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ABSTRACT

Hyperparameter optimization (HO) is essential in machine learning and can be
structured as a bilevel optimization. However, many existing algorithms designed
for addressing nonsmooth lower-level problems involve solving sequential sub-
problems with high complexity. To tackle this challenge, we introduce penalty
methods for solving HO based on strong duality between the lower level prob-
lem and its dual. We illustrate that the penalized problem closely approximates
the optimal solutions of the original HO under certain conditions. In many real
applications, the penalized problem is a weakly-convex objective with proximal-
friendly constraints. Furthermore, we develop two fully first-order algorithms to
solve the penalized problems. Theoretically, we prove the convergence of the pro-
posed algorithms. We demonstrate the efficiency and superiority of our method
across numerical experiments.

1 INTRODUCTION

In machine learning, the introduction of regularization terms is a common practice aimed at enhanc-
ing model generalization and controlling model complexity. This overarching framework can be
articulated as an objective function that strikes a balance between data fitting and model simplicity:

min I(x) + > NiRi(x). (1)
=1

In this formulation, [(x) represents the loss function and A = (A1, g, ..., A,) encompasses hyper-
parameters, which are not derived from the learning algorithm but rather specified as inputs. Mean-
while, R;(x),i = 1,2, ...,r denotes the regularizers, which are considered in the form of norms in
this paper, i.e. R;(-) = || - ||. The pursuit of optimal hyperparameters that enhance predictive per-
formance is a vital task in machine learning, commonly referred to as hyperparameter optimization
(Feurer & Hutter, [2019} |Gao et al.| 2022} Ye et al., [2021} 2023} |Chen et al., 2024). In supervised
learning, this process involves partitioning the dataset into training, validation, and test sets, solv-
ing (1)) for various X values, and selecting the best (A, xy) based on validation and training error.
The quality of the selected hyperparameters is ultimately evaluated through the test error function.
This structured approach can be encapsulated within a bilevel optimization framework (Dempe &
Zemkoho, 2020):

min  L(xx)

XA

, r 2)
s.t. x) € argmin {l(x) + > /\Z-Ri(x)} .
x i=1

In this formulation, L serves as the loss function on the validation set, defining the upper-level (UL)
problem, while [ represents the training set loss function, constituting the lower-level (LL) problem
alongside the regularization terms. The hyperparameters A help delineate the trade-off between
fitting the data and maintaining simplicity.

1.1 MAIN CONTRIBUTIONS

We summarize our main contributions as follows. We propose a penalty method based on lower-level
duality for hyperparameter optimization (2)), which is in the form of bilevel optimization with non-
smooth lower-level problem. Our method avoids any implicit value functions and high-complexity
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subproblems. Additionally, we introduce first-order algorithms to solve the penalization problem
and provide theoretical proof of its convergence. Through experimental results, we demonstrate the
superiority of our algorithm, highlighting its independence from any convex optimization solvers
while showcasing its exceptional efficiency.

1.2 RELATED WORK

Hyperparameters Optimization. The existing literature presents various strategies for hyperpa-
rameter selection. Among the simplest model-free techniques are grid search (Injadat et al., 2020)
and random search (Bergstra & Bengio, 2012). Additionally, Bayesian optimization (Bergstra et al.,
20115 Snoek et al., 2012) serves as a sequential algorithm that selects future evaluation points by
leveraging insights from prior outcomes. However, these gradient-free methods face significant chal-
lenges when dealing with a high number of parameters. To address this limitation, Feng & Simon
(2018)) introduces gradient-based techniques for hyperparameter tuning.

Bilevel Optimization. In general, the problem presented in (2) aligns with the format known as
bilevel optimization (BLO), which is pertinent to a diverse array of data-driven challenges, including
hyperparameter optimization (Maclaurin et al., | 2015j |[Franceschi et al., 2018)), meta-learning (Finn
et al.| 2017), and reinforcement learning (Shen et al.| 2024} Stadie et al.| [2020).

The initial strategies for addressing bilevel optimization problems primarily centered on gradient-
based algorithms, which can be broadly classified into two categories based on their methods for
computing hypergradients. Iterative Differentiation (ITD) involves unrolling the lower-level prob-
lem into gradient steps and subsequently utilizing backpropagation to calculate the hypergradient
(Franceschi et al.| 2017;[2018; |Grazzi et al., [2020; [Liu et al.,[2021b; |Antoniou et al., [2018; |Shaban
et al., 2019). In contrast, Implicit Differentiation (AID) leverages the first-order optimality condi-
tions of the lower-level problem along with the implicit function theorem to derive the hypergradient
(Pedregosa, |2016} Rajeswaran et al., 2019; [Lorraine et al.,2020; Yang et al., 2021;2023). However,
these methods necessitate the strong convexity of the lower-level problem, thereby constraining their
applicability.

Recently, (Chen et al.| (2023a); [Li et al.| (2022); |Chen et al.| (2023b) have introduced a series of
fully first-order methods that operate without requiring Hessian computations or implicit gradients.
Additionally, many machine learning problems may exhibit multiple minima for the lower-level
function. To address this challenge, [Liu et al.|(2021a) propose a value function based on the optimal
value of the lower-level function, which leads to the development of novel algorithms employing a
penalization technique (Liu et al., 2023). As a result, penalty-based methods have also emerged as
effective solutions for bilevel optimization problems. |Shen & Chen (2023); Lu & Mei (2024)); Kwon
et al.| (2023bja)); [Liu et al.| (2022)) construct single-level reformulation for original BLO by penalty
method with various penalty terms.

Nonsmoooth Lower-level Problem. When the regularazer is [; norm, |[Bertrand et al.| (2020) pro-
poses an implicit differentiation method with block coordinate descent for Lasso-type hyperparam-
eter optimization, later extended to general nonsmooth problems [Bertrand et al. (2022). |Ye et al.
(2021} 2023)) utilize diffenrence-of-convex (DC) method for hyperparameter selection, while |Gao
et al.[ (2022)) combine penalization with DC method for bilevel problems with nonsmooth regular-
izer. Both methods require computing the lower-level optimal value for subgradients. Recently,
Chen et al.| (2023a) propose an inexact gradient-free method, though the subproblem remains diffi-
cult to solve. |Chen et al.| (2024) presents a novel reformulation based on LL duality with no value
function involved and proposes an iterative algorithm grounded in cone programming for many prat-
ical applications alongside its corresponding off-the-shelf solver. Recent studies have also employed
the Moreau envelope to effectively address nonsmooth functions. Works by |Gao et al.| (2023); [Yao
et al. (2024b); [Liu et al. (2024) have restructured the original bilevel optimization framework us-
ing this strategy and propose a series of Moreau envelope-based algorithms, which demonstrate the
capability to identify well-defined KKT points.

2 PENALIZATION FRAMEWORK

In this section, we introduce our lower-level duality based penalty method (LDPM) for hyperpa-
rameter optimization (Z). We begin by separating and simplifying the hierarchical structure of the
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lower-level problem using Fenchel duality. Unlike traditional primal-dual methods, we employ con-
jugate functions to transform the subproblems into constrained optimization problems, eliminating
the need for any value function. Subsequently, we implement the penalization strategy and discuss
the relationship between the penalized formulation and the original problem (2)).

2.1 PENALTY-BASED METHODS BASED ON LOWER-LEVEL DUALITY

In this subsection, we reconstruct the lower-level problem with Lagrangian function and duality.
Based on this, we study the lower-level duality reformulation and propose the penalty-based method.
First we introduce augmented variables z;,7 = 1,2, ...,r and deduce the equivalent form of LL
problem of (2)),

min [(x +Z>\R S.tX = 7. (3)

X,Z;

Since [, R; are convex and the constraints are affine, strong duality holds under Slater’s condition.
If ri(dom [ N (N7_,dom R;)) # 0, then (3) is equivalent to its Lagrangian dual problem:

—m;nr}r(l&;f(—l Z)\ Ri( ;pf(x—zi),

where p; is are Lagrangian multipliers ass001ated with constraint x = z;. The above problem can
be further simplified with definition of conjugate functions as,

max —1*( sz ET:AZRf(—%) “4)
i=1 g

Meanwhile, the constraint of (2] is equlvalent to

00+ Y MBi(x) £ minl(x) + 3 MR}

i=1 » i=1 . (5)
2 max 1 (- 3 po) - £ ARI(-5)

where, (a) utilizes the value function of the lower-level problem, which is widely used in relevant
literature of BLO [Liu et al. (2021a;2023)), (b) is from the equivalence of (3] . (E]) Dropping the max
operator, we obtain that the lower-level problem of (2) can be replaced by the inequality constraint,

x) + ;Ainx) +1*(—;pi> + ;AiR;f(’A’j) <0

and obtain the reformulation for (2)):

in L
By

St 10+ Y ARG+ (= 3 p) + 30 AR (8) <.
=1 =1 )

(6)

Note that it is independent of any implicit value function, but rather utilizes the conjugate of the
atom functions in the lower-level problem. Naturally, the validity of (€)) depends on the following
assumption.

Assumption 2.1. [and R;,i = 1,2, ..., 7 in the lower-level problem of (2) possess explicit conjugate
functions.

The fulfillment of Assumption is straightforward to ensure. Indeed, the loss functions in most
real-world problems have closed-form conjugate functions, including least squares, hinge loss and
logarithmic functions. Similarly, the norm terms R;(-) also share this property, where we denote
R;(-) = || - || as the conjugate norm of R;. In this case, we observe that R;(§*) = 0 provided
the condition ||p;||« < A; holds (Boyd & Vandenberghe| 2004). Meanwhile, with introducing an
auxiliary variables r; satisfying R;(x) < r;, the constraint of @ is equivalent to

Ux) + 1" (— sz)+§j/\n<o -
Ri(x )<n,||p1|| </\1,2—1,2,..., r.
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Consequently, (6) is equivalent to the following problem,

i L
in - Lix)

st U(x) +1"(— EPJ+ZAn<0 (8)
R( )<Tz»||Pz|| <)\1,Z—1 2,.

We summarize the first inequality constraint of (8] as a penalty term

p(x, A, p,r) = 1(x sz +Z)‘Tza )

and employ penalization strategy to handle (8). Then we can rewrite (8) with a penalty constant /3
as follows,
min L(x) + Bp(x, A, p, ).
xA,p.r
st Ri(x) < |lpills < Aiyi=1,2, .7
Thus, we have fully converted the hyperparameter optimization (2) into a single-level formulation

(T0). Although the introduced variable p; has the same dimension as x, it does not affect the whole
scale and complexity.

(10)

2.2 EQUIVALENCE BETWEEN PENALIZED AND PRIMAL PROBLEM

In this subsection, we discuss the relationship between (2) and from the perspective of duality.
We first introduce corresponding assumptions for 2] as follows.

Assumption 2.2. L(x) is Lo-Lipschitz continuous.
Assumption 2.3. [(x) is (1/ay)-strongly convex and /;-smooth.

Assumption 2.4. For any given x, the optimal solution set of lower-level problem in (2)) denoted as
Lo () is closed and non-empty.

Besides Assumption we note that the norm terms R;(x) are convex but potentially nonsmooth,
which implies that the lower-level problem is convex and nonsmooth in x. Regarding Assumptions
@and@ the conjugate function [* is a;-smooth (Theorem 5.26 in Beck (2017)). Subsequently,
the penalty term p(x, A, p, r) is differentiable and (I; 4+ «; + 1)-smooth. The above assumptions are
prevalent and commonly satisfied in practical applications. From (3)-(8), we know that (2) can be
reformulated into (8). From the KKT conditions of (3), we first analyze p;,i = 1,2, ..., in (€) and
obtain the following lemma.

Lemma 2.5. If xy is an optimal solution of the lower-level problem of (2)), then there exists the
unique multiplier p} and z; = x such that (xx,z}, pt) is a KKT point of (3

According to KKT condition of we recover that p} in Lemma 2.5]satisfies that
ZP’L _VZ XA) p;‘ € )‘zaRl(XA)vz = 1727"'37‘7 (11)

which implies that the KKT point of (3) is also the stationary point of the lower-level problem of
. Note that the penalty term p(x, A, p,r) is derived from duality of lower-level problem, so we
summarize the property of p(x, A, p,r ) regulating ||x — x||? as follows.

Lemma 2.6. Suppose Assumption andhold, then it holds that p(x, X, p,r) > % ||x—xx[|? >
0 for any given x, A, p, r. In addition, p(x,; X, p,r) = 0 if and only if x € Lop(N).

Based on Lemma[2.5] we further derive the equivalence between bilevel form (2)) and the constrained
problem (6] as follows.

Proposition 2.7. If (x*, A\*) is a global optimal solution for (El) and p; is defined as in ([Q]) then
(x*, X*, p¥) is global optimal solution for (Igl)

From Proposition we can further recognize the equivalence between the primal problem (2))
and (8). As a result, we now redirect our focus to investigating relationship between and (10).
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Due to the non-negativity of the penalty term p(x, A, p,r), we find that there is no interior points
in the feasible region of (6)(8), in the sense that the constraint contradicts any standard regularity
condition. Therefore, we consider the following e-approximate problem for (6)(8) and discuss the
equivalence between it and the penalty problem (10},

min  L(x)

X,\,p,r
st.  p(x, A p,r) <e (12)
Ri(X) < Ti, ||pz||* < /\i,i = 1,2, T

Leveraging Lemma [2.6] we establish the relationship between global optimal solutions of and

[12]in Proposition [2.8] which is inspired by [Shen & Chen| (2023).

Proposition 2.8. Suppose Assumption[2.3]and|2.4|hold. For any €, > 0, the global optimal solution

of (2) is also an e,-approximation optimal solution of the penalized problem (@) with B > [* =
2

lgoy

o Conversely, the €,-global solution of (@) with B > p* is a global optimal solution for e-
approximate problem with0 < e < (e, +€1)/(8 — B%).

In summary, we confirm the relationship between the penalized problem (I0) and primal problem
(2). Subsequently, we illustrate the proximity between the optimal value of and (2).

Theorem 2.9. Suppose that Assumptions andR. 4\ hold. If (xX, XX, p*,r¥) is e-optimal solu-
tion of the penalized problem (10), then we obtain that [L(x}) — L(x*)| < O(€), where x* with an

optimal X* attains the minimum of (Z2)).

We provide the related proofs in Appendix [A] The primary challenges in solving arise from its
nonsmooth and nonconvex properties. To address these, we explore first-order algorithms to solve
the penalized problem (I0), cleverly leveraging the structure of (2) and (10).

3 SOLVING THE PENALTY FORMULATIONS

In this section, we propose our main algorithm grounded in penalty-based problem (10). For conve-
nience, we denote z = (x, A, p, r). We then introduce the constraint sets for each i as follows,

Ri £ {2 Ri(x) <7}, RE 2 {zl]lpill. < M} (13)

A natural approach to manage the constraints of is through projection onto R; and R}. To
proceed, we introduce the following assumption regarding R; and R} .

Assumption 3.1. For the constraint sets R;,7 = 1,2, ..., r, each individual set among these r sets
can be easy to project, implying that the corresponding indicator functions Zx,(z) are proximal-
friendly for each ¢, respectively.

From Moreau decomposition theorem (Theorem 6.44 in Beck (2017)), we know that each individ-
ual set R} and corresponding indicator functions Zg-(z) satisfy the same property described in
Assumption for R;. Assumption holds for common norm terms. Even if the constraints of
(10) are in conic form, the corresponding projections still have close-form solutions for each i. We
explain the specific analytic solutions of projection in Appendix [C|

However, significant differences exist between the two groups of constraints related to norms and
their conjugate, as the constraints R;(x) < r; are all related to the same variable x while the con-
straints ||p;||. < A; pertain to entirely different variables p;. Consequently, the projection process
for Nj_;R; will involve complicated interactions among the feasible domain of each constraint
Ri(x) < r;. In other words, the constraint sets R} are mutually separated, which means that
Ni_, R} is easy to project. Accordingly, the projection onto Nj_;R; is hard to directly computed
and its indicator function is generally proximal-unfriendly.

Although relevant full projection algorithms for composite constraints are explored by [Li et al.
(2020); ILiu & Liu|(2017), these algorithms necessitate additional iterative loop and produce inex-
act results. Thus, the integration of these full projections with first-order algorithms can lead to
divergence and a notable decrease in efficiency. Therefore, we need to consider splitting the mixed
constraint sets N;_; R;. In the specific scenario of problem (2) with a single regularizer, the obstacles
are rendered unnecessary.
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Therefore, we introduce the first-order algorithm for a single regularizer (r = 1) as a special case
in subsection while the algorithm for problems requiring multiple norm regularization terms
(r > 1) is presented in subsection [3.2]

3.1 SINGLE REGULARIZATION TERM

In this subsection, we explore the algorithm for (2) with a single regularization term R; (x). Conse-
quently, (I0) simplifies to the following formulation:
min  L(x) + Bp(x, A, p, ).
uin LG+ Bplx A, ) e
st Ri(x) <7 lplls < A,
where p(x, A\, p,r) = I(x) + I*(—p) + A1r1. We adopt the notations z = (x, A, p,r) and define
R1,Rj as in (13).

Definition 3.2. A function f is called w-weakly convex for some w > 0if f(-) + %|| - || is convex.

It is noteworthy that the bilinear term A;7; is 1-weakly convex and 1-smooth with respect to z.
Lemma 3.3. L(x) + 8p(z) is l,-smooth in z with 1, 2 I+ 8L+ o+ 1)

The above results can be directly computed under Assumptions and Meanwhile, the sets
R satisfies Assumptionand it is separated from Rj. Therefore, R1 N R7 is projected-friendly
and ((14)) can be minimized with projected gradient descent. We summarize our first-order algorithm
for in Algorithm [I| In line m x? is initialized by solving lower-level problem min, {l(x) +
A1 R1(x)} with given A} and we set 1 = R;(x"), p’ = —VI(x?). In this setting, we ensure the
feasibility of problem (I4). In line 3] the iterative first-order method is performed for problem (I4)
accompanied by the projection onto R; N R}. With the fixed penalty parameter /3, we set the step
size n < 2/l, and [,, is computed in Lemma which ensures consistent progression throughout
the iterations. In line ] we choose the stopping criterion with the results of two iterative points are
sufficiently close, i.e., ||z*t1 — z*|| < tol.

Algorithm 1 First-order Methods for Penalized Problem

1: Initialize A% and x°, p°, r°, constants 3, 7.
2: fork=0,1,2,..., K do

3: Update z°*! = proj g {2" — n[Va(L(x*) + Bp(2*))]}.
4:  if Termination criteria is met. then

5: Stop.

6 end if

7: end for

Remark 3.4. We define an indicator function as g1(z) = Zgr,nr+(z). The iteration 3in Algorithm
can be described as the process of finding an approximate optimal solution of (14].

Since the reformulation (6)) involves no implicit value functions related to the lower-level problem of
(2, Algorithm[T|does not require an iterative loop for finding the optimal solution x of lower-level
problem of (2) or the dual multiplier p*. Therefore, Algorithm|l|is equipped with a single loop for
z, which fully centers on the variables (x, X, p, r) in problem (14).

In this case, we obtain the sufficient decrease and convergence results of Algorithm |l{as follows.

Lemma 3.5. Assume L(x) and p(z) are bounded below. For k € N and {zki generated from
Algorithm 1| with penalty parameter 3, we have L(x**1) + Bp(zFt!) < L(x*) + Bp(z*). In
addition, the sequence {z"*} satisfies that limy,_, . ||z"*** — z*| = 0.

Theorem 3.6. Assume L(x) and p(z) are bounded below. Based on Lemma(3.5] any limit point of
{z"} is a stationary point of .

The proofs of Lemma [3.5]and Theorem [3.6]are provided in Appendix [B] The convergence results in
this case follow from |Beck & Teboulle (2009;|2010), which introduce the analysis of proximal gra-
dient method. In summary, Algorithm|I]addresses the primal problem (2)) with single regularization
term by applying the penalized problem in the form of (I4). It also inspires the resolution of the
cases involving multiple regularization terms.
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3.2 DOUBLE REGULARIZATION TERMS

In this subsection, we focus on the algorithm design for (2)) involving multiple regularization terms.
For convenience, we present the case with double regularization terms in the main text, while the
algorithm for addressing (2)) with more regularization terms and correspondingly results are provided
in Appendix [B.5. For this scenario, (I0) simplifies to the following formulation:

min  L(x) + fp(x, A, p, ).

XA p.r ‘ (15)
st Ri(x) <7y, |lpill« < Niyi=1,2,

where p(x, A, p,r) = [(x)+{*(—p1—p2)+A171+A2r. We adopt the notations z = (x, A, p, r) and
Ri,R;,1 = 1,2 defined in 1i From Assumption we know that R* 2 Ri NR3 is projected-
friendly, so we merely need to perform variable decomposition for 1 N Ro. We define g;(z) 2
Ir,nr~(2z),i = 1,2. Under this conditions, can be rewritten as the following equivalent form,

min L(x) + Bp(z) + g1(z) + g2(z). (16)

Motivated by (3), we introduce an auxiliary variable u as follows,

mzin L(x) + Bp(z) + 91(2) + g2(u)
s.t. z=nu.

a7)

The augmented Lagrangian function of problem is
g
Ly(mu ) = L)+ Bp(z) +g1(2) + ga(w) + (0 — 2) + Lu —

2
= L)+ Bp(z) + 91(2) + g2 (w) + S [u—z+ %”2 B ”2“3

Now, we naturally employ Alternating Direction Method of Multipliers (ADMM) to solve (17),
which cyclically update u, z, p by solving the u- and z-subproblems and adopt a dual ascent step
for ;. We summarize the iterations in Algorithm In line xY is initialized by solving lower-level
problem min, {I(x) + A1 R1(x) + A2 R2(x)} with given A° and we set r? = R;(x°). In line |3
we add a proximal term due to the weakly-convex term \;7;,¢ = 1,2 with a constant . In line |4}
u-subproblem takes the form of direct projection onto R. Under Assumption[3.1] we assume that
u-subproblem can be solved exactly in each iteration.

Algorithm 2 ADMM Framework for Problem (I3))

1: Initialize A° and x%, p° r% u® = (x% A%, p°, ) , constants 3,~ and .
2: for k=0,1,2,...do

k
3 2 = argmin, { L(x) + Bp(z) + 91(2) + Fub — 2+ L2 + L]l — 2¥|2}.

.
4 uFt! = argmin, {gg(u)—l—%Hu—zk"'rl —&-%HQ}

5. pktl=pk oy ,.Y(uk:Jrl _ zk+1).
6: end for

According to Definition lﬁl we control the proximal coefficient with ¢ > a4 — v where oy 2
g — (14 B)ay — 7, then we describe the property of z-subpoblem in the following lemma.
Lemma 3.7. Suppose Assumptions and hold. The z-subproblem in line [3] of Algorithm
|g|enj0ys (t — ag)-strongly convex property, while the objective function is lg-smooth with lg 2
YA+t + 1+ B+ ap + 1)

The above results is obtained from direct computation under Assumptions 2.2] and 2.3] For z-
subproblem in line|3| g1 (z) is indicator function and the problem can be expressed in the following
form

k
. . t
Zk+1 = arg mlnzeleR* {L(X) + ﬁp(z) + %”uk — 7+ %"2 + §||Z — Zk||2} , (18)
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which can be solved with projected gradient descent in the form of Algorithm[I|with a constant step
size n < i The projected gradient descent for the z-subproblem includes an additional proximal
term compared to Algorithm[I] Note that is strongly convex and smooth from Lemma|[3.7} then
we can derive the complexity results for finding an ex-optimal solution for z-subproblem in k-th
iteration of Algorithm 2]

Lemma 3.8. In k-th iteration of Algorithm an €i-optimal solution z
O(-e log(i)) projected gradient descent oracles.

t—aq

k+1 s generated in

The results of complexity of inner iterations utilize the conclusive findings in [Bubeck et al.|(2015).
Then we make the assumptions concerning z-subproblem and g.

o0
Assumption 3.9. The sequence {¢; } satisfies Y €, < oo.
k=1

Assumption 3.10. The sequence {u*} is bounded and satisfies Y ||pu* — pF+1||? < oo.
k=1

Assumption [3.9]is introduced by Wang et al.|(2019) and Assumption is popularly employed in
ADMM approaches | Xu et al.|(2012); Bai et al. (2021); [Shen et al. (2014); (Cui et al.|(2024). Based
on Assumptions [3.9]and [3.10, we propose the convergence result for Algorithm [2|in Theorem [3.11]

Theorem 3.11. Algorithm [Z]can find an e-KKT point (2" uF+1 ph+1) of within O(1/€?)
iterations.

From Theorem [3.11] we further conclude that Algorithm 2] finds an ¢-KKT point of within
O(1/€?) iterations. we provide the detailed proofs and extension to problem with multiple
regularizers in Appendix

4 NUMERICAL EXPERIMENTS

In this section, we conduct experiments to compare LDPM with existing algorithms for hyperparam-
eter optimization on synthetic data and real datasets, respectively. In specific, we mainly compare
our LDPM with grid search, random search, TPE (Bergstra et al., [2013), [JGO (Feng & Simon,
2018), VF-iDCA (Gao et al.}[2022), LDMMA (Chen et al.,2024), GAFFA (Yao et al.}[2024a). All
experiments are performed on a computer with Intel(R) Core(TM) i7-10710U CPU @ 1.10GHz
1.61 GHz and 16.00 GB memory. The code is implemented using Python 3.9. We consider hyper-
parameter optimization for elastic net and (sparse) group lasso. In this section, we present part of
the experimental results on synthetic data, with additional results and detailed descriptions of the
data generation and parameters for several methods included in Appendix [D.

4.1 SPARSE GROUP LASSO

We conduct experiments with different data scales and report results in Figure[I] The results of the
search methods and Bayesian method (TPE) are not presented in Figure [T]due to its lower efficiency
and instability. We have included the specific numerical results in tabular form in Appendix[D.I] We
observe that LDPM consistently outperforms other algorithms in terms of computational efficiency.
As the data scale increases, the superiority of our approach becomes increasingly evident, demon-
strating the advantages of LDPM in large-scale hyperparameter optimization. In contrast, gradient-
free methods exhibit significant instability when handling numerous hyperparameters, while IGIO
converges slowly and demands substantial computational resources. Our iteration process is inde-
pendent of any solvers, allowing it to outperform LDMMA and VF-iDCA, both of which rely on
specific solvers for their iterative subproblems.

4.2 ELASTIC NET

The numerical results on elastic net are reported in Figure [2| Overall, LDPM achieves the highest
solution quality in the shortest running time on this problem model. Similar to Section[d.T] the results
of the search method and Bayesian method are not presented in the figure. Instead, we have included
other results in tabular form in the Appendix[D.I} Overall, LDPM achieves the lowest test error with
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Figure 1: Comparison of the algorithms on Group Lasso problem for synthetic datasets in different
scales

significantly lower time costs, particularly in large-scale data scenarios. While the gradient-based
method IGJO demonstrates slightly better accuracy and efficiency and its convergence is notably
slow as illustrated in the figure. Meanwhile, VF-iDCA and LDMMA maintain consistently low
validation errors across all experiments. However, both algorithms suffer from overfitting, resulting
in increased test errors as the iterations progress.
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Figure 2: Comparison of the algorithms on Elastic Net problem for synthetic datasets in different
scales

We present other experimental results in the form of figures and tables in Appendix and
demonstrating the robustness and applicability of our algorithm. Notably, our algorithm does not
utilize any open-source libraries like CVXPY or commercial optimization solvers, such as MOSEK,
which are typically employed in many hyperparameter optimization algorithms.

5 CONLUSIONS

This paper addresses hyperparameter optimization in the context of nonsmooth regularizers by
proposing a novel penalty method based on lower-level duality (LDPM). Our approach applies pe-
nalization to a single-level reformulation, eschewing any implicit value function and instead uti-
lizing the conjugates of atomic functions. We effectively solve the subproblems within this pe-
nalization framework using fully first-order methods, including proximal techniques and the alter-
nating direction method of multipliers, while maintaining simplicity by avoiding complex off-the-
shelf solvers or high-complexity iterations. Theoretical analyses substantiate the convergence of our
method. Our numerical experiments, conducted on both synthetic and real-world datasets, demon-
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strate that LDPM consistently outperforms existing methodologies, with its advantages particularly
pronounced in large-scale scenarios. Looking ahead, we aim to explore nonsmooth loss functions
and develop more general algorithms from a stochastic perspective, thereby broadening the applica-
bility and impact of our approach.
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