

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GEOMETRYZERO: ADVANCING LLM FOR GEOMETRY SOLVING VIA GROUP CONTRASTIVE POLICY OPTI- MIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in large language models (LLMs) have demonstrated remarkable capabilities in mathematical reasoning, amid which geometry problem solving remains a challenging area where auxiliary construction plays a essential role. Existing approaches either achieve suboptimal performance or rely on colossal LLMs (e.g., GPT-4o), incurring massive computational costs. We posit that reinforcement learning with verifiable reward (e.g., GRPO) offers a promising direction for training smaller models that effectively combine auxiliary construction with robust geometric reasoning. However, directly applying GRPO to geometric reasoning presents fundamental limitations due to its dependence on unconditional rewards, which leads to indiscriminate and counterproductive auxiliary constructions. To address these challenges, we propose **Group Contrastive Policy Optimization (GCPO)**, a novel reinforcement learning framework featuring two key innovations: (1) *Group Contrastive Masking*, which adaptively provides positive or negative reward signals for auxiliary construction based on contextual utility, and a (2) *Length Reward* that promotes longer reasoning chains. Building on GCPO, we develop GeometryZero, a family of affordable-size geometric reasoning models that judiciously determine when to employ auxiliary construction. Our extensive empirical evaluation across popular geometric benchmarks (w.r.t. Geometry3K and MathVista) demonstrates that GeometryZero models consistently outperform RL baselines (e.g. GRPO, ToRL) across various benchmarks.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have demonstrated remarkable performance across domains (Ouyang et al., 2022; Team, 2024; DeepSeek-AI et al., 2025) including mathematics (Shao et al., 2024). Among them geometry problem solving is deemed as a challenging task, which requires both perception of visual contexts (i.e., geometric diagrams) and complex reasoning (Lu et al., 2021; Kazemi et al., 2023). Existing training methods either utilize massive annotated data for supervised learning (Gao et al., 2023) or focus on algebraic-level formal deviation (Brehmer et al., 2023). This makes current models show unsatisfying performance on this domain and lack self-correction capabilities in their reasoning chains due to their reliance on annotation quality (Lu et al., 2024).

Another sequence of works focuses on auxiliary lines, which are valuable either when diagrams are inherently complex or when the problem’s intrinsic properties benefit from such constructions, significantly reducing problem solving difficulty (Chervonyi et al., 2025). Several works including Hu et al. (2024); Wang et al. (2025) have attempted to enhance visual language models’ utilization of contexts through modifying formal languages (e.g., code) for auxiliary construction, thereby improving their reasoning capabilities on complex geometry problems. Existing works validate that transforming visual contexts into formal languages and leveraging LLM yields better reasoning (Yang et al., 2025). AlphaGeometry2 (Chervonyi et al., 2025) also employs LLMs for auxiliary construction. However, these approaches rely on prompting or training colossal models (e.g., Gemini, GPT-4o), which incur expensive computational costs that limit their real-world deployment.

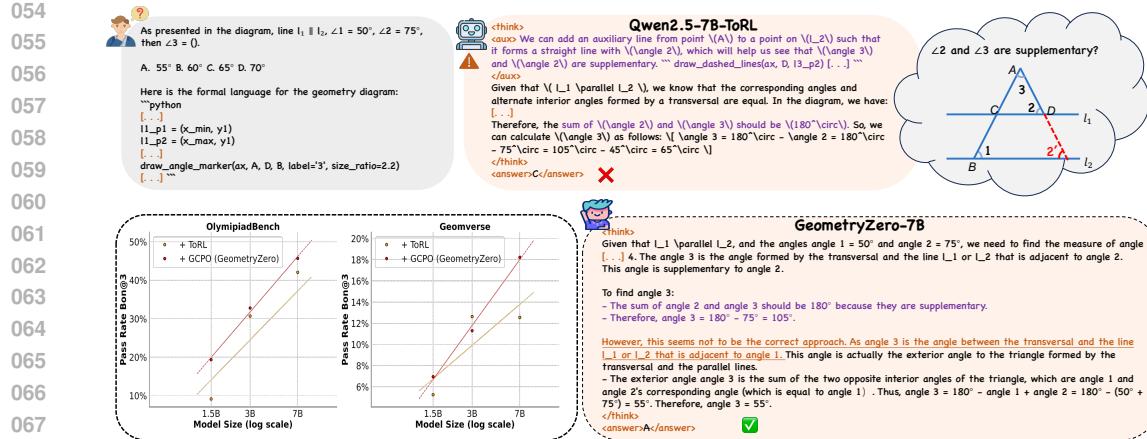


Figure 1: **A Comparative Study between ToRL and our GCPO.** (a) Two cases comparing GeometryZero-7B with Qwen2.5-7B-GRPO, revealing GeometryZero-7B judiciously determines to directly reason, while a ToRL-trained model indiscriminately conducts auxiliary construction. (b) Purple texts emphasize the erroneous reasoning steps both models undergo. The orange underlined texts amid reasoning process illustrate the critical reflection steps, which we identify as the model’s “aha moments” (DeepSeek-AI et al., 2025) in geometric problem solving. (c) GeometryZero showcases superior overall performance and better scaling effect across different model sizes compared to ToRL.

After the success of Deepseek-R1-Zero (DeepSeek-AI et al., 2025), GRPO has emerged as a generalizable and effective paradigm for both reasoning tasks and tool learning (Peng et al., 2025; Liu et al., 2025; Meng et al., 2025; Li et al., 2025). This makes it particularly suitable for training moderate-sized models capable of auxiliary construction while achieving a strong geometric reasoning performance. However, directly applying the GRPO framework to geometric reasoning with auxiliary construction presents challenges: in certain cases, forced or redundant auxiliary constructions prove unnecessary and potentially detrimental. Specifically, some problems can be solved through direct reasoning without auxiliary lines, where their forced inclusion may actually lead to incorrect solutions. Current RL approaches for tool use typically rely on unconditional rewards (consistently positive signals across all examples) to encourage indiscriminate tool invocation (Li et al., 2025). This approach lacks the flexibility to autonomously determine when auxiliary constructions are appropriate, thereby limiting RL’s effectiveness in geometric problem solving.

We posit that a flexible mechanism is needed, allowing models to learn through RL when to use auxiliary construction and when to abstain. To this end, we propose **Group Contrastive Policy Optimization** (GCPO), a novel reinforcement learning approach that avoids the drawbacks of unconditional rewards. Specifically, GCPO differs crucially from traditional GRPO: it quantitatively estimates the benefits of auxiliary construction through two contrastive groups of rollouts, then provides flexible signals (conditional reward) including encouragements or penalties through Group Contrastive Masking. This mechanism enables GCPO to flexibly encourage auxiliary construction in clearly beneficial scenarios while punishing it in clearly detrimental situations. Inspired by LCPO (Aggarwal & Welleck, 2025), our work introduces a length reward to encourage multidimensional and more in-depth reasoning.

Building upon GCPO, we develop GeometryZero models, a series of lightweight (from 1.5B to 7B) LLMs specialized for geometric reasoning. Extensive experiments demonstrate that GeometryZero outperforms GRPO-trained models across multiple geometry problem-solving benchmarks, like Geometry3K and MathVista. As shown in Figure 1, by judiciously selecting scenarios for auxiliary construction rather than applying it indiscriminately, our GeometryZero showcases remarkable geometric reasoning and reflection ability, while achieving superior overall performance and better scaling across different model sizes compared to RL method with unconditional reward methods like ToRL (Li et al., 2025).

108 In summary, our contributions can be summarized as follows:
 109

- 110 We validate that through auxiliary construction during their reasoning process, LLMs can
 111 better solve complex tasks in geometric problem solving scenarios, where they utilize
 112 both contextual and altered formal languages for auxiliary construction.
- 113 A novel reinforcement learning method called **GCPO** is proposed in our work, which
 114 flexibly provides either encouraging or punishing signals for auxiliary construction across
 115 different samples during reinforcement learning, avoiding models from indiscriminately
 116 applying auxiliary constructions while maintaining their benefits when strategically justi-
 117 fied.
- 118 We train GeometryZero models, a series of lightweight geometric reasoning models that
 119 judiciously determine when to employ auxiliary construction. We conduct extensive ex-
 120 periments on them and baselines, along with an in-depth ablation study on GCPO to val-
 121 idate the effectiveness of each component, plus detailed analyses revealing key insights
 122 about our approach.

124 2 RELATED WORK

125 2.1 GEOMETRY PROBLEM SOLVING

126 With the development of large language models (LLMs), researchers have begun to apply LLMs
 127 to geometric problem solving (Trinh et al., 2024). However, some early work such as Brehmer
 128 et al. (2023) primarily focuses on algebraic-level formal derivation, which has limited effectiveness
 129 in solving practical problems with numeric solutions. Other studies address the lack of geome-
 130 try problem-solving data by proposing targeted benchmarks and datasets (Lu et al., 2021; Kazemi
 131 et al., 2023; Lu et al., 2024). Some recent work employs large-scale annotated data to perform su-
 132 pervised fine-tuning of models, aiming to enhance the performance of multimodal LLMs (Bi et al.,
 133 2024) on geometric problems (Gao et al., 2023).

134 Several approaches, such as GeoCoder (Sharma et al., 2024), attempt to utilize formal languages
 135 as context (e.g., code) to assist models in geometric reasoning. Other work explores the use of
 136 symbolic tools to strengthen models' geometric reasoning capabilities (Ning et al., 2025). Recent
 137 studies such as Hu et al. (2024); Wang et al. (2025); Chervonyi et al. (2025) propose encouraging
 138 models to construct auxiliary lines by modifying formal languages, thereby better leveraging the
 139 intrinsic properties of geometric context to solve the problems.

140 2.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARD

141 Reinforcement learning has long been a significant focus in the LLM research community
 142 (Schulman et al., 2017; Ouyang et al., 2022; Rafailov et al., 2024). Following the emergence of
 143 Deepseek-R1 (DeepSeek-AI et al., 2025), the research community has begun to focus on the ap-
 144 plication of reinforcement learning with verifiable reward, particularly GRPO (Shao et al., 2024),
 145 across various AI domains. Some studies attempt to reproduce GRPO's effectiveness in incentiviz-
 146 ing reasoning capabilities on smaller LLMs (Peng et al., 2025). Others apply RLVR methods to
 147 multimodal LLMs to enhance their understanding of visual contexts (Meng et al., 2025; Liu et al.,
 148 2025). Additional work explores converting visual contexts into formal languages and utilizing
 149 reasoning LLMs for inference, aiming to surpass the capabilities of multimodal LLMs (Yang et al.,
 150 2025).

151 The GRPO algorithm was initially proposed in Shao et al. (2024) and applied to mathematical rea-
 152 soning. Compared to PPO, it simplifies the reinforcement learning pipeline and eliminates the need
 153 for a critic model. CPPO (Lin et al., 2025) attempts to optimize the efficiency of the GRPO algo-
 154 rithm through pruning, reducing training costs while maintaining accuracy. DAPO (Yu et al., 2025)
 155 introduces a clipping mechanism and dynamic sampling to improve training diversity and stabil-
 156 ity. Liu et al. (2025) adapts GRPO's verifiable reward to visual perception tasks, enhancing model
 157 performance in visual reasoning. TRL (Li et al., 2025) attempts to integrate tool-use rewards into
 158 GRPO, enhancing the model's tool invocation capability to improve its performance on mathe-
 159 matical reasoning. A separate work proposes a temporal reward coupled with accuracy reward to
 160 improve model grounding performance in video contexts (Feng et al., 2025).

162 **3 PRELIMINARY**
 163

164 **Group Relative Policy Optimization (GRPO)** is a novel algorithm that leverages objectively
 165 verifiable supervision signals to enhance model performance on tasks requiring strong reasoning,
 166 such as mathematical and code-related problems. Compared with previous approaches, e.g., Rein-
 167 forcement Learning from Human Feedback, which rely on trained reward models, GRPO utilizes
 168 direct verification functions to provide reliable reward feedback. This method simplifies the reward
 169 learning mechanism while enabling efficient alignment with the task’s intrinsic correctness.

170 Specifically, given a question \mathbf{q} , the policy model π_θ generates a set of N sampled outputs $\mathbf{O} =$
 171 $\{\mathbf{o}_1, \mathbf{o}_2, \dots, \mathbf{o}_N\}$, where each output \mathbf{o}_i receives a reward signal \mathbf{r}_i through predefined verifiable
 172 reward functions. GRPO then optimizes the following clipped objective:

$$\max_{\pi_\theta} \mathbb{E}_{\mathbf{O} \sim \pi_\theta(\mathbf{q})} \left[\frac{1}{N} \sum_{i=1}^N \min \left(\frac{\pi_\theta(\mathbf{o}_i \mid \mathbf{q})}{\pi_{\theta_{\text{old}}}(\mathbf{o}_i \mid \mathbf{q})} \mathbf{A}_i, \text{clip} \left(\frac{\pi_\theta(\mathbf{o}_i \mid \mathbf{q})}{\pi_{\theta_{\text{old}}}(\mathbf{o}_i \mid \mathbf{q})}, 1 - \epsilon, 1 + \epsilon \right) \mathbf{A}_i \right) \right. \\ \left. - \beta \mathbb{D}_{\text{KL}} [\pi_\theta(\mathbf{o} \mid \mathbf{q}) \parallel \pi_{\text{ref}}(\mathbf{o} \mid \mathbf{q})] \right]. \quad (1)$$

173 Here, $\pi_{\theta_{\text{old}}}$ denotes the policy before the current update, and π_{ref} is a fixed reference policy (e.g.,
 174 the initial model). \mathbf{A}_i is the advantage estimate for output \mathbf{o}_i based on its reward signal \mathbf{r}_i , ϵ is the
 175 clipping threshold, and β is a hyperparameter controlling KL regularization to prevent excessive
 176 policy deviation.

177 Existing works, such as the DeepSeek R1-Zero (DeepSeek-AI et al., 2025) algorithm, abandon re-
 178 liance on supervised fine-tuning and instead train entirely via reinforcement learning, particularly
 179 within the Group Relative Policy Optimization (GRPO) framework. In contrast to traditional re-
 180inforcement learning methods like PPO (Schulman et al., 2017), GRPO does not require a critic
 181 model to evaluate the policy’s outputs. Given a question q , GRPO first generates G distinct re-
 182 sponds $\mathbf{O} = \{\mathbf{o}_1, \mathbf{o}_2, \dots, \mathbf{o}_G\}$ using the current policy $\pi_{\theta_{\text{old}}}$. Then, the reward function is applied
 183 to obtain a set of verifiable rewards $\{\mathbb{R}(\mathbf{o}_i)\}$. By computing the mean and standard deviation of
 184 these rewards, GRPO normalizes them and estimates the advantage value for each response \mathbf{o}_i as
 185 follows:

$$\mathbf{A}_i = \frac{\mathbb{R}(\mathbf{o}_i) - \mathbb{E}_{\mathbf{o}_i \sim \mathbf{O}}[\mathbb{R}(\mathbf{o}_i)]}{\text{std}(\{\mathbb{R}(\mathbf{o}_i)\})}, \quad (2)$$

186 where, \mathbf{A}_i is the advantage value corresponding to the i -th response, representing its relative qual-
 187 ity, \mathbb{R} is the sum of verifiable rewards. The GRPO framework encourages the model to generate
 188 responses with higher verifiable rewards, thereby improving both reliability and correctness in
 189 reasoning-intensive tasks.

190 **4 METHOD**
 191

192 **4.1 OVERVIEW**
 193

194 **Group Contrastive Policy Optimization (GCPO)** introduces one key novel modification: it incor-
 195 porates a crucial mechanism called group contrastive masking, which provides a positive mask for
 196 auxiliary reward in scenarios where auxiliary construction is beneficial, while applying a negative
 197 mask (i.e., penalty) in others. To achieve this objective, we propose the Group Contrastive Mask-
 198 ing. GCPO also introduces an additional length reward optimized for longer completion, due to the
 199 requirement for auxiliary reasoning.

200 **4.2 REINFORCEMENT LEARNING FOR AUXILIARY CONSTRUCTION**
 201

202 To enable models to incorporate auxiliary construction reasoning—a form of tool utilization (i.e.
 203 attempt to construct auxiliary lines in thinking process with formal language like tikz code)—we
 204 introduce an auxiliary reward that teaches the “*how-to*” capability, as in ToRL (Li et al., 2025),
 205 where an additional tool related reward is introduced for using coding for mathematical reason-
 206 ing. During training, the textual context contains either TikZ code or logic form as detailed in
 207 Appendix A.1, which strictly corresponds to geometric diagrams, and the model is prompted to

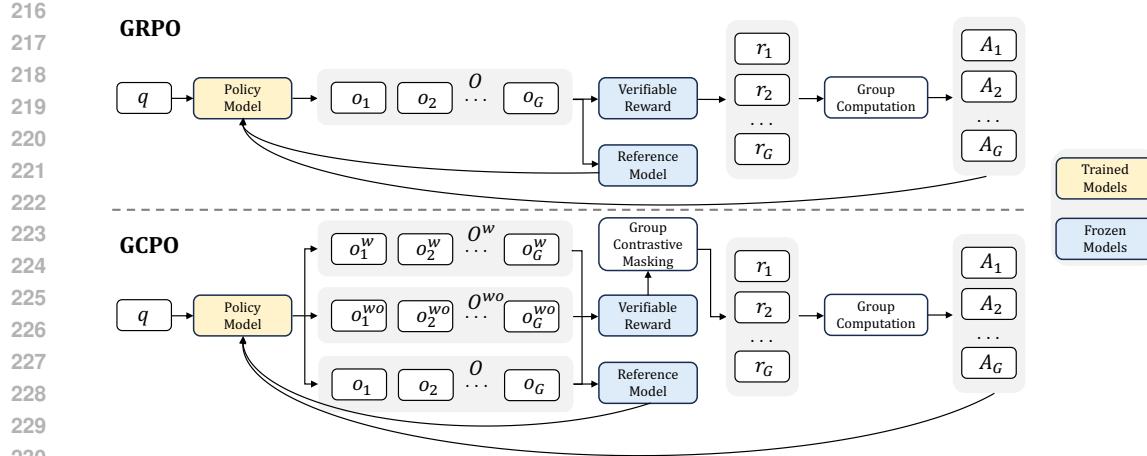


Figure 2: The Illustration of GCPO. One key difference between our GCPO and GRPO is Group Contrastive Masking: (1) GCPO samples two additional rollout groups O^w and O^{wo} for evaluating the quantitative benefits via *accuracy reward*. (2) The auxiliary reward signals of GCPO are dynamically masked to positive, negative, and zero during training as (Eq. 4). Another difference is that a novel length reward is also incorporated into the verifiable reward \mathbb{R} during GCPO training.

autonomously decide whether to include auxiliary line construction in its reasoning process. For executable TikZ code, the auxiliary reward is positive if the altered tikz code in thinking process can execute successfully and render a diagram; for logic forms, we detect the presence of special tokens `<aux>` and `</aux>` indicating attempts to modify the logic form for auxiliary lines construction. Thus, the auxiliary reward for a given response \mathbf{o}_i is defined as follow:

$$\mathbf{R}_{aux}(\mathbf{o}_i) = \begin{cases} 1 & \text{if model constructs auxiliary lines,} \\ 0 & \text{otherwise.} \end{cases} \quad (3)$$

4.3 CONDITIONAL REWARD FOR AUXILIARY CONSTRUCTION

Inspired by existing works (Chervonyi et al., 2025; Hu et al., 2024), we aim to endow models with the capability of auxiliary construction with formal language in geometric problem solving. However, it is crucial to note that while teaching models “*how to*” is important (Li et al., 2025), we must also teach them “*when to do it*”. Although GRPO has proven effective in enhancing reasoning capabilities, it lacks conditional rewards for tool usage and relies solely on unconditional rewards to encourage desired behaviors, which may cause indiscriminate use of the tool in certain scenarios. To address this limitation, we propose Group Contrastive Policy Optimization (**GCPO**), which introduces a group contrastive reward mechanism for a conditional reward signal that flexibly provides encouragements or penalties during training, allowing the flexibility of the trained models of whether to apply the tool (i.e. auxiliary construction) or not.

The key insight of GCPO stems from the observation that in geometric problem solving, while auxiliary lines can enhance reasoning in many cases, they may be unnecessary or even detrimental in some cases as well. Unconditional encouragement of auxiliary construction could lead to sub-optimal performance for complex scenarios like geometry problems, thus, we need to incorporate a conditional reward during reinforcement learning.

4.4 COMPONENTS OF GROUP CONTRASTIVE POLICY OPTIMIZATION

Group Contrastive Masking The core idea of GCPO is that during training, models should become aware of the quantifiable benefits of using code to draw auxiliary lines - employing this capability when beneficial and avoiding it when counterproductive. As shown in Figure 2, during response sampling, the model generates G rollouts $\mathbf{O} = \{\mathbf{o}_1, \mathbf{o}_2, \dots, \mathbf{o}_G\}$, along with another two contrastive rollout groups: one requiring auxiliary line thought process group $\mathbf{O}^W = \{\mathbf{o}_i^W\}$ and one

270 group prohibiting it $\mathbf{O}^{\text{wo}} = \{\mathbf{o}_i^{\text{wo}}\}$. The group contrastive masking function is defined as:
 271

$$272 \quad \text{Mask}(\mathbf{R}_{\text{aux}}(\mathbf{O})) = \begin{cases} \mathbf{R}_{\text{aux}}(\mathbf{O}) & \text{if } \mathbf{E}(\mathbf{R}_{\text{acc}}(\mathbf{O}^{\text{w}})) > \mathbf{E}(\mathbf{R}_{\text{acc}}(\mathbf{O}^{\text{wo}})) + \epsilon, \\ -\mathbf{R}_{\text{aux}}(\mathbf{O}) & \text{if } \mathbf{E}(\mathbf{R}_{\text{acc}}(\mathbf{O}^{\text{wo}})) > \mathbf{E}(\mathbf{R}_{\text{acc}}(\mathbf{O}^{\text{w}})) + \epsilon, \\ \mathbf{0} & \text{otherwise,} \end{cases} \quad (4)$$

273 where $\mathbf{R}_{\text{acc}}(\mathbf{o}_i)$ represents the accuracy reward function indicating whether response \mathbf{o}_i contains
 274 the correct final answer, $\mathbf{R}_{\text{aux}}(\mathbf{o}_i)$ refers to the auxiliary reward in (Eq. 3) and ϵ (set to 0.05 in ex-
 275 periments) is a threshold hyperparameter controlling reward masking. Following standard mathe-
 276 matical conventions, the function \mathbf{R}_{aux} can naturally extend from a single response to a set of re-
 277 sponses: $\mathbf{R}_{\text{aux}}(\mathbf{O}) = \{\mathbf{R}_{\text{aux}}(\mathbf{o}_1), \dots, \mathbf{R}_{\text{aux}}(\mathbf{o}_G)\}$, which also holds for $\mathbf{R}_{\text{acc}}(\mathbf{O}^{\text{w}})$ and $\mathbf{R}_{\text{acc}}(\mathbf{O}^{\text{wo}})$.
 278

279 **Length Reward** Auxiliary construction thinking requires deeper, multi-dimensional analysis, ne-
 280 cessitating longer reasoning processes. Inspired by Length Controlled Policy Optimization (LCPO)
 281 (Aggarwal & Welleck, 2025), we adapt by introducing a simplified length reward, where $\text{len}(\mathbf{o}_i)$
 282 counts tokens in response \mathbf{o}_i and l_{max} is the maximum allowed completion length.
 283

$$284 \quad \mathbf{R}_{\text{length}}(\mathbf{o}_i) = \min\{1, \frac{\text{len}(\mathbf{o}_i)}{l_{\text{max}}}\} \quad (5)$$

285 **Verifiable Reward Combination** As a variant of RLVR, the verifiable reward $\mathbb{R}(\mathbf{o}_i)$ of GCPO
 286 combines multiple weighted components as below, where $\mathbf{R}_{\text{GRPO}}(\mathbf{o}_i)$ includes a accuracy reward
 287 and a format reward ensuring proper output structure, while hyperparameter λ representing auxil-
 288 iary reward weight and hyperparameter β representing length reward weight are both set to 0.5.
 289

$$290 \quad \mathbb{R}(\mathbf{o}_i) = \mathbf{R}_{\text{GRPO}}(\mathbf{o}_i) + \lambda \cdot \text{Mask}(\mathbf{R}_{\text{aux}}(\mathbf{o}_i)) + \beta \cdot \mathbf{R}_{\text{length}}(\mathbf{o}_i) \quad (6)$$

291 In essence, GCPO uses masked auxiliary rewards to teach appropriate tool usage contexts, while
 292 length rewards ensure sufficient reasoning capacity. The framework largely inherits GRPO’s verifi-
 293 able reward framework, employing outcome-based reinforcement learning for model training.
 294

295 5 EXPERIMENTS

296 5.1 EXPERIMENTAL SETTING

301 For dataset, we apply a synthesized dataset with data sampled from two popular geometry prob-
 302 lem solving (GPS) dataset including Geomverse (Kazemi et al., 2023) and Geometry3k (Lu et al.,
 303 2021), for training SFT and RL models. The training dataset recipe is detailed is Appendix A.1.
 304 For training details, we utilize the vLLM inference framework (Kwon et al., 2023) during training
 305 and evaluation. More details are presented in Appendix A.2.

306 As for models, inspired by (Yang et al., 2025), we turn the visual diagrams into formal language
 307 contexts for better reasoning performance. Thus, we use Qwen2.5 (Qwen et al., 2025) series lan-
 308 guage models for training. For benchmarks, besides the in-domain benchmarks of Geometry3k and
 309 Geomverse, the OOD geometry benchmarks comprise MathVista (Lu et al., 2024) and Olympiad-
 310 Bench (He et al., 2024). The details are provided in Appendix A.3.

311 **Baselines** To fully demonstrate the effectiveness of **GCPO**, we compare against the following
 312 baselines: **(1)** SFT. The model undergoes supervised fine-tuning using prompt-response pairs,
 313 where responses are either human-annotated or distilled from capable LLMs. **(2)** GRPO (Shao
 314 et al., 2024). A reinforcement learning via verifiable outcome algorithm where the model gen-
 315 erates multiple responses for baseline advantage estimation to encourage reasoning and improve
 316 problem-solving, which eliminates the usage of a critic model or reward model. **(3)** ToRL (Li
 317 et al., 2025). An RL algorithm building on GRPO that appends an additional reward function
 318 (Eq. 3) to unconditionally encourage tool usage (i.e., auxiliary construction).
 319

320 5.2 RESULTS

321 As shown in the table 1, our experimental results across four geometry problem-solving bench-
 322 marks demonstrate GCPO’s effectiveness in enhancing model capabilities on geometric problems.
 323 Key findings are summarized below:

Model Size	Method	Geomverse	Geometry3k	MathVista	OlympiadBench	Avg.
1.5B	Qwen2.5-1.5B-Instruct	4.20	41.76	47.70	13.44	26.78
	+ SFT	4.80	44.25	43.11	14.51	26.67
	+ GRPO	5.76	53.35	57.79	14.51	32.85
	+ ToRL	5.26	57.01	57.79	11.29	32.84
GeometryZero-1.5B (ours)		6.96	60.23	61.77	19.35	37.08
3B	Qwen2.5-3B-Instruct	10.53	65.83	67.88	32.25	44.12
	+ SFT	10.20	71.65	73.08	30.64	46.39
	+ GRPO	12.13	75.87	82.87	31.72	50.65
	+ ToRL	12.63	77.31	81.34	33.87	51.29
GeometryZero-3B (ours)		11.30	79.25	82.56	35.48	52.15
7B	G-Llama-7B	6.23	49.31	46.92	27.82	32.57
	GNS-Llama-1.5-7B	5.21	62.00	51.40	33.54	38.04
	Qwen2.5-7B-Instruct	14.76	70.99	68.19	39.24	48.30
	+ SFT	15.36	75.98	76.14	41.93	52.35
GeometryZero-7B (ours)		18.23	78.75	83.48	44.08	54.72

Table 1: **The main empirical results.** The BoN@3 pass rate results across in-domain benchmarks including Geomverse, Geometry3k and out-of-domain results on MathVista and OlympiadBench, where the best results are **bold**. Results from our GeometryZero (w.r.t., + GCPO) models are shown in `gray` part.

SFT Memorizes while RL Generalizes. We observe that SFT models (Qwen2.5-1.5B-SFT and Qwen2.5-3B-SFT) show consistent improvements over original Instruct models on in-domain benchmarks like Geomverse and Geometry3k. For instance, Qwen2.5-1.5B-SFT and Qwen2.5-3B-SFT gains an improvement of 2.49% and 5.83% on Geometry3k. However, these SFT models exhibit either performance drops or smaller gains compared to RL methods on OOD benchmarks like MathVista and OlympiadBench. For instance, while Qwen2.5-1.5B-SFT exhibits a performance decline of 4.59% compared to the base model on the OOD benchmark MathVista, Qwen2.5-1.5B-GRPO demonstrates a notable improvement of 10.09%. Overall, RL approaches including GRPO, ToRL, and GCPO achieve more consistent improvements across both in-domain and OOD benchmarks, surpassing SFT and proving the effectiveness of reinforcement learning.

Group Contrastive Policy Optimization Works. Compared to GRPO, ToRL models unconditionally encourage auxiliary construction during reasoning process across all examples with an unconditional reward design (Eq. 3). The empirical results demonstrate that ToRL models has no clear advantage over GRPO across various model scales, indicating that this coarse-grained policy fails to provide significant benefits for auxiliary construction in geometric problem-solving scenarios. For instance, while ToRL demonstrates a marginal 0.64% advantage over GRPO on 3B models, it exhibits a 0.91% performance reduction on 7B models. In contrast, GCPO improves model performance on both in-domain and OOD benchmarks, achieving consistently better average performance on most benchmarks across model sizes. This indicates discerning when to incorporate auxiliary reasoning ultimately improving problem-solving capabilities. As shown in Figure 3, GCPO enhances geometric problem-solving by generating auxiliary constructions during the reasoning process, we also provide more case studies in Appendix G.

5.3 ABLATION STUDY

Base Model	Method	AR	GC	LR	Geomverse	Geometry3k	MathVista	OlympiadBench	Avg.
Qwen2.5-7B-Instruct	GRPO	✗	✗	✗	16.93	79.03	86.23	40.32	55.63
	GCPO (/wo AR)	✗	✗	✓	17.40	79.53	87.15	41.93	56.50
	GCPO (/wo LR, /wo GC)	✓	✗	✗	12.56	78.75	83.48	44.08	54.72
	GCPO (/wo LR)	✓	✓	✗	18.59	80.86	86.54	41.93	56.98
	GeometryZero	✓	✓	✓	18.23	78.81	87.15	45.69	57.47

Table 2: **The ablation study of GCPO components.** The components includes auxiliary reward (AR), group contrastive (GC) masking and length reward (LR).

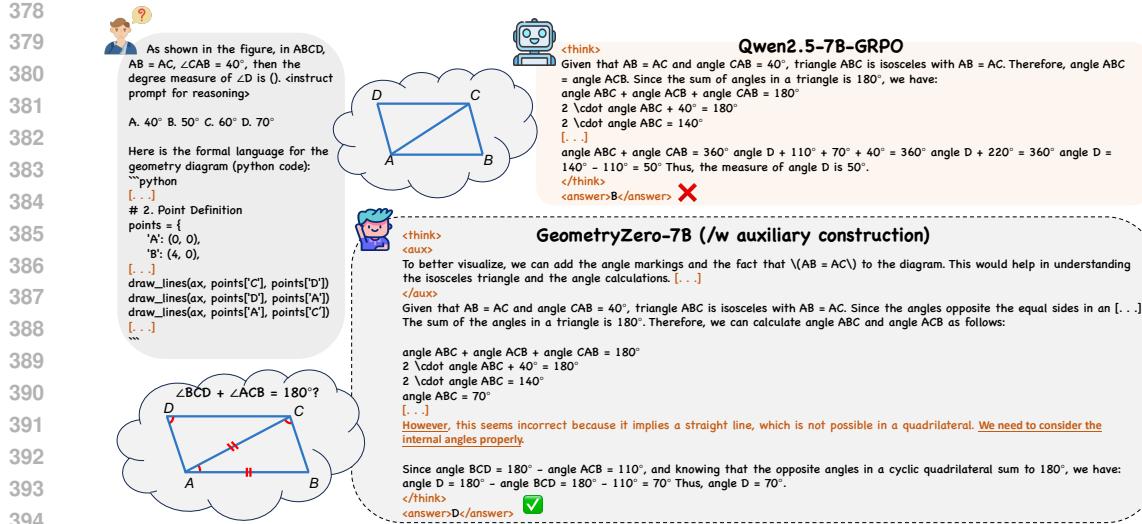


Figure 3: **A Case Study between GRPO and GCPO.** Two responses comparing Qwen2.5-7B-GRPO with our GeometryZero-7B for a MathVista problem, revealing how GeometryZero-7B effectively constructs auxiliary elements during its reasoning process. The orange underlined texts during reasoning process are reflection process in geometric problem solving.

To better understand the contributions of components in GCPO, we conduct an ablation study to evaluate three variants of GeometryZero and compare them with the GRPO model and GeometryZero, where the descriptions of the variants are further detailed in Appendix C.1.

Our findings show that GeometryZero (/wo LR) achieves on average 2.26% higher performance than GeometryZero (/wo LR, /wo GC). Both GeometryZero (/wo AR) and GeometryZero (/wo LR) demonstrate better average performance across benchmarks compared to Qwen-2.5-7B-GRPO by 0.87% and 1.35% respectively, while these two variants show 0.97% and 0.49% lower average performance than GeometryZero. We also provide an ablation study on 3B models in Appendix C.2.

The experimental results indicate that removing either the auxiliary reward or its corresponding group contrastive masking leads to performance degradation across benchmarks. Similarly, eliminating the length reward in GCPO also poses negative effects. These results validate the effectiveness of our proposed method.

6 DISCUSSION

6.1 COMPLETION LENGTH OF MODELS

Response length serves as a crucial metric for observing training dynamics in RL (Meng et al., 2025). We monitor the variation in response length during the training process of GeometryZero and GRPO models as shown in Figure 4. For 7B models, we observe the following trends in response length: During the initial few steps, the model’s response length increases rapidly, subsequently it decreases, after reaching the lowest point, it then begins to rise again.

The phenomenon aligns with observations in llm-r1 (Peng et al., 2025). We hypothesize that in the first phase, the model is encouraged by format rewards to learn reasoning patterns that generate thoughts before answers, leading to increased output length. In the second phase, as training progresses, the model begins to optimize the reward function, particularly the accuracy reward, causing it to reduce redundant outputs while maintaining the required format, resulting in decreased response length. For the third phase, we speculate that in later training stages, the model learns more sophisticated reasoning patterns and attempts to generate more complex reasoning steps, leading to the length recovery.

The observation differs for 1.5B models. GeometryZero-1.5B exhibits the rise-fall-rise pattern in response length, while the GRPO model shows no recovery in response length in the last stage.



442 (LEFT) The trend of **completion length** during reinforcement learning of 7B models.
 443 (RIGHT) The trend of **completion length** during reinforcement learning of 1.5B models. We ob-
 444 serve that the completion length of GCPO models follows a distinct pattern during training:
 445 initially increasing, then decreasing, before rising again, which could also be observed for 7B
 446 GRPO models.

447 We attribute this to the model’s limited capacity due to smaller parameter size, which prevents it
 448 from learning more comprehensive and profound reasoning processes through GRPO alone in later
 449 training stages.

451 6.2 MASK RATIO OF GCPO

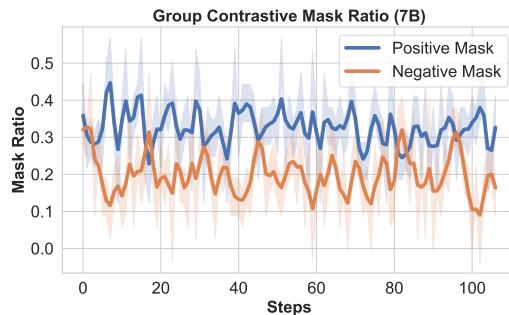
452 According to (Eq. 4), our method’s char-
 453 acteristic is that during Group Masking, it ap-
 454 plies positive masks to auxiliary rewards for
 455 some cases, negative masks to others, while
 456 zero-masking cases where the mean accuracy
 457 reward gap does not exceed epsilon. As pre-
 458 sented in Figure 6, we observe that while the
 459 overall proportions of positive and negative
 460 masks fluctuate, they remain generally stable
 461 during training, with positive masks consis-
 462 tently outnumbering negative masks.

463 This phenomenon demonstrates that the rollout
 464 group with auxiliary construction (i.e. O^w)
 465 achieves higher accuracy rewards than the
 466 group without auxiliary construction (i.e. O^{wo})
 467 in reward score computing, indicating that
 468 auxiliary construction generally contributes to
 469 obtaining correct solutions and thus validating
 470 its effectiveness. More records of group mask
 471 ratio are presented in appendix H.4.

472 We also demonstrate more in-depth discussions for epsilon settings in Appendix B and the per-
 473 formance of GeometryZero models on geometry proving tasks in Appendix D.

477 7 CONCLUSION

478 In this paper, we propose **Group Contrastive Policy Optimization**, a novel reinforcement learn-
 479 ing framework that incorporates verifiable rewards to optimize conditional reward particularly for
 480 auxiliary construction in geometric reasoning. GCPO dynamically adapts to different problem
 481 scenarios, supporting an autonomous strategy of tool-assisted and tool-free reasoning. Building
 482 upon this framework, we introduce GeometryZero, a series of geometric reasoning models that
 483 autonomously learn when and how to apply auxiliary constructions during the reasoning process.
 484 Extensive experiments demonstrate the effectiveness of our approach, while detailed analyses pro-
 485 vide insights for future research directions.



500 Figure 5: The positive group mask and negative
 501 group mask ratio in group contrastive masking
 502 (Eq. 4). We consider Mask Ratio as an important
 503 metric for observing GCPO training dynamics,
 504 as it represents the proportion of cases deemed
 505 either “auxiliary construction is useful” or “aux-
 506 illiary construction is harmful” during training.

486 REFERENCES
487

488 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
489 reinforcement learning, 2025. URL <https://arxiv.org/abs/2503.04697>.

490 Jinhe Bi, Yujun Wang, Haokun Chen, Xun Xiao, Artur Hecker, Volker Tresp, and Yunpu Ma.
491 Visual instruction tuning with 500x fewer parameters through modality linear representation-
492 steering. *arXiv preprint arXiv:2412.12359*, 2024.

493 Jinhe Bi, Yifan Wang, Danqi Yan, Xun Xiao, Artur Hecker, Volker Tresp, and Yunpu Ma. Prism:
494 Self-pruning intrinsic selection method for training-free multimodal data selection. *arXiv
495 preprint arXiv:2502.12119*, 2025.

496 Johann Brehmer, Pim de Haan, Sönke Behrends, and Taco Cohen. Geometric algebra transformer,
497 2023. URL <https://arxiv.org/abs/2305.18415>.

498 Jiaqi Chen, Tong Li, Jinghui Qin, Pan Lu, Liang Lin, Chongyu Chen, and Xiaodan Liang. Unigeo:
499 Unifying geometry logical reasoning via reformulating mathematical expression, 2022. URL
500 <https://arxiv.org/abs/2212.02746>.

501 Yuri Chervonyi, Trieu H. Trinh, Miroslav Olsák, Xiaomeng Yang, Hoang Nguyen, Marcelo Mene-
502 galí, Junehyuk Jung, Vikas Verma, Quoc V. Le, and Thang Luong. Gold-medalist performance
503 in solving olympiad geometry with alphageometry2. *CoRR*, abs/2502.03544, 2025. doi: 10.
504 48550/ARXIV.2502.03544. URL <https://doi.org/10.48550/arXiv.2502.03544>.

505 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
506 Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
507 Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
508 Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
509 Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
510 Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
511 Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
512 Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
513 Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
514 Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
515 Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,
516 Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qushu Du, Ruiqi Ge, Ruisong
517 Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghai Lu, Shangyan
518 Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shut-
519 ing Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
520 ment learning. *CoRR*, abs/2501.12948, 2025. doi: 10.48550/ARXIV.2501.12948. URL
521 <https://doi.org/10.48550/arXiv.2501.12948>.

522 Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yibing Wang, Tianshuo Peng, Benyou
523 Wang, and Xiangyu Yue. Video-r1: Reinforcing video reasoning in mllms, 2025. URL <https://arxiv.org/abs/2503.21776>.

524 Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, Lanqing Hong,
525 Jianhua Han, Hang Xu, Zhenguo Li, and Lingpeng Kong. G-llava: Solving geometric problem
526 with multi-modal large language model. *CoRR*, abs/2312.11370, 2023. doi: 10.48550/ARXIV.
527 2312.11370. URL <https://doi.org/10.48550/arXiv.2312.11370>.

528 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
529 Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
530 Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual
531 multimodal scientific problems, 2024. URL <https://arxiv.org/abs/2402.14008>.

532 Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith,
533 and Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for mul-
534 timodal language models. In Amir Globersons, Lester Mackey, Danielle Belgrave, An-
535 gela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in Neu-
536 ral Information Processing Systems 38: Annual Conference on Neural Information Pro-
537 cessing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024*,

540 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/fb82011040977c7712409fbdb5456647-Abstract-Conference.html.
 541
 542

543 Mehran Kazemi, Hamidreza Alvari, Ankit Anand, Jialin Wu, Xi Chen, and Radu Soricut. Ge-
 544 omverse: A systematic evaluation of large models for geometric reasoning, 2023. URL
 545 <https://arxiv.org/abs/2312.12241>.

546 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
 547 Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
 548 guage model serving with pagedattention, 2023. URL <https://arxiv.org/abs/2309.06180>.
 549

550 Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl, 2025. URL <https://arxiv.org/abs/2503.23383>.
 551
 552

553 Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. CPPO: accelerating the training of group
 554 relative policy optimization-based reasoning models. *CoRR*, abs/2503.22342, 2025. doi: 10.
 555 48550/ARXIV.2503.22342. URL <https://doi.org/10.48550/arXiv.2503.22342>.
 556

557 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and
 558 Jiaqi Wang. Visual-rft: Visual reinforcement fine-tuning, 2025. URL <https://arxiv.org/abs/2503.01785>.
 559

560 Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
 561 Inter-gps: Interpretable geometry problem solving with formal language and symbolic reason-
 562 ing, 2021. URL <https://arxiv.org/abs/2105.04165>.
 563

564 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
 565 Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical rea-
 566 soning of foundation models in visual contexts, 2024. URL <https://arxiv.org/abs/2310.02255>.
 567

568 Fangqiang Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
 569 Han, Botian Shi, Wenhui Wang, Junjun He, Kaipeng Zhang, Ping Luo, Yu Qiao, Qiaosheng
 570 Zhang, and Wenqi Shao. Mm-eureka: Exploring the frontiers of multimodal reasoning with
 571 rule-based reinforcement learning, 2025. URL <https://arxiv.org/abs/2503.07365>.
 572

573 Maizhen Ning, Zihao Zhou, Qiufeng Wang, Xiaowei Huang, and Kaizhu Huang. GNS: solv-
 574 ing plane geometry problems by neural-symbolic reasoning with multi-modal llms. In Toby
 575 Walsh, Julie Shah, and Zico Kolter (eds.), *AAAI-25, Sponsored by the Association for the Ad-
 576 vancement of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA*,
 577 pp. 24957–24965. AAAI Press, 2025. doi: 10.1609/AAAI.V39I23.34679. URL <https://doi.org/10.1609/aaai.v39i23.34679>.
 578

579 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 580 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 581 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 582 and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
 583 URL <https://arxiv.org/abs/2203.02155>.
 584

585 Yingzhe Peng, Gongrui Zhang, Miaozen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,
 586 Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning
 587 abilities through two-stage rule-based rl, 2025. URL <https://arxiv.org/abs/2503.07536>.
 588

589 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 590 Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jian-
 591 wei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Ke-
 592 qin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin,
 593 Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su,
 Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 tech-
 594 nical report, 2025. URL <https://arxiv.org/abs/2412.15115>.
 595

594 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
 595 Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
 596 2024. URL <https://arxiv.org/abs/2305.18290>.

597

598 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 599 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

600 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
 601 Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 602 language models. *CoRR*, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
 603 <https://doi.org/10.48550/arXiv.2402.03300>.

604

605 Aditya Sharma, Aman Dalmia, Mehran Kazemi, Amal Zouaq, and Christopher J. Pal. Geocoder:
 606 Solving geometry problems by generating modular code through vision-language models.
 607 *CoRR*, abs/2410.13510, 2024. doi: 10.48550/ARXIV.2410.13510. URL <https://doi.org/10.48550/arXiv.2410.13510>.

608

609 Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of
 610 context, 2024. URL <https://arxiv.org/abs/2403.05530>.

611

612 Trieu Trinh, Yuhuai Wu, Quoc Le, He He, and Thang Luong. Solving olympiad geometry without
 613 human demonstrations. *Nature*, 2024. doi: 10.1038/s41586-023-06747-5.

614

615 Yikun Wang, Siyin Wang, Qinyuan Cheng, Zhaoye Fei, Liang Ding, Qipeng Guo, Dacheng Tao,
 616 and Xipeng Qiu. Visuothink: Empowering lilm reasoning with multimodal tree search, 2025.
 617 URL <https://arxiv.org/abs/2504.09130>.

618

619 Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng
 620 Yin, Fengyun Rao, Minfeng Zhu, Bo Zhang, and Wei Chen. R1-onevision: Advancing gen-
 621 eralized multimodal reasoning through cross-modal formalization, 2025. URL <https://arxiv.org/abs/2503.10615>.

622

623 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gao-
 624 hong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan
 625 Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie
 626 Chen, Chengyi Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou,
 627 Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
 628 uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
 629 <https://arxiv.org/abs/2503.14476>.

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A IMPLEMENTATION DETAILS**
649650 **A.1 TRAINING DATASET CONSTRUCTION**
651

653 Dataset	653 Sample Size	653 Code Type	653 Code Executable
654 Geomverse	654 $2k$	654 <i>Tikz Code</i>	654 \checkmark
655 Geometry3k	655 1443	655 <i>Logic Form</i>	655 \times

656
657 **Table 3: The training dataset construction details.** The training data are sampled from two pop-
658 ular geometry problem solving (GPS) dataset including Geomverse and Geometry3k.659 To ensure the model adequately learns geometric problem solving, we select two mainstream ge-
660 ometric problem solving (GPS) datasets. Our training data comes from Geometry3k (Lu et al.,
661 2021) and Geomverse (Kazemi et al., 2023).

- 662 • Geometry3k. We randomly select 1443 training samples from Geometry3k. For the SFT
663 experiments, this dataset lacks supervised sequences, so we use Qwen2.5-72B-Instruct
664 (Qwen et al., 2025) to generate CoT reasoning processes with known answers. These rea-
665 soning processes are concatenated with the solutions to form supervised responses. For
666 RL-based methods like GRPO and GCPO, we only utilize the problems in the dataset and
667 employ the final answers as supervision.
- 668 • Geomverse. We randomly choose $2k$ training samples from Geomverse. Since this dataset
669 already contains human-annotated CoT processes, we directly use them for SFT experi-
670 ments. We also only employ the problems in the dataset and the final answers as supervi-
671 sion for RL-based methods.

673 **A.2 TRAINING DETAILS**
674675 We set train batch size to 32 and micro train batch size to 1, for response sampling we apply a roll-
676 out batch size of 64 and a micro rollout batch size of 2. We set max prompt length to 2048 and
677 max completion length l_{max} to 1024. We use full parameter tuning rather than PEFT methods (Bi
678 et al., 2025).679 We set G to 8, with both the SFT learning rate and the GRPO learning rate at $3e - 7$ and the for-
680 mat reward weight set to 0.5. Due to the limited training data and absence of significant policy
681 shift concerns, we set the KL coefficient to 0 to achieve better tuning performance. As for compute
682 hardware, we use 4 Nvidia H100 GPUs for training and later evaluation.684 **A.3 EVALUATION BENCHMARKS**
685686 To comprehensively evaluate the model’s performance on geometric problem solving, we conduct
687 evaluations on several mainstream geometric problem benchmarks. Besides using Geometry3k
688 and the Geomverse D2 subset to test the model’s in-domain geometric capabilities, for out-of-
689 distribution problems, we also evaluate the model’s performance on MathVista and Olympiad-
690 Bench.691 Besides the in-domain benchmarks, the OOD geometry benchmarks comprise:
692

- 693 • MathVista (Lu et al., 2024). A consolidated mathematical reasoning benchmark within vi-
694 sual contexts. To evaluate LLMs on geometric problems, GPT-4o converts visual contexts
695 from MathVista testmini into textual Python code using ReACT and Self-Vote mecha-
696 nisms. We then manually verify that the code-generated graphics match the original vi-
697 sual contexts, resulting in an evaluation set containing 109 samples.
- 698 • OlympiadBench (He et al., 2024). The benchmark is an Olympiad-level multimodal sci-
699 entific benchmark. We extract all geometry problems and filter for those with only one
700 solution to ensure single-solution supervision. Using the same pipeline as MathVista, we
701 convert visual contexts into LLM-comprehensible Python code, obtaining an evaluation
set of 62 samples to assess model performance on Olympiad-level geometry problems.

702 B THE IMPACT OF HYPERPARAMETER ϵ OF GROUP CONTRASTIVE 703 MASKING 704

705 To provide more insightful analysis of our
706 method, we conduct a comparative study with
707 different epsilon hyperparameter settings. We
708 set epsilon values at 0, 0.05, 0.15, 0.3, and
709 1.0 separately for training GeometryZero
710 and evaluating their benchmark performance.
711 As presented in Figure 6, we find that as
712 epsilon increases from 0 to 1.0, the algorithm’s
713 performance first improves slightly and then
714 declines.

715 We speculate that when epsilon is too low, the
716 algorithm applies positive or negative masks to
717 cases where the benefit of auxiliary construc-
718 tion is uncertain, leading to unstable training
719 in these cases and ultimately affecting model
720 performance. When epsilon is too high, the
721 threshold for group contrastive masking becomes
722 excessively strict, causing auxiliary rewards to
723 be zero in most cases, which effectively renders
724 the auxiliary reward mechanism inoperative. We
725 conclude that GCPO performs best in the epsilon
726 range of 0.05 to 0.15, and thus we keep epsilon
727 at 0.05 in our experiments.

728 C ABLATION STUDY

729 C.1 VARIANT MODELS IN ABLATION STUDY

730 Here are the model variants used in ablation study, serving as a supplementary material for section
5.3:

- 731 • GeometryZero (/wo AR), which excludes the auxiliary construction reward (Eq. 3) and
732 consequently removes the Group Contrastive Masking mechanism (Eq. 4), retaining only
733 the length penalty term (Eq. 5);
- 734 • GeometryZero (/wo LR, /wo GC), which only retains the auxiliary reward (Eq. 3) encour-
735 aging auxiliary construction thinking during the reasoning phase but excludes the corre-
736 sponding Group Contrastive Masking (Eq. 4), equivalent to ToRL using unconditional
737 auxiliary reward;
- 738 • GeometryZero (/wo LR), which excludes the length reward (Eq. 5) in GCPO that encour-
739 ages longer reasoning chains, retaining other components of GCPO.

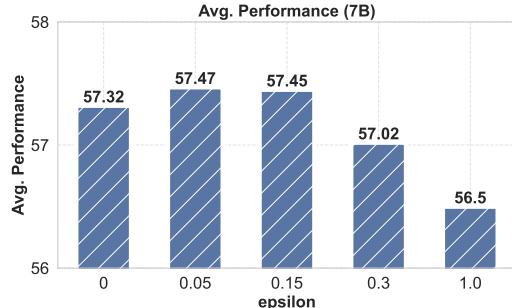
740 C.2 ABLATION STUDY ON 3B MODEL

743 Base Model	744 Method	745 AR	746 GC	747 LR	748 Geomverse	749 Geometry3k	750 MathVista	751 OlympiadBench	752 Avg.
753 Qwen2.5-3B-Instruct	GRPO	✗	✗	✗	12.13	75.87	82.87	31.72	50.65
	GCPO (/wo AR)	✗	✗	✓	12.60	75.20	81.65	33.87	50.83
	GCPO (/wo LR, /wo GC)	✓	✗	✗	12.63	76.37	81.34	33.87	51.05
	GCPO (/wo LR)	✓	✓	✗	12.90	78.20	81.65	32.25	51.25
	GeometryZero	✓	✓	✓	11.30	79.25	82.56	35.48	52.15

753 Table 4: **The ablation study of GCPO components on Qwen2.5-3B-Instruct.** The components
754 includes auxiliary reward (AR), group contrastive (GC) masking and length reward (LR).

755 D GEOMETRYZERO ON GEOMETRIC PROVING TASKS

756 In widely used geometry benchmarks, UniGeo (Chen et al., 2022) contains a subset of geometric
757 proof problems. For efficient comparison, we selected 108 problems of this subset for our addi-
758 tional experiments.



759 Figure 6: The average performance of Geome-
760 tryZero with different hyperparameter epsilon
761 settings in GCPO training.

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

756 Since AlphaGeometry Trinh et al. (2024) requires a strict geometric DSL (formal language de-
 757 scribing points, lines, circles, relations), we first used GPT-4o to batch-formalize the 108 UniGeo
 758 problems into DSL. The correctness of the proofs was then verified using an automated valida-
 759 tion script. For GPT-4o and GeometryZero, we generated complete proof sequences and compared
 760 them with golden sequences to measure accuracy on proof problems.

761 AG’s primary bottleneck lies in formalizing problems into DSL, which accounts for the imperfec-
 762 tion of its accuracy. Actually, the difficulty of UniGeo problems does not necessitate AG’s sym-
 763 bolic search process. GeometryZero-14B and GPT-4o achieve comparable performance, with
 764 GeometryZero-14B showing a 7.4% improvement over Qwen2.5-14B-Instruct, despite the ab-
 765 sence of proof problems in its training data. This highlights the strong generalization capability
 766 of GCPO.

Model	UniGeo (proof part)
AlphaGeometry (Trinh et al., 2024)	94.4%
GPT-4o	74.1%
Qwen2.5-14B-Instruct	64.8%
GeometryZero-14B	72.2%

773 Table 5: The performance of different models including AG (Trinh et al., 2024) and
 774 GeometryZero-14B on UniGeo (geometric proof part).

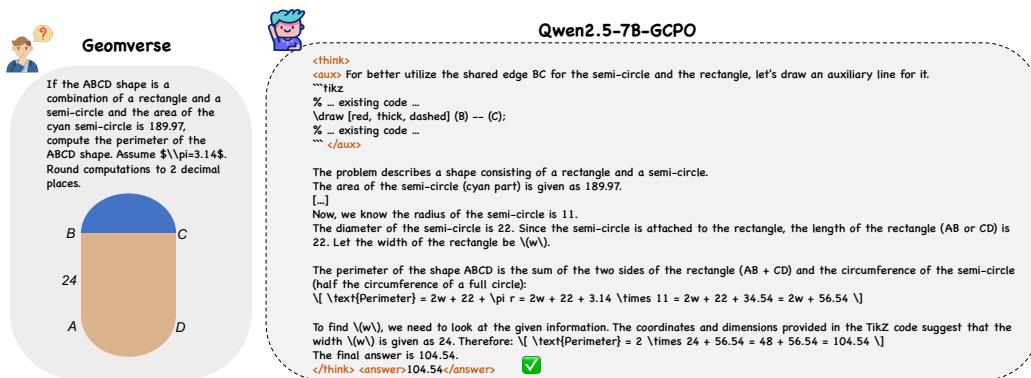
776 E LIMITATIONS

777 While GCPO demonstrates strong performance, several limitations warrant discussion. First, our
 778 method assumes access to verifiable reward signals, which may not be available for all geometry
 779 problem types (e.g., inductive geometric proof). Second, the approach requires careful hyperpa-
 780 rameter tuning for the contrastive rewards, suggesting a need for more robust automated configu-
 781 ration methods. Additionally, due to compute constraints, we limited our experiments to moderate
 782 model sizes (under 7B parameters). These limitations point to valuable directions for future re-
 783 search in reasoning systems for geometric problems.

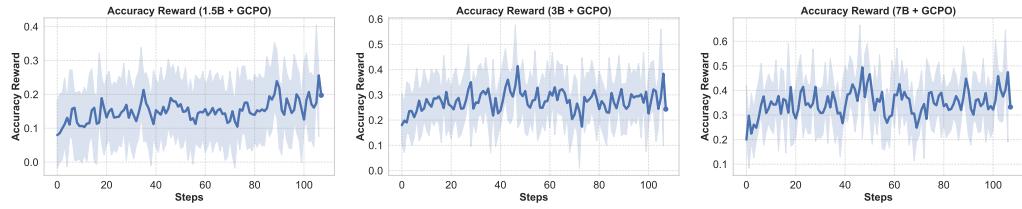
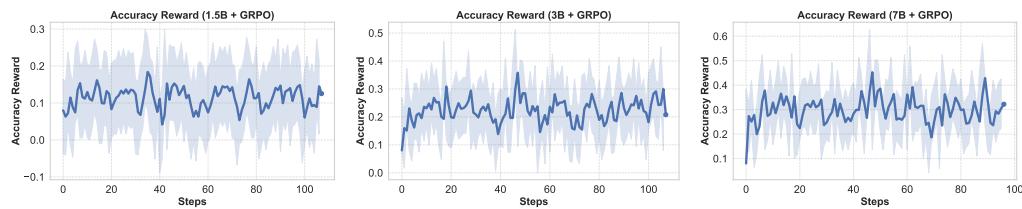
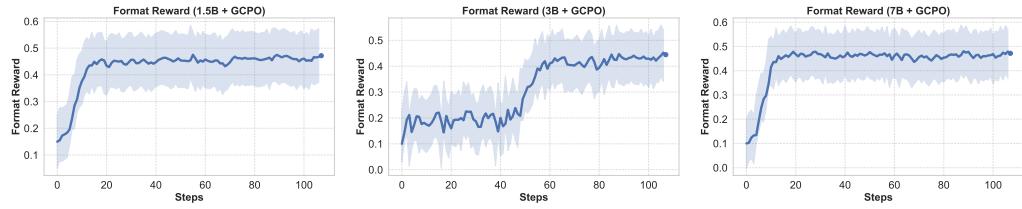
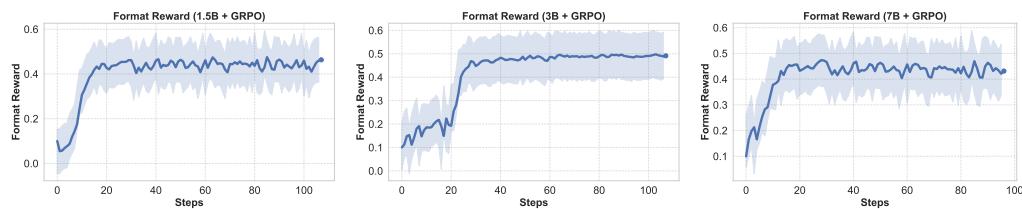
785 F DECLARATION ON LLM USAGE

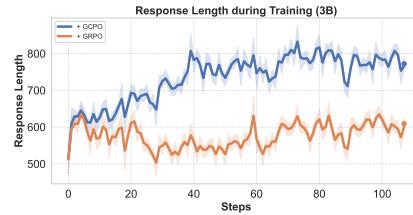
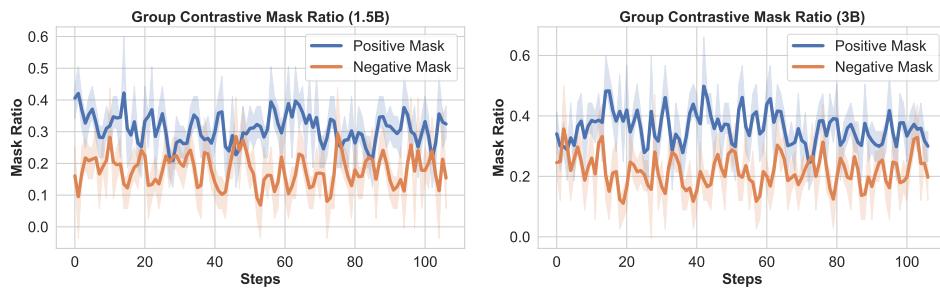
787 In this paper, we use large language models (e.g., GPT-5) solely for minor language polishing. The
 788 models were not used to generate ideas, analyze data, write code, or conduct experiments. **All sci-
 789 entific claims, analyses, and conclusions are the authors’ own**; all edits were reviewed by the
 790 authors, who accept full responsibility for any remaining errors.

792 G CASE STUDY



808 Figure 7: A case example from Geomverse Kazemi et al. (2023) of GeometryZero-7B (Qwen2.5-
 809 7B-GCPO), amid the reasoning process the model outputs executable tikz code to construct auxil-
 iary lines for geometric reasoning.

810 H TRAINING DYNAMICS DURING REINFORCEMENT LEARNING
811812
813 H.1 ACCURACY REWARD
814817
818
819
820
821
822
823
824 Figure 8: The trend of accuracy reward of **GeometryZero** (GCPO) models during training.
825
826
827828
829
830
831
832
833
834
835 Figure 9: The trend of accuracy reward of GRPO models during training.
836
837
838
839840 H.2 FORMAT REWARD
841843
844
845
846
847
848
849
850
851 Figure 10: The trend of format reward of **GeometryZero** (GCPO) models during training.
852
853
854855
856
857
858
859
860
861
862
863 Figure 11: The trend of format reward of GRPO models during training.

864 H.3 COMPLETION LENGTH
865874 Figure 12: **The trend of response length of GCPO and GRPO during training on 3B models.**
875 For 3B models, We also observe the completion length of follows a distinct pattern during
876 training: initially increasing, then decreasing or stagnating, before rising again.
877878 H.4 MASK RATIO
879890 Figure 13: **The record of group mask ratio.** The positive group mask and negative group mask
891 ratio in group contrastive masking for 1.5B and 3B models.
892893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917