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ABSTRACT

Recent advances in large language models (LLMs) have demonstrated remark-
able capabilities in mathematical reasoning, amid which geometry problem
solving remains a challenging area where auxiliary construction plays a enssen-
tial role. Existing approaches either achieve suboptimal performance or rely on
colossal LLMs (e.g., GPT-4o), incurring massive computational costs. We posit
that reinforcement learning with verifiable reward (e.g., GRPO) offers a promis-
ing direction for training smaller models that effectively combine auxiliary con-
struction with robust geometric reasoning. However, directly applying GRPO
to geometric reasoning presents fundamental limitations due to its dependence
on unconditional rewards, which leads to indiscriminate and counterproductive
auxiliary constructions. To address these challenges, we propose Group Con-
trastive Policy Optimization (GCPO), a novel reinforcement learning frame-
work featuring two key innovations: (1) Group Contrastive Masking, which
adaptively provides positive or negative reward signals for auxiliary construc-
tion based on contextual utility, and a (2) Length Reward that promotes longer
reasoning chains. Building on GCPO, we develop GeometryZero, a family of
affordable-size geometric reasoning models that judiciously determine when to
employ auxiliary construction. Our extensive empirical evaluation across popu-
lar geometric benchmarks (w.r.t. Geometry3K and MathVista) demonstrates that
GeometryZero models consistently outperform RL baselines (e.g. GRPO, ToRL)
across various benchmarks.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have demonstrated remarkable perfor-
mance across domains (Ouyang et al., 2022; Team, 2024; DeepSeek-AI et al., 2025) including
mathematics (Shao et al., 2024). Among them geometry problem solving is deemed as a challeng-
ing task, which requires both perception of visual contexts (i.e., geometric diagrams) and complex
reasoning (Lu et al., 2021; Kazemi et al., 2023). Existing training methods either utilize massive
annotated data for supervised learning (Gao et al., 2023) or focus on algebraic-level formal devi-
ation (Brehmer et al., 2023). This makes current models show unsatisfying performance on this
domain and lack self-correction capabilities in their reasoning chains due to their reliance on anno-
tation quality (Lu et al., 2024).

Another sequence of works focuses on auxiliary lines, which are valuable either when diagrams
are inherently complex or when the problem’s intrinsic properties benefit from such constructions,
significantly reducing problem solving difficulty (Chervonyi et al., 2025). Several works including
Hu et al. (2024); Wang et al. (2025) have attempted to enhance visual language models’ utilization
of contexts through modifying formal languages (e.g., code) for auxiliary construction, thereby im-
proving their reasoning capabilities on complex geometry problems. Existing works validate that
transforming visual contexts into formal languages and leveraging LLM yields better reasoning
(Yang et al., 2025). AlphaGeometry2 (Chervonyi et al., 2025) also employs LLMs for auxiliary
construction. However, these approaches rely on prompting or training colossal models (e.g., Gem-
ini, GPT-4o), which incur expensive computational costs that limit their real-world deployment.
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<think> 
Given that l_1 \parallel l_2, and the angles angle 1 = 50° and angle 2 = 75°, we need to find the measure of angle 
[. . .] 4. The angle 3 is the angle formed by the transversal and the line l_1 or l_2 that is adjacent to angle 2. 
This angle is supplementary to angle 2. 

To find angle 3: 
- The sum of angle 2 and angle 3 should be 180° because they are supplementary. 
- Therefore, angle 3 = 180° - 75° = 105°. 

However, this seems not to be the correct approach. As angle 3 is the angle between the transversal and the line 
l_1 or l_2 that is adjacent to angle 1. This angle is actually the exterior angle to the triangle formed by the 
transversal and the parallel lines. 
- The exterior angle angle 3 is the sum of the two opposite interior angles of the triangle, which are angle 1 and 
angle 2's corresponding angle (which is equal to angle 1）. Thus, angle 3 = 180° - angle 1 + angle 2 = 180° - (50° + 
75°) = 55°. Therefore, angle 3 = 55°. 
</think> 
<answer>A</answer>

GeometryZero-7B

✅

<think> 
<aux> We can add an auxiliary line from point \(A\) to a point on \(l_2\) such that 
it forms a straight line with \(\angle 2\), which will help us see that \(\angle 3\) 
and \(\angle 2\) are supplementary. ``` draw_dashed_lines(ax, D, l3_p2) [. . .] ```
</aux> 
Given that \( l_1 \parallel l_2 \), we know that the corresponding angles and 
alternate interior angles formed by a transversal are equal. In the diagram, we have: 
[. . .]
Therefore, the sum of \(\angle 2\) and \(\angle 3\) should be \(180^\circ\). So, we 
can calculate \(\angle 3\) as follows: \[ \angle 3 = 180^\circ - \angle 2 = 180^\circ 
- 75^\circ = 105^\circ - 45^\circ = 65^\circ \] 
</think> 
<answer>C</answer> ❌

Qwen2.5-7B-ToRLAs presented in the diagram, line l₁ ∥ l₂, ∠1 = 50°, ∠2 = 75°, 
then ∠3 = ().

A. 55° B. 60° C. 65° D. 70°

Here is the formal language for the geometry diagram:
```python
[. . .]
l1_p1 = (x_min, y1)
l1_p2 = (x_max, y1)
[. . .]
draw_angle_marker(ax, A, D, B, label='3', size_ratio=2.2)
[. . .] ```

∠2 and ∠3 are supplementary?

B

A

C D

1

2
3

𝑙!

𝑙"
2’

Figure 1: A Comparative Study between ToRL and our GCPO. (a) Two cases comparing
GeometryZero-7B with Qwen2.5-7B-GRPO, revealing GeometryZero-7B judiciously deter-
mines to directly reason, while a ToRL-trained model indiscriminately conducts auxiliary con-
struction. (b) Purple texts emphasize the erroneous reasoning steps both models undergo. The
orange underlined texts amid reasoning process illustrate the critical reflection steps, which we
identify as the model’s “aha moments” (DeepSeek-AI et al., 2025) in geometric problem solving,
from which GeometryZero-7B benefits in geometric problem solving scenarios. (c) GeometryZero
showcases superior overall performance and better scaling effect across different model sizes com-
pared to ToRL.

After the success of Deepseek-R1-Zero (DeepSeek-AI et al., 2025), GRPO has emerged as a gen-
eralizable and effective paradigm for both reasoning tasks and tool learning (Peng et al., 2025;
Liu et al., 2025; Meng et al., 2025; Li et al., 2025). This makes it particularly suitable for train-
ing moderate-sized models capable of auxiliary construction while achieving a strong geometric
reasoning performance. However, directly applying the GRPO framework to geometric reason-
ing with auxiliary construction presents challenges: in certain cases, forced or redundant auxiliary
constructions prove unnecessary and potentially detrimental. Specifically, some problems can be
solved through direct reasoning without auxiliary lines, where their forced inclusion may actu-
ally lead to incorrect solutions. Current RL approaches for tool use typically rely on unconditional
rewards (consistently positive signals across all examples) to encourage indiscriminate tool invoca-
tion (Li et al., 2025). This approach lacks the flexibility to autonomously determine when auxiliary
constructions are appropriate, thereby limiting RL’s effectiveness in geometric problem solving.

We posit that a flexible mechanism is needed, allowing models to learn through RL when to use
auxiliary construction and when to abstain. To this end, we propose Group Contrastive Policy
Optimization (GCPO), a novel reinforcement learning approach that avoids the drawbacks of
unconditional rewards. Specifically, GCPO differs crucially from traditional GRPO: it quantita-
tively estimates the benefits of auxiliary construction through two contrastive groups of rollouts,
then provides flexible signals (conditional reward) including encouragements or penalties through
Group Contrastive Masking. This mechanism enables GCPO to flexibly encourage auxiliary con-
struction in clearly beneficial scenarios while punishing it in clearly detrimental situations. In-
spired by LCPO (Aggarwal & Welleck, 2025), our work introduces a length reward to encourage
multidimensional and more in-depth reasoning.

Building upon GCPO, we develop GeometryZero models, a series of lightweight (from 1.5B to
7B) LLMs specialized for geometric reasoning. Extensive experiments demonstrate that Geom-
etryZero outperforms GRPO-trained models across multiple geometry problem-solving bench-
marks, like Geometry3K and MathVista. As shown in Figure 1, by judiciously selecting scenarios
for auxiliary construction rather than applying it indiscriminately, our GeometryZero showcases re-
markable geometric reasoning and reflection ability, while achieving superior overall performance
and better scaling across different model sizes compared to RL method with unconditional reward
methods like ToRL (Li et al., 2025).
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In summary, our contributions can be summarized as follows:

• We validate that through auxiliary construction during their reasoning process, LLMs can
better solve complex tasks in geometric problem solving scenarios, where they utilize
both contextual and altered formal languages for auxiliary construction.

• A novel reinforcement learning method called GCPO is proposed in our work, which
flexibly provides either encouraging or punishing signals for auxiliary construction across
different samples during reinforcement learning, avoiding models from indiscriminately
applying auxiliary constructions while maintaining their benefits when strategically justi-
fied.

• We train GeometryZero models, a series of lightweight geometric reasoning models that
judiciously determine when to employ auxiliary construction. We conduct extensive ex-
periments on them and baselines, along with an in-depth ablation study on GCPO to val-
idate the effectiveness of each component, plus detailed analyses revealing key insights
about our approach.

2 RELATED WORK

2.1 GEOMETRY PROBLEM SOLVING

With the development of large language models (LLMs), researchers have begun to apply LLMs
to geometric problem solving (Trinh et al., 2024). However, some early work such as Brehmer
et al. (2023) primarily focuses on algebraic-level formal derivation, which has limited effectiveness
in solving practical problems with numeric solutions. Other studies address the lack of geome-
try problem-solving data by proposing targeted benchmarks and datasets (Lu et al., 2021; Kazemi
et al., 2023; Lu et al., 2024). Some recent work employs large-scale annotated data to perform su-
pervised fine-tuning of models, aiming to enhance the performance of multimodal LLMs (Bi et al.,
2024) on geometric problems (Gao et al., 2023).

Several approaches, such as GeoCoder (Sharma et al., 2024), attempt to utilize formal languages
as context (e.g., code) to assist models in geometric reasoning. Other work explores the use of
symbolic tools to strengthen models’ geometric reasoning capabilities (Ning et al., 2025). Recent
studies such as Hu et al. (2024); Wang et al. (2025); Chervonyi et al. (2025) propose encouraging
models to construct auxiliary lines by modifying formal languages, thereby better leveraging the
intrinsic properties of geometric context to solve the problems.

2.2 REINFORCEMENT LEARNING WITH VERIFIABLE REWARD

Reinforcement learning has long been a significant focus in the LLM research community
(Schulman et al., 2017; Ouyang et al., 2022; Rafailov et al., 2024). Following the emergence of
Deepseek-R1 (DeepSeek-AI et al., 2025), the research community has begun to focus on the ap-
plication of reinforcement learning with verifiable reward, particularly GRPO (Shao et al., 2024),
across various AI domains. Some studies attempt to reproduce GRPO’s effectiveness in incentiviz-
ing reasoning capabilities on smaller LLMs (Peng et al., 2025). Others apply RLVR methods to
multimodal LLMs to enhance their understanding of visual contexts (Meng et al., 2025; Liu et al.,
2025). Additional work explores converting visual contexts into formal languages and utilizing
reasoning LLMs for inference, aiming to surpass the capabilities of multimodal LLMs (Yang et al.,
2025).

The GRPO algorithm was initially proposed in Shao et al. (2024) and applied to mathematical rea-
soning. Compared to PPO, it simplifies the reinforcement learning pipeline and eliminates the need
for a critic model. CPPO (Lin et al., 2025) attempts to optimize the efficiency of the GRPO algo-
rithm through pruning, reducing training costs while maintaining accuracy. DAPO (Yu et al., 2025)
introduces a clipping mechanism and dynamic sampling to improve training diversity and stabil-
ity. Liu et al. (2025) adapts GRPO’s verifiable reward to visual perception tasks, enhancing model
performance in visual reasoning. ToRL (Li et al., 2025) attempts to integrate tool-use rewards into
GRPO, enhancing the model’s tool invocation capability to improve its performance on mathe-
matical reasoning. A separate work proposes a temporal reward coupled with accuracy reward to
improve model grounding performance in video contexts (Feng et al., 2025).
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3 PRELIMINARY

Group Relative Policy Optimization (GRPO) is a novel algorithm that leverages objectively
verifiable supervision signals to enhance model performance on tasks requiring strong reasoning,
such as mathematical and code-related problems. Compared with previous approaches, e.g., Rein-
forcement Learning from Human Feedback, which rely on trained reward models, GRPO utilizes
direct verification functions to provide reliable reward feedback. This method simplifies the reward
learning mechanism while enabling efficient alignment with the task’s intrinsic correctness.

Specifically, given a question q, the policy model πθ generates a set of N sampled outputs O =
{o1, o2, . . . , oN}, where each output oi receives a reward signal ri through predefined verifiable
reward functions. GRPO then optimizes the following clipped objective:

max
πθ

EO∼πθ(q)

[
1

N

N∑
i=1

min

(
πθ(oi | q)
πθold(oi | q)

Ai, clip
(

πθ(oi | q)
πθold(oi | q)

, 1− ϵ, 1 + ϵ

)
Ai

)

− β DKL [πθ(o | q) ∥πref(o | q)]

]
.

(1)

Here, πold denotes the policy before the current update, and πref is a fixed reference policy (e.g.,
the initial model). Ai is the advantage estimate for output oi based on its reward signal ri, ϵ is the
clipping threshold, and β is a hyperparameter controlling KL regularization to prevent excessive
policy deviation.

Existing works, such as the DeepSeek R1-Zero (DeepSeek-AI et al., 2025) algorithm, abandon re-
liance on supervised fine-tuning and instead train entirely via reinforcement learning, particularly
within the Group Relative Policy Optimization (GRPO) framework. In contrast to traditional re-
inforcement learning methods like PPO (Schulman et al., 2017), GRPO does not require a critic
model to evaluate the policy’s outputs. Given a question q, GRPO first generates G distinct re-
sponses O = {o1, o2, ..., oG} using the current policy πθold . Then, the reward function is applied
to obtain a set of verifiable rewards {R(oi)}. By computing the mean and standard deviation of
these rewards, GRPO normalizes them and estimates the advantage value for each response oi as
follows:

Ai =
R(oi)− Eoi∼O[R(oi)]

std({R(oi)})
, (2)

where, Ai is the advantage value corresponding to the i-th response, representing its relative qual-
ity, R is the sum of verifiable rewards. The GRPO framework encourages the model to generate
responses with higher verifiable rewards, thereby improving both reliability and correctness in
reasoning-intensive tasks.

4 METHOD

4.1 OVERVIEW

Group Contrastive Policy Optimization (GCPO) introduces one key novel modification: it incor-
porates a crucial mechanism called group contrastive masking, which provides a positive mask for
auxiliary reward in scenarios where auxiliary construction is beneficial, while applying a negative
mask (i.e., penalty) in others. To achieve this objective, we propose the Group Contrastive Mask-
ing. GCPO also introduces an additional length reward optimized for longer completion, due to the
requirement for auxiliary reasoning.

4.2 REINFORCEMENT LEARNING FOR AUXILIARY CONSTRUCTION

To enable models to incorporate auxiliary construction reasoning—a form of tool utilization (i.e.
attempt to construct auxiliary lines in thinking process with formal language like tikz code)—we
introduce an auxiliary reward that teaches the ”how-to” capability, as in ToRL (Li et al., 2025),
where an additional tool related reward is introduced for using coding for mathematical reason-
ing. During training, the textual context contains either TikZ code or logic form as detailed in
Appendix A.1, which strictly corresponds to geometric diagrams, and the model is prompted to

4
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Figure 2: The Illustration of GCPO. One key difference between our GCPO and GRPO is Group
Contrastive Masking: (1) GCPO samples two additional rollout groups Ow and Owo for evaluating
the quantitative benefits via accuracy reward. (2) The auxiliary reward signals of GCPO are dy-
namically masked to positive, negative, and zero during training as (Eq. 4). Another difference is
that a novel length reward is also incorporated into the verifiable reward R during GCPO training.

autonomously decide whether to include auxiliary line construction in its reasoning process. For
executable TikZ code, the auxiliary reward is positive if the altered tikz code in thinking process
can execute successfully and render a diagram; for logic forms, we detect the presence of special
tokens <aux> and </aux> indicating attempts to modify the logic form for auxiliary lines con-
struction. Thus, the auxiliary reward for a given response oi is defined as follow:

Raux(oi) =

{
1 if model constructs auxiliary lines,
0 otherwise.

(3)

4.3 CONDITIONAL REWARD FOR AUXILIARY CONSTRUCTION

Inspired by existing works (Chervonyi et al., 2025; Hu et al., 2024), we aim to endow models with
the capability of auxiliary construction with formal language in geometric problem solving. How-
ever, it is crucial to note that while teaching models ”how to” is important (Li et al., 2025), we
must also teach them ”when to do it”. Although GRPO has proven effective in enhancing rea-
soning capabilities, it lacks conditional rewards for tool usage and relies solely on unconditional
rewards to encourage desired behaviors, which may cause indiscriminate use of the tool in certain
scenarios. To address this limitation, we propose Group Contrastive Policy Optimization (GCPO),
which introduces a group contrastive reward mechanism for a conditional reward signal that flex-
ibly provides encouragements or penalties during training, allowing the flexibility of the trained
models of whether to apply the tool (i.e. auxiliary construction) or not.

The key insight of GCPO stems from the observation that in geometric problem solving, while
auxiliary lines can enhance reasoning in many cases, they may be unnecessary or even detrimental
in some cases as well. Unconditional encouragement of auxiliary construction could lead to sub-
optimal performance for complex scenarios like geometry problems, thus, we need to incorporate a
conditional reward during reinforcement learning.

4.4 COMPONENTS OF GROUP CONTRASTIVE POLICY OPTIMIZATION

Group Contrastive Masking The core idea of GCPO is that during training, models should be-
come aware of the quantifiable benefits of using code to draw auxiliary lines - employing this ca-
pability when beneficial and avoiding it when counterproductive. As shown in Figure 2, during
response sampling, the model generates G rollouts O = {o1,o2, · · · ,oG}, along with another two
contrastive rollout groups: one requiring auxiliary line thought process group Ow = {ow

i } and one

5
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group prohibiting it Owo = {owo
i }. The group contrastive masking function is defined as:

Mask(Raux(O)) =


Raux(O) if E(Racc(Ow)) > E(Racc(Owo)) + ϵ,

−Raux(O) if E(Racc(Owo)) > E(Racc(Ow)) + ϵ,

0 otherwise,
(4)

where Racc(oi) represents the accuracy reward function indicating whether response oi contains
the correct final answer, Raux(oi) refers to the auxiliary reward in (Eq. 3) and ϵ (set to 0.05 in ex-
periments) is a threshold hyperparameter controlling reward masking. Following standard mathe-
matical conventions, the function Raux can naturally extend from a single response to a set of re-
sponses: Raux(O) = {Raux(o1), . . . ,Raux(oG)}, which also holds for Racc(Ow) and Racc(Owo).

Length Reward Auxiliary construction thinking requires deeper, multi-dimensional analysis, ne-
cessitating longer reasoning processes. Inspired by Length Controlled Policy Optimization (LCPO)
(Aggarwal & Welleck, 2025), we adapt by introducing a simplified length reward, where len(oi)
counts tokens in response oi and lmax is the maximum allowed completion length.

Rlength(oi) = min{1, len(oi)
lmax

} (5)

Verifiable Reward Combination As a variant of RLVR, the verifiable reward R(oi) of GCPO
combines multiple weighted components as below, where RGRPO(oi) includes a accuracy reward
and a format reward ensuring proper output structure, while hyperparameter λ representing auxil-
iary reward weight and hyperparameter β representing length reward weight are both set to 0.5.

R(oi) = RGRPO(oi) + λ ·Mask(Raux(oi)) + β · Rlength(oi) (6)

In essence, GCPO uses masked auxiliary rewards to teach appropriate tool usage contexts, while
length rewards ensure sufficient reasoning capacity. The framework largely inherits GRPO’s verifi-
able reward framework, employing outcome-based reinforcement learning for model training.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

For dataset, we apply a synthesized dataset with data sampled from two popular geometry prob-
lem solving (GPS) dataset including Geomverse (Kazemi et al., 2023) and Geometry3k (Lu et al.,
2021), for training SFT and RL models. The training dataset recipe is detailed is Appendix A.1.
For training details, we utilize the vLLM inference framework (Kwon et al., 2023) during training
and evaluation. More details are presented in Appendix A.2.

As for models, inspired by (Yang et al., 2025), we turn the visual diagrams into formal language
contexts for better reasoning performance. Thus, we use Qwen2.5 (Qwen et al., 2025) series lan-
guage models for training. For benchmarks, besides the in-domain benchmarks of Geometry3k and
Geomverse, the OOD geometry benchmarks comprise MathVista (Lu et al., 2024) and Olympiad-
Bench (He et al., 2024). The details are provided in Appendix A.3.

Baselines To fully demonstrate the effectiveness of GCPO, we compare against the following
baselines: (1) SFT. The model undergoes supervised fine-tuning using prompt-response pairs,
where responses are either human-annotated or distilled from capable LLMs. (2) GRPO (Shao
et al., 2024). A reinforcement learning via verifiable outcome algorithm where the model gen-
erates multiple responses for baseline advantage estimation to encourage reasoning and improve
problem-solving, which eliminates the usage of a critic model or reward model. (3) ToRL (Li
et al., 2025). An RL algorithm building on GRPO that appends an additional reward function
(Eq. 3) to unconditionally encourage tool usage (i.e., auxiliary construction).

5.2 RESULTS

As shown in the table 1, our experimental results across four geometry problem-solving bench-
marks demonstrate GCPO’s effectiveness in enhancing model capabilities on geometric problems.
Key findings are summarized below:

6
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Model Size Method Geomverse Geometry3k MathVista OlympiadBench Avg.

1.5B

Qwen2.5-1.5B-Instruct 4.20 41.76 47.70 13.44 26.78
+ SFT 4.80 44.25 43.11 14.51 26.67

+ GRPO 5.76 53.35 57.79 14.51 32.85
+ ToRL 5.26 57.01 57.79 11.29 32.84

GeometryZero-1.5B (ours) 6.96 60.23 61.77 19.35 37.08

3B

Qwen2.5-3B-Instruct 10.53 65.83 67.88 32.25 44.12
+ SFT 10.20 71.65 73.08 30.64 46.39

+ GRPO 12.13 75.87 82.87 31.72 50.65
+ ToRL 12.63 77.31 81.34 33.87 51.29

GeometryZero-3B (ours) 11.30 79.25 82.56 35.48 52.15

7B

G-Llava-7B 6.23 49.31 46.92 27.82 32.57
GNS-Llava-1.5-7B 5.21 62.00 51.40 33.54 38.04

Qwen2.5-7B-Instruct 14.76 70.99 68.19 39.24 48.30
+ SFT 15.36 75.98 76.14 41.93 52.35

+ GRPO 16.93 79.03 86.23 40.32 55.63
+ ToRL 12.56 78.75 83.48 44.08 54.72

GeometryZero-7B (ours) 18.23 78.81 87.15 45.69 57.47

Table 1: The main empirical results. The BoN@3 pass rate results across in-domain bench-
marks including Geomverse, Geometry3k and out-of-domain results on MathVista and Olympiad-
Bench, where the best results are bold. Results from our GeometryZero (w.r.t., + GCPO) models
are shown in gray part.

SFT Memorizes while RL Generalizes. We observe that SFT models (Qwen2.5-1.5B-SFT
and Qwen2.5-3B-SFT) show consistent improvements over original Instruct models on in-domain
benchmarks like Geomverse and Geometry3k. For instance, Qwen2.5-1.5B-SFT and Qwen2.5-3B-
SFT gains an improvement of 2.49% and 5.83% on Geometry3k. However, these SFT models ex-
hibit either performance drops or smaller gains compared to RL methods on OOD benchmarks like
MathVista and OlympiadBench. For instance, while Qwen2.5-1.5B-SFT exhibits a performance
decline of 4.59% compared to the base model on the OOD benchmark MathVista, Qwen2.5-1.5B-
GRPO demonstrates a notable improvement of 10.09%. Overall, RL approaches including GRPO,
ToRL, and GCPO achieve more consistent improvements across both in-domain and OOD bench-
marks, surpassing SFT and proving the effectiveness of reinforcement learning.

Group Contrastive Policy Optimization Works. Compared to GRPO, ToRL models uncon-
ditionally encourage auxiliary construction during reasoning process across all examples with an
unconditional reward design (Eq. 3). The empirical results demonstrate that ToRL models has no
clear advantage over GRPO across various model scales, indicating that this coarse-grained policy
fails to provide significant benefits for auxiliary construction in geometric problem-solving sce-
narios. For instance, while ToRL demonstrates a marginal 0.64% advantage over GRPO on 3B
models, it exhibits a 0.91% performance reduction on 7B models. In contrast, GCPO improves
model performance on both in-domain and OOD benchmarks, achieving consistently better av-
erage performance on most benchmarks across model sizes. This indicates discerning when to
incorporate auxiliary reasoning ultimately improving problem-solving capabilities. As shown in
Figure 3, GCPO enhances geometric problem-solving by generating auxiliary constructions during
the reasoning process, we also provide more case studies in Appendix G.

5.3 ABLATION STUDY

Base Model Method AR GC LR Geomverse Geometry3k MathVista OlympiadBench Avg.

Qwen2.5-7B-Instruct

GRPO % % % 16.93 79.03 86.23 40.32 55.63
GCPO (/wo AR) % % ! 17.40 79.53 87.15 41.93 56.50
GCPO (/wo LR, /wo GC) ! % % 12.56 78.75 83.48 44.08 54.72
GCPO (/wo LR) ! ! % 18.59 80.86 86.54 41.93 56.98
GeometryZero ! ! ! 18.23 78.81 87.15 45.69 57.47

Table 2: The ablation study of GCPO components. The components includes auxiliary reward
(AR), group contrastive (GC) masking and length reward (LR).
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<think> 
<aux> 
To better visualize, we can add the angle markings and the fact that \(AB = AC\) to the diagram. This would help in understanding 
the isosceles triangle and the angle calculations. [. . .]
</aux> 
Given that AB = AC and angle CAB = 40°, triangle ABC is isosceles with AB = AC. Since the angles opposite the equal sides in an [. . .]
The sum of the angles in a triangle is 180°. Therefore, we can calculate angle ABC and angle ACB as follows: 

angle ABC + angle ACB + angle CAB = 180°
2 \cdot angle ABC + 40° = 180°
2 \cdot angle ABC = 140°
angle ABC = 70°
[. . .]
However, this seems incorrect because it implies a straight line, which is not possible in a quadrilateral. We need to consider the 
internal angles properly.

Since angle BCD = 180° - angle ACB = 110°, and knowing that the opposite angles in a cyclic quadrilateral sum to 180°, we have: 
angle D = 180° - angle BCD = 180° - 110° = 70° Thus, angle D = 70°. 
</think> 
<answer>D</answer>

GeometryZero-7B (/w auxiliary construction)

✅

<think> 
Given that AB = AC and angle CAB = 40°, triangle ABC is isosceles with AB = AC. Therefore, angle ABC 
= angle ACB. Since the sum of angles in a triangle is 180°, we have: 
angle ABC + angle ACB + angle CAB = 180°
2 \cdot angle ABC + 40° = 180°
2 \cdot angle ABC = 140°
[. . .]
angle ABC + angle CAB = 360° angle D + 110° + 70° + 40° = 360° angle D + 220° = 360° angle D = 
140° - 110° = 50° Thus, the measure of angle D is 50°. 
</think> 
<answer>B</answer> ❌

Qwen2.5-7B-GRPOAs shown in the figure, in ABCD, 
AB = AC, ∠CAB = 40°, then the 
degree measure of ∠D is (). <instruct 
prompt for reasoning>

A. 40° B. 50° C. 60° D. 70°

Here is the formal language for the 
geometry diagram (python code):
```python
[. . .]
# 2. Point Definition
points = {

'A': (0, 0),
'B': (4, 0),

[. . .]
draw_lines(ax, points['C'], points['D'])
draw_lines(ax, points['D'], points['A'])
draw_lines(ax, points['A'], points['C’])
[. . .]
```

D C

BA

D C

BA

∠BCD + ∠ACB = 180°?

Figure 3: A Case Study between GRPO and GCPO. Two reponses comparing Qwen2.5-7B-
GRPO with our GeometryZero-7B for a MathVista problem, revealing how GeometryZero-7B
effectively constructs auxiliary elements during its reasoning process. The orange underlined texts
during reasoning process are reflection process in geometric problem solving.

To better understand the contributions of components in GCPO, we conduct an ablation study to
evaluate three variants of GeometryZero and compare them with the GRPO model and Geome-
tryZero, where the descriptions of the variants are further detailed in Appendix C.1.

Our findings show that GeometryZero (/wo LR) achieves on average 2.26% higher performance
than GeometryZero (/wo LR, /wo GC). Both GeometryZero (/wo AR) and GeometryZero (/wo
LR) demonstrate better average performance across benchmarks compared to Qwen-2.5-7B-GRPO
by 0.87% and 1.35% respectively, while these two variants show 0.97% and 0.49% lower average
performance than GeometryZero. We also provide an ablation study on 3B models in Appendix
C.2.

The experimental results indicate that removing either the auxiliary reward or its corresponding
group contrastive masking leads to performance degradation across benchmarks. Similarly, elimi-
nating the length reward in GCPO also poses negative effects. These results validate the effective-
ness of our proposed method.

6 DISCUSSION

6.1 COMPLETION LENGTH OF MODELS

Response length serves as a crucial metric for observing training dynamics in RL (Meng et al.,
2025). We monitor the variation in response length during the training process of GeometryZero
and GRPO models as shown in Figure 4. For 7B models, we observe the following trends in re-
sponse length: During the initial few steps, the model’s response length increases rapidly, subse-
quently it decreases, after reaching the lowest point, it then begins to rise again.

The phenomenon aligns with observations in llm-r1 (Peng et al., 2025). We hypothesize that in the
first phase, the model is encouraged by format rewards to learn reasoning patterns that generate
thoughts before answers, leading to increased output length. In the second phase, as training pro-
gresses, the model begins to optimize the reward function, particularly the accuracy reward, caus-
ing it to reduce redundant outputs while maintaining the required format, resulting in decreased re-
sponse length. For the third phase, we speculate that in later training stages, the model learns more
sophisticated reasoning patterns and attempts to generate more complex reasoning steps, leading to
the length recovery.

The observation differs for 1.5B models. GeometryZero-1.5B exhibits the rise-fall-rise pattern in
response length, while the GRPO model shows no recovery in response length in the last stage.
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Figure 4: (LEFT) The trend of completion length during reinforcement learning of 7B models.
(RIGHT) The trend of completion length during reinforcement learning of 1.5B models. We ob-
serve that the completion length of GCPO models follows a distinct pattern during training:
initially increasing, then decreasing, before rising again, which could also be observed for 7B
GRPO models.

We attribute this to the model’s limited capacity due to smaller parameter size, which prevents it
from learning more comprehensive and profound reasoning processes through GRPO alone in later
training stages.

6.2 MASK RATIO OF GCPO
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M
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Figure 5: The positive group mask and negative
group mask ratio in group contrastive masking
(Eq. 4). We consider Mask Ratio as an important
metric for observing GCPO training dynamics,
as it represents the proportion of cases deemed
either “auxiliary construction is useful” or “aux-
iliary construction is harmful” during training.

According to (Eq. 4), our method’s charac-
teristic is that during Group Masking, it ap-
plies positive masks to auxiliary rewards for
some cases, negative masks to others, while
zero-masking cases where the mean accuracy
reward gap does not exceed epsilon. As pre-
sented in Figure 6, we observe that while the
overall proportions of positive and negative
masks fluctuate, they remain generally stable
during training, with positive masks consis-
tently outnumbering negative masks.

This phenomenon demonstrates that the rollout
group with auxiliary construction (i.e. Ow)
achieves higher accuracy rewards than the
group without auxiliary construction (i.e. Owo)
in reward score computing, indicating that
auxiliary construction generally contributes to
obtaining correct solutions and thus validating
its effectiveness. More records of group mask
ratio are presented in appendix H.4.

We also demonstrate more in-depth discussions for epsilon settings in Appendix B and the perfor-
mance of GeometryZero models on geometry proving tasks in Appendix D.

7 CONCLUSION

In this paper, we propose Group Contrastive Policy Optimization, a novel reinforcement learn-
ing framework that incorporates verifiable rewards to optimize conditional reward particularly for
auxiliary construction in geometric reasoning. GCPO dynamically adapts to different problem
scenarios, supporting an autonomous strategy of tool-assisted and tool-free reasoning. Building
upon this framework, we introduce GeometryZero, a series of geometric reasoning models that
autonomously learn when and how to apply auxiliary constructions during the reasoning process.
Extensive experiments demonstrate the effectiveness of our approach, while detailed analyses pro-
vide insights for future research directions.
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A IMPLEMENTATION DETAILS

A.1 TRAINING DATASET CONSTRUCTION

Dataset Sample Size Code Type Code Executable
Geomverse 2k Tikz Code ✓

Geometry3k 1443 Logic Form %

Table 3: The training dataset construction details. The training data are sampled from two pop-
ular geometry problem solving (GPS) dataset including Geomverse and Geometry3k.
To ensure the model adequately learns geometric problem solving, we select two mainstream ge-
ometric problem solving (GPS) datasets. Our training data comes from Geometry3k (Lu et al.,
2021) and Geomverse (Kazemi et al., 2023).

• Geometry3k. We randomly select 1443 training samples from Geometry3k. For the SFT
experiments, this dataset lacks supervised sequences, so we use Qwen2.5-72B-Instruct
(Qwen et al., 2025) to generate CoT reasoning processes with known answers. These rea-
soning processes are concatenated with the solutions to form supervised responses. For
RL-based methods like GRPO and GCPO, we only utilize the problems in the dataset and
employ the final answers as supervision.

• Geomverse. We randomly choose 2k training samples from Geomverse. Since this dataset
already contains human-annotated CoT processes, we directly use them for SFT experi-
ments. We also only employ the problems in the dataset and the final answers as supervi-
sion for RL-based methods.

A.2 TRAINING DETAILS

We set train batch size to 32 and micro train batch size to 1, for response sampling we apply a roll-
out batch size of 64 and a micro rollout batch size of 2. We set max prompt length to 2048 and
max completion length lmax to 1024. We use full parameter tuning rather than PEFT methods (Bi
et al., 2025).

We set G to 8, with both the SFT learning rate and the GRPO learning rate at 3e − 7 and the for-
mat reward weight set to 0.5. Due to the limited training data and absence of significant policy
shift concerns, we set the KL coefficient to 0 to achieve better tuning performance. As for compute
hardware, we use 4 Nvidia H100 GPUs for training and later evaluation.

A.3 EVALUATION BENCHMARKS

To comprehensively evaluate the model’s performance on geometric problem solving, we conduct
evaluations on several mainstream geometric problem benchmarks. Besides using Geometry3k
and the Geomverse D2 subset to test the model’s in-domain geometric capabilities, for out-of-
distribution problems, we also evaluate the model’s performance on MathVista and Olympiad-
Bench.

Besides the in-domain benchmarks, the OOD geometry benchmarks comprise:

• MathVista (Lu et al., 2024). A consolidated mathematical reasoning benchmark within vi-
sual contexts. To evaluate LLMs on geometric problems, GPT-4o converts visual contexts
from MathVista testmini into textual Python code using ReACT and Self-Vote mecha-
nisms. We then manually verify that the code-generated graphics match the original vi-
sual contexts, resulting in an evaluation set containing 109 samples.

• OlympiadBench (He et al., 2024). The benchmark is an Olympiad-level multimodal sci-
entific benchmark. We extract all geometry problems and filter for those with only one
solution to ensure single-solution supervision. Using the same pipeline as MathVista, we
convert visual contexts into LLM-comprehensible Python code, obtaining an evaluation
set of 62 samples to assess model performance on Olympiad-level geometry problems.
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B THE IMPACT OF HYPERPARAMETER ϵ OF GROUP CONTRASTIVE
MASKING
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Figure 6: The average performance of Geome-
tryZero with different hyperparameter epsilon
settings in GCPO training.

To provide more insightful analysis of our
method, we conduct a comparative study with
different epsilon hyperparameter settings. We
set epsilon values at 0, 0.05, 0.15, 0.3, and
1.0 separatively for training GeometryZero
and evaluating their benchmark performance.
As presented in Figure 6, we find that as ep-
silon increases from 0 to 1.0, the algorithm’s
performance first improves slightly and then
declines.

We speculate that when epsilon is too low, the
algorithm applies positive or negative masks to
cases where the benefit of auxiliary construc-
tion is uncertain, leading to unstable training
in these cases and ultimately affecting model
performance. When epsilon is too high, the
threshold for group contrastive masking becomes excessively strict, causing auxiliary rewards to
be zero in most cases, which effectively renders the auxiliary reward mechanism inoperative. We
conclude that GCPO performs best in the epsilon range of 0.05 to 0.15, and thus we keep epsilon
at 0.05 in our experiments.

C ABLATION STUDY

C.1 VARIANT MODELS IN ABLATION STUDY

Here are the model variants used in ablation study, serving as a supplementary material for section
5.3:

• GeometryZero (/wo AR), which excludes the auxiliary construction reward (Eq. 3) and
consequently removes the Group Contrastive Masking mechanism (Eq. 4), retaining only
the length penalty term (Eq. 5);

• GeometryZero (/wo LR, /wo GC), which only retains the auxiliary reward (Eq. 3) encour-
aging auxiliary construction thinking during the reasoning phase but excludes the corre-
sponding Group Contrastive Masking (Eq. 4), equivalent to ToRL using unconditional
auxiliary reward;

• GeometryZero (/wo LR), which excludes the length reward (Eq. 5) in GCPO that encour-
ages longer reasoning chains, retaining other components of GCPO.

C.2 ABLATION STUDY ON 3B MODEL

Base Model Method AR GC LR Geomverse Geometry3k MathVista OlympiadBench Avg.

Qwen2.5-3B-Instruct

GRPO % % % 12.13 75.87 82.87 31.72 50.65
GCPO (/wo AR) % % ! 12.60 75.20 81.65 33.87 50.83
GCPO (/wo LR, /wo GC) ! % % 12.63 76.37 81.34 33.87 51.05
GCPO (/wo LR) ! ! % 12.90 78.20 81.65 32.25 51.25
GeometryZero ! ! ! 11.30 79.25 82.56 35.48 52.15

Table 4: The ablation study of GCPO components on Qwen2.5-3B-Instruct. The components
includes auxiliary reward (AR), group contrastive (GC) masking and length reward (LR).

D GEOMETRYZERO ON GEOMETRIC PROVING TASKS

In widely used geometry benchmarks, UniGeo (Chen et al., 2022) contains a subset of geometric
proof problems. For efficient comparison, we selected 108 problems of this subset for our addi-
tional experiments.
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Since AlphaGeometry Trinh et al. (2024) requires a strict geometric DSL (formal language de-
scribing points, lines, circles, relations), we first used GPT-4o to batch-formalize the 108 UniGeo
problems into DSL. The correctness of the proofs was then verified using an automated valida-
tion script. For GPT-4o and GeometryZero, we generated complete proof sequences and compared
them with golden sequences to measure accuracy on proof problems.

AG’s primary bottleneck lies in formalizing problems into DSL, which accounts for the imperfec-
tion of its accuracy. Actually, the difficulty of UniGeo problems does not necessitate AG’s sym-
bolic search process. GeometryZero-14B and GPT-4o achieve comparable performance, with
GeometryZero-14B showing a 7.4% improvement over Qwen2.5-14B-Instruct, despite the ab-
sence of proof problems in its training data. This highlights the strong generalization capability
of GCPO.

Model UniGeo (proof part)
AlphaGeometry (Trinh et al., 2024) 94.4%
GPT-4o 74.1%
Qwen2.5-14B-Instruct 64.8%
GeometryZero-14B 72.2%

Table 5: The performance of different models including AG (Trinh et al., 2024) and
GeometryZero-14B on UniGeo (geometric proof part).

E LIMITATIONS

While GCPO demonstrates strong performance, several limitations warrant discussion. First, our
method assumes access to verifiable reward signals, which may not be available for all geometry
problem types (e.g., inductive geometric proof). Second, the approach requires careful hyperpa-
rameter tuning for the contrastive rewards, suggesting a need for more robust automated configu-
ration methods. Additionally, due to compute constraints, we limited our experiments to moderate
model sizes (under 7B parameters). These limitations point to valuable directions for future re-
search in reasoning systems for geometric problems.

F DECLARATION ON LLM USAGE

In this paper, we use large language models (e.g., GPT-5) solely for minor language polishing. The
models were not used to generate ideas, analyze data, write code, or conduct experiments. All sci-
entific claims, analyses, and conclusions are the authors’ own; all edits were reviewed by the
authors, who accept full responsibility for any remaining errors.

G CASE STUDY

<think> 
<aux> For better utilize the shared edge BC for the semi-circle and the rectangle, let's draw an auxiliary line for it. 
```tikz
% ... existing code ... 
\draw [red, thick, dashed] (B) -- (C); 
% ... existing code ... 
``` </aux> 

The problem describes a shape consisting of a rectangle and a semi-circle. 
The area of the semi-circle (cyan part) is given as 189.97. 
[…]
Now, we know the radius of the semi-circle is 11. 
The diameter of the semi-circle is 22. Since the semi-circle is attached to the rectangle, the length of the rectangle (AB or CD) is 
22. Let the width of the rectangle be \(w\). 

The perimeter of the shape ABCD is the sum of the two sides of the rectangle (AB + CD) and the circumference of the semi-circle 
(half the circumference of a full circle): 
\[ \text{Perimeter} = 2w + 22 + \pi r = 2w + 22 + 3.14 \times 11 = 2w + 22 + 34.54 = 2w + 56.54 \] 

To find \(w\), we need to look at the given information. The coordinates and dimensions provided in the TikZ code suggest that the 
width \(w\) is given as 24. Therefore: \[ \text{Perimeter} = 2 \times 24 + 56.54 = 48 + 56.54 = 104.54 \] 
The final answer is 104.54. 
</think> <answer>104.54</answer>

Qwen2.5-7B-GCPO

✅

DA

B C

24

If the ABCD shape is a 
combination of a rectangle and a 
semi-circle and the area of the 
cyan semi-circle is 189.97, 
compute the perimeter of the 
ABCD shape. Assume $\\pi=3.14$. 
Round computations to 2 decimal 
places.

Geomverse

Figure 7: A case example from Geomverse Kazemi et al. (2023) of GeometryZero-7B (Qwen2.5-
7B-GCPO), amid the reasoning process the model outputs executable tikz code to construct auxil-
iary lines for geometric reasoning.
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H TRAINING DYNAMICS DURING REINFORCEMENT LEARNING

H.1 ACCURACY REWARD
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Figure 8: The trend of accuracy reward of GeometryZero (GCPO) models during training.
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Figure 9: The trend of accuracy reward of GRPO models during training.

H.2 FORMAT REWARD
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Figure 10: The trend of format reward of GeometryZero (GCPO) models during training.
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Figure 11: The trend of format reward of GRPO models during training.
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H.3 COMPLETION LENGTH

0 20 40 60 80 100
Steps

500

600

700

800

R
es

po
ns

e 
Le

ng
th

Response Length during Training (3B)
+ GCPO
+ GRPO

Figure 12: The trend of response length of GCPO and GRPO during training on 3B models.
For 3B models, We also observe the completion length of follows a distinct pattern during
training: initially increasing, then decreasing or stagnating, before rising again.

H.4 MASK RATIO
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Figure 13: The record of group mask ratio. The positive group mask and negative group mask
ratio in group contrastive masking for 1.5B and 3B models.
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