±9.54 9/13 12/13 57.69±10.92 5/13 9/13 46.92±10.32 4/13 8/13 30.00±12.91 1/13 7/13
ToT 92.31±4.39 12/13 13/13 72.31±5.99 8/13 12/13 63.85±10.44 5/13 10/13 34.62±13.91 1/13 9/13
GoT 95.38±5.19 12/13 13/13 72.35±11.47 8/13 13/13 67.69±10.92 5/13 11/13 37.69±15.89 2/13 9/13
AoT 97.65±4.37 12/13 13/13 77.69±7.25 8/13 12/13 69.41±9.66 8/13 12/13 36.47±13.67 2/13 9/13

L2T w/o GNN 98.46±3.61 11/13 13/13 93.08±9.47 9/13 13/13 89.46±9.87 9/13 13/13 93.08±9.47 9/13 13/13
L2T 100.00±0.00 13/13 13/13 98.46±3.76 12/13 13/13 89.23±6.41 10/13 13/13 98.46±3.76 12/13 13/13

Table 1: Results for performance on Sudoku. Bold denotes the best result, and underline denotes the second best. For tied results in either first
or second place, the performance is determined by comparing other relevant results within the same group. Min and Max represent the best
and worst performances achieved by a method, respectively, in terms of the number of correct solutions out of 13 total puzzle sets. Results
for 4× 4 Sudoku w/o TSP (without task-specific prompts) reflect the performance of models when task-specific prompts are removed. Since
IO, L2T w/o GNN, and L2T do not use task-specific prompts by design, their results are directly copied from the corresponding problem and
are shown in italic to indicate this.

Method Game of 24 Game of 24 w/o TSP
IO 15.92±1.89 15.92±1.89
CoT (zero-shot) 28.63±0.86 25.82±2.01
CoT (few-shot) 30.34±2.21 26.12±2.23
ToT 70.52±3.26 48.12±1.18
GoT 72.30±1.55 48.15±1.28
AoT 74.23±1.59 27.54±7.76

L2T w/o GNN 77.45±1.17 77.45±1.17
L2T 80.42±2.98 80.42±2.98

Table 2: Results for performance on Game of 24. Bold denotes the
best result, and underline denotes the second best. Results for Game
of 24 w/o TSP reflect the performance of models when task-specific
prompts are removed. As Table 1, italic denotes the results that are
directly copied from the corresponding problem, as the correspond-
ing method do not use task-specific prompts by design.

Tasks
We evaluated our method on four distinct tasks: Sudoku, the
Game of 24, TruthQuest [Mondorf and Plank, 2024], and
Creative Writing. These tasks were chosen as they are com-
monly used in the evaluation of similar methods [Yao et al.,
2023a; Besta et al., 2024].

The Sudoku task is a logic-based puzzle involving the
placement of numbers within a grid according to specific
rules, we adopted 3 sizes, 3 × 3, 4 × 4, and 5 × 5. Game
of 24 is a mathematical puzzle where players use four given
numbers and basic arithmetic operations to reach a total of
24. TruthQuest [Mondorf and Plank, 2024] is a recently in-
troduced benchmark for evaluating the reasoning and verifi-
cation abilities of LLMs. Creative Writing task consisted of a
series of diverse writing challenges (designed to avoid redun-
dancy in task definitions) to assess the logical and conceptual
abilities of LLMs in generating coherent and creative text.
More details can be found in Appendix B.

For all tasks, the L2T method was tested using identical
prompts, ensuring a consistent evaluation framework.

Settings
We utilized the GPT-4o API to conduct all the experiments,
including those for the baselines. We also present the per-
formance of L2T w/o GNN, which refers to L2T without the
GNN-based reasoning mode selection module and, as a re-
sult, does not require any training.

Method 3 Characters 4 Characters 5 Characters 3 Characters w/o TSP
IO 36.83±1.57 35.06±6.73 6.57±2.04 36.83±1.57
CoT (zero-shot) 40.92±0.71 38.91±1.09 10.52±0.85 37.85±0.96
CoT (few-shot) 45.24±1.47 39.43±1.24 13.42±2.25 42.05±1.24
ToT 53.68±2.65 47.82±0.81 17.58±0.34 49.16±1.37
GoT 51.42±1.80 47.95±1.24 16.72±0.28 48.85±1.06
AoT 53.15±1.34 46.69±1.80 16.41±1.01 41.94±1.14

L2T w/o GNN 67.74±1.09 54.84±3.01 25.81±2.58 67.74±1.09
L2T 69.31±0.64 59.75±0.99 27.93±0.05 69.31±0.64

Table 3: Results for performance on TruthQuest. Bold denotes the
best result, and underline denotes the second best. Results for 3
Characters w/o TSP reflect the performance of models upon 3 Char-
acters TruthQuest when task-specific prompts are removed. As Ta-
ble 1, italic denotes the results that are directly copied from the cor-
responding problem, as the corresponding method do not use task-
specific prompts by design.

Furthermore, we conducted additional experiments
(marked in orange) that removed the task-specific com-
ponents of methods including CoT, ToT, GoT, and AoT.
Further details regarding the experimental settings and
hyperparameter configurations can be found in Appendix A.

Results
Next, we analyze the results across different tasks. Tables
1, 2, and 3 summarize the results for Sudoku, Game of 24,
and TruthQuest. Our method consistently outperforms oth-
ers, showing significant improvements, particularly without
task-specific prompts, where its efficiency advantage is more
pronounced. Even without the GNN-based reasoning mode
selection module (L2T w/o GNN), performance remains su-
perior, highlighting the effectiveness of our approach.

Table 4 presents results on Creative Writing, focusing on
relative scores to L2T. Evaluations via an LLM reduce fluctu-
ations. L2T achieves higher or equivalent scores in over 80%
of cases, with less than 20% lower, outperforming baselines.
L2T w/o GNN performs comparably, supporting conclusions
from prior results.

4.2 In-Depth Analysis
Ablation Study
To further delve into the analysis of our algorithm, we con-
ducted ablation experiments. These experiments were per-
formed on the Game of 24 task to evaluate the contribution of

Method
Sentence Formation (Less Hints) Sentence Formation (More Hints) Text Expansion

Higher Same Lower Std. Higher Same Lower Std. Higher Same Lower Std.

IO 93.06 6.93 0.00 ±3.92 82.67 17.33 0.00 ±3.76 51.93 38.91 9.16 ±2.24

CoT 62.87 36.14 0.00 ±3.22 61.39 38.61 0.00 ±3.08 42.28 41.78 15.94 ±1.24

ToT 48.27 50.24 1.49 ±2.90 50.74 47.02 2.23 ±2.53 41.98 36.83 21.19 ±2.83

GoT 47.77 49.99 2.23 ±2.56 49.75 48.02 2.23 ±3.33 41.88 35.64 22.48 ±2.65

AoT 48.82 49.06 2.11 ±1.88 48.12 49.05 2.82 ±2.18 44.24 36.82 18.94 ±2.44

L2T w/o GNN 15.05 50.84 34.11 ±3.38 15.38 39.13 45.48 ±3.84 15.88 64.08 20.04 ±4.10

Table 4: Comparison of method performance on the Creative Writing task. All data represent the performance of L2T comparisons to other
methods. Higher indicates cases where L2T achieved a better score compared to the corresponding method. Same represents cases where
L2T achieved the same score as the corresponding method. Lower indicates cases where the L2T scored worse compared to the corresponding
method.

Method Accuracy (%) Generated Nodes
L2T 80.42±2.98 36.14±9.29
L2T w MLP 78.20±1.36 40.29±9.87
L2T w/o RL 78.85±1.42 43.13±8.61
L2T w/o GNN 77.45±1.17 46.56±21.11

Table 5: Comparison of accuracy and number of generated nodes
for different methods.

Method
Prompt Tokens Generate Tokens

Tokens per Case
per Thought per Thought

IO 0.18k 0.56k 0.56k
CoT 0.23k 1.86k 1.86k
AoT 0.55k 1.74k 1.74k
ToT 0.48k 0.20k 11.60k
GoT 0.48k 0.21k 7.56k
L2T 0.49k 0.18k 4.68k

Table 6: Comparison of prompt tokens per thought, generate tokens
per thought, and tokens per case for different methods.

each component in our proposed method. We implemented
three variations of the method with specific components ab-
lated: (1) L2T w MLP, which replaces the GNN with an MLP;
(2) L2T w/o RL, which removes the reinforcement learning
mechanism for updating the GNN and instead directly trains
the GNN-based reasoning mode selection module based on
the scores of individual nodes; and (3) L2T w/o GNN, which
completely eliminates the GNN-based reasoning mode selec-
tion module.

The experimental results are shown in Table 5. We not
only evaluated the accuracy of each variant but also ana-
lyzed the number of nodes generated by each method. This
provides an indication of the number of reasoning steps re-
quired to arrive at the final result. The results demonstrate
that the GNN-based reasoning mode selection module does
contribute to the performance of the L2T method. However,
its primary benefit lies in reducing the number of reasoning
steps needed. Clearly, methods incorporating the GNN-based
reasoning mode selection module require significantly fewer
reasoning steps compared to those without it.

Computational Consumption Analysis
We also analyzed the computational consumption of L2T, us-
ing the number of tokens as a metric to measure computa-
tional cost. The experimental results are presented in Table 6.
As shown, the computational resources consumed by L2T are
comparable to those of other methods and outperform GoT.

This demonstrates that L2T can accomplish complex reason-
ing tasks and achieve favorable results without requiring ex-
cessive computational resources. We also provide a detailed
breakdown of the computational overhead in Table 7.

Table 7: Comparison of LLM access counts for different methods.
Bold denotes the minimum value.

Category L2T ToT GoT
24 Points 26 48 30
3 × 3 Sudoku 22 32 28
TruthQuest 14 26 18
Creative Writing 21 32 20

Process Analysis
In order to conduct a more in-depth analysis of the working
process of L2T, we recorded the temperature and top-p values
output by the GNN-based reasoning mode selection module
during its operation. The results are shown in Figure 4. An
interesting observation is that temperature and top-p exhibit a
significant correlation. For the Creative Writing task, the val-
ues display an inverse relationship—when one value is rela-
tively high, the other tends to be relatively low. In contrast,
for the Game of 24 task, the values show a direct relation-
ship—when one value is high, the other is also high. This in-
dicates that the trained GNN-based reasoning mode selection
module adopts distinct strategies tailored to different tasks.
To further clarify this, we provide a concrete visualization of
this strategy in Figure 4(c), offering a more explicit visualiza-
tion of the parameter variations during the inference process
is provided.

5 Conclusion
This paper proposes a novel LLM reasoning method, L2T.
This method utilizes a graph-based framework to represent
the reasoning process of LLMs and applies graph learning
techniques to learn and analyze this reasoning graph, subse-
quently generating corresponding reasoning strategies. L2T
incorporates two types of graph learning approaches: one
based on LLMs and the other based on GNNs. It elimi-
nates the need for specifically designed prompts for differ-
ent problems and can integrate reinforcement learning meth-
ods to continuously self-optimize during successive problem-
solving processes. Extensive experiments demonstrate the ef-
fectiveness of L2T.

0.35 0.40 0.45 0.50 0.55

Temperature

Thought Index

Va
lu

e

Thought Index

Va
lu

e

(a) Results of Creative Writing.

0.35 0.40 0.45 0.50 0.55

Temperature

Thought Index

Va
lu

e

Thought Index

Va
lu

e

(b) Results of Game of 24.

0.35 0.40 0.45 0.50 0.55

Temperature

Thought Index

Va
lu

e

Thought Index

Va
lu

e

(c) Visualization.

Figure 4: The temperature and top-p value within the reasoning pro-
cess.

Acknowledgments
We would like to express our sincere gratitude to the review-
ers of this paper, as well as the Program Committee and Area
Chairs, for their valuable comments and suggestions. This
work is supported by the CAS Project for Young Scientists in
Basic Research, Grant No. YSBR-040.

References
[Besta et al., 2024] Maciej Besta, Nils Blach, Ales Ku-

bicek, Robert Gerstenberger, Michal Podstawski, Lukas
Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert
Niewiadomski, Piotr Nyczyk, and Torsten Hoefler. Graph
of thoughts: Solving elaborate problems with large lan-
guage models. In Michael J. Wooldridge, Jennifer G. Dy,
and Sriraam Natarajan, editors, Thirty-Eighth AAAI Con-
ference on Artificial Intelligence, February 20-27, 2024,
Vancouver, Canada, pages 17682–17690. AAAI Press,
2024.

[Beurer-Kellner et al., 2024] Luca Beurer-Kellner,
Mark Niklas Müller, Marc Fischer, and Martin T.
Vechev. Prompt sketching for large language models.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024.
OpenReview.net, 2024.

[Brown et al., 2022] Tom B Brown, Benjamin Mann, Nick
Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. Language models are few-shot

learners. Advances in Neural Information Processing Sys-
tems, 2022.

[Chu et al., 2024] Zheng Chu, Jingchang Chen, Qianglong
Chen, Weijiang Yu, Tao He, Haotian Wang, Weihua Peng,
Ming Liu, Bing Qin, and Ting Liu. Navigate through enig-
matic labyrinth A survey of chain of thought reasoning:
Advances, frontiers and future. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pages 1173–1203. Associ-
ation for Computational Linguistics, 2024.

[Dhuliawala et al., 2024] Shehzaad Dhuliawala, Mojtaba
Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celiky-
ilmaz, and Jason Weston. Chain-of-verification reduces
hallucination in large language models. In Lun-Wei Ku,
Andre Martins, and Vivek Srikumar, editors, Findings of
the Association for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-16,
2024, pages 3563–3578. Association for Computational
Linguistics, 2024.

[Diao et al., 2024] Shizhe Diao, Pengcheng Wang, Yong
Lin, Rui Pan, Xiang Liu, and Tong Zhang. Active prompt-
ing with chain-of-thought for large language models. In
Proceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2024, Bangkok, Thailand, August 11-16, 2024,
pages 1330–1350. Association for Computational Linguis-
tics, 2024.

[Hadi et al., 2024] Muhammad Usman Hadi, Qasem
Al Tashi, Abbas Shah, Rizwan Qureshi, Amgad Muneer,
Muhammad Irfan, Anas Zafar, Muhammad Bilal Shaikh,
Naveed Akhtar, Jia Wu, et al. Large language models:
a comprehensive survey of its applications, challenges,
limitations, and future prospects. Authorea Preprints,
2024.

[Jiao et al., 2022] Wei Jiao, Yingce Xia, Tao Qin, Nenghai
Yu, and Tie-Yan Liu. Recent advances in neural machine
translation. AI Open, 3:36–45, 2022.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net,
2017.

[Konda and Tsitsiklis, 1999] Vijay R. Konda and John N.
Tsitsiklis. Actor-critic algorithms. In Sara A. Solla,
Todd K. Leen, and Klaus-Robert Müller, editors, Advances
in Neural Information Processing Systems 12, [NIPS Con-
ference, Denver, Colorado, USA, November 29 - Decem-
ber 4, 1999], pages 1008–1014. The MIT Press, 1999.

[Lewis et al., 2020] Patrick S. H. Lewis, Ethan Perez, Alek-
sandra Piktus, Fabio Petroni, Vladimir Karpukhin, Na-
man Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
Retrieval-augmented generation for knowledge-intensive
NLP tasks. In Hugo Larochelle, Marc’Aurelio Ranzato,

Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

[Li et al., 2023] Cheng Li, Jindong Wang, Yixuan Zhang,
Kaijie Zhu, Wenxin Hou, Jianxun Lian, Fang Luo, Qiang
Yang, and Xing Xie. Large language models understand
and can be enhanced by emotional stimuli, 2023.

[Liu et al., 2023] Pengfei Liu, Weizhe Yuan, Jinlan Fu,
Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM
Computing Surveys, 55(9):1–35, 2023.

[Long, 2023] Jieyi Long. Large language model guided tree-
of-thought. arXiv preprint arXiv:2305.08291, 2023.

[Masson et al., 2024] Damien Masson, Sylvain Malacria,
Géry Casiez, and Daniel Vogel. Directgpt: A direct ma-
nipulation interface to interact with large language mod-
els. In Florian ’Floyd’ Mueller, Penny Kyburz, Julie R.
Williamson, Corina Sas, Max L. Wilson, Phoebe O. Toups
Dugas, and Irina Shklovski, editors, Proceedings of the
CHI Conference on Human Factors in Computing Sys-
tems, CHI 2024, Honolulu, HI, USA, May 11-16, 2024,
pages 975:1–975:16. ACM, 2024.

[Mondorf and Plank, 2024] Philipp Mondorf and Barbara
Plank. Liar, liar, logical mire: A benchmark for suppo-
sitional reasoning in large language models. In Yaser Al-
Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Pro-
ceedings of the 2024 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2024, Miami, FL,
USA, November 12-16, 2024, pages 7114–7137. Associa-
tion for Computational Linguistics, 2024.

[Ni et al., 2022] Vincent Ni, Adrian Lee, Shruti Kumar,
Saikrishna Chalamalasetti, Aditi Singh, Nadjet Tazi,
Dhruva Patil, et al. Codegen: An open large language
model for code with multi-turn program synthesis. arXiv
preprint arXiv:2203.13474, 2022.

[OpenAI, 2023] OpenAI. GPT-4 technical report. CoRR,
abs/2303.08774, 2023.

[Paranjape et al., 2023] Bhargavi Paranjape, Scott M. Lund-
berg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettle-
moyer, and Marco Túlio Ribeiro. ART: automatic multi-
step reasoning and tool-use for large language models.
CoRR, abs/2303.09014, 2023.

[Patterson et al., 2022] David Patterson, Joseph Gonzalez,
Quoc Le, Chen Liang, Lluis Munguia, Daniel Rothchild,
David So, Marc Texier, and Jeff Dean. Carbon emis-
sions and large neural network training. arXiv preprint
arXiv:2204.05149, 2022.

[Qiao et al., 2023] Shuofei Qiao, Yixin Ou, Ningyu Zhang,
Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei
Huang, and Huajun Chen. Reasoning with language model
prompting: A survey. In Anna Rogers, Jordan L. Boyd-
Graber, and Naoaki Okazaki, editors, Proceedings of the

61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 5368–5393. Association
for Computational Linguistics, 2023.

[Radford et al., 2018] Alec Radford, Karthik Narasimhan,
Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. OpenAI Blog,
1(8):1–12, 2018.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347,
2017.

[Sel et al., 2024] Bilgehan Sel, Ahmad Al-Tawaha, Vanshaj
Khattar, Ruoxi Jia, and Ming Jin. Algorithm of thoughts:
Enhancing exploration of ideas in large language models.
In Forty-first International Conference on Machine Learn-
ing, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net, 2024.

[Sun et al., 2022] Kaiyuan Sun, Cheng Zhou, Deng Cai, and
Ming Ding. Black-box tuning for language-model-as-a-
service. arXiv preprint arXiv:2201.03514, 2022.

[Wang et al., 2023] Xuezhi Wang, Jason Wei, Dale Schuur-
mans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves
chain of thought reasoning in language models. In The
Eleventh International Conference on Learning Repre-
sentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023.

[Wei et al., 2022] Jason Wei, Xuezhi Wang, Dale Schuur-
mans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompt-
ing elicits reasoning in large language models. In Sanmi
Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9, 2022,
2022.

[Wu et al., 2020] Zonghan Wu, Shirui Pan, Fengwen Chen,
Guodong Long, Chengqi Zhang, and S Yu Philip. A com-
prehensive survey on graph neural networks. IEEE trans-
actions on neural networks and learning systems, 32(1):4–
24, 2020.

[Yao et al., 2023a] Shunyu Yao, Dian Yu, Jeffrey Zhao,
Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solv-
ing with large language models. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and
Sergey Levine, editors, Advances in Neural Information
Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

[Yao et al., 2023b] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan
Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language mod-
els. In The Eleventh International Conference on Learning

Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net, 2023.

[Yu et al., 2023] Wenhao Yu, Hongming Zhang, Xiaoman
Pan, Kaixin Ma, Hongwei Wang, and Dong Yu. Chain-
of-note: Enhancing robustness in retrieval-augmented lan-
guage models. CoRR, abs/2311.09210, 2023.

[Zhang et al., 2023] Zhuosheng Zhang, Aston Zhang,
Mu Li, and Alex Smola. Automatic chain of thought
prompting in large language models. In The Eleventh
International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023.

[Zhao et al., 2024] Xufeng Zhao, Mengdi Li, Wenhao Lu,
Cornelius Weber, Jae Hee Lee, Kun Chu, and Stefan
Wermter. Enhancing zero-shot chain-of-thought reasoning
in large language models through logic. In Nicoletta Cal-
zolari, Min-Yen Kan, Véronique Hoste, Alessandro Lenci,
Sakriani Sakti, and Nianwen Xue, editors, Proceedings of
the 2024 Joint International Conference on Computational
Linguistics, Language Resources and Evaluation, LREC/-
COLING 2024, 20-25 May, 2024, Torino, Italy, pages
6144–6166. ELRA and ICCL, 2024.

[Zhou et al., 2022] Kevin Zhou, Jingkang Yang,
Chen Change Loy, and Ziwei Liu. Learning to prompt
for vision-language models. International Journal of
Computer Vision, 130(9):2337–2348, 2022.

[Zhou et al., 2023a] Yongchao Zhou, Andrei Ioan Mure-
sanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level
prompt engineers. In The Eleventh International Con-
ference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[Zhou et al., 2023b] Yucheng Zhou, Xiubo Geng, Tao Shen,
Chongyang Tao, Guodong Long, Jian-Guang Lou, and
Jianbing Shen. Thread of thought unraveling chaotic con-
texts. CoRR, abs/2311.08734, 2023.

A Implementation and Experimental Details
A.1 Implementation of the Actor-Critic Algorithm
We used Proximal Policy Optimization (PPO) [Schulman et al., 2017] to implement the Actor-Critic algorithm [Konda and
Tsitsiklis, 1999], leveraging its ability to stabilize policy optimization through constrained updates. PPO introduces a clipped
surrogate objective that limits the magnitude of policy changes, ensuring stable training while maintaining the efficiency of
policy gradient methods.

A.2 Hyperparameters
The hyperparameters used during the experiments with the L2T model are as follows: the learning rate was set to 5 × 10−3,
reinforcement learning training was conducted over 20 epochs to refine decision-making strategies, the PPO clip parameter was
set to 0.2 to regulate policy updates for stable learning, the maximum gradient norm was set to 0.5. Path hyperparameter β was
set to 2.

A.3 Implementation of Node Feature Extraction
The node feature extraction function τ(·) is designed to extract the textual features of all nodes and organize them in a structured
format. Specifically, the extracted content is formatted as: “The former generated thoughts are: {......}, {......},”, where
each individual thought is enclosed within curly brackets. This structured representation ensures that the thoughts generated
from the nodes are clearly separated and easy to interpret.

A.4 Details Regarding Property Adjust Vector
a
(k)
v represents a vector composed of a series of parameters, which can be categorized into two groups: parameters that adjust

the prompt and parameters that fine-tune the behavior of the LLM. These parameters include both continuous values (e.g.,
temperature) and discrete values (e.g., the number of branches). These are either directly projected from a specific dimension
of the output of the GNN or undergo a softmax operation for categorical determination.

Specifically, for the parameters that adjust the prompt, they include aspects such as the number of branches and the depen-
dency on already generated content. The number of branches refers to the number of ”thoughts” that are generated as child
nodes for a given node. The proposed method adjusts the prompt according to the corresponding value in a

(k)
v , thereby gener-

ating the specified number of thoughts. The dependency on already generated content is directly embedded into the prompt to
guide the subsequent generation, ensuring that it adapts to the context.

For parameters that fine-tune the behavior of the LLM, these include the temperature and top-p sampling parameters. Tem-
perature adjusts the sharpness of the probability distribution over possible next tokens: lower temperatures make the model
more deterministic, favoring high-probability tokens, while higher temperatures introduce more randomness and creativity.
Top-p sampling limits the candidate pool to the smallest set of tokens whose cumulative probability exceeds p, then samples
from this set proportionally.

A.5 Implementation of the Prompts
The implementation details of various prompts used in the paper are provided below. First, we present the prompt for generating
the format of a “thought.”

Format Generation Prompt X fmt

I aim to solve the task: 〈task description content〉. I want to solve it step by step. Please provide the specific content
required to solve each step, along with the input and output formats, so that the task can be automated. Each solution
must consist of at least two or more steps. Explanations are not needed; only clear and precise answers should be
provided. Finally, please include three complete examples of the task execution process.

〈task description content〉 represents the task description information. The generated format and examples will be used for
subsequent reasoning. During the reasoning process, the model will be prompted to autonomously select the corresponding
format for content generation. The primary purpose of this format is to standardize the structure, and it does not directly
influence the reasoning process for the task itself. It is important to note that the format generated each time is not fixed, which
is also reflected in the subsequent results. The following prompt generates the evaluation critic information:

Evaluation Information Generation Prompt Xeva

I aim to solve the task: 〈task description content〉. I want to solve it step by step. Please provide the information related
to the specific criteria required to assess each step. The evaluation criterion is to assess the degree of contribution of a
specific step to the successful completion of the task, based on the task description. Please provide relevant information

from the task.

Then, we provide the evaluation prompt:

Evaluation Prompt

For the task: 〈task description content〉, 〈output results〉 is a step in solving the task. Based on
〈evaluation information〉, evaluate whether this result is helpful in solving the task and rate it accordingly, outputting
an integer from 0 to 10. Only output the integer.

〈output results〉 denotes the generated thought, 〈evaluation information〉 denotes the generated evaluating criteria Xeva.
Next, we provide the implementation of prompt Snode.

Prompt Snode

To address the task: 〈task description content〉, I will break it down into step-by-step actions. For each step, I will
generate a thought to solve the problem step by step. 〈related subgraph content〉, to generate the current thought,
determine the appropriate action to take:
(1) Terminate: The current thought is incorrect and should be terminated. Provide a reason, but do not propose an
alternative plan.
(2) Continues: Continue addressing the issue along the current line of thought.
(3) Complete: The problem has been successfully solved.
(4) Backtrack: The problem-solving process should be continued based on the former thought of current thought.
Answer by selecting the class of the action (from 1 to 4).

〈related subgraph content〉 represents the generated related subgraph of thoughts in textual form. Then, we provide the
implementation of prompt Sgen.

Prompt Sgen

To address the task: 〈task description content〉, I will decompose it into a series of step-by-step actions. For each
step, I will generate a corresponding thought to systematically solve the problem. Considering the context provided in
〈related subgraph content〉, I will now proceed to address the issue by continuing along the current line of thought
and generating the next step. The subsequent thought will be generated by selecting the appropriate step and following
the specified format outlined in 〈format information〉. Generate 〈branch number〉 different thoughts.

〈format information〉 denotes X fmt. 〈branch number〉 denotes the number of the generated thoughts according to a
(k)
v .

B Tasks
B.1 Game of 24
Game of 24 is a mathematical reasoning challenge, where the goal is to use 4 numbers and basic arithmetic operations (+−×÷)
to obtain 24. We utilize the same dataset proposed in [Yao et al., 2023a], which has 1,362 games that are sorted from easy to
hard by human solving time, and use a subset of relatively hard games indexed 901-1,000 for testing.

B.2 Sudoku Puzzles
The Sudoku puzzles involve filling the numbers from 1 to n in an n× n grid, ensuring that each row and each column contains
no repeated numbers. We use the benchmark proposed in [Long, 2023], which contains 3× 3,4× 4 and 5× 5 Sudoku Puzzles.

B.3 TruthQuest
We use the TruthQuest benchmark proposed in [Mondorf and Plank, 2024],we use part of the dataset, and test on 3,4 and 5
characters. TruthQuest are Knights and Knaves puzzles, a class of logical puzzles in which each character is either a ”Knight”
or a ”Knave”. The fundamental rule of these puzzles is that a Knight always tells the truth, meaning that any statement made by
a Knight is logically consistent with the facts. In contrast, a Knave always lies, meaning that every statement made by a Knave
is false. The objective of an LLM agent is to logically deduce the identity of each character based on their statements.

B.4 Creative Writing
We propose two different creative writing tasks.The first task is to provide several words, expand each word into a sentence
containing it, and then combine the sentences into a complete paragraph. The second task is to provide four short sentences,
expand each into a small paragraph starting with the sentence, and then combine them into a complete paragraph.The words
and short sentences were all randomly generated by the LLM.

C Reasoning Processes
In this section, we provide the specific outputs of the reasoning process generated by the LLM to better demonstrate our
approach. Generated Thought Content denotes the output thought, Label denotes the class of the thought.

C.1 Game of 24
Based on Thought 0 (root) to generate Thought 1,2,3,4, and 5:

Generated Thought Content: Input:[10,9,2,3] Plan:10 + 2 = 12 Output:[9,3,12]
Label: 2 (Reasoning Contiue)

Generated Thought Content: Input:[10,9,2,3] Plan:9 - 3 = 6 Output:[10,2,6]
Label: 2 (Reasoning Contiue)

Generated Thought Content: Input:[10,9,2,3] Plan:10 - 9 = 1 Output:[1,2,3]
Label: 2 (Reasoning Continue)

Generated Thought Content: Input:[10,9,2,3] Plan:3 * 2 = 6 Output:[10,9,6]
Label: 2 (Reasoning Continue)

Generated Thought Content: Input:[10,9,2,3] Plan:9 + 3 = 12 Output:[10,2,12]
Label: 2 (Reasoning Continue)

Based on Thought 1 to generate Thought 6,7,8,9, and 10:

Generated Thought Content: Input:[9,3,12] Plan:12 - 9 = 3 Output:[3,3]
Label: 1 (Reasoning Stop)

Generated Thought Content: Input:[9,3,12] Plan:12 / 3 = 4 Output:[9,4]
Label: 2 (Reasoning Continue)

Generated Thought Content: Input:[9,3,12] Plan:9 + 3 = 12 Output:[12,12]
Label: 2 (Reasoning Continue)

Generated Thought Content: Input:[9,3,12] Plan:9 * 3 = 27 Output:[27,12]
Label: 1 (Reasoning Stop)

Generated Thought Content: Input:[9,3,12] Plan:12 - 3 = 9 Output:[9,9]
Label: 2 (Reasoning Continue)

Based on Thought 2 to generate Thought 11,12,13,14, and 15:

Generated Thought Content: Input:[10,2,6] Plan:10 + 2 = 12 Output:[12,6]
Label: 2 (Reasoning Continue)

Generated Thought Content: Input:[10,2,6] Plan:10 - 6 = 4 Output:[4,2]
Label: 2 (Reasoning Continue)

Generated Thought Content: Input:[10,2,6] Plan:10 * 2 = 20 Output:[20,6]
Label: 2 (Reasoning Continue)

Generated Thought Content: Input:[10,2,6] Plan:6 / 2 = 3 Output:[10,3]
Label: 2 (Reasoning Continue)

Generated Thought Content: Input:[10,2,6] Plan:10 / 2 = 5 Output:[5,6]
Label: 2 (Reasoning Continue)

Based on Thought 3 to generate Thought 16,17,18,19, and 20:

Generated Thought Content: Input:[1,2,3] Plan:1 + 2 = 3 Output:[3,3]
Label: 1 (Reasoning Stop)

Generated Thought Content: Input:[1,2,3] Plan:2 + 3 = 5 Output:[1,5]
Label: 1 (Reasoning Stop)

Generated Thought Content: Input:[1,2,3] Plan:3 - 1 = 2 Output:[2,2]
Label: 1 (Reasoning Stop)

Generated Thought Content: Input:[1,2,3] Plan:3 * 2 = 6 Output:[1,6]
Label: 2 (Reasoning Continue)

Generated Thought Content: Input:[1,2,3] Plan:3 / 1 = 3 Output:[2,3]
Label: 1 (Reasoning Stop)
Based on Thought 4 to generate Thought 21,22,23, and 24:

Generated Thought Content: Input:[10,9,6] Plan:10 + 9 = 19 Output:[19,6]
Label: 1 (Reasoning Stop)

Generated Thought Content: Input:[10,9,6] Plan:10 - 6 = 4 Output:[9,4]
Label: 2 (Reasoning Continue)

Generated Thought Content: Input:[10,9,6] Plan:10 * 6 = 60 Output:[9,60]
Label: 1 (Reasoning Stop)

Generated Thought Content: Input:[10,9,6] Plan:9 + 6 = 15 Output:[10,15]
Label: 2 (Reasoning Continue)

Based on Thought 5 to generate Thought 25,26,27, and 28:

Generated Thought Content: Input:[10,2,12] Plan:10 + 2 = 12 Output:[12,12]
Label: 1 (Reasoning Stop)

Generated Thought Content: Input:[10,2,12] Plan:12 - 10 = 2 Output:[2,2]
Label: 1 (Reasoning Stop)

Generated Thought Content: Input:[10,2,12] Plan:12 / 2 = 6 Output:[10,6]
Label: 1 (Reasoning Stop)

Generated Thought Content: Input:[10,2,12] Plan:12 - 2 = 10 Output:[10,10]
Label: 1 (Reasoning Stop)

Based on Thought 7 to generate Thought 29,30,31,32, and 33:

Generated Thought Content: Input:[9,4] Plan:9 - 4 = 5 Output:[5]
Label: 2 (Reasoning Continue)

Generated Thought Content: Input:[9,4] Plan:9 / 4 = 2.25 Output:[2.25]
Label: 1 (Reasoning Stop)

Generated Thought Content: Input:[9,4] Plan:9 + 4 = 13 Output:[13]
Label: 1 (Reasoning Stop)

Generated Thought Content: Input:[9,4] Plan:9 * 4 = 36 Output:[36]
Label: 1 (Reasoning Stop)

Generated Thought Content: Input:[9,4] Plan:4 - 9 = -5 Output:[-5]
Label: 1 (Reasoning Stop)

Based on Thought 8 to generate Thought 34,35,36, and 37:

Generated Thought Content: Input:[12,12] Plan:12 + 12 = 24 Output:[24]
Label: 3 (Reasoning Finished)

Generated Thought Content: Input:[12,12] Plan:12 + 12 = 24 Output:[24]

Generated Thought Content: Input:[12,12] Plan:12 / 2 = 6 Output:[6]

Generated Thought Content: Input:[12,12] Plan:12 - 12 = 0 Output:[0]

C.2 Creative Writing
Based on Thought 0(root) to generate Thought 1 and 2:

Generated Thought Content:
Input:[”Elephant”,”Solar”,”Lantern”,”Velvet”]
Plan:choose element 0 and element 2
Output:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead.”,”Solar”,”Velvet”]
Label: 2 (Reasoning Continue)

Generated Thought Content:
Input:[”Elephant”,”Solar”,”Lantern”,”Velvet”]
Plan:choose element 1 and element 3
Output:[”The solar panels absorbed the sunlight, their surface smooth like velvet.”,”Elephant”,”Lantern”]
Label: 2 (Reasoning Continue)

Based on Thought 1 to generate Thought 3, 4, and 5:

Generated Thought Content:
Input:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead.”,”Solar”,”Velvet”]
Plan:choose element 1 and element 2
Output:[”The solar panels absorbed the sunlight, their surface smooth like velvet.”,”The elephant gently lifted the lantern with
its trunk, illuminating the path ahead.”]
Label: 2 (Reasoning Continue)

Generated Thought Content:
Input:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead.”,”Solar”,”Velvet”]
Plan:choose element 0 and element 1
Output:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead. The solar panels absorbed the
sunlight, powering the lantern.”,”Velvet”]
Label: 2 (Reasoning Continue)

Generated Thought Content:
Input:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead.”,”Solar”,”Velvet”]
Plan:choose element 0 and element 2
Output:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead. The soft velvet of the cushion on the
bench invited her to sit.”,”Solar”]
Label: 2 (Reasoning Continue)

Based on Thought 2 to generate Thought 6 and 7:

Generated Thought Content:
Input:[”The solar panels absorbed the sunlight, their surface smooth like velvet.”,”Elephant”,”Lantern”]
Plan:choose element 1 and element 2
Output:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead.”,”The solar panels absorbed the
sunlight, their surface smooth like velvet.”]
Label: 2 (Reasoning Continue)

Generated Thought Content:
Input:[”The solar panels absorbed the sunlight, their surface smooth like velvet.”,”Elephant”,”Lantern”]
Plan:choose element 0 and element 1
Output:[”The solar panels absorbed the sunlight, their surface smooth like velvet. The elephant stood nearby, its massive form
casting a shadow.”,”Lantern”]
Label: 2 (Reasoning Continue)

Based on Thought 3 to generate Thought 8:

Generated Thought Content:
Input:[”The solar panels absorbed the sunlight, their surface smooth like velvet.”,”The elephant gently lifted the lantern with
its trunk, illuminating the path ahead.”]
Plan:choose element 0 and element 1
Output:[”The solar panels absorbed the sunlight, their surface smooth like velvet. The elephant gently lifted the lantern with
its trunk, illuminating the path ahead.”]
Label: 2 (Reasoning Continue)

Based on Thought 4 to generate Thought 9:

Generated Thought Content:
Input:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead. The solar panels absorbed the sunlight,
powering the lantern.”,”Velvet”]
Plan:choose element 0 and element 1
Output:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead. The solar panels absorbed the
sunlight, powering the lantern. The soft velvet of the cushion on the bench invited her to sit.”]
Label: 2 (Reasoning Continue)

Based on Thought 5 to generate Thought 12 and 13:

Generated Thought Content:
Input:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead. The soft velvet of the cushion on the
bench invited her to sit.”,”Solar”]
Plan:choose element 0 and element 1
Output:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead. The soft velvet of the cushion on the
bench invited her to sit. The solar panels absorbed the sunlight, powering the lantern.”]
Label: 2 (Reasoning Continue)

Generated Thought Content:
Input:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead. The soft velvet of the cushion on the
bench invited her to sit.”,”Solar”]
Plan:choose element 1 and element 0
Output:[”The solar panels absorbed the sunlight, powering the lantern. The elephant gently lifted the lantern with its trunk,
illuminating the path ahead. The soft velvet of the cushion on the bench invited her to sit.”]
Label: 2 (Reasoning Continue)

Based on Thought 6 to generate Thought 14 and 15:

Generated Thought Content:
Input:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead.”,”The solar panels absorbed the
sunlight, their surface smooth like velvet.”]
Plan:choose element 0 and element 1
Output:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead. The solar panels absorbed the

sunlight, their surface smooth like velvet.”]
Label: 2 (Reasoning Continue)

Generated Thought Content:
Input:[”The elephant gently lifted the lantern with its trunk, illuminating the path ahead.”,”The solar panels absorbed the
sunlight, their surface smooth like velvet.”]
Plan:choose element 1 and element 0
Output:[”The solar panels absorbed the sunlight, their surface smooth like velvet. The elephant gently lifted the lantern with
its trunk, illuminating the path ahead.”]
Label: 2 (Reasoning Continue)

Based on Thought 8 to generate Thought 14 and 15:

Generated Thought Content:
Input:[”The solar panels absorbed the sunlight, their surface smooth like velvet. The elephant stood nearby, its massive form
casting a shadow.”,”Lantern”]
Plan:choose element 0 and element 1
Output:[”The solar panels absorbed the sunlight, their surface smooth like velvet. The elephant stood nearby, its massive form
casting a shadow. The lantern’s glow softly reflected off the panels, creating a warm ambiance.”]
Label: 2 (Reasoning Continue)

Generated Thought Content:
Input:[”The solar panels absorbed the sunlight, their surface smooth like velvet. The elephant stood nearby, its massive form
casting a shadow.”,”Lantern”]
Plan:choose element 1 and element 0
Output:[”The lantern’s glow softly reflected off the solar panels, their surface smooth like velvet. The elephant stood nearby,
its massive form casting a shadow.”]
Label: 2 (Reasoning Continue)

D Further Backgrounds
D.1 Graph Neural Networks
Graph Neural Networks (GNNs) [Kipf and Welling, 2017; Wu et al., 2020] are a class of neural networks designed to process
graph-structured data. The key idea is to update each node’s representation by aggregating information from its neighbors,
allowing the model to learn graph-level or node-level representations. A graph G = (V, E) consists of a set of nodes V and
edges E . Each node v ∈ V has an associated feature vector xv ∈ Rd, and an edge (u, v) ∈ E indicates a relationship between
nodes u and v. In GNNs, the representation of each node is updated by aggregating information from its neighbors. The
message passing process consists of two main steps. First, for each node v, information from its neighbors N(v) is aggregated.
The most common aggregation operations are sum, mean, or max pooling. The update for node v is given by:

h(k)
v = AGGREGATE

({
h(k−1)
u : u ∈ N(v)

})
, (6)

where h
(k)
v is the representation of node v at the k-th layer, and h

(k−1)
u is the representation of node u at the previous layer.

Second, the aggregated information is passed through a neural network (usually an MLP) to update the node representation.
The update rule for node v is:

h(k)
v = σ

(
W (k) ·

(
h(k−1)
v ⊕ h(k)

v

)
+ b(k)

)
, (7)

where W (k) and b(k) are the weight matrix and bias for the k-th layer, ⊕ denotes concatenation of node feature vector and
aggregated neighbor information, and σ is the activation function. After several iterations of message passing, each node’s
representation captures more information from its neighbors. For graph-level tasks, such as graph classification, the entire
graph’s representation can be obtained by pooling the node representations, which is done by:

hG = POOL
({

h(K)
v : v ∈ V

})
, (8)

where hG is the graph representation and K is the number of message passing layers. During training, GNNs typically use
supervision based on graph or node labels. For node classification, the loss function is commonly the cross-entropy loss,

represented by:

L = −
∑
v∈V

yv log(ŷv), (9)

where yv is the true label for node v, and ŷv is the predicted label for node v.

D.2 Actor-Critic Algorithm
The Actor-Critic algorithm [Konda and Tsitsiklis, 1999] combines policy gradient methods (Actor) and value estimation meth-
ods (Critic). The main steps are as follows:
1. Initialization. Initialize the parameters of the policy network (Actor) and the value network (Critic), typically with random
initialization, and initialize the environment and state.
2. Interaction with the Environment. At each time step, the agent selects an action at based on the policy output from the
Actor:

at = πθ(st), (10)
where πθ(st) represents the probability distribution over actions at given state st, and θ is the parameter of the Actor.
3. Execute Action and Observe Results. After executing action at, the environment returns the next state st+1 and reward
rt.
4. Update Critic. The Critic evaluates the goodness of the action by computing the state value function V (st). The Critic is
updated using the Temporal Difference (TD) error:

δt = rt + γV (st+1)− V (st), (11)

where γ is the discount factor, and δt is the TD error. The Critic’s parameters θcritic are updated as follows:

θcritic ← θcritic + αcriticδt∇θcriticV (st), (12)

where αcritic is the learning rate of the Critic.
5. Update Actor. The Actor updates the policy by optimizing the objective function. Typically, policy gradient methods are
used, and the Critic’s value estimate is used to update the policy. The goal of the Actor is to maximize the expected reward, and
the update rule is:

θactor ← θactor + αactorδt∇θactor log πθ(st, at), (13)
where αactor is the learning rate of the Actor, δt is the TD error, and log πθ(st, at) is the log probability of selecting action at in
state st.
6. Repeat Steps. Repeat steps 2 to 5 until a stopping condition is met (e.g., reaching the maximum number of training steps
or convergence).

D.3 PPO Algorithm
PPO [Schulman et al., 2017] improves upon the Actor-Critic framework by introducing a ”proximal optimization” strategy to
ensure the stability of each policy update. The main improvements of PPO are as follows:
1. Clipped Importance Sampling. PPO introduces a clipping mechanism to limit the magnitude of each update, preventing
overly large policy updates. Specifically, PPO uses an importance ratio rt(θ) to measure the ratio between the new and old
policies, and clips this ratio:

LCLIP(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (14)

where rt(θ) =
πθ(at|st)
πθold (at|st) is the importance ratio, Ât is the advantage estimate, and ϵ is the clipping threshold.

2. Advantage Estimation. PPO uses the advantage function Ât to measure how good a particular action is relative to the
current policy. The advantage function is typically computed using Generalized Advantage Estimation (GAE):

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT , (15)

where δt = rt + γV (st+1)− V (st) is the TD error, γ is the discount factor, and λ is the GAE parameter.
3. Objective Function Optimization. The objective function in PPO is based on the Actor-Critic algorithm and incorporates
the clipping strategy:

LPPO(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (16)

ensuring stable training by limiting the magnitude of the policy update.
4. Multiple Epochs of Updates. PPO performs multiple updates (usually 3-4) on each sampled batch during training to
improve sample efficiency and accelerate convergence.

	Introduction
	Related Works
	Method
	Reasoning Process Graph
	Thought Generation Framework
	First Step
	k-th Step
	Final Step

	Update

	Experiments
	Comparison with State-of-the-Art Methods
	Baselines
	Tasks
	Settings
	Results

	In-Depth Analysis
	Ablation Study
	Computational Consumption Analysis
	Process Analysis

	Conclusion
	Implementation and Experimental Details
	Implementation of the Actor-Critic Algorithm
	Hyperparameters
	Implementation of Node Feature Extraction
	Details Regarding Property Adjust Vector
	Implementation of the Prompts

	Tasks
	Game of 24
	Sudoku Puzzles
	TruthQuest
	Creative Writing

	Reasoning Processes
	Game of 24
	Creative Writing

	Further Backgrounds
	Graph Neural Networks
	Actor-Critic Algorithm
	PPO Algorithm

