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Abstract

In this paper, we present an accelerated quasi-Newton proximal extragradient
method for solving unconstrained smooth convex optimization problems. With
access only to the gradients of the objective function, we prove that our method
can achieve a convergence rate of O

(
min{ 1

k2 ,
√
d log k
k2.5 }

)
, where d is the problem

dimension and k is the number of iterations. In particular, in the regime where k =
O(d), our method matches the optimal rate of O( 1

k2 ) by Nesterov’s accelerated
gradient (NAG). Moreover, in the the regime where k = Ω(d log d), it outperforms
NAG and converges at a faster rate of O

(√
d log k
k2.5

)
. To the best of our knowledge,

this result is the first to demonstrate a provable gain for a quasi-Newton-type
method over NAG in the convex setting. To achieve such results, we build our
method on a recent variant of the Monteiro-Svaiter acceleration framework and
adopt an online learning perspective to update the Hessian approximation matrices,
in which we relate the convergence rate of our method to the dynamic regret of a
specific online convex optimization problem in the space of matrices.

1 Introduction

In this paper, we consider the following unconstrained convex minimization problem

min
x∈Rd

f(x), (1)

where the objective function f : Rd → R is convex and differentiable. We are particularly interested
in quasi-Newton methods, which are among the most popular iterative methods for solving the
problem in (1) [1–8]. Like gradient descent and other first-order methods, quasi-Newton methods
require only the objective’s gradients to update the iterates. On the other hand, they can better
exploit the local curvature of f by constructing a Hessian approximation matrix and using it as
a preconditioner, leading to superior convergence performance. In particular, when the objective
function in (1) is strictly convex or strongly convex, it has long been proved that quasi-Newton
methods achieve an asymptotic superlinear convergence rate [7–15], which significantly improves
the linear convergence rate obtained by first-order methods. More recently, there has been progress
on establishing a local non-asymptotic superlinear rate of the form O((1/

√
k)k) for classical quasi-

Newton methods and their variants [16–22].

However, all of the results above only apply under the restrictive assumption that the objective
function f is strictly or strongly convex. In the more general setting where f is merely convex, to the
best of our knowledge, there is no result that demonstrates any form of convergence improvement by
quasi-Newton methods over first-order methods. More precisely, it is well known that Nesterov’s
accelerated gradient (NAG) [23] can achieve a convergence rate of O(1/k2) if f is convex and
has Lipschitz gradients. On the other hand, under the same setting, asymptotic convergence of

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



classical quasi-Newton methods has been shown in [13, 24] but no explicit rate is given. With certain
conditions on the Hessian approximation matrices, the works in [25–27] presented quasi-Newton-type
methods with convergence rates of O(1/k) and O(1/k2), respectively, which are no better than the
rate of NAG and, in fact, can be even worse in terms of constants. This gap raises the following
fundamental question:

Can we design a quasi-Newton-type method that achieves a convergence rate faster
than O(1/k2) for the smooth convex minimization problem in (1)?

At first glance, this may seem impossible, as for any first-order method that has access only to a
gradient oracle, one can construct a “worst-case” instance and establish a lower bound of Ω(1/k2)
on the optimality gap [28, 29]. It is worth noting that while such a lower bound is typically shown
under a “linear span” assumption, i.e., the methods only query points in the span of the gradients they
observe, this assumption is in fact not necessary and can be removed by the technique of resisting
oracle (see, [30, Section 3.3]). In particular, this Ω(1/k2) lower bound applies for any iterative
method that only queries gradients of the objective, including quasi-Newton methods. On the other
hand, this lower bound is subject to a crucial assumption: it only works in the high-dimensional
regime where the problem dimension d exceeds the number of iterations k. As such, it does not rule
out the possibility of a faster rate than O(1/k2) when the number of iterations k is larger than d.
Hence, ideally, we are looking for a method that attains the optimal rate of O(1/k2) in the regime
that k = O(d) and surpasses this rate in the regime that k = Ω(d).

Contributions. In this paper, we achieve the above goal by presenting an accelerated quasi-Newton
proximal extragradient (A-QNPE) method. Specifically, under the assumptions that f in (1) is convex
and its gradient and Hessian are Lipschitz, we prove the following guarantees:

• From any initialization, A-QNPE can attain a global convergence rate of O
(
min{ 1

k2 ,
√
d log k
k2.5 }

)
. In

particular, this implies that our method matches the optimal rate of O( 1
k2 ) when k = O(d), while it

converges at a faster rate of O(
√
d log k
k2.5 ) when k = Ω(d log d). Alternatively, we can bound the num-

ber of iterations required to achieve an ϵ-accurate solution by Nϵ = O
(
min{ 1

ϵ0.5 ,
d0.2

ϵ0.4 (log
d
ϵ2 )

0.2}
)
.

• In terms of computational cost, we show that the total number of gradient queries after N iterations
can be bounded by 3N , i.e., on average no more than 3 per iteration. Moreover, the number of
matrix-vector products to achieve an ϵ-accurate solution can be bounded by Õ

(
min{d0.25

ϵ0.5 , 1
ϵ0.625 }

)
.

Combining the two results above, we conclude that A-QNPE requires O
(
min{ 1

ϵ0.5 ,
d0.2

ϵ0.4 (log
d
ϵ2 )

0.2}
)

gradient queries to reach an ϵ-accurate solution, which is at least as good as NAG and is further
superior when ϵ = O

(
1

d2 log2(d)

)
. To the best of our knowledge, this is the first result that demonstrates

a provable advantage of a quasi-Newton-type method over NAG in terms of gradient oracle complexity
in the smooth convex setting.

To obtain these results, we significantly deviate from the classical quasi-Newton methods such as
BFGS and DFP. Specifically, instead of mimicking Newton’s method as in the classical updates, our
A-QNPE method is built upon the celebrated Monteiro-Svaiter (MS) acceleration framework [31, 32],
which can be regarded as an inexact version of the accelerated proximal point method [33, 34].
Another major difference lies in the update rule of the Hessian approximation matrix. Classical quasi-
Newton methods typically perform a low-rank update of the Hessian approximation matrix while
enforcing the secant condition. On the contrary, our update rule is purely driven by our convergence
analysis of the MS acceleration framework. In particular, inspired by [35], we assign certain loss
functions to the Hessian approximation matrices and formulate the Hessian approximation matrix
update as an online convex optimization problem in the space of matrices. Therefore, we propose to
update the Hessian approximation matrices via an online learning algorithm.

Related work. The authors in [32] proposed a refined MS acceleration framework, which simplifies
the line search subroutine in the original MS method [31]. By instantiating it with an adaptive
second-order oracle, they presented an accelerated second-order method that achieves the optimal
rate of O( 1

k3.5 ). The framework in [32] serves as a basis for our method, but we focus on the setting
where we have access only to a gradient oracle and we consider a quasi-Newton-type update. Another
closely related work is [35], where the authors proposed a quasi-Newton proximal extragradient
method with a global non-asymptotic superlinear rate. In particular, our Hessian approximation
update is inspired by the online learning framework in [35]. On the other hand, the major difference
is that the authors in [35] focused on the case where f is strongly convex and presented a global

2



superlinear rate, while we consider the more general convex setting where f is only convex (may not
be strongly convex). Moreover, we further incorporate the acceleration mechanism into our method,
which greatly complicates the convergence analysis; see Remark 2 for more discussions.

Another class of optimization algorithms with better gradient oracle complexities than NAG are
cutting plane methods [36–44], which are distinct from quasi-Newton methods we study in this paper.
In particular, in the regime where ϵ = Õ( 1

d2 ), they can achieve the optimal gradient oracle complexity
of O(d log 1

ϵ ) [38]. On the other hand, in the regime where ϵ = Ω( 1
d2 ), the complexity of the cutting

plane methods is worse than NAG, while our proposed method matches the complexity of NAG.

2 Preliminaries

Next, we formally state the required assumptions for our main results.
Assumption 1. The function f is twice differentiable, convex, and L1-smooth. As a result, we have
0 ⪯ ∇2f(x) ⪯ L1I for any x ∈ Rd, where I ∈ Rd×d is the identity matrix.
Assumption 2. The Hessian of f is L2-Lipschitz, i.e., we have ∥∇2f(x)−∇2f(y)∥op ≤ L2∥x−y∥2
for any x,y ∈ Rd, where ∥A∥op ≜ supx:∥x∥2=1 ∥Ax∥2.

We note that both assumptions are standard in the optimization literature and are satisfied by various
loss functions such as the logistic loss and the log-sum-exp function (see, e.g., [16]).
Remark 1. We note that the additional assumption of Lipschitz Hessian does not alter the lower
bound of Ω(1/k2) that we discussed in the introduction. Indeed, this lower bound is established
by a worst-case quadratic function, whose Hessian is constant (Lipschitz continuous with L2 = 0).
Therefore, Assumption 2 does not eliminate this worst-case construction from the considered problem
class, and thus the lower bound also applies to our setting.

Monteiro-Svaiter acceleration. As our proposed method uses ideas from the celebrated Monteiro-
Svaiter (MS) acceleration algorithm [31], we first briefly recap this method. MS acceleration, also
known as accelerated hybrid proximal extragradient (A-HPE), consists of intertwining sequences of
iterates {xk}, {yk}, {zk}, scalar variables {ak} and {Ak} as well as step sizes {ηk}. The algorithm
has three main steps. In the first step, we compute the auxiliary iterate yk according to

yk =
Ak

Ak + ak
xk +

ak
Ak + ak

zk, where ak =
ηk +

√
η2k + 4ηkAk

2
. (2)

In the second step, an inexact proximal point step xk+1 ≈ yk − ηk∇f(xk+1) is performed. To be
precise, given a parameter σ ∈ [0, 1), we find xk+1 that satisfies

∥xk+1 − yk + ηk∇f(xk+1)∥ ≤ σ∥xk+1 − yk∥. (3)

Then in the third step, the iterate z is updated by following the update

zk+1 = zk − ak∇f(xk+1).

Finally, we update the scalar Ak+1 by Ak+1 = Ak + ak. The above method has two implementation
issues. First, to perform the update in (3) directly, one needs to solve the nonlinear system of equations
x − yk + ηk∇f(x) = 0 to a certain accuracy, which could be costly in general. To address this
issue, a principled approach is to replace the gradient operator ∇f(x) with a simpler approximation
function P (x;yk) and select xk+1 as the (approximate) solution of the equation:

xk+1 − yk + ηkP (xk+1;yk) = 0. (4)

For instance, we can use P (x;yk) = ∇f(yk) and accordingly (4) is equivalent to xk+1 = yk −
ηk∇f(yk), leading to the accelerated first-order method in [31]. If we further have access to the
Hessian oracle, we can use P (x;yk) = ∇f(yk) + ∇2f(yk)(x − yk) and (4) becomes xk+1 =
yk − ηk(I+ ηk∇2f(yk))

−1∇f(yk), leading to the second-order method in [31].

However, approximating ∇f(x) by P (x;yk) leads to a second issue related to finding a proper step
size ηk. More precisely, one needs to first select ηk, compute yk from (2), and then solve the system
in (4) exactly or approximately to obtain xk+1. However, these three variables, i.e., xk+1, yk and ηk
may not satisfy the condition in (3) due to the gap between ∇f(x) and P (x;yk). If that happens,
we need to re-select ηk and recalculate both yk and xk+1 until the condition in (3) is satisfied. To
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address this issue, several bisection subroutines have been proposed in the literature [31, 45–47] and
they all incur a computational cost of log(1/ϵ) per iteration.

Optimal Monteiro-Svaiter acceleration. A recent paper [32] refines the MS acceleration algorithm
by separating the update of yk from the line search subroutine. In particular, in the first stage, we use
ηk to compute ak and then yk from (2), which will stay fixed throughout the line search scheme. In
the second stage, we aim to find a pair x̂k+1 and η̂k such that they satisfy

∥x̂k+1 − yk + η̂k∇f(x̂k+1)∥ ≤ σ∥x̂k+1 − yk∥. (5)

To find that pair, we follow a similar line search scheme as above, with the key difference that yk is
fixed and η̂k can be different from ηk that is used to compute yk. More precisely, for a given η̂k, we
find the solution of (4) denoted by x̂k+1 and check whether it satisfies (5) or not. If it does not, then
we adapt the step size and redo the process until (5) is satisfied. Then given the values of these two
parameters ηk and η̂k, the updates for x and z would change as we describe next:

• If η̂k ≥ ηk, we update xk+1 = x̂k+1, Ak+1 = Ak+ak and zk+1 = zk−ak∇f(x̂k+1). Moreover,
we increase the next tentative step size by choosing ηk+1 = ηk/β for some β ∈ (0, 1).

• Otherwise, if η̂k < ηk, the authors in [32] introduced a momentum damping mechanism. Define
γk = η̂k/ηk < 1. We then choose xk+1 = (1−γk)Ak

Ak+γkak
xk + γk(Ak+ak)

Ak+γkak
x̂k+1, which is a convex

combination of xk and x̂k+1. Moreover, we update Ak+1 = Ak + γkak and zk+1 = zk −
γkak∇f(x̂k+1). Finally, we decrease the next tentative step size by choosing ηk+1 = βηk.

This approach not only simplifies the procedure by separating the update of {yk} from the line search
scheme, but it also shaves a factor of log(1/ϵ) from the computational cost of the algorithm, leading
to optimal first and second-order variants of the MS acceleration method. Therefore, as we will
discuss in the next section, we build our method upon this more refined MS acceleration framework.

3 Accelerated Quasi-Newton Proximal Extragradient

In this section, we present our accelerated quasi-Newton proximal extragradient (A-QNPE) method.
An informal description of our method is provided in Algorithm 1. On a high level, our method can be
viewed as the quasi-Newton counterpart of the adaptive Monteiro-Svaiter-Newton method proposed
in [32]. In particular, we only query a gradient oracle and choose the approximation function in (4)
as P (x;yk) = ∇f(yk) +Bk(x− yk), where Bk is a Hessian approximation matrix obtained only
using gradient information. Moreover, another central piece of our method is the update scheme
of Bk. Instead of following the classical quasi-Newton updates such as BFGS or DFP, we use an
online learning framework, where we choose a sequence of matrices Bk to achieve a small dynamic
regret for an online learning problem defined by our analysis; more details will be provided later in
Section 3.2. We initialize our method by choosing x0, z0 ∈ Rd and setting A0 = 0 and η0 = σ0,
where σ0 is a user-specified parameter. Our method can be divided into the following four stages:

• In the first stage, we compute the scalar ak and the auxiliary iterate yk according to (2) using the
step size ηk. Note that yk is then fixed throughout the k-th iteration.

• In the second stage, given the Hessian approximation matrix Bk and the iterate yk, we use a line
search scheme to find the step size η̂k and the iterate x̂k+1 such that

∥x̂k+1 − yk + η̂k(∇f(yk) +Bk(x̂k+1 − yk))∥ ≤ α1∥x̂k+1 − yk∥, (6)
∥x̂k+1 − yk + η̂k∇f(x̂k+1)∥ ≤ (α1 + α2)∥x̂k+1 − yk∥, (7)

where α1 ∈ [0, 1) and α2 ∈ (0, 1) are user-specified parameters with α1 + α2 < 1. The first
condition in (6) requires that x̂k+1 inexactly solves the linear system of equations (I+ η̂kBk)(x−
yk) + η̂k∇f(yk) = 0, where α1 ∈ [0, 1) controls the accuracy. As a special case, we have
x̂k+1 = yk − (I+ η̂kBk)

−1∇f(yk) when α1 = 0. The second condition in (7) directly comes
from (5) in the optimal MS acceleration framework, which ensures that we approximately follow
the proximal point step x̂k+1 = yk − η̂k∇f(x̂k+1). To find the pair (η̂k, x̂k+1) satisfying both (6)
and (7), we implement a backtracking line search scheme. Specifically, for some β ∈ (0, 1), we
iteratively try η̂k = ηkβ

i for i ≥ 0 and solve x̂k+1 from (6) until the condition in (7) is satisfied.
The line search scheme will be discussed in more detail in Section 3.1.
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Algorithm 1 Accelerated Quasi-Newton Proximal Extragradient Method

1: Input: initial points x0, z0 ∈ Rd, initial step size σ0 > 0, α1, α2 ∈ (0, 1) with α1 + α2 < 1, β ∈ (0, 1)
2: Initialize: set A0 ← 0 and η0 ← σ0

3: for iteration k = 0, . . . , N − 1 do

4: Compute ak ←
ηk+
√

η2
k
+4ηkAk

2
and yk ← Ak

Ak+ak
xk + ak

Ak+ak
zk

5: Let η̂k be the largest possible step size in {ηkβi : i ≥ 0} such that

x̂k+1 ≈α1 yk−η̂k(I+η̂kBk)
−1∇f(yk) and ∥x̂k+1−yk−η̂k∇f(x̂k+1)∥ ≤ (α1+α2)∥x̂k+1−yk∥

6: if η̂k = ηk then
7: Set xk+1 ← x̂k+1, zk+1 ← zk − ak∇f(x̂k+1), Ak+1 ← Ak + ak

8: Set ηk+1 ← η̂k/β
9: Set Bk+1 ← Bk

10: else
11: Let γk ← η̂k/ηk < 1

12: Set xk+1← (1−γk)Ak
Ak+γkak

xk + γk(Ak+ak)
Ak+γkak

x̂k+1, zk+1←zk − γkak∇f(x̂k+1), Ak+1←Ak + γkak

13: Set ηk+1 ← η̂k
14: Set wk ← ∇f(x̃k)−∇f(yk) and sk ← x̃k − yk, where x̃k is the last rejected iterate in LS
15: Feed ℓk(B) ≜ ∥wk−Bsk∥2

∥sk∥2
to an online learning algorithm and obtain Bk+1

16: end if
17: end for

• In the third stage, we update the variables xk+1, zk+1, Ak+1 and set the step size ηk+1 in the next
iteration. Specifically, the update rule we follow depends on the outcome of the line search scheme.
In the first case where η̂k = ηk, i.e., the line search scheme accepts the initial trial step size, we let

xk+1 = x̂k+1, zk+1 = zk − ak∇f(x̂k+1), Ak+1 = Ak + ak, (8)

as in the original MS acceleration framework. Moreover, this also suggests our choice of the step
size ηk may be too conservative. Therefore, we increase the step size in the next iteration by
ηk+1 = η̂k/β. In the second case where η̂k < ηk, i.e., the line search scheme backtracks, we adopt
the momentum damping mechanism in [32]:

xk+1 =
(1− γk)Ak

Ak + γkak
xk+

γk(Ak + ak)

Ak + γkak
x̂k+1, zk+1 = zk−γkak∇f(x̂k+1), Ak+1 = Ak+γkak,

(9)
where γk = η̂k/ηk < 1. Accordingly, we decrease the step size in the next iteration by letting
ηk+1 = η̂k (note that η̂k < ηk).

• In the fourth stage, we update the Hessian approximation matrix Bk+1. Inspired by [35], we depart
from the classical quasi-Newton methods and instead let the convergence analysis guide our update
scheme. As we will show in Section 3.2, the convergence rate of our method is closely related to
the cumulative loss

∑
k∈B ℓk(Bk) incurred by our choices of {Bk}, where B = {k : η̂k < ηk}

denotes the indices where the line search scheme backtracks. Moreover, the loss function has
the form ℓk(Bk) ≜

∥wk−Bksk∥2

∥sk∥2 , where wk ≜ ∇f(x̃k) −∇f(xk), sk ≜ x̃k − xk and x̃k is an
auxiliary iterate returned by our line search scheme. Thus, this motivates us to employ an online
learning algorithm to minimize the cumulative loss. Specifically, in the first case where η̂k = ηk
(i.e., k /∈ B), the current Hessian approximation matrix Bk does not contribute to the cumulative
loss and thus we keep it unchanged (cf. Line 9). Otherwise, we follow an online learning algorithm
in the space of matrices. The details will be discussed in Section 3.2.

Finally, we provide a convergence result in the following Proposition for Algorithm 1, which serves
as the basis for our convergence analysis. We note that the following results do not require additional
conditions on Bk other than the ones in (6) and (7). The proof is available in Appendix A.1.

Proposition 1. Let {xk}Nk=0 be the iterates generated by Algorithm 1. If f is convex, we have

f(xN )− f(x∗) ≤ ∥z0 − x∗∥2

2AN
and AN ≥ (1−

√
β)2

4(2−
√
β)2

(
N−1∑
k=0

√
η̂k

)2

.
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Proposition 1 characterizes the convergence rate of Algorithm 1 by the quantity AN , which can be
further lower bounded in terms of the step sizes {η̂k}. Moreover, we can observe that larger step
sizes will lead to a faster convergence rate. On the other hand, the step size η̂k is constrained by the
condition in (7), which, in turn, depends on our choice of the Hessian approximation matrix Bk.
Thus, the central goal of our line search scheme and the Hessian approximation update is to make the
step size η̂k as large as possible, which we will describe next.

3.1 Line Search Subroutine

In this section, we specify our line search subroutine to select the step size η̂k and the iterate x̂k+1 in
the second stage of A-QNPE. For simplicity, denote ∇f(yk) by g and drop the subscript k in yk and
Bk. In light of (6) and (7), our goal in the second stage is to find a pair (η̂, x̂+) such that

∥x̂+ − y + η̂(g +B(x̂+ − y))∥ ≤ α1∥x̂+ − y∥, (10)
∥x̂+ − y + η̂∇f(x̂+)∥ ≤ (α1 + α2)∥x̂+ − y∥. (11)

As mentioned in the previous section, the condition in (10) can be satisfied by solving the linear
system (I+ η̂B)(x̂+ − y) = −η̂g to a desired accuracy. Specifically, we let

s+ = LinearSolver(I+ η̂B,−η̂g;α1) and x̂+ = y + s+, (12)

where the oracle LinearSolver is defined as follows.
Definition 1. The oracle LinearSolver(A,b;α) takes a matrix A ∈ Sd+, a vector b ∈ Rd and
α ∈ (0, 1) as input, and returns an approximate solution s+ satisfying ∥As+ − b∥ ≤ α∥s+∥.

The most direct way to implement LinearSolver(A,b;α) is to compute s+ = A−1b, which however
costs O(d3) arithmetic operations. Alternatively, we can implement the oracle more efficiently by
using the conjugate residual method [48], which only requires computing matrix-vector products and
thus incurs a cost of O(d2). The details are discussed in Appendix E.1. We characterize the total
number of required matrix-vector products for this oracle in Theorem 2.

Now we are ready to describe our line search scheme with the LinearSolver oracle (see also Subrou-
tine 1 in Appendix B). Specifically, we start with the step size η and then reduce it by a factor β until
we find a pair (η̂, x̂+) that satisfies (11). It can be shown that the line search scheme will terminate
in a finite number of steps and return a pair (η̂, x̂+) satisfying both conditions in (10) and (11) (see
Appendix B.1). Regarding the output, we distinguish two cases: (i) If we pass the test in (11) on
our first attempt, we accept the initial step size η and the corresponding iterate x̂+ (cf. Line 10 in
Subroutine 1). (ii) Otherwise, along with the pair (η̂, x̂+), we also return an auxiliary iterate x̃+ that
we compute from (12) using the rejected step size η̂/β (cf. Line 12 in Subroutine 1). As we shall
see in Lemma 1, the iterate x̃+ is used to derive a lower bound on η̂, which will be the key to our
convergence analysis and guide our update of the Hessian approximation matrix. For ease of notation,
let B be the set of iteration indices where the line search scheme backtracks, i.e., B ≜ {k : η̂k < ηk}.
Lemma 1. For k /∈ B we have η̂k = ηk, while for k ∈ B we have

η̂k >
α2β∥x̃k+1 − yk∥

∥∇f(x̃k+1)−∇f(yk)−Bk(x̃k+1 − yk)∥
and ∥x̃k+1−yk∥ ≤ (1 + α1)

β(1− α1)
∥x̂k+1−yk∥.

(13)

Lemma 1 provides a lower bound on the step size η̂k in terms of the approximation error ∥∇f(x̃k+1)−
∇f(yk)−Bk(x̃k+1 − yk)∥. Hence, a better Hessian approximation matrix Bk leads to a larger step
size, which in turn implies faster convergence. Also note that the lower bound uses the auxiliary
iterate x̃k+1 that is not accepted as the actual iterate. Thus, the second inequality in (13) will be
used to relate ∥x̃k+1 − yk∥ with ∥x̂k+1 − yk∥. Finally, we remark that to fully characterize the
computational cost, we need to upper bound the total number of line search steps, each of which
requires a call to LinearSolver and a call to the gradient oracle. This will be discussed in Theorem 2.

3.2 Hessian Approximation Update via Online Learning with Dynamic Regret

In this section, we discuss how to update the Hessian approximation matrix Bk in the fourth stage of
A-QNPE. As mentioned earlier, instead of following the classical quasi-Newton updates, we directly
motivate our update policy for Bk from the convergence analysis. The first step is to connect the
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convergence rate of A-QNPE with the Hessian approximation matrices {Bk}. By Proposition 1, if
we define the absolute constant C1 ≜ 2(2−

√
β)2

(1−
√
β)2

, then we can write

f(xN )− f(x∗) ≤ ∥z0 − x∗∥2

2AN
≤ C1∥z0 − x∗∥2(∑N−1

k=0

√
η̂k
)2 ≤ C1∥z0 − x∗∥2

N2.5

√√√√N−1∑
k=0

1

η̂2k
, (14)

where the last inequality follows from Hölder’s inequality. Furthermore, we can establish an upper
bound on

∑N−1
k=0

1
η̂2
k

in terms of the Hessian approximation matrices {Bk}, as we show next.

Lemma 2. Let {η̂k}N−1
k=0 be the step sizes in Algorithm 1 using Subroutine 1. Then we have

N−1∑
k=0

1

η̂2k
≤ 2− β2

(1− β2)σ2
0

+
2− β2

(1− β2)α2
2β

2

∑
0≤k≤N−1,k∈B

∥wk −Bksk∥2

∥sk∥2
, (15)

where wk ≜ ∇f(x̃k+1)−∇f(yk) and sk ≜ x̃k+1 − yk for k ∈ B.

The proof of Lemma 2 is given in Appendix C.1. On a high level, for those step sizes η̂k with k ∈ B,
we can apply Lemma 1 and directly obtain a lower bound in terms of Bk. On the other hand, for
k /∈ B, we have η̂k = ηk and our update rule in Lines 8 and 13 of Algorithm 1 allows us to connect
the sequence {ηk}N−1

k=0 with the backtracked step sizes {η̂k : k ∈ B}. As a result, we note that the
sum in (15) only involves the Hessian approximation matrices {Bk : k ∈ B}.

In light of (14) and (15), our update for Bk aims to make the right-hand side of (15) as small as
possible. To achieve this, we adopt the online learning approach in [35] and view the sum in (15) as
the cumulative loss incurred by our choice of {Bk}. To formalize, define the loss at iteration k by

ℓk(B) ≜

{
0, if k /∈ B,
∥wk−Bsk∥2

∥sk∥2 , otherwise,
(16)

and consider the following online learning problem: (i) At the k-th iteration, we choose Bk ∈ Z
where Z ≜ {B ∈ Sd+ : 0 ⪯ B ⪯ L1I}; (ii) We receive the loss function ℓk(B) defined in (16); (iii)
We update our Hessian approximation matrix to Bk+1. Therefore, we propose to employ an online
learning algorithm to update the Hessian approximation matrices {Bk}, and the task of proving a
convergence rate for our A-QNPE algorithm boils down to analyzing the performance of our online
learning algorithm. In particular, an upper bound on the cumulative loss

∑N−1
k=0 ℓk(Bk) will directly

translate into a convergence rate for A-QNPE by using (14) and (15).

Naturally, the first idea is to update Bk by following projected online gradient descent [49]. While this
approach would indeed serve our purpose, its implementation could be computationally expensive.
Specifically, like other projection-based methods, it requires computing the Euclidean projection
onto the set Z in each iteration, which in our case amounts to performing a full d × d matrix
eigendecomposition and would incur a cost of O(d3) (see Appendix C.2). Inspired by the recent work
in [50], we circumvent this issue by using a projection-free online learning algorithm, which relies on
an approximate separation oracle for Z instead of a projection oracle. For simplicity, we first translate
and rescale the set Z via the transform B̂ = 2

L1
(B− L1

2 I) to obtain Ẑ ≜ {B̂ ∈ Sd : ∥B̂∥op ≤ 1}.
The approximate separation oracle SEP(W; δ, q) is then defined as follows.

Definition 2. The oracle SEP(W; δ, q) takes a symmetric matrix W ∈ Sd, δ > 0, and q ∈ (0, 1) as
input and returns a scalar γ > 0 and a matrix S ∈ Sd with one of the following possible outcomes:

• Case I: γ ≤ 1, which implies that, with probability at least 1− q, W ∈ Ẑ;

• Case II: γ > 1, which implies that, with probability at least 1 − q, W/γ ∈ Ẑ , ∥S∥F ≤ 3 and
⟨S,W − B̂⟩ ≥ γ − 1− δ for any B̂ such that B̂ ∈ Ẑ .

To sum up, SEP(W; δ, q) has two possible outcomes: with probability 1− q, either it certifies that
W ∈ Ẑ , or it produces a scaled version of W that belongs to Ẑ and an approximate separation
hyperplane between W and the set Ẑ . As we show in Appendix E.2, implementing this oracle
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requires computing the two extreme eigenvectors and eigenvalues of the matrix W inexactly, which
can be implemented efficiently by the randomized Lanczos method [51].

Building on the SEP(W; δ, q) oracle, we design a projection-free online learning algorithm adapted
from [35, Subroutine 2]. Since the algorithm is similar to the one proposed in [35], we relegate the
details to Appendix C but sketch the main steps in the analysis. To upper bound the cumulative loss∑N−1

k=0 ℓk(Bk), we compare the performance of our online learning algorithm against a sequence
of reference matrices {Hk}N−1

k=0 . Specifically, we aim to control the dynamic regret [49, 52, 53]
defined by D-RegN ({Hk}N−1

k=0 ) ≜
∑N−1

k=0 (ℓk(Bk)− ℓk(Hk)), as well as the the cumulative loss∑N−1
k=0 ℓk(Hk) by the reference sequence. In particular, in our analysis we show that the choice of

Hk ≜ ∇2f(yk) for k = 0, . . . , N − 1 allows us to upper bound both quantities.
Remark 2. While our online learning algorithm is similar to the one in [35], our analysis is more
challenging due to the lack of strong convexity. Specifically, since f is assumed to be strongly convex
in [35], the iterates converge to x∗ at least linearly, resulting in less variation in the loss functions {ℓk}.
Hence, the authors in [35] let Hk = H∗ ≜ ∇2f(x∗) for all k and proved that

∑N−1
k=0 ℓk(H

∗) remains
bounded. In contrast, without linear convergence, we need to use a time-varying sequence {Hk} to
control the cumulative loss. This in turn requires us to bound the variation

∑N−2
k=0 ∥Hk+1 −Hk∥F ,

which involves a careful analysis of the stability property of the sequence {yk} in Algorithm 1.

4 Complexity Analysis of A-QNPE

In this section, we present our main theoretical results: we establish the convergence rate of A-QNPE
(Theorem 1) and characterize its computational cost in terms of gradient queries and matrix-vector
product evaluations (Theorem 2). The proofs are provided in Appendices D and E.3.

Theorem 1. Let {xk} be the iterates generated by Algorithm 1 using the line search scheme in
Section 3.1, where α1, α2 ∈ (0, 1) with α1 + α2 < 1 and β ∈ (0, 1), and using the Hessian
approximation update in Section 3.2 (the hyperparameters are given in Appendix D). Then with
probability at least 1 − p, the following statements hold, where Ci (i = 4, . . . , 10) are absolute
constants only depending on α1, α2 and β.

(a) For any k ≥ 0, we have

f(xk)− f(x∗) ≤ C4L1∥z0 − x∗∥2

k2
+

C5∥z0 − x∗∥2

σ0k2.5
. (17)

(b) Furthermore, for any k ≥ 0,

f(xk)− f(x∗) ≤ ∥z0 − x∗∥2

k2.5

(
M + C10L1L2d∥z0 − x∗∥ log+

(
max{ L1

α2β
, 1
σ0
}k2.5

√
M

)) 1
2

,

(18)
where we define log+(x) ≜ max{log(x), 0} and the quantity M is given by

M ≜
C6

σ2
0

+C7L
2
1 +C8∥B0 −∇2f(z0)∥2F +C9L

2
2∥z0 − x∗∥2 +C10L1L2d∥z0 − x∗∥. (19)

Both results in Theorem 1 are global, as they are valid for any initial points x0, z0 and any initial
matrix B0. Specifically, Part (a) of Theorem 1 shows that A-QNPE converges at a rate of O(1/k2),
matching the rate of NAG [23] that is known to be optimal in the regime where k = O(d) [28, 29].
Furthermore, Part (b) of Theorem 1 presents a convergence rate of O(

√
d log(k)/k2.5). To see this,

note that since we have 0 ⪯ B0 ⪯ L1I and 0 ⪯ ∇2f(z0) ⪯ L1I, in the worst case ∥B0−∇2f(z0)∥2F
in the expression of (19) can be upper bounded by L2

1d. Thus, assuming that L1, L2 and ∥z0 − x∗∥
are on the order of O(1), we have M = O(d) and the convergence rate in (18) can be simplified
to O(

√
d log(k)/k2.5). Notably, this rate surpasses the O(1/k2) rate when k = Ω(d log d). To the

best of our knowledge, this is the first work to show a convergence rate faster than O(1/k2) for a
quasi-Newton-type method in the convex setting, thus establishing a provable advantage over NAG.
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Table 1: The comparison of NAG and our proposed method in terms of computational cost.

Methods Gradient queires Matrix-vector products

NAG O(ϵ−0.5) N.A.

A-QNPE (ours) Õ(min{ϵ−0.5, d0.2ϵ−0.4}) Õ(min{d0.25ϵ−0.5, ϵ−0.625})

Remark 3 (Iteration complexity). Based on Theorem 1, we can find A-QNPE’s iteration complexity.
Define Nϵ as the number of iterations required by A-QNPE to find an ϵ-accurate solution, i.e.,
f(x) − f(x∗) ≤ ϵ. When

√
ϵ > 1

d log d , the rate in (17) is better and we have Nϵ = O( 1
ϵ0.5 ).

Conversely, when
√
ϵ < 1

d log d , the rate in (18) is the better one, resulting in Nϵ = O(( d
ϵ2 log

d
ϵ2 )

0.2).

Hence, to achieve an ϵ-accurate solution A-QNPE requires O(min{ 1
ϵ0.5 ,

d0.2

ϵ0.4 (log
d
ϵ2 )

0.2}) iterations.

Remark 4 (Special case). If the initial point z0 is close to an optimal solution x∗ and the initial
Hessian approximation matrix B0 is chosen properly, the dependence on d in the convergence rate of
(18) can be eliminated. Specifically, if ∥z0 − x∗∥ = O( 1d ) and we set B0 = ∇2f(z0), then we have
M = O(1) and this leads to a local dimension-independent rate of O(

√
log k/k2.5).

Recall that in each iteration of Algorithm 1, we need to execute a line search subroutine (Section 3.1)
and a Hessian approximation update subroutine (Section 3.2). Thus, to fully characterize the
computational cost of Algorithm 1, we need to upper bound the total number of gradient queries as
well as the total number of matrix-vector product evaluations, which is the goal of Theorem 2.
Theorem 2. Recall that Nϵ denotes the minimum number of iterations required by Algorithm 1 to
find an ϵ-accurate solution according to Theorem 1. Then, with probability at least 1− p:

(a) The total number of gradient queries is bounded by 3Nϵ + log1/β(
σ0L1

α2
).

(b) The total number of matrix-vector product evaluations in the LinearSolver oracle is bounded

by Nϵ + C11

√
σ0L1 + C12

√
L1∥z0−x∗∥2

2ϵ , where C11 and C12 are absolute constants.

(c) The total number of matrix-vector product evaluations in the SEP oracle is bounded by
O
(
N1.25

ϵ (logNϵ)
0.5 log

(√
dNϵ

p

))
.

If the initial step size is chosen as σ0 = α2

L1
, Theorem 2(a) implies that A-QNPE requires no more

than 3 gradient queries per iteration on average. Thus, the gradient oracle complexity of A-QNPE
is the same as the iteration complexity, i.e., O(min{ 1

ϵ0.5 ,
d0.2

ϵ0.4 (log
d
ϵ2 )

0.2}). On the other hand, the
complexity in terms of matrix-vector products is worse. More precisely, by using the expression of Nϵ

in Remark 3, Parts (b) and (c) imply that the total number of matrix-vector product evaluations in the
LinearSolver and SEP oracles can be bounded by O( 1

ϵ0.5 ) and Õ(min{d0.25

ϵ0.5 , 1
ϵ0.625 }), respectively.

For easier comparison, we summarize the detailed computational costs of NAG and our method
A-QNPE to achieve an ϵ-accuracy in Table 1. We observe that A-QNPE outperforms NAG in terms
of gradient query complexity: It makes equal or fewer gradient queries especially when ϵ ≪ 1

d2 .
On the other hand, A-QNPE requires additional matrix-vector product computations to implement
the LinearSolver and SEP oracles. While this is a limitation of our method, in some cases, gradient
evaluations are the main bottleneck and can be more expensive than matrix-vector products. As a
concrete example, consider the finite-sum minimization problem f(x) = 1

n

∑n
i=1 fi(x). In this case,

one gradient query typically costs O(nd), while one matrix-vector product costs O(d2). Thus, the
total computational cost of NAG and A-QNPE can be bounded by O( nd

ϵ0.5 ) and Õ(nd
1.2

ϵ0.4 + d2.25

ϵ0.5 ),
respectively. In particular, our method incurs a lower computational cost when ϵ ≪ 1

d2 and n ≫
d1.25.

5 Experiments

In this section, we compare the numerical performance of our proposed A-QNPE method with
NAG and the classical BFGS quasi-Newton method. For fair comparison, we also use a line search
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Figure 1: Numerical results for logistic regression on a synthetic dataset.
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Figure 2: Numerical results for log-sum-exp function on a synthetic dataset.

scheme in NAG and BFGS to obtain their best performance [54, 15]. We would like to highlight
that our paper mainly focuses on establishing a provable gain for quasi-Newton methods with
respect to NAG, and our experimental results are presented to numerically verify our theoretical
findings. In the first experiment, we focus on a logistic regression problem with the loss function
f(x) = 1

n

∑n
i=1 log(1 + e−yi⟨ai,x⟩), where a1, . . . ,an ∈ Rd are feature vectors and y1, . . . ,yn ∈

{−1, 1} are binary labels. We perform our numerical experiments on a synthetic dataset and the
data generation process is described in Appendix F. In the second experiment, we consider the
log-sum-exp function f(x) = log(

∑n
i=1 e

⟨ai,x⟩−bi), where we generate the dataset {(ai, bi)}ni=1
following a similar procedure as in [16] (more details in Appendix F). As we observe in Fig. 1(a) and
Fig. 2(a), our proposed A-QNPE method converges in much fewer iterations than NAG, while the best
performance is achieved by BFGS. Due to the use of line search, we also compare these algorithms in
terms of the total number of gradient queries. Moreover, additional plots in terms of the running time
are included in Appendix F. As illustrated in Fig. 1(b) and Fig. 2(b), A-QNPE still outperforms NAG
but the relative gain becomes less substantial. This is because the line search scheme in NAG only
queries the function value at the new point, and thus it only requires one gradient per iteration. On
the other hand, we should add that the number of gradient queries per iteration for A-QNPE is still
small as guaranteed by our theory. In particular, the histogram of gradient queries in Fig. 1(c) and
Fig. 2(c) shows that most of the iterations of A-QNPE require 2-3 gradient queries with an average of
less than 3. Finally, although there is no theoretical guarantee showing a convergence gain for BFGS
with respect to NAG, we observe that BFGS outperforms all the other considered methods in our
experiments. Hence, studying the convergence behavior of BFGS (with line search) in the convex
setting is an interesting research direction to explore.

6 Conclusions

We proposed a quasi-Newton variant of the accelerated proximal extragradient method for solving
smooth convex optimization problems. We established two global convergence rates for our A-QNPE
method, showing that it requires Õ(min{ 1

ϵ0.5 ,
d0.2

ϵ0.4 }) gradient queries to find an ϵ-accurate solution.
In particular, in the regime where ϵ = Ω( 1

d2 ), A-QNPE achieves a gradient oracle complexity of
O( 1

ϵ0.5 ), matching the complexity of NAG. Moreover, in the regime where ϵ = Õ( 1
d2 ), it outperforms

NAG and improves the complexity to Õ(d
0.2

ϵ0.4 ). To the best of our knowledge, this is the first result
showing a provable gain for a quasi-Newton-type method over NAG in the convex setting.
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Appendix

A Optimal Monteiro-Svaiter Acceleration Framework

In this section, we present some general results that hold for the optimal MS Acceleration framework.
In particular, in the first part of this section (Section A.1), we present the proof of Proposition 1. In
the second part (Section A.2), we further provide some useful additional lemmas.

A.1 Proof of Proposition 1

To begin with, we establish a potential function for Algorithm 1, as shown in Proposition 2. The
result is similar to Proposition 1 in [32], but for completeness we present its proof loosely following
the strategy in [55, Theorem 5.3]. To simplify the notations, we use f∗ to denote the optimal f(x∗).
Proposition 2. Consider the iterates generated by Algorithm 1. If f is convex, then

Ak+1(f(xk+1)− f∗) +
1

2
∥zk+1 − x∗∥2 ≤ Ak(f(xk)− f∗) +

1

2
∥zk − x∗∥2. (20)

Moreover, let σ = α1 + α2 and we have

N−1∑
k=0

a2k
η2k

∥x̂k+1 − yk∥2 ≤ 1

1− σ2
∥z0 − x∗∥2. (21)

Proof. Since f is convex, it holds that

f(xk)− f(x̂k+1)− ⟨∇f(x̂k+1),xk − x̂k+1⟩ ≥ 0,

f(x∗)− f(x̂k+1)− ⟨∇f(x̂k+1),x
∗ − x̂k+1⟩ ≥ 0.

By summing up the two inequalities with weights ak and Ak respectively, we get

Ak(f(xk)−f∗)− (Ak+ak)(f(x̂k+1)−f∗)−ak⟨∇f(x̂k+1),x
∗− x̂k+1−

Ak

ak
(x̂k+1−xk)⟩ ≥ 0.

(22)
Let z̃k+1 = x̂k+1 +

Ak

ak
(x̂k+1 − xk). By rearranging the terms, (22) can be rewritten as

(Ak + ak)(f(x̂k+1)− f∗)−Ak(f(xk)− f∗) ≤ ak⟨∇f(x̂k+1), z̃k+1 − x∗⟩. (23)

Moreover, note that the update rule for zk+1 in both (8) and (9) can be written as

zk+1 − zk = − η̂k
ηk

ak∇f(x̂k+1). (24)

Also, since we also have zk = yk + Ak

ak
(yk − xk) from (2), we can write

z̃k+1 − zk =

[
x̂k+1 +

Ak

ak
(x̂k+1 − xk)

]
−
[
yk +

Ak

ak
(yk − xk)

]
=

Ak + ak
ak

(x̂k+1 − yk) =
ak
ηk

(x̂k+1 − yk), (25)

where we used the fact that (Ak + ak)ηk = a2k in the last equality (cf. (2)). Hence, combining (24)
and (25) leads to

∥z̃k+1−zk+1∥ = ∥z̃k+1 − zk−(zk+1−zk)∥ =
ak
ηk

∥x̂k+1−yk+η̂k∇f(x̂k+1)∥ ≤ σ
ak
ηk

∥x̂k+1−yk∥.
(26)

where we used (7) in the last inequality. In the following, we distinguish two cases depending on
η̂k = ηk or η̂k < ηk. In both cases, we shall prove that

Ak+1(f(xk+1)−f∗)+
1

2
∥zk+1−x∗∥2 ≤ Ak(f(xk)−f∗)+

1

2
∥zk−x∗∥2− (1− σ2)a2k

2η2k
∥x̂k+1−yk∥2.

(27)
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If this is true, then Proposition 2 immediately follows. Indeed, since σ < 1, the last term in the
right-hand side of (27) is negative, which implies (20). Moreover, (21) follows from summing the
inequality in (27) from k = 0 to N − 1.

Case I: η̂k = ηk. Since by (8) we have xk+1 = x̂k+1 and Ak+1 = Ak + ak, (23) becomes

Ak+1(f(xk+1)− f∗)−Ak(f(xk)− f∗) ≤ ak⟨∇f(xk+1), z̃k+1 − x∗⟩.
Using zk+1 = zk − ak∇f(xk+1) in (8), we have

Ak+1(f(xk+1)− f∗)−Ak(f(xk)− f∗)

≤ ⟨zk − zk+1, z̃k+1 − x∗⟩
= ⟨zk − zk+1, z̃k+1 − zk+1⟩+ ⟨zk − zk+1, zk+1 − x∗⟩

=
XXXXXXX
1

2
∥zk − zk+1∥2 +

1

2
∥z̃k+1 − zk+1∥2 −

1

2
∥z̃k+1 − zk∥2

+
1

2
∥zk − x∗∥2 − 1

2
∥zk+1 − x∗∥2 −

XXXXXXX
1

2
∥zk − zk+1∥2

≤ 1

2
∥zk − x∗∥2 − 1

2
∥zk+1 − x∗∥2 − (1− σ2)a2k

2η2k
∥xk+1 − yk∥2,

(28)

where we used (25) and (26) in the last inequality. This immediately leads to (27) after rearranging
the terms.

Case II: η̂k < ηk. Since 0 < γk < 1 and xk+1 = (1−γk)Ak

Ak+γkak
xk + γk(Ak+ak)

Ak+γkak
x̂k+1 according to (9),

by Jensen’s inequality we have (Ak + γkak)f(xk+1) ≤ γk(Ak + ak)f(x̂k+1) + (1− γk)Akf(xk),
which further implies that

(Ak+γkak)(f(xk+1)−f∗)−Ak(f(xk)−f∗) ≤ γk(Ak+ak)(f(x̂k+1)−f∗)−γkAk(f(xk)−f∗).

Moreover, since Ak+1 = Ak + γkak by (9), together with (23) we obtain

Ak+1(f(xk+1)− f∗)−Ak(f(xk)− f∗) ≤ γkak⟨∇f(x̂k+1), z̃k+1 − x∗⟩.
Using zk+1 = zk − γkak∇f(x̂k+1) in (9), we follow the same reasoning as in (28) to get:

Ak+1(f(xk+1)− f∗)−Ak(f(xk)− f∗)

≤ ⟨zk − zk+1, z̃k+1 − x∗⟩
= ⟨zk − zk+1, z̃k+1 − zk+1⟩+ ⟨zk − zk+1, zk+1 − x∗⟩

=
XXXXXXX
1

2
∥zk − zk+1∥2 +

1

2
∥z̃k+1 − zk+1∥2 −

1

2
∥z̃k+1 − zk∥2

+
1

2
∥zk − x∗∥2 − 1

2
∥zk+1 − x∗∥2 −

XXXXXXX
1

2
∥zk − zk+1∥2

≤ 1

2
∥zk − x∗∥2 − 1

2
∥zk+1 − x∗∥2 − (1− σ2)a2k

2η2k
∥x̂k+1 − yk∥2,

which also leads to (27).

Next, we prove a lower bound on AN . Recall that B denotes the set of iteration indices where the
line search scheme backtracks, i.e., B ≜ {k : η̂k < ηk}.
Lemma 3. For any N ≥ 0, it holds that

AN ≥ 1

4

(√
η̂0 +

∑
1≤k≤N−1,k/∈B

√
η̂k

)2

. (29)

Proof. To begin with, according to the update rule of Ak+1 in (8) and (9) and the expression of ak in
(2), the sequence {Ak} follows the dynamic:

Ak+1 =

{
Ak + ak, if η̂k = ηk (k /∈ B);
Ak + γkak, if η̂k < ηk (k ∈ B), where γk =

η̂k
ηk

and ak =
ηk +

√
η2k + 4ηkAk

2
.

Since we initialize A0 = 0, we have a0 = η0. We further have A1 = η̂0, since we get A1 =
A0 + a0 = η̂0 if 0 /∈ B, while we get A1 = A0 + γ0a0 = η̂0

η0
η0 = η̂0 if 0 ∈ B. Moreover:
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• In Case I where k /∈ B, we have

Ak+1 = Ak + ak = Ak +
ηk +

√
η2k + 4ηkAk

2
≥ Ak +

ηk
2

+
√
ηkAk ≥

(√
Ak +

√
ηk

2

)2

,

which further implies that
√
Ak+1 ≥

√
Ak +

√
ηk

2 =
√
Ak +

√
η̂k

2 .

• In Case II where k ∈ B, we have Ak+1 = Ak + γkak ≥ Ak, which implies that
√
Ak+1 ≥

√
Ak.

Considering the above, we obtain
√
AN ≥

√
A1 +

∑
1≤k≤N−1,k/∈B

√
η̂k

2 , which leads to (29).

Lemma 3 provides a lower bound on AN in terms of the step sizes η̂k in those iterations where the
line search scheme does not backtrack, i.e., k /∈ B. The following lemma shows how we can further
prove a lower bound in terms of all the step sizes {η̂k}N−1

k=0 .

Lemma 4. We have

∑
1≤k≤N−1,k∈B

√
η̂k ≤ 1

1−
√
β

√η̂0 +
∑

1≤k≤N−1,k/∈B

√
η̂k

 . (30)

As a corollary, we have

√
η̂0 +

∑
1≤k≤N−1,k/∈B

√
η̂k ≥ 1−

√
β

2−
√
β

N−1∑
k=0

√
η̂k. (31)

Proof. When the line search scheme backtracks, i.e., k ∈ B, we have η̂k ≤ βηk. Therefore,

∑
1≤k≤N−1,k∈B

√
η̂k ≤

∑
1≤k≤N−1,k∈B

√
βηk ≤

N−1∑
k=1

√
βηk =

√
βη1 +

N−2∑
k=1

√
βηk+1. (32)

Moreover, in the update of Algorithm 1, we have ηk+1 = η̂k/β if k /∈ B (cf. Line 8) and ηk+1 = η̂k
otherwise (cf. Line 13). This implies that η1 ≤ η̂0/β and we further have

√
βη1 +

N−2∑
k=1

√
βηk+1 =

√
βη1 +

∑
1≤k≤N−2,k/∈B

√
βηk+1 +

∑
1≤k≤N−2,k∈B

√
βηk+1

≤
√

η̂0 +
∑

1≤k≤N−2,k/∈B

√
η̂k +

∑
1≤k≤N−2,k∈B

√
βη̂k

≤
√
η̂0 +

∑
1≤k≤N−1,k/∈B

√
η̂k +

∑
1≤k≤N−1,k∈B

√
βη̂k. (33)

We combine (32) and (33) to get∑
1≤k≤N−1,k∈B

√
η̂k ≤

√
η̂0 +

∑
1≤k≤N−1,k/∈B

√
η̂k +

∑
1≤k≤N−1,k∈B

√
βη̂k.

By rearranging the terms and simple algebraic manipulation, we obtain (30) as desired. Finally, (31)
follows by adding

√
η̂0 +

∑
1≤k≤N−1,k/∈B

√
η̂k to both sides of (30).

Now we are ready to prove Proposition 1.

Proof of Proposition 1. By Proposition 2, the potential function ϕk ≜ Ak(f(xk)−f∗)+ 1
2∥zk−x∗∥2

is non-increasing in each iteration. Hence, via a recursive augment we have AN (f(xN ) − f∗) ≤
ϕN ≤ · · · ≤ ϕ0 = 1

2∥z0 − x∗∥2, which yields f(xN ) − f∗ ≤ ∥z0−x∗∥2

2AN
. Moreover, combining

Lemma 3 and (31) in Lemma 4 leads to the second inequality in Proposition 1.
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A.2 Additional Supporting Lemmas

A crucial part of our analysis is to bound the path length of the sequence {yk}Nk=0. This is done in
Lemma 8. To achieve this goal we first present the results in Lemmas 5-7, which provide the required
ingredients for proving the claim in Lemma 8. In our first intermediate result, we establish uniform
upper bounds for the error terms ∥zk − x∗∥ and ∥xk − x∗∥.
Lemma 5. Recall that σ = α1 + α2. For all k ≥ 0, we have ∥zk − x∗∥ ≤ ∥z0 − x∗∥ and

∥xk − x∗∥ ≤
√

2
1−σ2 ∥z0 − x∗∥.

Proof. To begin with, it follows from (20) in Proposition 2 that
1

2
∥zk−x∗∥2 ≤ Ak(f(xk)−f∗)+

1

2
∥zk−x∗∥2 ≤ A0(f(x0)−f∗)+

1

2
∥z0−x∗∥2 =

1

2
∥z0−x∗∥2.

Hence, we get ∥zk − x∗∥ ≤ ∥z0 − x∗∥ for any k ≥ 0. To show the second inequality, we distinguish
two cases and in both cases we will prove that

Ak+1∥xk+1−x∗∥2 ≤ Ak∥xk−x∗∥2+(Ak+1−Ak)
2σ2a2k
η2k

∥x̂k+1−yk∥2+2(Ak+1−Ak)∥zk+1−x∗∥2.

(34)
Case I: η̂k = ηk. Recall that in the proof of Proposition 2 we defined z̃k+1 = x̂k+1+

Ak

ak
(x̂k+1−xk).

Since xk+1 = x̂k+1, we have xk+1 = Ak

Ak+ak
xk + ak

Ak+ak
z̃k+1 and by Jensen’s inequality

∥xk+1 − x∗∥2 ≤ Ak

Ak + ak
∥xk − x∗∥2 + ak

Ak + ak
∥z̃k+1 − x∗∥2.

Furthermore, we have

∥z̃k+1−x∗∥2 ≤ 2∥z̃k+1−zk+1∥2+2∥zk+1−x∗∥2 ≤ 2σ2a2k
η2k

∥x̂k+1−yk∥2+2∥zk+1−x∗∥2, (35)

where we used (26) in the last inequality. By combining the above two inequalities, we obtain

(Ak + ak)∥xk+1 − x∗∥2 ≤ Ak∥xk − x∗∥2 + ak
2σ2a2k
η2k

∥x̂k+1 − yk∥2 + 2ak∥zk+1 − x∗∥2,

which leads to (34) (note that Ak+1 = Ak + ak in Case I).

Case II: Since xk+1 = (1−γk)Ak

Ak+γkak
xk + γk(Ak+ak)

Ak+γkak
x̂k+1 and x̂k+1 = Ak

Ak+ak
xk + ak

Ak+ak
z̃k+1, we

have
xk+1 =

Ak

Ak + γkak
xk +

γkak
Ak + γkak

z̃k+1.

Similarly, by Jensen’s inequality we have
(Ak + γkak)∥xk+1 − x∗∥2 ≤ Ak∥xk − x∗∥2 + γkak∥z̃k+1 − x∗∥2.

Combining this inequality with (35), we obtain

(Ak+γkak)∥xk+1−x∗∥2 ≤ Ak∥xk−x∗∥2+γkak
2σ2a2k
η2k

∥x̂k+1−yk∥2+2γkak∥zk+1−x∗∥2. (36)

which leads to (34) (note that Ak+1 = Ak + γkak in Case II).

Now by summing (34) over k = 0, . . . , N − 1, we get

AN∥xN − x∗∥2 ≤
N−1∑
k=0

(Ak+1 −Ak)
2σ2a2k
η2k

∥x̂k+1 − yk∥2 +
N−1∑
k=0

2(Ak+1 −Ak)∥zk+1 − x∗∥2

(37)

≤ 2σ2
N−1∑
k=0

(Ak+1 −Ak)

N−1∑
k=0

a2k
η2k

∥x̂k+1 − yk∥2 + 2∥z0 − x∗∥2
N−1∑
k=0

(Ak+1 −Ak)

(38)

≤ 2σ2

1− σ2
AN∥z0 − x∗∥2 + 2AN∥z0 − x∗∥2 (39)

=
2AN

1− σ2
∥z0 − x∗∥2. (40)
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Hence, this implies that ∥xk − x∗∥2 ≤ 2
1−σ2 ∥z0 − x∗∥2 for any k ≥ 0.

A key term appearing in several of our bounds is ak+1

Ak+1+ak+1
. In the next lemma, we establish an

upper bound for this ratio based on a factor of its previous value, for both cases of our algorithm.

Lemma 6. Without loss of generality assume β > 1/5. In Case I we have ak+1

Ak+1+ak+1
≤ 1√

β
ak

Ak+ak
.

Otherwise, in Case II we have ak+1

Ak+1+ak+1
≤ 2

√
β√

β+1
ak

Ak+ak
.

Proof. By the choice of ak in (2) we have ηk(Ak + ak) = a2k for all k ≥ 0. As a result, we have

ak
Ak + ak

=
ηk
ak

=
2ηk

ηk +
√
η2k + 4ηkAk

=
2

1 +
√

1 + 4Ak

ηk

,

and similarly
ak+1

Ak+1 + ak+1
=

2

1 +
√

1 + 4Ak+1

ηk+1

.

In Case I, we have ηk+1 = ηk/β and Ak+1 ≥ Ak. Hence, it implies that Ak+1/ηk+1 ≥ βAk/ηk,
which leads to

ak+1

Ak+1 + ak+1
≤ 2

1 +
√
1 + 4βAk

ηk

≤ 2
√
β +

√
β + 4βAk

ηk

=
1√
β

2

1 +
√

1 + 4Ak

ηk

=
1√
β

ak
Ak + ak

.

where the second inequality follows from the fact that β ≤ 1.

In Case II, we have ηk+1 = η̂k = γkηk and Ak+1 = Ak + γkak. Since we also have ak ≥ ηk and
γk ≤ β, we obtain Ak+1/ηk+1 ≥ Ak/(γkηk) + 1 ≥ Ak/(βηk) + 1. Hence,

ak+1

Ak+1 + ak+1
≤ 2

1 +
√
5 + 4Ak

βηk

≤ 2

1 + 1√
β

√
1 + 4Ak

ηk

≤ 2
√
β√

β + 1

2

1 +
√
1 + 4Ak

ηk

=
2
√
β√

β + 1

ak
Ak + ak

,

where we used β > 1/5 in the second inequality and the fact that 1 + 1√
β
x ≥

√
β+1

2
√
β
(1 + x) for

x ≥ 1 in the last inequality.

Remark 5. If β ≤ 1/5, then in Case I we still have ak+1

Ak+1+ak+1
≤ 1√

β
ak

Ak+ak
, while in Case II we

have ak+1

Ak+1+ak+1
≤ 2√

5+1
ak

Ak+ak
. Thus, in the case where β ≤ 1/5, the derivation below still holds

except that the absolute constant C2 will be different.

Next, as a corollary of Lemma 6, we establish an upper bound on the series
∑N−1

k=0
ak

Ak+ak
. Moreover,

we use this result to establish an upper bound for
∑N−1

k=0 ∥x̂k+1 − yk∥.

Lemma 7. We have
N−1∑
k=0

ak
Ak + ak

≤ 1 + 2
√
β − β√

β − β

(
1 + log

AN

A1

)
. (41)

Moreover,

N−1∑
k=0

∥x̂k+1 − yk∥ ≤

√
1

1− σ2

1 + 2
√
β − β√

β − β

(
1 + log

AN

A1

)
∥z0 − x∗∥. (42)

Proof. Given the initial values of Ak and ak we have

N−1∑
k=0

ak
Ak + ak

= 1 +

N−1∑
k=1

ak
Ak + ak

= 1 +
∑

k∈B,k≥1

ak
Ak + ak

+
∑

k/∈B,k≥1

ak
Ak + ak

(43)
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Note that using the result in Lemma 6∑
k∈B,k≥1

ak
Ak + ak

≤
N−2∑
k=0

ak+1

Ak+1 + ak+1
(44)

=
∑

k/∈B,k≥0

ak+1

Ak+1 + ak+1
+

∑
k∈B,k≥0

ak+1

Ak+1 + ak+1
(45)

≤
∑

k/∈B,k≥0

1√
β

ak
Ak + ak

+
∑

k∈B,k≥0

2
√
β√

β + 1

ak
Ak + ak

(46)

≤ 1√
β
+

∑
k/∈B,k≥1

1√
β

ak
Ak + ak

+
∑

k∈B,k≥1

2
√
β√

β + 1

ak
Ak + ak

. (47)

Hence, if we move the last term in the above upper bound to the left hand side and rescale both sides
of the resulted inequality we obtain∑

k∈B,k≥1

ak
Ak + ak

≤ 1 +
√
β√

β − β

(
1 +

∑
k/∈B,k≥1

ak
Ak + ak

)
.

Now, if we replace the above upper bound into (43) we obtain
N−1∑
k=0

ak
Ak + ak

≤ 1 + 2
√
β − β√

β − β

(
1 +

∑
k/∈B,k≥1

ak
Ak + ak

)
. (48)

Moreover, note that for k /∈ B, we have Ak+1 = Ak + ak. Hence,∑
k/∈B,k≥1

ak
Ak + ak

=
∑

k/∈B,k≥1

(
1− Ak

Ak+1

)
≤

∑
k/∈B,k≥1

(log(Ak+1)− log(Ak))

≤
N−1∑
k=1

(log(Ak+1)− log(Ak)) = log
AN

A1
.

Now if we replace the above upper bound, i.e., log AN

A1
with

∑
k/∈B,k≥1

ak

Ak+ak
into the expression in

the right-hand side of (48) we obtain the result in (41).

Next, note that by Cauchy-Schwarz inequality, we have

N−1∑
k=0

∥x̂k+1 − yk∥ ≤

√√√√N−1∑
k=0

η2k
a2k

N−1∑
k=0

a2k
η2k

∥x̂k+1 − yk∥2 ≤

√√√√ 1

1− σ2

N−1∑
k=0

η2k
a2k

∥z0 − x∗∥,

where the last inequality follows from (21). Moreover, based on the expression for ak in (2) and the
result in (41) that we just proved, we have

N−1∑
k=0

η2k
a2k

=

N−1∑
k=0

a2k
(Ak + ak)2

≤
N−1∑
k=0

ak
Ak + ak

≤ 1 + 2
√
β − β√

β − β

(
1 + log

AN

A1

)
.

Combining the two inequalities above leads to (42).

Now we are ready to present and prove Lemma 8 which characterizes a bound on the path length of
the sequence {yk}Nk=0

Lemma 8. Consider the iterates generated by Algorithm 1. Then for any N ,
N−1∑
k=0

∥yk+1 − yk∥ ≤ C2

(
1 + log

AN

A1

)
∥z0 − x∗∥.

where

C2 = 2

√
1

1− σ2

1 + 2
√
β − β√

β − β
+

1√
β

(
1 +

√
2

1− σ2

)
1 + 2

√
β − β√

β − β
(49)
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Proof. By the triangle inequality, we have

∥yk − yk+1∥ ≤ ∥x̂k+1 − yk∥+ ∥x̂k+1 − yk+1∥. (50)

We again distinguish two cases.

Case I: η̂k = ηk. In this case x̂k+1 = xk+1 and yk+1 = Ak+1

Ak+1+ak+1
xk+1 +

ak+1

Ak+1+ak+1
zk+1, hence

∥x̂k+1−yk+1∥ = ∥xk+1−yk+1∥ =
ak+1∥zk+1 − xk+1∥

Ak+1 + ak+1
≤ 1√

β

(
1+

√
2

1− σ2

)
ak∥z0 − x∗∥
Ak + ak

,

where we used Lemma 6 and the fact that ∥zk+1 − xk+1∥ ≤ ∥zk+1 − x∗∥ + ∥xk+1 − x∗∥ ≤
(1 +

√
2

1−σ2 )∥z0 − x∗∥ in the last inequality. Therefore, using (50) and the above bound we have

∥yk − yk+1∥ ≤ ∥x̂k+1 − yk∥+
1√
β

(
1 +

√
2

1− σ2

)
ak

Ak + ak
∥z0 − x∗∥. (51)

Case II: η̂k < ηk. Since xk+1 = Ak

Ak+γkak
xk+

γkak

Ak+γkak
z̃k+1 and x̂k+1 = Ak

Ak+ak
xk+

ak

Ak+ak
z̃k+1,

we get

x̂k+1 =
Ak

Ak + ak

(
xk+1+

γkak
Ak

(xk+1−z̃k+1)
)
+

ak
Ak + ak

z̃k+1 =
Ak + γkak
Ak + ak

xk+1+
(1− γk)ak
Ak + ak

z̃k+1.

Thus, given the above equality and the expression yk+1 = Ak+1

Ak+1+ak+1
xk+1 +

ak+1

Ak+1+ak+1
zk+1, we

have

∥x̂k+1 − yk+1∥ ≤ (1− γk)ak
Ak + ak

∥z̃k+1 − zk+1∥+
∣∣∣∣ (1− γk)ak
Ak + ak

− ak+1

Ak+1 + ak+1

∣∣∣∣ ∥zk+1 − xk+1∥.

(52)
Moreover, based on the result in (26), we can upper bound ∥z̃k+1 − zk+1∥ by σ ak

ηk
∥x̂k+1 − yk∥

which implies that

(1− γk)ak
Ak + ak

∥z̃k+1−zk+1∥ ≤ σ
(1− γk)a

2
k

ηk(Ak + ak)
∥x̂k+1−yk∥ = σ(1− γk)∥x̂k+1−yk∥ ≤ ∥x̂k+1−yk∥

where the equality holds due to the definition of ak, and the last inequality holds as both γk and σ are
in (0, 1). On the other hand, note that

(1− γk)ak
Ak + ak

− ak+1

Ak+1 + ak+1
≤ (1− γk)ak

Ak + ak
≤ ak

Ak + ak
, (53)

ak+1

Ak+1 + ak+1
− (1− γk)ak

Ak + ak
≤ 2

√
βak√

β + 1(Ak + ak)
− (1− γk)ak

Ak + ak
≤ ak

Ak + ak
. (54)

where in the second bound we used the result in Lemma 6 and the fact that 2sqrtβ√
β+1

< 1. Hence, we
get

∥x̂k+1−yk+1∥ ≤ ∥x̂k+1−yk∥+
ak∥zk+1 − xk+1∥

Ak + ak
≤ ∥x̂k+1−yk∥+

(
1+

√
2

1− σ2

)
ak∥z0 − x∗∥
Ak + ak

,

where the last inequality follows from the fact ∥zk+1 − xk+1∥ ≤ ∥zk+1 − x∗∥+ ∥xk+1 − x∗∥ and
the bounds in Lemma 5. Now by applying the above upper bound into (50) we obtain that

∥yk − yk+1∥ ≤ 2∥x̂k+1 − yk∥+
(
1 +

√
2

1− σ2

)
ak

Ak + ak
∥z0 − x∗∥. (55)

Considering the upper bounds established for ∥yk − yk+1∥ in case I (equation (51)) and case II
(equation (55)), we can conclude that

∥yk − yk+1∥ ≤ 2∥x̂k+1 − yk∥+
1√
β

(
1 +

√
2

1− σ2

)
ak

Ak + ak
∥z0 − x∗∥. (56)

Finally, Lemma 8 follows from summing (56) over k = 0 to N − 1 and the result of Lemma 7.
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Subroutine 1 Backtracking line search

1: Input: iterate y ∈ Rd, gradient g ∈ Rd, Hessian approximation B ∈ Sd
+, initial trial step size η > 0

2: Parameters: line search parameters β ∈ (0, 1), α1 ≥ 0 and α2 > 0 such that α1 + α2 < 1
3: Set η̂ ← η
4: Compute s+ ← LinearSolver(I+ η̂B,−η̂g;α1) and x̂+ ← y + s+
5: while ∥x̂+ − y + η̂∇f(x̂+)∥2 > (α1 + α2)∥x̂+ − y∥2 do
6: Set x̃+ ← x̂+ and η̂ ← βη̂
7: Compute s+ ← LinearSolver(I+ η̂B,−η̂g;α1) and x̂+ ← y + s+
8: end while
9: if η̂ = η then

10: Return η̂ and x̂+

11: else
12: Return η̂, x̂+ and x̃+

13: end if

B Line Search Subroutine

In this section, we provide further details on our line search subroutine in Section 3.1. For complete-
ness, the pseudocode of our line search scheme is shown in Subroutine 1. In Section B.1, we prove
that Subrountine 1 will always terminate in a finite number of steps. In Section B.2, we provide the
proof of Lemma 1.

B.1 The Line Search Subroutine Terminates Properly

Recall that in our line search scheme, we keep decreasing the step size η̂ by a factor of β until we
find a pair (η̂, x̂+) satisfying (11) (also see Lines 5 and 6 in Subroutine 1). In the following lemma,
we show that when the step size η̂ is smaller than a certain threshold, then the pair (η̂, x̂+) satisfies
both conditions in (10) and (11), which further implies that Subroutine 1 will stop in a finite number
of steps.
Lemma 9. Suppose Assumption 1 holds. If η̂ < α2

L1+∥B∥op
and x̂+ is computed according to (12),

then the pair (η̂, x̂+) satisfies the conditions in (10) and (11).

Proof. By Definition 1, the pair (η̂, x̂+) always satisfies the condition in (10) when x̂+ is computed
from (12). Hence, in the following we only need to prove that the condition in (11) also holds. Recall
that g = ∇f(y). By Assumption 1, the function f is L1-smooth and thus we have

∥∇f(x̂+)− g∥ = ∥∇f(x̂+)−∇f(y)∥ ≤ L1∥x̂+ − y∥.

Moreover, by using the triangle inequality, we get

∥∇f(x̂+)− g −B(x̂+ − y)∥ ≤ ∥∇f(x̂+)− g∥+ ∥B(x̂+ − y)∥ ≤ (L1 + ∥B∥op)∥x̂+ − y∥.

Hence, if η̂ ≤ α2

L1+∥B∥op
, we have

η̂∥∇f(x̂+)− g −B(x̂+ − y)∥ ≤ α2∥x̂+ − y∥. (57)

Finally, by using the triangle inequality, we can combine (10) and (57) to show that

∥x̂+ − y + η̂∇f(x̂+)∥ = ∥x̂+ − y + η̂(g +B(x̂+ − y)) + η̂(∇f(x̂+)− g −B(x̂+ − y))∥
≤ ∥x̂+ − y + η̂(g +B(x̂+ − y))∥+ ∥η̂(∇f(x̂+)− g −B(x̂+ − y))∥
≤ α1∥x̂+ − y∥+ α2∥x̂+ − y∥
≤ (α1 + α2)∥x̂+ − y∥,

which means the condition in (11) is satisfied. The proof is now complete.

B.2 Proof of Lemma 1

We follow a similar proof strategy as Lemma 3 in [35]. In the first case where k /∈ B, by definition, the
line search subroutine accepts the initial step size ηk, i.e., η̂k = ηk. In the second case where k ∈ B,
the line search subroutine backtracks and returns the auxiliary iterate x̃k+1, which is computed from
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(12) using the step size η̃k ≜ η̂k/β. Since the step size η̃k is rejected in our line search subroutine, it
implies that the pair (x̃k+1, η̃k) does not satisfy (11), i.e.,

∥x̃k+1 − yk + η̃k∇f(x̃k+1)∥ > (α1 + α2)∥x̃k+1 − yk∥. (58)

Moreover, since we compute x̃k+1 from (12) using step size η̃k, the pair (η̃k, x̃k+1) also satisfies the
condition in (10), which means

∥x̃k+1 − yk + η̃k(∇f(yk) +Bk(x̃k+1 − yk))∥ ≤ α1∥x̃k+1 − yk∥. (59)

Hence, by using the triangle inequality, we can combine (58) and (59) to get

η̃k∥∇f(x̃k+1)−∇f(yk)−Bk(x̃k+1 − yk)∥
≥ ∥x̃k+1 − yk + η̃k∇f(x̃k+1)∥ − ∥x̃k+1 − yk + η̃k(∇f(yk) +Bk(x̃k+1 − yk))∥
> (α1 + α2)∥x̃k+1 − yk∥ − α1∥x̃k+1 − yk∥
= α2∥x̃k+1 − yk∥,

which implies that

η̂k = βη̃k >
α2β∥x̃k+1 − yk∥

∥∇f(x̃k+1)−∇f(yk)−Bk(x̃k+1 − yk)∥
.

This proves the first inequality in (13).

To show the second inequality in (13), first note that x̃k+1 and x̂k+1 are the inexact solutions of the
linear system of equations

(I+ η̃kBk)(x− yk) = −η̃kgk and (I+ η̂kBk)(x− yk) = −η̂kgk,

respectively. Let x̃∗
k+1 and x̂∗

k+1 be the exact solutions of the above linear systems, that is, x̃∗
k+1 =

yk − η̃k(I + η̃kBk)
−1gk and x̂∗

k+1 = yk − η̂k(I + η̂kBk)
−1gk. We first establish the following

inequality between ∥x̃∗
k+1 − yk∥ and ∥x̂∗

k+1 − yk∥:

∥x̃∗
k+1 − yk∥ ≤ 1

β
∥x̂∗

k+1 − yk∥. (60)

This follows from

∥x̃∗
k+1−yk∥ = ∥η̃k(I+η̃kBk)

−1gk∥ ≤ η̃k∥(I+η̂kBk)
−1gk∥ =

η̃k
η̂k

∥x̂∗
k+1−yk∥ =

1

β
∥x̂∗

k+1−yk∥,

where we used the fact that (I+ η̃kBk)
−1 ⪯ (I+ η̂kBk)

−1 in the first inequality. Furthermore, we
can show that

(1− α1)∥x̂k+1 − yk∥ ≤ ∥x̂∗
k+1 − yk∥ ≤ (1 + α1)∥x̂k+1 − yk∥, (61)

(1− α1)∥x̃k+1 − yk∥ ≤ ∥x̃∗
k+1 − yk∥ ≤ (1 + α1)∥x̃k+1 − yk∥. (62)

We will only prove (61) in the following, as (62) can be proved similarly. Note that since (η̂k, x̂k+1)
satisfies the condition in (10), we can write

∥x̂k+1 − yk + η̂k(gk +Bk(x̂k+1 − yk))∥ = ∥(I+ η̂kBk)(x̂k+1 − x̂∗
k+1)∥ ≤ α1∥x̂k+1 − yk∥.

Moreover, since Bk ⪰ 0, we have ∥x̂k+1−x̂∗
k+1∥ ≤ ∥(I+η̂kBk)(x̂k+1−x̂∗

k+1)∥ ≤ α1∥x̂k+1−yk∥.
Thus, by the triangle inequality, we obtain

∥x̂∗
k+1 − yk∥ ≤ ∥x̂k+1 − yk∥+ ∥x̂∗

k+1 − x̂k+1∥ ≤ (1 + α1)∥x̂k+1 − yk∥.
∥x̂∗

k+1 − yk∥ ≥ ∥x̂k+1 − yk∥ − ∥x̂∗
k+1 − x̂k+1∥ ≥ (1− α1)∥x̂k+1 − yk∥.

which proves (61). Finally, by combining (60), (61) and (62), we conclude that

∥x̃k+1 − yk∥ ≤ 1

1− α1
∥x̃∗

k+1 − yk∥ ≤ 1

(1− α1)β
∥x̂∗

k+1 − yk∥ ≤ 1 + α1

(1− α1)β
∥x̂k+1 − yk∥.

This completes the proof.
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C Hessian Approximation Update

In this section, we first prove Lemma 2 in Section C.1 and remark on the computational cost of
Euclidean projection in Section C.2. Then we present a general online learning algorithm using an
approximate separation oracle in Section C.3 and fully describe our Hessian approximation update in
Section C.4.

C.1 Proof of Lemma 2

We decompose the sum
∑N−1

k=0
1
η̂2
k

as

N−1∑
k=0

1

η̂2k
=

1

η̂20
+

∑
1≤k≤N−1,k∈B

1

η̂2k
+

∑
1≤k≤N−1,k/∈B

1

η̂2k
(63)

Recall that we have η̂k = ηk for k /∈ B. Hence, we can further bound the last term by

∑
1≤k≤N−1,k/∈B

1

η̂2k
=

∑
1≤k≤N−1,k/∈B

1

η2k
≤

N−1∑
k=1

1

η2k

=
1

η21
+

∑
1≤k≤N−2,k∈B

1

η2k+1

+
∑

1≤k≤N−2,k/∈B

1

η2k+1

.

Recall that we have ηk+1 = η̂k if k ∈ B and ηk+1 = η̂k/β otherwise. Hence, we further have∑
1≤k≤N−1,k/∈B

1

η̂2k
≤ 1

η21
+

∑
1≤k≤N−2,k∈B

1

η2k+1

+
∑

1≤k≤N−2,k/∈B

1

η2k+1

=
1

η21
+

∑
1≤k≤N−2,k∈B

1

η̂2k
+

∑
1≤k≤N−2,k/∈B

β2

η̂2k

≤ 1

η21
+

∑
1≤k≤N−1,k∈B

1

η̂2k
+

∑
1≤k≤N−1,k/∈B

β2

η̂2k
.

By moving the last term to the left-hand side and dividing both sides by 1− β2, we obtain

∑
1≤k≤N−1,k/∈B

1

η̂2k
≤ 1

1− β2

 1

η21
+

∑
1≤k≤N−1,k∈B

1

η̂2k

 . (64)

Furthermore, since η1 ≥ η̂0, we have 1
η2
1
≤ 1

η̂2
0

. Hence, by combining (63) and (64), we get

N−1∑
k=0

1

η̂2k
≤ 2− β2

1− β2

(
1

η̂20
+

∑
1≤k≤N−1,k∈B

1

η̂2k

)
≤ 2− β2

(1− β2)σ2
0

+
2− β2

1− β2

∑
0≤k≤N−1,k∈B

1

η̂2k
, (65)

where in the last inequality we used the fact that η̂k = σ0 if 0 /∈ B. Finally, (15) follows from
Lemma 1 and (65).

C.2 The Computational Cost of Euclidean Projection

Recall that Z ≜ {B ∈ Sd+ : 0 ⪯ B ⪯ L1I}. As described in [35, Section D.1], the Euclidean
projection on Z has a closed form solution. Specifically, Given the input A ∈ Sd, we first need
to perform the eigendecomposition A = VΛV⊤, where V is an orthogonal matrix and Λ =
diag(λ1, . . . , λd) is a diagonal matrix. Then the Euclidean projection of A onto Z is given by
VΛ̂V⊤, where Λ̂ is a diagonal matrix with the diagonals being λ̂k = min{L1,max{0, λk}} for
1 ≤ k ≤ d. Since the eigendecomposition requires O(d3) arithmetic operations in general, the cost
of computing the Euclidean projection can be prohibitive.

24



Algorithm 2 Projection-Free Online Learning

1: Input: Initial point w0 ∈ BR(0), step size ρ > 0, δ > 0
2: for t = 0, 1, . . . T − 1 do
3: Query the oracle (γt, st)← SEP(wt; δt)
4: if γt ≤ 1 then # Case I: we have wt ∈ C
5: Set xt ← wt and play the action xt

6: Receive the loss ℓt(xt) and the gradient gt = ∇ℓt(xt)
7: Set g̃t ← gt

8: else # Case II: we have wt/γt ∈ C
9: Set xt ← wt/γt and play the action xt

10: Receive the loss ℓt(xt) and the gradient gt = ∇ℓt(xt)
11: Set g̃t ← gt +max{0,−⟨gt,xt⟩}st
12: end if
13: Update wt+1 ← R

max{∥wt−ρg̃t∥2,R} (wt−ρg̃t) # Euclidean projection onto BR(0)

14: end for

C.3 Online Learning with an Approximate Separation Oracle

To set the stage for our Hessian approximation matrix update, we first describe a projection-free
online learning algorithm in a general setup. Specifically, the online learning protocol is as follows:
For rounds t = 0, 1, . . . , T − 1, a learner chooses an action xt ∈ C from a convex set C and then
observes a loss function ℓt : Rn → R. We measure the performance of an online learning algorithm
by the dynamic regret [49, 52] defined by

D-RegT (u1, . . . ,uT−1) ≜
T−1∑
t=0

ℓt(xt)−
T−1∑
t=0

ℓt(ut),

where {ut}Tt=1 is a sequence of comparators. Moreover, we assume that the convex set C is contained
in the Euclidean ball BR(0) for some R > 0, and we assume 0 ∈ C without loss of generality.

Most existing online learning algorithms are projection-based, that is, they require computing the
Euclidean projection on the action set C. However, as we have seen in Section C.2, computing the
projection is computationally costly in our setting. Inspired by the work in [50], we will describe an
online learning algorithm that relies on an approximate separation oracle defined in Definition 3.
Definition 3. The oracle SEP(w; δ) takes w ∈ BR(0) and δ > 0 as input and returns a scalar γ > 0
and a vector s ∈ Rn with one of the following possible outcomes:

• Case I: γ ≤ 1 which implies that w ∈ C;
• Case II: γ > 1 which implies that w/γ ∈ C and ⟨s,w − x⟩ ≥ γ − 1− δ ∀x ∈ C.

To sum up, the oracle SEP(w; δ) has two possible outcomes: it either certifies that w is feasible,
i.e., w ∈ C, or it produces a scaled version of w that is in C and gives an approximate separating
hyperplane between w and the set C.

The full algorithm is shown in Algorithm 2. The key idea here is to introduce surrogate loss functions
ℓ̃t(w) = ⟨g̃t,w⟩ on the larger set BR(0) for 0 ≤ t ≤ T − 1, where g̃t is the surrogate gradient
to be defined later. On a high level, we will run online projected gradient descent with ℓ̃t(w) to
update the auxiliary iterates {wt}t≥0 (note that the projection on BR(0) is easy to compute), and then
produce the actions {xt}t≥0 for the original problem by calling the SEP(wt; δ) oracle in Definition 3.
The follow lemma shows that the immediate regret ℓ̃t(wt)− ℓ̃t(x) can serve as an upper bound on
ℓt(xt)− ℓt(x) for any x ∈ C.

Lemma 10. Let {xt}T−1
t=0 be the iterates generated by Algorithm 2. Then we have xt ∈ C for

t = 0, 1, . . . , T − 1. Also, for any x ∈ C, we have

⟨gt,xt − x⟩ ≤ ⟨g̃t,wt − x⟩+max{0,−⟨gt,xt⟩}δt (66)

≤ 1

2ρ
∥wt − x∥22 −

1

2ρ
∥wt+1 − x∥22 +

ρ

2
∥g̃t∥22 +max{0,−⟨gt,xt⟩}δt, (67)

and
∥g̃t∥ ≤ ∥gt∥+ |⟨gt,xt⟩|∥st∥. (68)
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Subroutine 2 Online Learning Guided Hessian Approximation Update

1: Input: Initial matrix B0 ∈ Sd s.t. 0 ⪯ B0 ⪯ L1I, step size ρ > 0, δ > 0, {qt}T−1
t=1

2: Initialize: set W0 ← 2
L1

(B0 − L1
2
I), G0 ← 2

L1
∇ℓ0(B0) and G̃0 ← G0

3: for t = 1, . . . , T − 1 do
4: Query the oracle (γt,St)← SEP(Wt; δt, qt)
5: if γt ≤ 1 then # Case I
6: Set B̂t ←Wt and Bt ← L1

2
B̂t +

L1
2
I

7: Set Gt ← 2
L1
∇ℓt(Bt) and G̃t ← Gt

8: else # Case II
9: Set B̂t ←Wt/γt and Bt ← L1

2
B̂t +

L1
2
I

10: Set Gt ← 2
L1
∇ℓt(Bt) and G̃t ← Gt +max{0,−⟨Gt,Bt⟩}St

11: end if
12: Update Wt+1 ←

√
d

max{
√
d,∥Wt−ρG̃t∥F } (Wt−ρG̃t) # Euclidean projection onto B√

d(0)

13: end for

Proof. By the definition of SEP in Definition 3, we can see that xt ∈ C for all t = 1, . . . , T . We
now show that both (66) and (68) hold. We distinguish two cases depending on the outcomes of
SEP(wt; δt).

• If γt ≤ 1, then we have xt = wt and g̃t = gt. In this case, (66) and (68) trivially hold.

• If γt > 1, then xt = wt/γt and g̃t = gt +max{0,−⟨gt,xt⟩}st. We can then write
⟨g̃t,wt − x⟩ = ⟨gt +max{0,−⟨gt,xt⟩}st,wt − x⟩

= ⟨gt, γtxt − x⟩+max{0,−⟨gt,xt⟩}⟨st,wt − x⟩
≥ ⟨gt,xt − x⟩+ (γt − 1)⟨gt,xt⟩+max{0,−⟨gt,xt⟩}(γt − 1− δt)

= ⟨gt,xt − x⟩ −max{0,−⟨gt,xt⟩}δt + (γt − 1)max{0, ⟨gt,xt⟩}
≥ ⟨gt,xt − x⟩ −max{0,−⟨gt,xt⟩}δt,

which leads to (66) after rearranging. Also, by the triangle inequality we obtain
∥g̃t∥ ≤ ∥gt∥+max{0,−⟨gt,xt⟩}∥st∥ ≤ ∥gt∥+ |⟨gt,xt⟩|∥st∥,

which proves (68).

Finally, from the update rule of wt+1, for any x ∈ C ⊂ BR(0) we have ⟨wt − ρg̃t −wt+1,wt+1 −
x⟩ ≥ 0, which further implies that

⟨g̃t,wt − x⟩ ≤ ⟨g̃t,wt −wt+1⟩+
1

ρ
⟨wt −wt+1,wt+1 − x⟩ (69)

= ⟨g̃t,wt −wt+1⟩+
1

2ρ
∥wt − x∥22 −

1

2ρ
∥wt+1 − x∥22 −

1

2ρ
∥wt −wt+1∥22 (70)

≤ 1

2ρ
∥wt − x∥22 −

1

2ρ
∥wt+1 − x∥22 +

ρ

2
∥g̃t∥22. (71)

Combining (66) and (71) leads to (67).

C.4 Projection-free Hessian Approximation Update

Now we are ready to describe our Hessian approximation matrix update, which is an specific
instantiation of the general projection-free online learning algorithm shown in Algorithm 2. In
particular, we only need to specify the convex set C as well as the SEP oracle.

Note that we have Z = {B ∈ Sd+ : 0 ⪯ B ⪯ L1I} in our online learning problem in Section 3.2.
Since the projection-free scheme in Subroutine 2 requires the set C to contain the origin, we consider
the transform B̂ ≜ 2

L1

(
B− L1

2 I
)

and let C = Ẑ ≜ {B̂ ∈ Sd : −I ⪯ B̂ ⪯ I} = {B̂ ∈ Sd : ∥B̂∥op ≤
1}. We note that 0 ∈ Ẑ and Ẑ ⊂ B√

d(0) = {W ∈ Sd : ∥W∥F ≤
√
d}. Moreover, we can see that

the approximate separation oracle SEP(W; δ, q) defined in Definition 2 corresponds to a stochastic
version of the oracle in Definition 3. The full algorithm is described in Subroutine 2 and we defer the
specific implementation details of SEP(W; δ, q) to Section E.2.
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D Proof of Theorem 1

Regarding the choices of the hyper-parameters, we consider Algorithm 1 with the line search scheme
in Subroutine 1, where α1, α2 ∈ (0, 1) with α1 + α2 < 1 and β ∈ (0, 1), and with the Hessian
approximation update in Subroutine 2, where ρ = 1

128 , qt = p/2.5(t+1) log2(t+1) for t ≥ 1, and
δt = 1/(

√
t+ 2 ln(t+ 2)) for t ≥ 0. In the following, we first provide a proof sketch of Theorem 1.

The complete proofs of the lemmas shown below will be provided in the subsequent sections.

Proof Sketch. To begin with, throughout the proof, we assume that every call of the SEP oracle in
Definition 2 is successful during the execution of Algorithm 1. Indeed, by using the union bound, we
can bound the failure probability by

∑T−1
t=1 qt ≤ p

2.5

∑∞
t=2

1
t log2 t

≤ p. In particular, we note that
Subroutine 2 ensures that 0 ⪯ Bk ⪯ L1I for any k ≥ 0.

We first prove Part (a) of Theorem 1, which relies on the following lemma.

Lemma 11. For k ∈ B, we have ℓk(Bk) ≜
∥wk−Bksk∥2

∥sk∥2 ≤ L2
1.

We combine Lemma 2 and Lemma 11 to derive
N−1∑
k=0

1

η̂2k
≤ 2− β2

(1− β2)σ2
0

+
2− β2

(1− β2)α2
2β

2

∑
k∈B

∥wk −Bksk∥2

∥sk∥2
≤ 2− β2

(1− β2)σ2
0

+
(2− β2)L2

1

(1− β2)α2
2β

2
N.

By further using (14) and the elementary inequality that
√
a+ b ≤

√
a+

√
b, we obtain

f(xN )− f(x∗) ≤ C4L1∥z0 − x∗∥2

N2
+

C5∥z0 − x∗∥2

σ0N2.5
,

where C4 = C1

√
2−β2

(1−β2)σ2
0
+ (2−β2)

(1−β2)α2
2β

2 and C5 = C1

√
2−β2

(1−β2)σ2
0

.

Next, we divide the proof of Part (b) of Theorem 1 into the following steps.

Step 1: We first use regret analysis to control the cumulative loss
∑T−1

t=0 ℓt(Bt) incurred by our
online learning algorithm in Subroutine 2. In particular, we prove a dynamic regret bound, where we
compare the cumulative loss of our algorithm against the one achieved by the sequence {Ht}T−1

t=0 .

Lemma 12. We have
T−1∑
t=0

ℓt(Bt) ≤ 256∥B0 −H0∥2F + 4

T−1∑
t=0

ℓt(Ht) + 2L2
1

T−1∑
t=0

δ2t + 512L1

√
d

T−1∑
t=0

∥Ht+1 −Ht∥F ,

where Ht ≜ ∇2f(yt).

Step 2: In light of Lemma 12, it suffices to upper bound the cumulative loss
∑T−1

t=0 ℓt(Ht) and the
path-length

∑T−1
t=0 ∥Ht+1 − Ht∥F in the following lemma. To achieve this, we use the stability

properties of our algorithm in (21) and Lemma 8, which is most technical part of the proof.

Lemma 13. We have
T−1∑
t=0

ℓt(Ht) ≤
C3

4
L2
2∥z0−x∗∥2 and

T−1∑
t=0

∥Ht+1−Ht∥F ≤ C2

√
dL2

(
1+log

AN

A1

)
∥z0−x∗∥,

(72)
where C2 is defined in (49) and C3 = (1+α1)

2

β2(1−α1)2(1−σ2) .

Step 3: Thus, we obtain an upper bound on
∑T−1

t=0 ℓt(Bt) by combining Lemma 12 and Lemma 13.
Finally, in the following lemma, we prove an upper bound on 1

AN
by further using Lemma 2 and

Proposition 1.
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Lemma 14. We have

1

AN
≤ 1

N2.5

(
M + C10L1L2d∥z0 − x∗∥ log+

(
max{ L1

α2β
, 1
σ0
}N2.5

√
M

)) 1
2

,

where we define log+(x) ≜ max{log(x), 0},

M =
C6

σ2
0

+ C7L
2
1 + C8∥B0 −H0∥2F + C9L

2
2∥z0 − x∗∥2 + C10L1L2d∥z0 − x∗∥,

and Ci (i = 6, . . . , 10) are absolute constants given by

C6 =
4C2

1 (2− β2)

1− β2
, C7 =

5C6

α2
2β

2
, C8 =

256C6

α2
2β

2
, C9 =

C3C6

α2
2β

2
, C10 =

512C2C6

α2
2β

2
.

Therefore, Part (b) of Theorem 1 immediately follows from Proposition 1.

In the remaining of this section, we present the proofs for the above lemmas that we used to prove the
results in Theorem 1.

D.1 Proof of Lemma 11

Recall that wk ≜ ∇f(x̃k+1) − ∇f(yk) and sk ≜ x̃k+1 − yk for k ∈ B. We can write
∇f(x̃k+1) − ∇f(yk) = H̄k(x̃k+1 − yk) by using the fundamental theorem of calculus, where
H̄k =

∫ 1

0
∇2f(tx̃k+1 + (1 − t)yk) dt. Since we have 0 ⪯ ∇2f(x) ⪯ L1I for all x ∈ Rd by

Assumption 1, it implies that 0 ⪯ H̄k ⪯ L1I. Moreover, since 0 ⪯ Bk ⪯ L1I, we further have
−L1I ⪯ H̄k −Bk ⪯ L1I, which yields ∥H̄k −Bk∥op ≤ L1. Thus, we have

∥wk −Bksk∥ = ∥(H̄k −Bk)(x̃k+1 − yk)∥ ≤ L1∥x̃k+1 − yk∥,

which proves that ℓk(Bk) ≤ L2
1.

D.2 Proof of Lemma 12

To prove Lemma 12, we first present the following lemma showing a smooth property of the loss
function ℓk. The proof is similar to [35, Lemma 15].
Lemma 15. For k ∈ B, we have

∇ℓk(B) =
1

∥sk∥2
(
−sk(wk −Bsk)

T − (wk −Bsk)s
T
k

)
. (73)

Moreover, for any B ∈ Sd, it holds that

∥∇ℓk(B)∥F ≤ ∥∇ℓk(B)∥∗ ≤ 2
√

ℓk(B), (74)

where ∥ · ∥F and ∥ · ∥∗ denote the Frobenius norm and the nuclear norm, respectively.

Proof. It is straightforward to verify the expression in (73). The first inequality in (74) follows from
the fact that ∥A∥F ≤ ∥A∥∗ for any matrix A ∈ Sd. For the second inequality, note that

∥∇ℓk(B)∥∗ ≤ 1

∥sk∥2
(
∥sk(wk −Bsk)

T∥∗ + ∥(wk −Bsk)s
T
k∥∗
)

≤ 2

∥sk∥2
∥wk −Bsk∥∥sk∥ =

2∥wk −Bsk∥
∥sk∥

= 2
√
ℓk(B),

where in the first inequality we used the triangle inequality, and in the second inequality we used the
fact that the rank-one matrix uv⊤ has only one nonzero singular value ∥u∥∥v∥ .

We will also need the following helper lemma.
Lemma 16. If the real number x satisfies x ≤ A+B

√
x, then we have x ≤ 2A+B2.

28



Proof. From the assumption, we have(√
x− B

2

)2

≤ A+
B2

4
.

Hence, we obtain

x ≤

(√
A+

B2

4
+

B

2

)2

≤ 2A+B2.

Before proving Lemma 12, we also present the following lemma that bounds the loss in each round.

Lemma 17. For any H ∈ Z , we have

ℓt(Bt) ≤ 4ℓt(H) + 64L2
1∥Wt − Ĥ∥2F − 64L2

1∥Wt+1 − Ĥ∥2F + 2L2
1δ

2
t .

Proof. By letting xt = B̂t, x = Ĥ ≜ 2
L1

(H− L1

2 I), gt = Gt ≜ 2
L1

∇ℓt(Bt), g̃t = G̃t, wt = Wt

in Lemma 10, we obtain:

(i) B̂t ∈ Ẑ , which means that ∥B̂t∥op ≤ 1.

(ii) It holds that

⟨Gt, B̂t − Ĥ⟩ ≤ 1

2ρ
∥Wt − Ĥ∥2F − 1

2ρ
∥Wt+1 − Ĥ∥2F +

ρ

2
∥G̃t∥2F +max{0,−⟨Gt, B̂t⟩}δt,

(75)

∥G̃t∥F ≤ ∥Gt∥F + |⟨Gt, B̂t⟩|∥St∥F . (76)

First, note that ∥St∥F ≤ 3 by Definition 2 and |⟨Gt, B̂t⟩| ≤ ∥Gt∥∗∥B̂t∥op ≤ ∥Gt∥∗. Together with
(76), we get

∥G̃t∥F ≤ ∥Gt∥F + 3∥Gt∥∗ ≤ 4∥Gt∥∗ ≤ 16

L1

√
ℓt(Bt), (77)

where we used the fact that Gt =
2
L1

∇ℓt(Bt) and Lemma 15 in the last inequality. Furthermore,
since ℓt is convex, we have

ℓt(Bt)− ℓt(H) ≤ ⟨∇ℓt(Bt),Bt −H⟩ =
(
L1

2

)2

⟨Gt, B̂t − Ĥ⟩,

where we used Gt =
2
L1

∇ℓt(Bt), B̂t ≜ 2
L1

(Bt − L1

2 I), and Ĥ ≜ 2
L1

(H − L1

2 I). Therefore, by
combining (75) and (77) we get

ℓt(Bt)− ℓt(H) ≤ L2
1

8ρ
∥Wt − Ĥ∥2F − L2

1

8ρ
∥Wt+1 − Ĥ∥2F +

ρ

8
L2
1∥G̃t∥2F +

L2
1

4
∥Gt∥∗δt (78)

≤ L2
1

8ρ
∥Wt − Ĥ∥2F − L2

1

8ρ
∥Wt+1 − Ĥ∥2F + 32ρℓt(Bt) + L1

√
ℓt(Bt)δt. (79)

Note that ℓt(Bt) appears on both sides of (79). By further applying Lemma 16, we obtain

ℓt(Bt) ≤ 2ℓt(H) +
L2
1

4ρ
∥Wt − Ĥ∥2F − L2

1

4ρ
∥Wt+1 − Ĥ∥2F + 64ρℓt(Bt) + L2

1δ
2
t .

Since ρ = 1/128, by rearranging and simplifying terms in the above inequality, we obtain

ℓt(Bt) ≤ 4ℓt(H) + 64L2
1∥Wt − Ĥ∥2F − 64L2

1∥Wt+1 − Ĥ∥2F + 2L2
1δ

2
t .
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Proof of Lemma 12. We let Ht = ∇2f(yt) for t = 0, 1, . . . , T − 1. Thus, we get

ℓt(Bt) ≤ 4ℓt(Ht) + 64L2
1∥Wt − Ĥt∥2F − 64L2

1∥Wt+1 − Ĥt∥2F + 2L2
1δ

2
t

= 4ℓt(Ht) + 64L2
1∥Wt − Ĥt∥2F − 64L2

1∥Wt+1 − Ĥt+1∥2F + 2L2
1δ

2
t

+ 64L2
1

(
∥Wt+1 − Ĥt+1∥2F − ∥Wt+1 − Ĥt∥2F

)
.

Furthermore, note that

∥Wt+1 − Ĥt+1∥2F − ∥Wt+1 − Ĥt∥2F
= (∥Wt+1 − Ĥt+1∥F + ∥Wt+1 − Ĥt∥F )(∥Wt+1 − Ĥt+1∥F − ∥Wt+1 − Ĥt∥F )

≤ 4
√
d∥Ĥt+1 − Ĥt∥F =

8
√
d

L1
∥Ht+1 −Ht∥F ,

where in the last inequality we used the fact that Ĥt, Ĥt+1,Wt+1 ∈ B√
d(0) and the triangle

inequality. Therefore, we get

ℓt(Bt) ≤ 4ℓt(Ht)+64L2
1∥Wt−Ĥt∥2F−64L2

1∥Wt+1−Ĥt+1∥2F+2L2
1δ

2
t+512L1

√
d∥Ht+1−Ht∥F .

By summing the above inequality from t = 0 to T − 1, we get

T−1∑
t=0

ℓt(Bt) ≤ 64L2
1∥W0 − Ĥ0∥2F + 4

T−1∑
t=0

ℓt(Ht) + 2L2
1

T−1∑
t=0

δ2t + 512L1

√
d

T−1∑
t=0

∥Ht+1 −Ht∥F .

Finally, we use the fact that W0 ≜ 2
L1

(B0−L1

2 I), and Ĥ0 ≜ 2
L1

(H0−L1

2 I) to obtain Lemma 12.

D.3 Proof of Lemma 13

By Assumption 2, we have ∥wt − Htst∥ = ∥∇f(x̃t+1) − ∇f(yt) − ∇f(yt)(x̃t+1 − yt)∥ ≤
L2

2 ∥x̃t+1 − yt∥2. Thus,

ℓt(Ht) =
∥wt −Htst∥2

∥st∥2
≤ L2

2

4
∥x̃t+1 − yt∥2 ≤ (1 + α1)

2L2
2

4β2(1− α1)2
∥x̂t+1 − yt∥2,

where we used Lemma 1 in the last inequality. Also, Since ak ≥ ηk for all k ≥ 0, by (21) we get

N−1∑
k=0

∥x̂k+1 − yk∥2 ≤
N−1∑
k=0

a2k
η2k

∥x̂k+1 − yk∥2 ≤ 1

1− σ2
∥z0 − x∗∥2.

Hence, we have

T−1∑
t=0

ℓt(Ht) ≤
(1 + α1)

2L2
2

4β2(1− α1)2

∑
k∈B

∥x̂k+1 − yk∥2 ≤ (1 + α1)
2L2

2

4β2(1− α1)2

N−1∑
k=0

∥x̂k+1 − yk∥2

≤ (1 + α1)
2L2

2∥z0 − x∗∥2

4β2(1− α1)2(1− σ2)
,

which proves the first inequality in (72).

Furthermore, by Assumption 2, we have

∥Ht+1−Ht∥F =∥∇2f(yt+1)−∇2f(yt)∥F ≤
√
d∥∇2f(yt+1)−∇2f(yt)∥op≤

√
dL2∥yt+1−yt∥.

Hence, by using the triangle inequality, we can bound

T−1∑
t=0

∥Ht+1 −Ht∥F ≤
√
dL2

N−1∑
k=0

∥yk+1 − yk∥ ≤
√
dL2C2

(
1 + log

AN

A1

)
∥z0 − x∗∥,

where we used Lemma 8 in the last inequality.
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D.4 Proof of Lemma 14

Before presenting the proof of Lemma 14, we start with a helper lemma that shows a lower bound
on A1.
Lemma 18. We have A1 = η̂0 ≥ min{σ0,

α2β
L1

}.

Proof. The equality A1 = η̂0 is shown in the proof of Lemma 3. To show the lower bound on η̂0, we
use Lemma 1 and separate two cases. If 0 /∈ B, then we have η̂0 = η0 = σ0. Otherwise, if 0 ∈ B,
then we have

η̂0 ≥ α2β∥x̃1 − y0∥
∥∇f(x̃1)−∇f(y0)−Bk(x̃1 − y0)∥

.

Moreover, as shown in the proof of Lemma 11, we have ∥∇f(x̃1) −∇f(y0) −Bk(x̃1 − y0)∥ ≤
L1∥x̃1 − y0∥, which further implies that η̂0 ≥ α2β

L1
. This completes the proof.

We combine Lemma 12 and Lemma 13 to get∑
k∈B

∥wk −Bksk∥2

∥sk∥2
=

T−1∑
t=0

ℓt(Bt) ≤ 256∥B0 −H0∥2F + C3L
2
2∥z0 − x∗∥2 + 2L2

1

T−1∑
t=0

δ2t

+ 512C2L1L2d

(
1 + log

AN

A1

)
∥z0 − x∗∥.

Since δt = 1/(
√
t+ 2 ln(t+ 2)), we have

T−1∑
t=0

δ2t =

T+1∑
t=2

1

t ln2 t
≤ 1

2 ln2 2
+

∫ T+1

2

1

t ln2 t
dt =

1

2 ln2 2
+

1

ln 2
− 1

ln(T + 1)
≤ 2.5.

Hence, it further follows from (14) and Lemma 2 that

N5

A2
N

≤ 4C2
1

N−1∑
k=0

1

η̂2k

≤ 4C2
1 (2− β2)

(1− β2)σ2
0

+
4C2

1 (2− β2)

(1− β2)α2
2β

2

∑
k∈B

∥wk −Bksk∥2

∥sk∥2

≤ C6

σ2
0

+ C7L
2
1 + C8∥B0 −H0∥2F + C9L

2
2∥z0 − x∗∥2

+ C10L1L2d

(
1 + log

AN

A1

)
∥z0 − x∗∥. (80)

To simplify the notation, define

M =
C6

σ2
0

+ C7L
2
1 + C8∥B0 −H0∥2F + C9L

2
2∥z0 − x∗∥2 + C10L1L2d∥z0 − x∗∥,

and the inequality in (80) becomes N5

A2
N

≤ M +C10L1L2d∥z0−x∗∥ log AN

A1
. Let A∗

N be the number
that achieves the equality

N5

(A∗
N )2

= M + C10L1L2d∥z0 − x∗∥ log A∗
N

A1
,

and we can see that AN ≥ A∗
N . Thus, we instead try to construct a lower bound on A∗

N . If A∗
N ≤ A1,

then log(A∗
N/A1) ≤ 0 and furthermore

N5

(A∗
N )2

≤ M ⇒ 1

AN
≤

√
M

N2.5
. (81)

Otherwise, assume that A∗
N > A1. Then log(A∗

N/A1) > 0 and we first show an upper bound on
A∗

N :

N5

(A∗
N )2

= M + C10L1L2d∥z0 − x∗∥ log A∗
N

A1
≥ M ⇒ A∗

N ≤ 1√
M

N2.5.
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This in turn leads to a lower bound on A∗
N :

N5

(A∗
N )2

= M + C10L1L2d∥z0 − x∗∥ log A∗
N

A1
≤ M + C10L1L2d∥z0 − x∗∥ log

(
max{ L1

α2β
, 1
σ0
}N2.5

√
M

)
,

where we also used the fact that A1 ≥ min{σ0,
α2β
L1

} (cf. Lemma 18). Thus, we get

1

AN
≤ 1

A∗
N

≤ 1

N2.5

(
M + C10L1L2d∥z0 − x∗∥ log

(
max{ L1

α2β
, 1
σ0
}N2.5

√
M

)) 1
2

. (82)

Combining both cases in (81) and (82), we conclude the proof of Lemma 14.
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Subroutine 3 LinearSolver(A,b;α)

1: Input: A ∈ Sd
+, b ∈ Rd, 0 < α < 1

2: Initialize: s0 ← 0, r0 ← b−As0, p0 ← r0
3: for k = 0, 1, . . . do
4: if ∥rk∥2 ≤ α∥sk∥2 then
5: Return sk
6: end if
7: αk ← ⟨rk,Ark⟩/⟨Apk,Apk⟩
8: sk+1 ← sk + αkpk

9: rk+1 ← rk − αkApk

10: Compute and store Ark+1

11: βk ← ⟨rk+1,Ark+1⟩/⟨rk,Ark⟩
12: pk+1 ← rk+1 + βkpk

13: Compute and store Apk+1 ← Ark+1 + βkApk

14: end for

E Characterizing the Computational Cost

In this section, we first specify the implementation details of the LinearSolver oracle in Definition 1
and the SEP oracle in Definition 2. Then in Section E.3, we present the proof of Theorem 2.

E.1 Implementation of the LinearSolver Oracle

We implement the LinearSolver oracle by running the conjugate residual (CR) method [48] to solve
the linear system As = b. In particular, we initialize the CR method with s0 = 0 and returns the
iterate sk once we achieve ∥Ask − b∥ ≤ α∥sk∥. The following lemma provides the convergence
guarantee of the CR method, which will be later used in the proof of Theorem 2.
Lemma 19 ([56, Chapter 12.4]). Let s∗ be any optimal solution of As∗ = b and let {sk} be the
iterates generated by Subroutine 3. Then we have

∥rk∥2 = ∥Ask − b∥2 ≤ λmax(A)∥s∗∥2
(k + 1)2

.

E.2 Implementation of SEP Oracle

We implement the SEP oracle in Definition 2 based on the classical Lanczos method with a random
start, where the initial vector is chosen randomly and uniformly from the unit sphere (see, e.g.,
[57, 58]). For completeness, the full algorithm is described in Subroutine 4.

To prove the correctness of our algorithm, we first recall a classical result in [51] on the convergence
behavior of the Lanczos method.
Proposition 3 ([51, Theorem 4.2]). Consider a symmetric matrix W and let λ1(W) and λd(W)
denote its largest and smallest eigenvalues, respectively. Then after k iterations of the Lanczos
method with a random start, we find unit vectors u(1) and u(d) such that

P(⟨Wu(1),u(1)⟩ ≤ λ1(W)− ϵ(λ1(W)− λd(W))) ≤ 1.648
√
de−

√
ϵ(2k−1),

P(⟨Wu(d),u(d)⟩ ≥ λd(W) + ϵ(λ1(W)− λd(W))) ≤ 1.648
√
de−

√
ϵ(2k−1),

As a corollary, to ensure that, with probability at least 1− q,

⟨Wu(1),u(1)⟩ > λ1(W)−ϵ(λ1(W)−λd(W)) and ⟨Wu(d),u(d)⟩ < λn(W)+ϵ(λ1(W)−λd(W)),

the number of iterations can be bounded by ⌈ 1
4ϵ

−1/2 log(11d/q2) + 1
2⌉.

Lemma 20. Let γ and S be the output of SEP(W; δ, q) in Subroutine 4. Then with probability at
least 1− q, they satisfy one of the following properties:

• Case I: γ ≤ 1, then we have ∥W∥op ≤ 1;

• Case II: γ > 1, then we have ∥W/γ∥op ≤ 1, ∥S∥F = 3 and ⟨S,W − B̂⟩ ≥ γ − 1 for any
B̂ such that ∥B̂∥op ≤ 1.
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Subroutine 4 SEP(W; δ, q)

1: Input: W ∈ Sd, δ > 0, q ∈ (0, 1)

2: Set the number of iterations N1 ← min
{⌈

log 11d
q2

+ 1
2

⌉
, d
}

3: Run Lanczos method with a random start for N1 iterations to get u(1) and u(d) (cf. Proposition 3)
4: Set λ̂1 ← ⟨Wu(1),u(1)⟩ and λ̂d ← ⟨Wu(d),u(d)⟩
5: Set λ̂max ← max{λ̂1,−λ̂d}
6: if λ̂max ≤ 1/2 then # Case I: γ ≤ 1, which implies ∥W∥op ≤ 1

7: Return γ = 2λ̂max and S = 0

8: else if λ̂max ≥ 2 then # Case II: γ > 1 and S defines a separating hyperplane
9: if λ̂1 > −λ̂d then

10: Return γ = 2λ̂max and S = 3u(1)(u(1))⊤

11: else
12: Return γ = 2λ̂max and S = −3u(d)(u(d))⊤

13: end if
14: else # 1

2
< λ̂max < 2

15: Set the number of iterations N2 ← min
{⌈

1

4
√
2δ

log 11d
q2

+ 1
2

⌉
, d
}

16: Run Lanczos method with a random start for N2 iterations to get ũ(1) and ũ(d) (cf. Proposition 3)
17: Set λ̃1 ← ⟨Wũ(1), ũ(1)⟩ and λ̃d ← ⟨Wũ(d), ũ(d)⟩
18: Set λ̃max = max{λ̃1,−λ̃d}
19: if λ̃max ≤ 1− δ then
20: Return γ = λ̃max + δ and S = 0
21: else if λ̃1 ≥ −λ̃d then
22: Return γ = λ̃max + δ and S = ũ(1)(ũ(1))⊤

23: else
24: Return γ = λ̃max + δ and S = −ũ(d)(ũ(d))⊤

25: end if
26: end if

Proof. Note that in Subroutine 4, we first run the Lanczos method for
⌈
ϵ−1/2 log 11d

q2 + 1
2

⌉
iterations,

where ϵ = 1
4 . Thus, by Proposition 3, with probability at least 1− q/2 we have

λ̂1 ≜ ⟨Wu(1),u(1)⟩ ≥ λ1(W)− 1

4
(λ1(W)− λd(W)), (83)

λ̂d ≜ ⟨Wu(d),u(d)⟩ ≤ λd(W) +
1

4
(λ1(W)− λd(W)). (84)

Combining (83) and (84), we get

1

2
(λ1(W)− λd(W)) ≤ λ̂1 − λ̂d ⇒ λ1(W)− λd(W) ≤ 2(λ̂1 − λ̂d).

By plugging the above inequality back into (83) and (84), we further have

λ1(W) ≤ λ̂1 +
1

4
(λ1(W)− λd(W)) ≤ λ̂1 +

1

2
(λ̂1 − λ̂d), (85)

λd(W) ≥ λ̂d −
1

4
(λ1(W)− λd(W)) ≥ λ̂d −

1

2
(λ̂1 − λ̂d). (86)

Let λ̂max = max{λ̂1,−λ̂d}. By (85) and (86), we can further bound the eigenvalues of W by

λ1(W) ≤ λ̂max +
1

2
· 2λ̂max = 2λ̂max and λd(W) ≥ −λ̂max −

1

2
· 2λ̂max = −2λ̂max.

Hence, we can see that ∥W∥op = max{λ1(W),−λd(W)} ≤ 2λ̂max. Now we distinguish three
cases.

(a) If λ̂max ≤ 1
2 , then we are in Case I and the ExtEvec oracle outputs γ = 2λ̂max ≤ 1 and

S = 0. In this case, we indeed have ∥W∥op ≤ γ ≤ 1.
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(b) If λ̂max ≥ 2, then we are in Case II. In addition, if λ̂1 ≥ −λ̂d, then the ExtEvec oracle
returns γ = 2λ̂max and S = 3u(1)(u(1))⊤. Similarly, if −λ̂d > λ̂1, then the ExtEvec oracle
returns γ = 2λ̂max and S = −3u(d)(u(d))⊤. Without loss of generality, consider the case
where λ̂1 ≥ −λ̂d. Since ∥W∥op ≤ 2λ̂max = γ, we have ∥W/γ∥op ≤ 1. Also, since u1 is
a unit vector, we have ∥S∥F = 3∥u(1)∥2 = 3. Finally, for any B̂ such that ∥B̂∥op ≤ 1, we
have

⟨S,W − B̂⟩ = 3(u(1))⊤Wu(1) − 3(u(1))⊤B̂u(1) ≥ 3λ̂max − 3 ≥ 2λ̂max − 1 = γ − 1,

where we used the fact that λ̂max ≥ 2 in the last inequality.

(c) If 1
2 < λ̂max < 2, we continue to run the Lanczos method for a total number of⌈

1
4ϵ

−1/2 log 11d
q2 + 1

2

⌉
iterations, where ϵ = 1

8δ. Thus, by Proposition 3, with probability at
least 1− q/2 we have

λ̃1 ≜ ⟨Wũ(1), ũ(1)⟩ ≥ λ1(W)− 1

8
δ(λ1(W)− λd(W)), (87)

λ̃d ≜ ⟨Wũ(d), ũ(d)⟩ ≤ λd(W) +
1

8
δ(λ1(W)− λd(W)). (88)

Let λ̃max = max{λ̃1,−λ̃d}. Since we have λ1(W) ≤ 2λ̂max ≤ 4 and λd(W) ≥
−2λ̂max ≥ −4, the above implies that λ̃1 ≥ λ1(W) − δ and λ̃d ≤ λd(W) + δ. Hence,
we can see that ∥W∥op = max{λ1(W),−λd(W)} ≤ λ̂max + δ. We further consider two
subcases.

(c1) If λ̃max ≤ 1− δ, then we are in Case I and the ExtEvec oracle outputs γ = λ̃max + δ
and S = 0. In this case, we indeed have ∥W∥op ≤ γ ≤ 1.

(c2) If λ̃max > 1− δ, then we are in Case II. In addition, if λ̃1 ≥ −λ̃d, then the ExtEvec
oracle returns γ = λ̃max + δ and S = ũ(1)(ũ(1))⊤. Similarly, if −λ̃d > λ̃1, then
the ExtEvec oracle returns γ = λ̃max + δ and S = −ũ(d)(ũ(d))⊤. Without loss of
generality, consider the case where λ̃1 ≥ −λ̃d. Since ∥W∥op ≤ λ̃max + δ = γ, we
have ∥W/γ∥op ≤ 1. Also, since ũ(1) is a unit vector, we have ∥S∥F = ∥ũ(1)∥2 = 1.
Finally, for any B̂ such that ∥B̂∥op ≤ 1, we have

⟨S,W − B̂⟩ = (ũ(1))⊤Wũ(1) − (ũ(1))⊤B̂ũ(1) ≥ λ̃max − 1 = γ − 1− δ.

This completes the proof.

E.3 Proof of Theorem 2

We divide the proof of Theorem 2 into the following three lemmas.
Lemma 21. If we run Algorithm 1 as specified in Theorem 1 for N iterations, then the total number
of line search steps can be bounded by 2N + log1/β(σ0L1/α2). As a corollary, the total number of
gradient queries is bounded by 3Nϵ + log1/β(

σ0L1

α2
).

Proof. In our backtracking scheme, the number of steps in each iteration is given by log1/β(ηk/η̂k)+

1. Also note that ηk+1 ≤ η̂k/β for all k ≥ 0. Thus, we have
N−1∑
k=0

(
log1/β

ηk
η̂k

+ 1

)
= N + log1/β

σ0

η̂0
+

N−2∑
k=0

log1/β
ηk+1

η̂k+1

≤ N + log1/β
σ0

η̂0
+

N−2∑
k=0

(
log1/β

η̂k
η̂k+1

+ 1

)
≤ 2N − 1 + log1/β

σ0

η̂N−1

Furthermore, since η̂k ≥ α2β/L1 for all k ≥ 0, we arrive at the conclusion.
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Lemma 22. The total number of matrix-vector product evaluations in the LinearSolver oracle is

bounded by Nϵ + C11

√
σ0L1 + C12

√
L1∥z0−x∗∥2

2ϵ , where C11 and C12 are absolute constants.

Proof. Our proof loosely follows the strategy in [32]. We first bound the number of steps required by
Subroutine 3 before it terminates.

Lemma 23. Suppose A ⪰ I. Then Subroutine 3 terminates after at most
⌈√

α+1
α λmax(A)− 1

⌉
iterations.

Proof. Note that ∥sk∥2 ≥ ∥s∗∥2 − ∥sk − s∗∥2. Also, since A ⪰ I, we have ∥sk − s∗∥2 ≤
∥A(sk − s∗)∥2 = ∥rk∥2. Therefore, we have

∥rk∥2 ≤ α∥sk∥2 ⇐ ∥rk∥2 ≤ α∥s∗∥2 − α∥rk∥2 ⇐ ∥rk∥2 ≤ α

α+ 1
∥s∗∥2.

By using Lemma 19, we only need k ≥
√

α+1
α λmax(A)− 1 to achieve ∥Ask − b∥ ≤ α∥sk∥.

Moreover, when the step size is smaller enough, we can show that Subroutine 3 will terminate in one
iteration.

Lemma 24. Let A = I+ ηB. When η ≤ α
2L1

, Algorithm 3 terminates in one iteration.

Proof. From the update rule of Subroutine 3, we can compute that s1 = b⊤Ab
∥Ab∥2

2
b, which implies

∥s1∥ = ∥b∥ · ∥A1/2b∥2

(A1/2b)⊤A(A1/2b)
≥ ∥b∥

λmax(A)
≥ ∥b∥

1 + ηL1
.

On the other hand, we also have

∥r1∥ ≤ ∥Ab− b∥ = η∥Bb∥ ≤ ηL1∥b∥.

Moreover, when η ≤ α
2L1

, we have ηL1 ≤ α
1+ηL1

, which implies that ∥r1∥ ≤ α∥s1∥.

Now we upper bound the total number of matrix-vector products in Algorithm 1. Note that at the
k-th iteration, we use the LinearSolver oracle with A = I+ η+Bk where η+ = ηkβ

i. We can store
the vector Bkb at the beginning and reuse it to compute s1 when the step size η+ < α1

2L1
. And when

βiηkL1 ≥ α1

2 , it holds that

1 + βiηkL1 ≤ α1 + 2

α1
βiηkL1.

Thus, at the k-th iteration, the number of matrix-vector products can be bounded by

MVk ≤ 1 +
∑

i≥0,ηkβi≥ α1
2L1

√
α1 + 1

α1
(1 + ηkβiL1)

≤ 1 +
∑

i≥0,ηkβi≥ α1
2L1

α1 + 2

α1

√
βiηkL1

≤ 1 +
α1 + 2

α1

1

1−
√
β

√
ηkL1.

Furthermore, we can bound that

N−1∑
k=0

√
ηk ≤

√
σ0 +

N−1∑
k=1

√
ηk ≤

√
σ0 +

1√
β

N−2∑
k=0

√
η̂k ≤

√
σ0 +

2(2−
√
β)√

β(1−
√
β)

√
AN−1
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Note that ϵ < f(xN−1) − f(x∗) ≤ ∥z0−x∗∥2

2AN−1
. Hence, we have AN−1 ≤ ∥z0−x∗∥2

2ϵ . Thus, we can
bound the total number of matrix-vector product evaluations by

MV =

Nϵ−1∑
k=0

MVk ≤ Nϵ +
α1 + 2

α1

1

1−
√
β

(√
σ0L1 +

2(2−
√
β)√

β(1−
√
β)

√
L1∥z0 − x∗∥2

2ϵ

)
,

= Nϵ + C11

√
σ0L1 + C12

√
L1∥z0 − x∗∥2

2ϵ
,

where we define C11 = α1+2
α1

1
1−

√
β

and C12 = α1+2
α1

1
1−

√
β

2(2−
√
β)√

β(1−
√
β)

.

Lemma 25. The total number of matrix-vector product evaluations in the SEP oracle is bounded by
O
(
N1.25

ϵ (logNϵ)
0.5 log

(√
dNϵ

p

))
.

Proof. Note that we have Nt ≤
⌈

1
4
√
2δt

log 44d
q2t

+ 1
2

⌉
in Subroutine 4, where δt = 1/(

√
t+ 2 log(t+

2)) and qt = p/(2.5(t+ 1) log2(t+ 1)). Thus, we have

N =

T−1∑
t=0

Nt ≤
T−1∑
t=0

(t+ 2)0.25 log0.5(t+ 2)

2
√
2

log
2.5

√
44d(t+ 1) log2(t+ 1)

p
(89)

= O

(
N1.25

ϵ

√
logNϵ log

√
dNϵ

p

)
. (90)

F Experiments

In our experiments, we consider the logistic regression problem and minimizing the log-sum-exp func-
tion. Below we provide more details about the data generation scheme as well as the implementation
of Nesterov’s accelerated gradient method, BFGS, and our proposed A-QPNE algorithm.

Dataset generation. In the first experiment of logistic regression, the dataset consists of n data points
{(ai, yi)}ni=1, where ai ∈ Rd is the i-th feature vector and yi ∈ {−1, 1} is its corresponding label.
The labels {yi}ni=1 are generated by

yi = sign(⟨a∗i ,x∗⟩), i = 1, 2, . . . , n,

where a∗i ∈ Rd−1 and x∗ ∈ Rd−1 are the underlying true feature vector and the underlying true
parameter, respectively. Moreover, each entry of a∗i and x∗ is drawn independently according to the
standard normal distribution N (0, 1). Note that the true feature vectors {a∗i }ni=1 are not given in our
dataset; instead, we generate {ai}ni=1 by adding noises and appending an extra dimension to {a∗i }ni=1.
Specifically, we let ai = [a∗i + ni + 1; 1]⊤ ∈ Rd, where ni ∼ N (0, σ2I) is the i.i.d. Gaussian noise
vector and 1 ∈ Rd−1 denotes the all-one vector. In our experiment, we set n = 2, 000, d = 150 and
σ = 0.8.

In the second experiment of log-sum-exp function, we follow a similar procedure as [16] to generate
the dataset {(ai, bi)}ni=1, where ai ∈ Rd and bi ∈ R. First, we generate the auxiliary random
vectors {âi}ni=1 by sampling each entry of âi uniformly and independently from the interval [−1, 1].
Moreover, we generate {bi}ni=1 independently from the standard normal distribution N (0, 1). Given
{(âi, bi)}ni=1, we define an auxiliary function f̂(x) = log(

∑n
i=1 e

⟨âi,x⟩−bi) and finally let ai =

âi −∇f̂(0) for i = 1, . . . , n. As discussed in [16], the purpose of this procedure is to ensure that
∇f(0) = 0 and thus 0 is the unique minimizer of f . In our experiment, we set n = d = 250.

NAG. We implemented a monotone variant of the Nesterov accelerated gradient method as described
in [54, Section 10.7.4]. Moreover, we determine the step size using a backtracking line search scheme.

BFGS. We implemented the classical BFGS algorithm, where the step size is determined by the
Moré–Thuente line search scheme using an implementation by Diane O’Leary1.

1http://www.cs.umd.edu/users/oleary/software/
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Figure 3: Plots of Suboptimality gap in terms of the running time.

A-QPNE (our method). We implemented our proposed A-QPNE method following the pseudocode
in Algorithm 1, where the line search scheme is given in Subroutine 1 and the Hessian approximation
update is given in Subroutine 2. Moreover, the implementations of the LinearSolver oracle and the
SEP oracle are given by Subroutines 3 and 4, respectively.

F.1 Additional Plots

In Fig. 3, we compare the performance of our proposed A-QNPE method with NAG and BFGS in
terms of the running time. All experiments are conducted using MATLAB R2021b on a MacBook
Pro with an Apple M1 chip and 16GB RAM. We observe from Fig. 3(a) that our method requires less
running time than NAG due to its faster convergence, especially when we are seeking a solution of
high accuracy. On the other hand, there are cases where our method is slower than NAG in terms of
the running time, as shown in Fig. 3(b). This is because, in this case, the cost of gradient computation
is comparable to the cost of matrix-vector product evaluation, and therefore our method incurs a
higher computational cost per iteration than NAG.
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