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Abstract

Personalized Federated Learning (PFL) has be-
come a promising learning paradigm, enabling
the training of high-quality personalized models
through multiple communication rounds between
clients and a central server. However, directly ap-
plying traditional PFL in real-world environments
where communication is expensive, limited, or in-
feasible is challenging, as seen in Low Earth Orbit
(LEO) satellite constellations, which face severe
communication constraints due to their high mo-
bility, limited contact windows.To address these
issues, we introduce Federated Oriented Learning
(FOL), a novel four-stage one-shot PFL algorithm
designed to enhance local model performance
by leveraging neighboring models within strin-
gent communication constraints. FOL comprises
model pretraining, model collection, model align-
ment (via fine-tuning, pruning, post fine-tuning,
and ensemble refinement), and knowledge distil-
lation stages. We establish two theoretical guar-
antees on empirical risk discrepancy between stu-
dent and teacher models and the convergence of
the distillation process. Extensive experiments on
datasets Wildfire, Hurricane, CIFAR-10, CIFAR-
100, and SVHN demonstrate that FOL consis-
tently outperforms state-of-the-art one-shot Fed-
erated Learning (OFL) methods; for example, it
achieves accuracy improvements of up to 39.24%
over the baselines on the Wildfire dataset.

1. Introduction
Recently, Personalized Federated Learning (PFL) has been
proposed as an effective means to address the sub-optimal
performance of the global model produced by federated
learning (FL) (Li et al., 2020b; Yang et al., 2019; Huang

1Department of CSSE, Auburn University, Auburn, AL, 36849,
USA. Correspondence to: Tao Shu <tshu@auburn.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

et al., 2024) when the model is used at local clients with het-
erogeneous (i.e., non-IID) datasets (Huang et al., 2023; Ye
et al., 2023). Benefiting from the shared knowledge of the
global model, PFL adapts it to form personalized local mod-
els at each client, which perform better than both the global
model and those local models trained independently on each
client’s data. (Tan et al., 2022a; Deng et al., 2020; Collins
et al., 2021). Existing works in PFL can be broadly catego-
rized into two groups: (1) Parameter decoupling approaches,
which divide the model into shared and personalized com-
ponents. The shared backbone (feature extractor) captures
generalizable knowledge across clients, while the personal-
ized head (classifier) is specifically adapted to each client’s
unique data distribution (Liang et al., 2020; Oh et al., 2021;
Tan et al., 2022b; Su et al., 2023a; Wu et al., 2024). (2)
Optimization-based approaches, which employ advanced
optimization techniques, such as regularization-based meth-
ods, dynamic aggregation, and second-order optimization,
to constrain local models and adjust aggregation weights,
thereby balancing global collaboration with local personal-
ization (T Dinh et al., 2020; Li et al., 2021; Luo et al., 2023;
Liu et al., 2023a; Yang et al., 2024c).

However, as today’s model becomes larger and larger (e.g.,
the number of parameters of a state-of-the-art transformer-
based models ranges from tens to hundreds of billions (De-
vlin et al., 2019; Dosovitskiy et al., 2020; Huang & Shu,
2024), a notable limitation of existing PFL methods is their
dependence on multiple communication rounds to update
models while in each round the amount of data that needs
to be communicated is massive. While iterative communi-
cation is essential for progressively refining personalized
models and improving accuracy, it becomes impracticable
in many real-world scenarios where communication oppor-
tunities are expensive, limited, or infeasible. For instance,
in Low Earth Orbit (LEO) satellite constellations, such as
Starlink (SpaceX, 2020), OneWeb (OneWeb, 2021), and
Kuiper (Amazon, 2022), satellites are strategically deployed
in different orbits for distinct observational tasks (e.g., some
predominantly monitor polar regions, while others focus on
oceans or landmasses) (Doe & Smith, 2019). This special-
ized deployment makes multi-round communication with
the same peer satellites untenable due to their high mobility
and limited contact windows (Brown & Green, 2021). A
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similar challenge is observed in autonomous vehicles oper-
ating in isolated regions with limited connectivity (Lee &
Park, 2020). These vehicles may only intermittently connect
to each other, making frequent communication impractical.
Other real-world examples include mobile devices in ar-
eas with poor network coverage (Taylor & Nguyen, 2018)
and Internet of Things (IoT) devices with sporadic internet
access (Kim & Chen, 2019). Therefore, how to develop
one-shot PFL (or OPFL in short) methods that can deliver
personalized models with single-round communication (ide-
ally, when two clients meet), so as to ensure superior and
robust performance across non-IID clients’ data remains a
critical challenge for practical PFL implementation.

To address the challenges of communication constraints in
federated learning, one-shot Federated Learning (OFL) has
emerged as a promising paradigm, enabling the training of
a global model with a single communication round between
clients and the central server (Konečnỳ et al., 2016; McMa-
han et al., 2017; Guha et al., 2019; Li et al., 2020a; Dai et al.,
2024). Existing OFL methods primarily focus on two key
strategies: ensemble refinement and synthesized data en-
hancement. Ensemble refinement focuses on improving the
aggregation of local models into a better generalized global
ensemble across clients by leveraging techniques such as
parameter alignment, neuron matching, and weighted model
combination (Su et al., 2023b; Liu et al., 2023b; Tang et al.,
2024; Dai et al., 2024). On the other hand, synthesized data
enhancement strategies aim to create synthesized data on
the server side to facilitate global model training without ac-
cessing raw client data. This can involve dataset distillation,
generative-based models, or data-free synthesis approaches
(Zhou et al., 2020; Zhang et al., 2022a; Kang et al., 2023;
Heinbaugh et al., 2023; Yang et al., 2024a;b).

At first glance, one might tend to assume that it is triv-
ial/straightforward to obtain an OPFL model by directly
fine-tuning the global model produced by OFL on each
client’s local dataset. However, as already shown in the
large body of PFL literature, this belief does not hold in
practice, especially for clients of highly diverse datasets.
This is because the global model produced by an FL algo-
rithm typically lacks the adaptive modules necessary for
effective local adaptation. Without additional adaptation
steps that explicitly designed for personalization, a direct
fine-tuning approach tends to preserve the model’s initial
global biases instead of aligning it with each client’s spe-
cific data distribution and needs. As a result, a local model
fine-tuned from the global model over local dataset could
perform arbitrarily poorly (Zhang et al., 2022b; Collins et al.,
2022; Song et al., 2024).

Additionally, some practical considerations in the aforemen-
tioned real-world applications may also limit the applica-
bility of building personalized models over a global model.

For example, it is not uncommon for a client to keep collect-
ing new data during its operation, and periodically use its
updated dataset to improve its personalized local model (see
a satellite-based example in (Walden et al., 2020; Maskey
& Cho, 2020)). The reliance of personalized models on the
global model in this scenario requires periodic one-shot FL
to update the global model, and hence the one-shot benefit
essentially vanishes with time. Even worse, for those ap-
plications of an ad-hoc nature, e.g., an autonomous vehicle
network, there does not exist an central parameter server, so
none of the existing OFL-based methods is even feasible.
Clearly, an OPFL method that does not rely on global model
is highly desirable.

This paper proposes FOL (Federated Oriented Learning),
a novel distributed OPFL method that allows a client to
continuously improve its local model by learning from each
of its neighbors through one-shot communication of their
local models (e.g., in a LEO satellite network, this occurs
when two satellites fly to each other’s proximity, at which
point communication cost via a direct inter-satellite link is
lowest). While neighboring clients could have very diverse
local datasets and hence very different local models, the
tuning and pruning components in FOL allows a client to
extract the most relevant portion of a neighbor’s knowledge
that is best aligned with the client’s local model (and hence
the word “oriented” in the name of the method), and then
the ensemble component in FOL allows the client to inte-
grate that portion into its local model, gaining strengthened
representability for the specific local task of the client. In
each round the client performs such knowledge extraction
and integration for the top-K neighbors that have the best
knowledge alignment with the client, and hence strengthens
the diversity of the client’s local model. Benefiting from
the shared knowledge between neighbors, the client’s local
model performs better than an isolatedly trained one over
data unseen in its local training dataset. Two theoretical
bounds on empirical risk discrepancy and convergence of
the proposed FOL method are established. Extensive ex-
periments were conducted on datasets Wildfire, Hurricane,
CIFAR-10, CIFAR-100, and SVHN to demonstrate the ef-
fectiveness of FOL. Our experiment results verify that FOL
consistently outperform counterparts, achieving accuracy
improvements of up to 39.24% on Wildfire dataset.

2. Problem Statement
Given an image classification task, denote a set of n clients
as K = {1, 2, . . . , n}. Each client k ∈ K maintains a

private dataset Dk = {(xi, yi)}|D
k|

i=1 , where xi is the input
feature, yi is the corresponding label, and |Dk| is the dataset
size. The goal of OPFL is to learn a personalized local
model for each client k by collecting a set of neighboring
models through a one-shot communication process (each
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pair of neighboring clients can exchange model parameters
only once) and adapting these collected models to its own
data distribution. For each model collection round e ∈
{1, . . . , E}, let θ(e)−k and θ(e)+k be the parameters of client
k’s local model at the beginning of the round and those of its
updated local model after the learning, respectively, where
θ
(e)−
k = θ

(e−1)+
k , i.e., it is carried over from the resulting

model of the previous round. During round e, client k
collects models from its neighboring clients to form a model
collection set {ϕ(e)j }

Q
j=1, whereQ is a predefined number of

other peers’ models that each client can totally hold. Client k
then updates its own local model by integrating the collected
models {ϕ(e)j }

Q
j=1 with its current model θ(e−1)+

k using its

private dataset Dk. The updated personalized model θ(e)+k

is obtained by solving:
θ
(e)+
k = argmin

θ

1

|Dk|
∑

(xi,yi)∈Dk

ℓ(fk(xi; θ|θ(e)−k , ϕ
(e)
1 , ..., ϕ

(e)
Q ), yi),

(1)
where fk(xi; θ) is kth client’s prediction function that out-
puts the logits of xi given parameter θ. ℓ is the cross entropy
loss function. The updated model θ(e)+k is then used for
subsequent rounds or tasks.

In contrast to OPFL, which explicitly addresses client-level
personalization through local adaptation and/or refinement
of received models, traditional OFL aims to learn a single
global parameter θS that serves all clients uniformly. This
approach can be formalized as:

θS = argmin
θS

1

|DS |
∑

(xi,yi)∈DS

ℓ(fS(xi; θS), yi), (2)

where DS represents public/synthesized data on the server
side, and fS denotes the global model architecture.

3. Methodology
3.1. Architecture Overview

The proposed FOL framework is a multi-stage solution
meticulously designed to solve the OPFL optimization prob-
lem articulated in Eq. (1). FOL systematically integrates
a client’s local model with a set of neighboring models
through a sequence of coordinated stages, which ensures the
derivation of an optimal personalized model θ(e)+k tailored
to each client’s unique data distribution. Specifically, FOL
encompasses the following key stages:

Initially, each client k ∈ K = {1, 2, . . . , n} trains an local
model θ(1)−k on its local training datasetDk

train. This training
process can be formalized as:
θ
(1)−
k ← argmin

θ0
k

1
|Dk

train|
∑

(xi,yi)∈Dk
train

ℓ(fk(xi; θ
0
k), yi). (3)

After the initial preparation stage, each client starts to share
its current local model with its peers. In each model collec-
tion round e ∈ {1, . . . , E}, every client k collects models

from its peer clients. Each client can maintain at most Q
peer models locally at any time. Once client k has accu-
mulated a total of Q peer models, we denote this set as the
model collection set {ϕ(e)j }

Q
j=1. Each received neighboring

model ϕ(e)j is then fine-tuned, pruned, and post fine-tuned
on client k’s local training dataset Dk

train, resulting in an
adapted model ϕ(e)j→k. Afterward, these adapted neighbor

models {ϕ(e)j→k}
Q
j=1 and the client’s current local model, de-

noted by θ(e)−k , are evaluated on a local validation set Dk
val.

The top-K performing models are then selected based on
their validation accuracy, forming the set {s(e)i }Ki=1. These
selected models are then combined into an ensemble by
optimizing a weight vector wk that reflects their relative
contributions. Finally, knowledge distillation is employed
to distill the ensemble’s collective knowledge into an up-
dated personalized model θ(e)+k . This updated local model
θ
(e)+
k is then carried over as client k’s initial model for the

next round, i.e., θ(e+1)−
k = θ

(e)+
k . The procedure of FOL is

given in Algorithm 1.

3.2. Base Models Alignment

The collected models from neighboring clients may exhibit
significant discrepancies with client k’s local data distribu-
tion. Such misalignments can lead to suboptimal ensemble
performance and ineffective knowledge distillation. There-
fore, it is crucial to ensure that the received neighboring
models are well-aligned with the target client’s local data
distribution to maximize the benefits of subsequent ensem-
ble and distillation steps. To address the aforementioned
challenges, we propose a four-stage process.

Fine-Tuning. Upon receiving {ϕ(e)j }
Q
j=1, client k fine-tunes

each of these models on its local training dataset Dk
train re-

spectively to better align them with its local data distribution.
This fine-tuning process can be formalized as:

ϕ
′(e)
j→k = argmin

ϕ

1

|Dk
train|

∑
(xi,yi)∈Dk

train

ℓ(fj(xi;ϕ), yi),

(4)
where ϕ is initialized by ϕ← ϕ

(e)
j .

Alignment-Aware Structured Pruning. While fine-tuning
helps to adapt a neighbor’s model to local data, structured
pruning can further ensures the model removes irrelevant
or redundant filters/neurons for client k’s tasks (He & Xiao,
2023; Dery et al., 2024). In heterogeneous settings, neigh-
boring models may have distinct architectures and special-
ized feature extractors that, if preserved appropriately, could
benefit client k in its future ensemble and distillation steps.
However, traditional structured pruning methods (An et al.,
2024; Sun & Shi, 2024) typically remove filters based solely
on their local importance, without considering their align-
ment with the target model. This can lead to two key issues:
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Algorithm 1 Federated Oriented Learning (FOL)

1: Input: Set of clients K, number of model collection
roundsE, model collection sizeQ, top-K selection size
K, and local datasets Dk

train and Dk
val.

2: for e = 1 to E do
3: for each client k ∈ K do
4: // Collect up to Q neighbor models
5: {ϕ(e)j }

Q
j=1 ← CollectNeighbors(k,K, Q)

6: Initialize an empty list S(e)k to store scores
7: for j = 1 to Q do
8: // Fine-Tune neighbor model on client k
9: ϕ

′(e)
j→k ← FineTune(ϕ(e)j ,Dk

train)
10: // Alignment-Based Structured Pruning
11: ϕ̃

(e)
j→k ← AlignmentPrune(ϕ′(e)j→k, θ

(e)−
k ,Dk

train)
12: // Post-Pruning Fine-Tuning
13: ϕ

(e)
j→k ← PostFineTune(ϕ̃(e)j→k,Dk

train)
14: // Evaluate on validation set
15: score(e)k (ϕ

(e)
j→k)← Evaluate(ϕ(e)j→k,Dk

val)

16: Append (score(e)k (ϕ
(e)
j→k), ϕ

(e)
j→k) to S(e)k

17: end for
18: // Evaluate local model θ(e)−k

19: score(e)k (θ
(e)−
k )← Evaluate(θ(e)−k ,Dk

val)

20: Append (score(e)k (θ
(e)−
k ), θ

(e)−
k ) to S(e)k

21: // Select top-K candidates by validation score,
with cosine similarity as tie-breaker

22: {s(e)i }Ki=1 ← TopK(S(e)k ,K,

CB = cosine similarity(θ(e)−k , ·))
23: // Optimize ensemble weights
24: w

(e)
k ← OptimizeWeights({s(e)i }Ki=1,Dk

train)
25: // Distill knowledge into updated local model
26: θ

(e)+
k ← Distill(θ(e)−k , {s(e)i },w

(e)
k ,Dk

train)
27: end for
28: end for
29: Output: {θ(e)+k }k∈K

(1) over-pruning, where excessive removal of filters causes
the received model to lose diverse feature extractors that
could have been beneficial, and (2) excessive mismatch,
where the retained filters extract features that are too differ-
ent from those of the local model, making ensemble process
ineffective due to highly inconsistent predictions.

To address this, we incorporate an alignment regularization
term that guides the pruning process to retain filters in ϕ

′(e)
j→k

that are coherent with θ(e)−k , thereby ensuring a structured
adaptation rather than an arbitrary reduction of parameters.

Let: L(j→k)
all be the set of all layers in the neighbor model

ϕ
′(e)
j→k. Lshared ⊆ L(j→k)

all be the subset of layers that struc-
turally match (i.e., have the same dimensionality and func-
tion type) with the local model θ(e)−k . (The detailed def-

inition of Lshared is given in Appendix B.1). Lunshared =

L(j→k)
all \ Lshared be the layers unique to the neighbor model

that have no direct counterpart in θ(e)−k . For each shared
layer l ∈ Lshared, let W(j→k)

l and Wk
l denote the weight

matrices of ϕ
′(e)
j→k and θ(e)−k , respectively. We introduce a

gating vector αl = [αl,1, . . . , αl,ml
] for each layer l, where

ml is the number of filters (or neurons) in layer l. Each gat-
ing parameter αl,i ∈ [0, 1] controls the retention or pruning
of the i-th filter or neuron. For unshared layers u ∈ Lunshared,
we similarly define a gating vector αu to prune filters in that
layer, but there is no alignment term because these layers do
not correspond to any component in the local model. Hence,
the pruned model ϕ̃(e)j→k is obtained as the minimizer of the
following objective function:

min
ϕ̃
(e)
j→k,

{αl}(l,l′)∈Lshared(k,j),

{αu}u∈Lunshared(k,j)

1

|Dk
train|

∑
(xi,yi)∈Dk

train

ℓ(fj(xi; ϕ̃
(e)
j→k, {αl}, {αu}), yi)

︸ ︷︷ ︸
1. Task Loss on Local Data

+ λp
∑

(l,l′)∈Lshared(k,j)

ml∑
i=1

∥∥∥αl,iW
(j→k)
l,i −Wk

l′,i

∥∥∥2
2︸ ︷︷ ︸

2. Alignment Regularization (Shared Layers Only)

+ γshared

∑
l∈Lshared(k,j)

∥∥∥αl ⊙W
(j→k)
l

∥∥∥
2,1︸ ︷︷ ︸

3. Group-Lasso for Shared Layers

+ γunshared

∑
u∈Lunshared(k,j)

∥∥∥αu ⊙W(j→k)
u

∥∥∥
2,1︸ ︷︷ ︸

4. Group-Lasso for Unshared Layers

,

(5)
where λp and γ are hyperparameters controlling the strength
of the alignment regularization and the structured pruning,
respectively. ∥·∥2,1 represents the group-lasso norm(Vogt &
Roth, 2010). ⊙ denotes element-wise multiplication.

Post-Pruning Fine-Tuning After the structured pruning,
the pruned model ϕ̃(e)j→k may experience a slight drop in
performance due to the removal of certain filters or neurons.
To recover any potential accuracy loss, we perform post
fine-tuning:

ϕ
(e)
j→k ← argmin

ϕ

1

|Dk
train|

∑
(xi,yi)∈Dk

train

ℓ(fj(xi;ϕ), yi), (6)

where ϕ is initialized by ϕ̃(e)j→k.

Evaluation of Validation Accuracy. For each pruned and
post fine-tuned model ϕ(e)j→k and the current local model

θ
(e)−
k , we compute the validation accuracy on the local

validation set Dk
val. The validation accuracy is defined as:

score(e)k (θ) =
1

|Dk
val|

∑
(xi,yi)∈Dk

val

1( argmax f(xi; θ) = yi),

(7)
where 1(·) is the indicator function.
In scenarios where multiple models have the same validation
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score, we employ cosine similarity to determine the best-
aligned models relative to the local model θ(e)−k . The cosine
similarity between two models θ1 and θ2 is computed as:

cosine similarity(θ1, θ2) =
⟨θ1, θ2⟩
∥θ1∥·∥θ2∥

, (8)

where ⟨θ1, θ2⟩ denotes the dot product of the parameter
vectors of models θ1 and θ2. ∥.∥ denotes the Euclidean norm.
To ensure that only the most effective models contribute to
the ensemble, client k then selects the top-K performing
models based on these scores:
{s(e)i }

K
i=1 = TopK(CB, {ϕ(e)j→k}

Q
j=1 ∪ {θ

(e)−
k },

{score(e)k (ϕ
(e)
j→k)}

Q
j=1 ∪ {score(e)k (θ

(e)−
k )},K),

(9)

where CB specifies that in the event of tied scores, mod-
els are further ranked using their cosine similarity to the
local model θ(e)−k , and pseudocode of TopK(.) is given in
Algorithm 2.

Algorithm 2 Top-K Model Selection

Require: {ϕ(e)j→k}
Q
j=1, θ(e)−k , Dk

val, K

Ensure: {s(e)i }Ki=1

1: Initialize an empty listM
2: for each model ϕ(e)j→k in {ϕ(e)j→k}

Q
j=1 do

3: Compute score(e)k (ϕ
(e)
j→k) using Eq. equation 7

4: Append (ϕ
(e)
j→k, score(e)k (ϕ

(e)
j→k)) toM

5: end for
6: Compute score(e)k (θ

(e)−
k ) using Eq. equation 7

7: Append (θ
(e)−
k , score(e)k (θ

(e)−
k )) toM

8: SortM in descending order by validation score
9: // Determine cutoff score for Tie-break

10: Let s∗ = score of the K-th entry inM
11: // Split into Above and Tie group
12: M> ← {υ ∈M | score(e)k (υ) > s∗}
13: M= ← {υ ∈M | score(e)k (υ) = s∗}
14: // Start with all Above models
15: T ←M>

16: // Tie-break only the cutoff group
17: for each model υ ∈M= do
18: Compute cosine similarity between each model in

the group and θ(e)−k using Eq. equation 8
19: end for
20: Sort the Tie group in descending order based on cosine

similarity
21: Append the first (K − |T |) entries ofM= to T
22: {s(e)i }Ki=1 ← T
23: Output: {s(e)i }Ki=1

3.3. Enhancing Ensemble Model Quality
The ensemble model functions as a ”teacher” by aggregat-
ing knowledge from all selected base models {s(e)i }Ki=1 .

A prevalent approach to obtaining a global model is to di-
rectly average the parameters of individual models using
FedAvg (McMahan et al., 2017). However, this method can
be ineffective in scenarios with non-IID data distributions
or significant heterogeneity in client model architectures (Li
et al., 2024). Previous studies, such as (Zhang et al., 2022a),
have attempted to address client models heterogeneity by
employing simple or weighted averaging strategies, such as
assigning uniform weights wj =

1
n or weights proportional

to client data sizes wj =
nk∑n

k=1 nk
. However, as highlighted

by (Wang et al., 2023), these averaging techniques are often
ineffective in highly non-IID settings. To enhance ensem-
ble performance, recent methods (Gong et al., 2021; Diao
et al., 2023) typically require modifying each client’s local
training phase or transmitting additional information (e.g.,
intermediate gradients, model updates, or feature represen-
tations). While these approaches can be effective in many
settings, they are often impractical in OFL settings due to in-
creased communication overhead. In this study, we propose
constructing a more effective weighted ensemble to address
both client data and model heterogeneity, ensuring robust
performance without incurring additional communication
costs or altering local training processes.

Optimal Weighted Ensemble. To better accommodate
heterogeneous data distributions and models, we introduce
a weighted ensemble approach. Let {s(e)i }Ki=1 denote the
set of selected base models for client k in round e. Our
ensemble model A

w
(e)
k

is formulated as:

A
w

(e)
k

(x; {s(e)i }
K
i=1) =

K∑
i=1

w
(e)
i · fi(x; s

(e)
i ), (10)

where x is an input sample (e.g., an image), and w
(e)
k =

{w(e)
i }Ki=1 is a weight vector representing each model’s

relative contribution. Since the ensemble operation is ap-
plied at the logit layer, this reweighting mechanism can be
seamlessly integrated into settings with heterogeneous or
homogeneous model architectures.

To determine the optimal weights, client k refines the weight
vector w(e)

k by solving the following optimization problem
using its local training set Dk

train:

w
(e)
k = argmin

w0
k

1
|Dk

train|
∑

(xi,yi)∈Dk
train

ℓ(Aw0
k
(xi; {s(e)i }Ki=1), yi). (11)

3.4. Regularization-Based Knowledge Distillation

The ensemble outcome (a.k.a. the teacher model) is K-
times larger than θ(e)−k in its size and therefore cannot be
directly carried over to the next round. Instead, ideally, we
need a smaller student model that captures the knowledge of
the teacher mother and meanwhile is comparable to θ(e)−k

in its structure and size.

To address this, we propose a regularization-based knowl-
edge distillation (KD) mechanism that (i) matches the local
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model’s logits to those of the weighted ensemble (teacher)
and (ii) constrains the student’s parameters to remain close
to the pre-distillation model θ(e)−k , thereby preserving client-
specific features and limiting the norm of weight updates.
This distillation gives birth to θ(e)+k by minimizing the fol-
lowing KL-based distillation loss:

LKD(θ
(e)+
k ) =

1

|Dk
train|

∑
xi∈Dk

train

KL
(
softmax

(A
w

(e)
k

(xi)

T

)
∥

softmax
(fk(xi; θ(e)+k )

T

))
+ λ ∥θ(e)+k − θ(e)−k ∥2,

(12)

where KL(.∥.) denotes the Kullback–Leibler divergence be-
tween the teacher’s output probability vector (softmax out-
puts) and the student’s probability vector. The temperature
parameter T > 0 controls the smoothness of the softmax
distributions applied to the logits. λ ≥ 0 weights the penalty
on deviations of θ(e)+k from θ

(e)−
k .

3.5. Theoretical Analysis

A. Bound on the Empirical Risk Discrepancy Between
Student and Teacher Models. Without loss of generality,
we analyze a single model collection round e and omit the
superscripts + and − for θ(e)k to streamline notation. We
denote θ(e)k as the final updated local model for client k at
round e. The teacher ensemble’s empirical risk on Dk

train is
defined as:
R(A

w
(e)
k

) = E(xi,yi)∼Dk
train

[
ℓ(A

w
(e)
k

(xi; {s(e)i }Ki=1), yi)
]

(13)

After solving the above distillation objective Eq. (12), the
resulting student model θ(e)k has an empirical risk defined
as:

RS(θ
(e)
k ) = E(xi,yi)∼Dk

train

[
ℓ(fk(xi; θ

(e)
k ), y)

]
. (14)

The following theorem provides a quantitative bound on
how closely the student model’s empirical risk can align
with that of the teacher ensemble.

Theorem 1. Suppose the loss function ℓ(ŷ, y) (e.g., cross-
entropy loss) is L-Lipschitz continuous with respect to the
logit vector ŷ. Given a C-class classification task, the soft-
max outputs lie within the interval (α, 1 − α) for some
0 < α < 1 across C classes, and a temperature parameter
T > 0, let the student model θ(e)k be trained to minimize the
knowledge distillation loss LKD(θ

(e)
k ) as defined in Eq. 12.

Then, the empirical risk discrepancy between the student
and teacher models is bounded as follows:

|RS(θ
(e)
k )−R(A

w
(e)
k

)| ≤ L·CT
α(1−α) ·

(
LKD(θ

(e)
k )

2 + 1
8

)
. (15)

The proof of Theorem 1 is provided in Appendix B.2. Note
that the assumption that the cross-entropy loss function

ℓ(ŷ, y) is L-Lipschitz continuous is widely adopted in ML
literature to facilitate theoretical analyses and derive perfor-
mance bounds (Mao et al., 2023; Safaryan et al., 2023).

B. Convergence of Distillation. Without loss of generality,
we analyze a single model-collection round e and omit the
superscripts + and − for θ(e)k to streamline notation. We
denote θrk as the model parameters at local training epoch
r ∈ {0, 1, . . . , R}. Let LKD,k(θ), as defined in Eq. (12),rep-
resent the local distillation objective for client k, which
measures the discrepancy between the student’s output and
the teacher’s output. During each local epoch r, the client
updates its parameters θrk by:

θr+1
k = θrk − η∇LKD,k(θ

r
k, ξ

r
k), (16)

where η > 0 is the learning rate, and ξ encapsulates any
randomness (e.g., from mini-batch sampling).

To make the convergence analysis mathematically tractable,
we follow standard practice (Regatti et al., 2022; Deng et al.,
2024) and impose the following assumptions:
Assumption 1. The functions LKD,k(·) for k ∈ [K] are
Ls-smooth. For all θ, θ′ ∈ Rp (where p denotes the total
number of model parameters),
∥∇LKD,k(θ)−∇LKD,k(θ

′)∥≤ Ls ∥θ − θ′∥. (17)

Assumption 2. The functionLKD,k(·) is µ-strongly convex;
i.e., there exists µ > 0 such that for all θ, θ′ ∈ Rp:

LKD,k(θ
′) ≥ LKD,k(θ) + ⟨∇LKD,k(θ), θ

′ − θ⟩+ µ
2 ∥θ

′ − θ∥2. (18)

Assumption 3. The expectation of the squared ℓ2-norm of
the stochastic gradients is bounded; that is, for all θ ∈ Rp,

Eξ[∥∇LKD,k(θ, ξ)∥2] ≤ ∥∇LKD,k(θ)∥2+σ2, (19)

where σ2 > 0 is a constant bounding the additional variance
arising from stochastic gradient estimates.
The following theorem provides a convergence guarantee
for the distillation process under the above assumptions.
Theorem 2. Suppose {θrk}Rr=0 are generated by θr+1

k =
θrk − η∇LKD,k(θ

r
k, ξ

r
k), under the above assumptions.

Then for all r ≥ 0 and 0 < η < 1
Ls

, the following bound
holds:

E[∥θrk − θ∗k∥2] ≤ γr ∥θ0k − θ∗k∥2 +

r−1∑
τ=0

γτ β, (20)

where γ =
(
1 − 2 η µ +

L3
s

µ
η2
)
, β = η2 σ2, and

θ∗k is the stationary point of the distillation objective LKD,k.
We defer the proof of Theorems 2 to Appendix B.3.

4. Experiments
While Theorems 1 and 2 theoretically demonstrate that our
proposed FOL framework enhances accuracy for each par-
ticipant in the system, it is essential to quantify these accu-
racy gains empirically. To this end, we conduct extensive
experiments to evaluate the effectiveness of FOL.
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Table 1. Test accuracies (%) on Wildfire and Hurricane (ψ = 0.7), reported as mean ± std.

Dataset Wildfire Hurricane

Satellite # 13 28 48 35 32 44

Methods ψ = 0.7

Local 94.23 ± 1.84 94.12 ± 1.80 90.53 ± 1.57 86.93 ± 1.56 87.34 ± 1.60 89.82 ± 1.82
FOL-A (E=1) 97.19 ± 1.53 97.16 ± 1.24 95.97 ± 1.55 95.34 ± 1.42 96.18 ± 1.02 97.61 ± 1.68
FOL-A (E=2) 97.50 ± 1.12 97.52 ± 1.17 97.33 ± 1.23 96.59 ± 1.76 96.97 ± 1.41 97.87 ± 1.22
FOL-A (E=3) 97.53 ± 0.76 97.70 ± 0.98 97.99 ± 0.93 96.90 ± 1.09 97.47 ± 1.11 98.20 ± 1.03
FOL (E=1) 94.94 ± 1.38 95.21 ± 1.32 91.26 ± 1.62 90.09 ± 1.55 89.87 ± 0.69 91.62 ± 0.58
FOL (E=2) 95.23 ± 1.35 95.57 ± 0.72 91.60 ± 1.29 91.23 ± 1.57 91.77 ± 0.83 95.21 ± 1.49
FOL (E=3) 96.32 ± 0.96 95.75 ± 1.39 91.95 ± 1.31 92.26 ± 1.05 92.41 ± 1.68 95.81 ± 1.88
FOL-AN (E=1) 94.38 ± 1.86 94.86 ± 1.67 91.28 ± 1.82 88.24 ± 1.82 91.14 ± 1.13 92.81 ± 1.10
FOL-AN (E=2) 95.63 ± 1.40 95.04 ± 1.43 93.29 ± 1.51 90.09 ± 0.64 92.47 ± 1.86 94.01 ± 1.70
FOL-AN (E=3) 95.94 ± 0.71 96.45 ± 0.65 95.97 ± 1.43 93.19 ± 1.23 93.04 ± 1.19 96.41 ± 1.26
FOL-N (E=1) 93.44 ± 1.68 94.68 ± 1.79 88.59 ± 2.31 85.76 ± 1.85 89.22 ± 0.93 91.62 ± 1.19
FOL-N (E=2) 94.69 ± 0.53 94.86 ± 0.88 90.60 ± 1.01 89.16 ± 1.31 90.21 ± 1.28 92.22 ± 1.65
FOL-N (E=3) 95.31 ± 1.49 95.21 ± 0.98 91.95 ± 0.97 90.71 ± 0.59 90.51 ± 1.21 94.61 ± 0.73
DENSE 88.75 ± 1.91 87.41 ± 1.63 83.22 ± 1.57 67.49 ± 1.81 69.95 ± 1.70 73.05 ± 1.62
Co-Boosting 90.31 ± 1.26 89.19 ± 1.13 88.02 ± 1.25 72.14 ± 1.52 74.45 ± 1.72 74.04 ± 1.54
FedAvg (E=1) 73.19 ± 1.73 73.94 ± 1.96 68.18 ± 2.02 60.21 ± 1.73 62.03 ± 1.95 66.26 ± 1.62
FedAvg (E=2) 73.13 ± 1.91 72.29 ± 1.74 66.92 ± 1.55 59.44 ± 1.64 64.33 ± 1.33 69.88 ± 1.57
FedAvg (E=3) 74.61 ± 1.54 71.58 ± 1.16 68.48 ± 1.23 63.70 ± 0.71 65.16 ± 1.14 67.82 ± 0.92

Table 2. Test accuracies (%) on Wildfire and Hurricane (ψ ∈ {0.5, 0.3, 0.1}), reported as mean ± std.

Dataset Wildfire Hurricane

Satellite # 32 43 48 8 26 44

Methods ψ = 0.5 ψ = 0.3 ψ = 0.1 ψ = 0.5 ψ = 0.3 ψ = 0.1

Local 79.07 ± 1.71 90.37 ± 1.76 85.50 ± 2.16 86.77 ± 1.90 57.14 ± 2.87 77.78 ± 1.35
FOL-A (E=1) 95.35 ± 1.42 94.07 ± 1.89 90.63 ± 1.92 95.04 ± 1.70 90.48 ± 1.57 88.89 ± 1.92
FOL-A (E=2) 96.52 ± 1.02 94.92 ± 1.25 96.14 ± 1.16 95.34 ± 1.16 91.72 ± 1.26 91.67 ± 1.26
FOL-A (E=3) 97.67 ± 0.71 95.76 ± 0.85 96.88 ± 1.01 95.87 ± 1.03 93.65 ± 1.14 94.44 ± 0.87
FOL (E=1) 90.70 ± 1.75 90.68 ± 1.01 88.46 ± 1.99 89.26 ± 1.25 84.13 ± 1.57 83.33 ± 1.69
FOL (E=2) 91.96 ± 1.09 91.53 ± 1.78 90.63 ± 1.77 90.08 ± 1.74 85.71 ± 1.38 84.43 ± 1.92
FOL (E=3) 93.02 ± 1.22 92.37 ± 1.27 93.75 ± 1.40 90.91 ± 1.38 87.30 ± 1.07 86.11 ± 1.18
FOL-AN (E=1) 90.77 ± 1.38 91.53 ± 1.26 87.51 ± 2.32 91.34 ± 1.70 87.47 ± 2.55 86.73 ± 1.94
FOL-AN (E=2) 93.22 ± 1.85 93.22 ± 1.17 90.63 ± 1.69 92.56 ± 1.18 88.89 ± 1.91 88.67 ± 1.75
FOL-AN (E=3) 95.35 ± 1.25 94.07 ± 1.21 90.94 ± 1.14 93.39 ± 1.37 90.48 ± 1.55 91.39 ± 1.26
FOL-N (E=1) 86.05 ± 1.96 88.14 ± 1.67 85.13 ± 1.92 85.95 ± 1.95 76.19 ± 1.73 80.56 ± 2.11
FOL-N (E=2) 87.35 ± 1.41 89.83 ± 1.76 86.38 ± 2.07 86.74 ± 1.83 80.95 ± 1.94 81.94 ± 1.38
FOL-N (E=3) 90.54 ± 1.51 90.06 ± 1.59 88.47 ± 1.37 87.60 ± 1.49 82.54 ± 1.76 83.37 ± 1.56
DENSE 79.91 ± 1.73 78.63 ± 1.98 52.08 ± 2.03 61.10 ± 1.51 58.73 ± 1.43 46.14 ± 1.81
Co-Boosting 86.05 ± 1.68 85.59 ± 1.65 54.51 ± 1.85 72.29 ± 1.68 52.38 ± 1.85 48.78 ± 1.50
FedAvg (E=1) 53.11 ± 1.82 63.25 ± 1.87 35.33 ± 2.76 66.12 ± 1.50 41.27 ± 1.99 46.14 ± 1.72
FedAvg (E=2) 56.03 ± 2.53 67.52 ± 1.92 45.16 ± 1.97 58.79 ± 1.86 45.16 ± 1.26 42.61 ± 1.86
FedAvg (E=3) 51.07 ± 1.93 66.10 ± 2.05 42.86 ± 1.53 60.33 ± 1.24 44.44 ± 1.76 43.33 ± 1.46

Datasets. We evaluate FOL’s performance using four
diverse datasets: Wildfire (Aaba, 2023), Hurricane
(Park, 2021), CIFAR-10 (Krizhevsky, 2009), CIFAR-100
(Krizhevsky, 2009), and SVHN (Netzer et al., 2011). Specif-
ically, the Wildfire dataset consists of 42,850 satellite images
with a resolution of 350x350x3, designed for a binary clas-
sification task distinguishing wildfire events from non-fire
regions. Similarly, the Hurricane dataset includes 14,000
satellite images with a resolution of 128x128x3, and it also

focuses on a binary classification task that identifies hur-
ricane weather patterns. CIFAR-10 and CIFAR-100 each
provide 60,000 natural images (32 × 32 × 3) spanning 10
and 100 classes, respectively. Lastly, SVHN (Street View
House Numbers) offers 73,257 training and 26,032 testing
images (32 × 32 × 3) for 10-class digit recognition, sourced
from real-world house number imagery. Please refer to
Appendix C.3 for the summary of these datasets.

Data partition. In order to simulate the diverse local
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datasets of LEO satellite constellations, we utilize a Dirich-
let distribution-based approach to create non-IID data par-
titions across 70 clients (i.e., satellites). Specifically, we
sample the proportion pik of data from each class i allo-
cated to client k using a Dirichlet distribution pk ∼ Dir(ψ),
where ψ controls the degree of data heterogeneity among
clients. To enhance realism, we apply data augmentation
techniques (e.g., rotation, flipping, cropping, resizing, nor-
malization, and the addition of small Gaussian noise) for
each image during the partitioning process. Using these
augmentations, we mimic the variability introduced by dif-
ferent satellite perspectives. This ensures each client has
unique data capturing the nuanced differences of real-world
satellite imagery. Recognizing that newly launched LEO
satellites, such as the Disaster Monitoring Constellation
and OroraTech, typically need to collect several hundred to
a thousand images before conducting model training and
classification tasks (Walden et al., 2020; Maskey & Cho,
2020), we modify the partitioning function to guarantee that
each client has a minimum dataset size of 100 images. Fol-
lowing the partitioning process, each client splits its local
dataset into training, validation, and testing subsets in pro-
portions of 70%, 15%, and 15%, respectively. This splitting
is performed uniformly to maintain the same label distri-
bution across all subsets, ensuring a rigorous evaluation of
the personalization effectiveness of the FOL framework in
handling non-IID data scenarios.

Counterparts. Given that each satellite has only a single
opportunity to exchange models with the same neighbor, we
compare the performance of FOL against three of the most
relevant existing methods (baselines): FedAvg (McMahan
et al., 2017), DENSE (Zhang et al., 2022a), and Co-Boosting
(Dai et al., 2024). For FedAvg, we employ its standard
configuration, where each satellite directly averages the pa-
rameters of all models received from its neighbors. The
aggregated model is then evaluated on the respective satel-
lite’s local test dataset Dk

test. Both DENSE and Co-Boosting
are OFL-based methods. To ensure a convincing compari-
son, DENSE and Co-Boosting are evaluated using their final
server models under their best performing configurations.
Specifically, when the number of clients is set to 5, both
the original reports and our experimental results (see Ap-
pendix C.4) indicate that these methods achieve their best
performance. Consequently, we partition the dataset among
5 clients for these two method and train their final server
models accordingly. Their performance is then evaluated on
each satellite’s respective local test dataset Dk

test.

In addition, we investigate four FOL variants to highlight
the impact of individual components. FOL represents the
standard proposed framework, which combines fine-tuning,
pruning, post-pruning fine-tuning, top-K model selection,
ensemble, and final knowledge distillation into a personal-
ized model. FOL-A denotes the ensemble model. FOL-AN

and FOL-N omit the fine-tuning, pruning, and post-pruning
fine-tuning stages but otherwise follow the same procedures
as FOL-A and OFL, respectively.

Model Configurations. We consider a system with 70 satel-
lites participating in E = 3 model collection rounds. Each
satellite can store up to Q = 29 neighbor models at any
point. The top-K parameter is set to K = 10, meaning
that after the first round (where 30 models are stored), each
satellite retains the 10 highest-performing models locally
and then gathers 20 additional models in the subsequent
round, maintaining a total of 30. We adopt different hy-
perparameter configurations for different datasets. For the
Wildfire and Hurricane datasets, we use Stochastic Gradient
Descent (SGD) with a momentum of 0.9, a weight decay of
0.001, a learning rate of 0.001, a batch size of 32, a patience
of 20, and local training for 200 epochs. For CIFAR-10,
CIFAR-100, and SVHN, we use SGD with a momentum
of 0.9, a weight decay of 0.001, a learning rate of 0.01, a
batch size of 128, a patience of 20, and local training for
300 epochs. All baselines follow the same hyperparame-
ter settings as ours. Results are reported as the average of
5 runs with different random seeds. All models are built
in PyTorch and trained/tested on two GeForce RTX 4090
GPUs. Details on the network architectures are provided in
Appendix C.5.

Evaluation on Satellite Datasets. Using traditional OFL
evaluation metrics, which focus on average accuracy across
all clients, is insufficient for assessing personalized OFL.
This is because the primary goal of personalized OFL is
to optimize performance for individual clients rather than
to achieve a uniform global model. In personalized OFL,
each client’s data may be significantly different (i.e., het-
erogeneous), meaning average accuracy fails to capture the
individualized improvements gained through personaliza-
tion. Instead, evaluating a random subset of clients provides
a more meaningful and realistic assessment, as it highlights
how effectively a method adapts to diverse data distributions
and addresses the distinct needs of each client. Ideally, we
would conduct experiments for all 70 clients across each
dataset setting. However, due to the constraints of our lab’s
computing resources, we are limited to a subset of experi-
ments for each configuration. To be realistic, for ψ = 0.7
on the Wildfire and Hurricane datasets, we select three satel-
lites: one is chosen randomly, and the other two are selected
based on varying dataset sizes (ranging from a few hundred
to a couple thousand images; see Appendix C.6). For other
datasets and ψ values, we randomly select one satellite to
evaluate FOL’s effectiveness, with the expectation that these
results are representative of the general performance across
the entire client population.

We begin by examining the Wildfire and Hurricane datasets
under both moderate (ψ = 0.7) and high (ψ ∈ {0.5,

8



Federated Oriented Learning: A Practical One-Shot Personalized Federated Learning Framework

0.3, 0.1) levels of data heterogeneity. Table 1 presents the
performance at ψ = 0.7, where the ensemble model FOL-
A consistently achieves the highest accuracy during each
model collection round. In addition, the final personal-
ized model in FOL demonstrates substantial improvements
over the best baseline, surpassing it by up to 6.56% on the
Wildfire dataset (satellite #28) and by 21.77% on the Hurri-
cane dataset (satellite #44). The larger improvement on the
Hurricane dataset is likely due to its higher classification
complexity, driven by intricate cloud formations, wind pat-
terns, and other atmospheric phenomena, which challenge
synthetic image generation methods like DENSE and Co-
Boosting. These results highlight the ability of our FOL
framework to enhance each satellite’s model performance,
which is especially beneficial for challenging classification
tasks. Table 2 further explores the impact of increasing data
skew by reducing ψ. While most methods exhibit perfor-
mance drops under more pronounced non-IID conditions,
FOL-A and FOL remain robust. Notably, FOL exceeds the
best baseline by up to 39.24% on the Wildfire dataset (satel-
lite #48) and 37.33% on the Wildfire dataset (satellite #44)
when ψ = 0.1. These findings validate the effectiveness of
our proposed FOL framework in non-IID satellite environ-
ments, consistently achieving significant improvements in
both ensemble and personalized models.

Table 3. Test accuracies (%) on CIFAR-10, CIFAR-100, and
SVHN, reported as mean ± std.

Dataset CIFAR-10 CIFAR-100 SVHN

Satellite # 9 14 21

Methods ψ = 0.7 ψ = 0.7 ψ = 0.5

Local 60.06 ± 1.97 30.41 ± 2.28 78.97 ± 1.75
FOL-A (E=1) 70.73 ± 2.09 46.32 ± 2.12 85.73 ± 1.63
FOL-A (E=2) 70.93 ± 1.16 47.72 ± 1.53 86.26 ± 1.28
FOL-A (E=3) 71.02 ± 0.73 49.24 ± 1.12 88.37 ± 0.92
FOL (E=1) 65.68 ± 2.14 37.31 ± 2.43 81.09 ± 1.54
FOL (E=2) 66.06 ± 1.05 37.43 ± 1.58 81.62 ± 1.36
FOL (E=3) 66.83 ± 0.82 39.42 ± 1.03 82.85 ± 1.18
FOL-AN (E=1) 61.77 ± 2.36 31.23 ± 2.31 79.62 ± 1.64
FOL-AN (E=2) 62.35 ± 1.31 31.58 ± 1.75 80.92 ± 1.41
FOL-AN (E=3) 63.01 ± 0.71 32.05 ± 1.68 83.15 ± 1.33
FOL-N (E=1) 59.68 ± 2.43 30.64 ± 2.57 80.04 ± 1.74
FOL-N (E=2) 60.44 ± 1.37 30.99 ± 1.74 80.39 ± 1.39
FOL-N (E=3) 61.49 ± 1.43 31.11 ± 2.12 81.15 ± 1.22
DENSE 61.68 ± 2.03 29.59 ± 2.53 69.53 ± 1.57
Co-Boosting 63.11 ± 1.98 33.45 ± 2.12 73.58 ± 1.48
FedAvg (E=1) 47.76 ± 2.63 12.16 ± 3.93 53.08 ± 2.32
FedAvg (E=2) 44.90 ± 2.45 12.75 ± 3.23 58.72 ± 1.79
FedAvg (E=3) 45.57 ± 1.79 12.40 ± 2.89 55.49 ± 1.93

Evaluation on CIFAR-10, CIFAR-100, and SVHN. To
illustrate the general applicability of our approach beyond
satellite imaging classification tasks, we evaluate FOL on
the CIFAR-10, CIFAR-100, and SVHN benchmarks us-
ing ψ = 0.7 (see Table 3). These datasets differ substan-
tially from Wildfire and Hurricane in both task complexity

and data distribution. Nevertheless, FOL-A consistently
achieves the highest accuracy, and FOL surpasses the best
baseline by up to 3.72%, 5.97%, and 9.27% on CIFAR-
10 (client #9), CIFAR-100 (client #14), and SVHN (client
#21), respectively. These improvements highlight our frame-
work’s capability to adapt effectively across diverse do-
mains, suggesting its potential applicability in a wide range
of one-shot federated learning scenarios.

Effects of the Proposed Components. We further assess
the contributions of our proposed model refinement process,
including fine-tuning, structured pruning with alignment
regularization, and post-pruning fine-tuning. Tables 1–3
demonstrate that FOL-A consistently outperforms FOL-AN
in ensemble accuracy, while FOL consistently surpasses
FOL-N in final personalized model accuracy. These substan-
tial gains underscore the effectiveness of the proposed model
refinement process in adapting received models to each
client’s unique data distribution, thereby significantly en-
hancing both model accuracy and robustness. Moreover, the
performance of each FOL variant progressively improves as
the number of model collection rounds E increases (from
1 to 3). In each round, the updated local model θ(e)+k from
the previous round serves as the initial local model for the
next, enabling a gradual refinement process. As a result, the
ensemble accuracy (FOL-A) steadily increases, while the
final personalized model accuracy (FOL) also benefits from
more effective knowledge distillation. This iterative en-
hancement ensures that each subsequent round begins with
a stronger local model, leading to continuous performance
gains across rounds. Overall, these results confirm that the
integration of fine-tuning, structured pruning with align-
ment regularization, and post-pruning fine-tuning, along
with ensemble-based knowledge distillation, is fundamental
to the effectiveness of our FOL framework, particularly in
handling non-IID satellite environments.

5. Conclusion
We introduced FOL, a distributed OPFL framework de-
signed to handle communication constraints, high mobility,
and diverse tasks in real-world environments. By integrat-
ing fine-tuning, pruning, post fine-tuning, ensemble refine-
ment, and knowledge distillation, FOL enables clients to
extract relevant knowledge from neighbors while aligning
with their local models. We provide theoretical guarantees
on the bounded risk discrepancy between the student and
teacher models during knowledge distillation, as well as the
convergence of the distillation process. Experiments on real-
world datasets (Wildfire and Hurricane) and benchmarks
(CIFAR-10, CIFAR-100, and SVHN) show that FOL con-
sistently outperforms state-of-the-art one-shot FL methods,
including FedAvg, DENSE, and Co-Boosting. Future work
includes developing advanced personalization techniques
and integrating stronger privacy guarantees into OPFL.
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A. Related Works
A.1. One-Shot Federated Learning

One-Shot Federated Learning (OFL) has emerged as a promising paradigm that aims to train a global model using only a
single communication round between clients and a central server (Konečnỳ et al., 2016; McMahan et al., 2017; Guha et al.,
2019; Li et al., 2020a; Su et al., 2023b; Elmahallawy & Luo, 2023; Kang et al., 2023; Danilenka et al., 2023; Dai et al., 2024;
Zeng et al., 2024; Yang et al., 2024b;a). Existing OFL methods primarily employ two key strategies: ensemble refinement
and synthesized data enhancement. (1) Ensemble refinement aims to enhance the aggregation of local models into a more
generalized global ensemble by utilizing techniques such as parameter alignment, neuron matching, and weighted model
combination, including MA-Echo-OFL (Su et al., 2023b), FedLPA (Liu et al., 2023b), FuseFL (Tang et al., 2024), and
Co-Boosting (Dai et al., 2024). (2) Synthesized data enhancement strategies, on the other hand, aim to generate surrogate
or distilled data on the server side to facilitate global model training without direct access to raw client data. Methods in
this category rely on dataset distillation, generative modeling, or data-free synthesis, such as DOSFL (Zhou et al., 2020),
DENSE (Zhang et al., 2022a), FEDCVAE (Heinbaugh et al., 2023), FedISCA (Kang et al., 2023), LEOShot (Elmahallawy
& Luo, 2023), IntactOFL (Zeng et al., 2024), FedDISC (Yang et al., 2024a), and FedDEO (Yang et al., 2024b).

While one-shot federated learning approaches significantly reduce communication overhead and are well-suited for resource-
constrained environments, their effectiveness diminishes in highly heterogeneous settings where local data distributions
vary substantially. This is because these methods prioritize generating a single global model that aims to perform generally
across all clients. Consequently, the global-first paradigm restricts their applicability in scenarios requiring personalized
federated learning, as a unified model cannot sufficiently address the specific needs of individual clients.

A.2. Personalized Federated Learning

Personalized Federated Learning (PFL) has recently gained traction to address the limitations of a “one-size-fits-all” model
in non-IID scenarios (Liang et al., 2020; Deng et al., 2020; T Dinh et al., 2020; Li et al., 2021; Oh et al., 2021; Collins
et al., 2021; Tan et al., 2022b; Luo et al., 2023; Liu et al., 2023a; Su et al., 2023a; Wu et al., 2024; Yang et al., 2024c). PFL
aims to customize each local model to perform well on client-specific data while still exploiting the shared knowledge from
collaboration. Broadly, PFL methods can be categorized into two main groups. (1) Parameter decoupling approaches, which
separate the model into a shared backbone (feature extractor) and a personalized head (classifier). The shared backbone
captures universal features learned across the entire FL process, while the personalized head adapts to the specific data
distribution of each client, including LG-FEDAVG (Liang et al., 2020), FedBABU (Oh et al., 2021), Fedproto (Tan et al.,
2022b), PCCFED (Su et al., 2023a), and FedDecomp (Wu et al., 2024). (2) Optimization-based approaches, which leverage
advanced techniques such as regularization methods, dynamic aggregation, and second-order optimization to constrain local
models and adjust aggregation weights. This balance facilitates global collaboration while allowing for local personalization.
Examples in this category include pFedMe (T Dinh et al., 2020), Ditto (Li et al., 2021), PGFed (Luo et al., 2023), Feddwa
(Liu et al., 2023a), and FedAS (Yang et al., 2024c).

These PFL algorithms are particularly effective for clients with heterogeneous data distributions. To achieve strong
performance in each client’s local model, they rely on iterative updates across multiple communication rounds. However,
this reliance poses significant challenges in time-sensitive or resource-constrained environments. For instance, in LEO
satellite networks, where satellites have limited communication windows and high mobility, frequent model exchanges are
impractical. Therefore, it is imperative to develop a practical one-shot PFL method that can effectively deliver high-quality
personalized models within a single communication round.
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B. Supplementary Material on Methodology
B.1. Definition of Shared and Unshared Layers

Definition of Shared Layers. Given a classification task, where each client maintains a neural network, let: Lk be the
set of all layers in the local model θ(e)−k . Lj be the set of all layers in the received neighbor model ϕ

′(e)
j→k. Specifically,

θ
(e)−
k have layers {Layerk,1,Layerk,2, . . . ,Layerk,Lk

}, and ϕ
′(e)
j→k have layers {Layerj,1,Layerj,2, . . . ,Layerj,Lj

}.

We let each layer Layerk,l ∈ Lk and Layerj,l′ ∈ Lj . Then each layer Layerk,l or Layerj,l′ can be characterized by both a
layer type (e.g., convolution, fully connected) and a dimensionality or shape (e.g., number of filters, kernel size, input-output
feature map dimensions). Formally, we let type(Layerk,l) and dim(Layerk,l) denote the layer type and dimensionality of
Layerk,l, respectively. Likewise for the neighbor model, we have type(Layerj,l′) and dim(Layerj,l′).

Then we define the set of shared layers, Lshared, to be all index pairs (l, l′) such that:

1. The layers share the same type:
type(Layerk,l) = type(Layerj,l′), (21)

2. Their dimensionalities match:
dim(Layerk,l) = dim(Layerj,l′). (22)

Thus, we formally define:

Lshared(k, j) =
{
(l, l′) ∈ Lk × Lj

∣∣∣ type(Layerk,l) = type(Layerj,l′), dim(Layerk,l) = dim(Layerj,l′)
}
, (23)

where each (l, l′) pair is selected based on a first-available match to prevent multiple local layers from matching a single
neighbor layer.

Definition of Unshared Layers. Any layer in ϕ
′(e)
j→k that does not have a matching counterpart in θ(e)−k is considered

unshared. We define:

Lunshared(j → k) = Lj \
{
l′ | ∃l ∈ Lk, (l, l

′) ∈ Lshared(k, j)
}
. (24)

These layers have no direct local equivalent, meaning they must be pruned or retained based purely on their local utility,
rather than structural alignment.

Example: Identifying Shared & Unshared Layers:

Consider two models:

1. Client k’s local CNN (θ(e)−k ):

Conv(3× 3, 32), BN(32),Conv(3× 3, 64), FC(256, 10)

2. Neighbor j’s received CNN (ϕ
′(e)
j→k):

Conv(3× 3, 32), Conv(3× 3, 64), BN(64), FC(256, 10)

Using our shared layer definition, we obtain:

Lshared = {(Conv(3×3, 32)k, Conv(3×3, 32)j), (Conv(3×3, 64)k, Conv(3×3, 64)j), (FC(256, 10)k, FC(256, 10)j)}.
(25)

Thus, these layers form:
Lunshared = {BN(32)j ,BN(64)j}. (26)
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B.2. Proof of Theorem 1

Proof. We begin by clarifying how our regularization-based objective (i.e., KL + λ-penalty) still leads to the same KL
bounds as the pure distillation loss. Specifically, recall the regularized objective:

LKD(θ
(e)
k ) =

1

|Dk|
∑

xi∈Dk

KL
[
softmax(

A
w

(e)
k

(xi)

T
)
∥∥∥ softmax(

fk(xi; θ
(e)
k )

T
)
]
+ λ ∥θ(e)+k − θ(e)−k ∥2, (27)

where the second term is nonnegative. Hence, for any θ(e)k ,

1

|Dk|
∑

xi∈Dk

KL[. . . ]︸ ︷︷ ︸
KL-only

≤ LKD(θ
(e)
k ). (28)

In other words, minimizing the entire (KL + regularization) objective also forces the pure KL portion to be small.
Consequently, all subsequent bounding arguments (Pinsker’s inequality, logit mismatch, etc.) remain valid under the
regularized objective, since they only require that this KL portion be small.

We now prove Theorem 1 in three main steps. First, we bound the discrepancy in empirical losses between the teacher and
the student by showing that bounding logit mismatch (teacher vs. student logits) controls the cross-entropy discrepancy.
Second, we link the logit mismatch to KL divergence via temperature scaling. Finally, we combine these steps to derive the
risk discrepancy bound.

Bounding the Empirical Loss Discrepancy via Logit Mismatch. Let ẑT(xi) = Logits
(
Awk

(xi; {s(e)i }Ki=1)
)

denote the

teacher ensemble’s logits, and let ẑS(xi; θ
(e)
k ) = Logits(fk(xi; θ

(e)
k )) be the logits of the student model for the same input

xi. Since ℓ(ẑ, yi) is assumed L-Lipschitz w.r.t. ẑ, we have, for any ẑ1, ẑ2 ∈ Ryd and label yi,

|ℓ(ẑ1, yi)− ℓ(ẑ2, yi)| ≤ L ∥ẑ1 − ẑ2∥. (29)

Hence, for each (xi, yi) ∈ Dk
train,

|ℓ(ẑS(xi; θ(e)k ), yi)− ℓ(ẑT(xi), yi)| ≤ L ∥ẑS(xi; θ(e)k )− ẑT(xi)∥. (30)

Taking expectation,
|RS(θ

(e)
k ) − R(Awk

)| ≤ L · E(xi,yi)∈Dk
train

[
∥ẑS(xi; θ(e)k )− ẑT(xi)∥

]
. (31)

Thus, bounding logit mismatch indeed bounds the cross-entropy discrepancy.

Linking the KL Divergence to Logit Mismatch under Temperature Scaling. Recall that in the pure KL-based distillation
(temperature T > 0),

LKDpure(θ
(e)
k ) =

1

|Dk
train|

∑
xi∈Dk

train

KL
(
softmax(

ẑT(xi)

T
) ∥ softmax(

ẑS(xi; θ
(e)
k )

T
)
)
, (32)

and minimizing it makes the student’s softened outputs pS close to the teacher’s softened outputs pT . (Because of the
nonnegative regularization in equation 12, minimising the full objective enforces at least the same KL closeness.) We define

pT(xi) = softmax(
ẑT(xi)

T
), pS(xi; θ

(e)
k ) = softmax(

ẑS(xi; θ
(e)
k )

T
). (33)

Hence, minimizing KL(pT(xi)∥pS(xi; θ(e)k )) drives the student distribution pS(xi; θ
(e)
k ) to approximate the teacher

distribution pT(xi). Next, we aim to relate KL(pT(xi)∥pS(xi; θ(e)k )) to the Euclidean distance between the logits
∥ẑS(xi; θ(e)k )− ẑT(xi)∥2. To achieve this, we proceed through the following steps.

First, we work on bounding the distribution (softmax) discrepancy via logit mismatch. Consider the softmax function with
temperature scaling:

pc(z) =
exp(zc)∑C
j=1 exp(zj)

, where zc =
ẑc
T
, c = 1, . . . , C. (34)
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Recall that the softmax outputs satisfy: α ≤ pc(z) ≤ 1−α, for some 0 < α < 1. This is because if any class has a probability
of exactly 1, all other class probabilities would need to be exactly 0, which is impossible since all exponentials exp(z) > 0.
In practice, especially with temperature scaling, the softmax outputs typically lie within the interval [10−3, 0.99], and thus a
conservative bound on α is in the range [10−3, 10−2].

Define the vector function p : RC → RC by:
p(z) = softmax(z).

The Jacobian matrix Jp(z) of the softmax function is:

Jp(z) =
∂p

∂z
=


∂p1

∂z1

∂p1

∂z2
· · · ∂p1

∂zC
∂p2

∂z1

∂p2

∂z2
· · · ∂p2

∂zC
...

...
. . .

...
∂pC

∂z1

∂pC

∂z2
· · · ∂pC

∂zC

 =
1

T

(
diag(p(z))− p(z)p(z)⊤

)
, (35)

where each element that insides the matrix is given by (according to (Bendersky, 2016)):

∂pc
∂zd

=

{
1
T pc(z) (1− pc(z)) , if c = d,

− 1
T pc(z)pd(z), if c ̸= d.

(36)

Note that, the Jacobian matrix Jp(z) of the softmax function is inherently rank-deficient, having a rank of C − 1 due to the
constraint

∑C
c=1 pc(z) = 1. This rank deficiency poses a challenge for applying the Inverse Function Theorem directly,

which is essential for linking the distribution discrepancy to the logit mismatch. To circumvent this issue, we will introduce
a reduced softmax function.

Without loss of generality, we can fix the last one logit pC(z′) (e.g., we can fix the last logit to 0.) to eliminate the redundancy
introduced by the probability simplex constraint. Define the reduced softmax function as:

p(z′) = (p1(z
′), p2(z

′), . . . , pC−1(z
′)) , (37)

where z′ = (ẑ1, ẑ2, . . . , ẑC−1) and pc(z′) for c = 1, . . . , C − 1 are defined as:

pc(z
′) =

exp(z′c)

1 +
∑C−1

j=1 exp(z′j)
. (38)

Hence, the Jacobian matrix Jp(z′) of the reduced softmax function is:

Jp(z
′) =

∂p

∂z′
=


∂p1

∂z′
1

∂p1

∂z′
2

· · · ∂p1

∂z′
C−1

∂p2

∂z′
1

∂p2

∂z′
2

· · · ∂p2

∂z′
C−1

...
...

. . .
...

∂pC−1

∂z′
1

∂pC−1

∂z′
2

· · · ∂pC−1

∂z′
C−1

 =
1

T

(
diag(p(z′))− p(z′)(p(z′))⊤

)
. (39)

Note that Jp(z′) is full rank due to two reasons. (1). The diagonal elements satisfy Jcc = pc(z)(1−pc(z)) > 0, so no row or
column of the Jacobian matrix is entirely zero. (2). The off-diagonal elements of Jf (z′) satisfy Jcd = −pc(z)pd(z), c ̸= d.
They do not induce linear dependencies between rows or columns because the probabilities pc(z) and pd(z) are strictly
bounded by α and remain the probability simplex.

Since the reduced softmax function is composed of exponentials and sums, which are smooth and differentiable, and its
Jacobian matrix is invertible. According to the Inverse Function Theorem(Wallach, 2005), the inverse Jacobian Jp−1(p) at
p = p(z′(xi)) can be defined as:

Jp−1(p) = (Jp(z
′(xi)))

−1
. (40)

Next, we need to bound the operator norm of the inverse Jacobian Jp−1(p). The operator norm of a matrix A, denoted
∥A∥2→2, is defined as:

∥A∥2→2= sup
∥x∥2=1

∥Ax∥2. (41)
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For the inverse Jacobian Jp−1(p), according to (Birdal, 2019), the operator norm can be bounded in terms of the smallest
singular value σmin(Jp(z

′(xi))) of Jp(z′(xi)):

∥Jp−1(p′)∥2→2=
1

σmin(Jp(z′(xi)))
. (42)

We then need to give the bound of σmin(Jp(z
′)). Note that the full Jacobian and the reduced Jacobian coincide on the

(C−1)-dimensional tangent space of the simplex, their positive singular values are identical. This is because the full Jacobian
simply carries one extra singular value 0 corresponding to the all-ones direction. Without loss generality, we simplify our
notation in the following: Let p = (p1, . . . , pC) ∈ RC be a probability vector satisfying:

pi ∈ (α, 1− α) for all i,
C∑
i=1

pi = 1. (43)

We then define the matrix M as M = diag(p) − p p⊤. Since
∑C

i=1 pi = 1, the matrix M has rank at most C − 1.
Furthermore, we have:

M 1 = diag(p)1 − p (p⊤1) = p − p = 0. (44)

Hence the vector 1 = (1, 1, . . . , 1) spans the nullspace of M with the eigenvalue 0. Our goal is to give the bound for the
minimum value of the positive nonzero eigenvalues of M . Formally, by the definition of Rayleigh quotient the minimum
eigenvalues of M can be defined as:

λ+min(M) = min
x ̸=0
x⊥ 1

x⊤M x

x⊤x
, (45)

where x is a nonzero vector, and x ⊥ 1 can ensure the eigenvalue ̸= 0.

Since the Rayleigh quotient
x⊤M x

x⊤x
does not change if we scale x by a nonzero constant. Hence, without loss of generality,

we impose
∑C

i=1 x
2
i = 1, i.e. ∥x∥2= 1. Under this normalization,

λ+min(M) = min
∥x∥2=1∑

i xi=0

[
x⊤M x

]
. (46)

Next, we expand x⊤Mx. Let x = (x1, . . . , xC)
⊤ ∈ RC , we have:

x⊤Mx = x⊤[diag(p)− p p⊤]x. (47)

Split this into two terms:
x⊤diag(p)x︸ ︷︷ ︸

Term A

and x⊤[− p p⊤] x︸ ︷︷ ︸
Term B

. (48)

Term A: x⊤diag(p)x. Since diag(p) is diagonal with entries diag(p)ii = pi, we have

diag(p)x = (p1x1, p2x2, . . . , pCxC)
⊤
, (49)

Hence, we have:

x⊤[diag(p)]x =

C∑
i=1

(pix
2
i ) =

C∑
i=1

pi x
2
i . (50)

Term B: x⊤[−pp⊤] x. Since p p⊤ is non-diagonal with entries (p p⊤)ij = pipj , we have:

(p p⊤)x = p (p⊤x) =
( C∑
k=1

pkxk

)
p. (51)
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Hence, we can get:

x⊤(p p⊤)x =
( C∑
i=1

pixi

)2
. (52)

Add the negative sign:

x⊤[− p p⊤]x = −
( C∑
i=1

pi xi

)2
. (53)

Put eveything together, we get:

x⊤M x =

C∑
i=1

pi x
2
i −

( C∑
i=1

pi xi

)2
. (54)

To simplify this equation, let z =
∑C

i=1 pixi, and since
∑

i pi = 1, Eq. (54) can be rewritten as:

C∑
i=1

pi x
2
i − z2 =

C∑
i=1

pi[x
2
i − 2xiz + z2] −

( C∑
i=1

pi

)
z2 =

C∑
i=1

pi(xi − z)2, (55)

Now, the problem becomes to find the the global minimum of the following:

C∑
i=1

pi (xi − z)2 subject to


∑C

i=1 xi = 0,∑C
i=1 x

2
i = 1,

pi ∈ (α, 1− α),∑
i pi = 1,

(56)

Next, to solve this optimization problem, we follow (Yao et al., 2003), let I+ ⊂ {1, . . . , C} where xi = + a for i ∈ I+,
let I− ⊂ {1, . . . , C} where xi = − b for i ∈ I−, and let M = |I+| and N = |I−|, so that M + N = C. Hence, the
constrains can be rewritten as:

C∑
i=1

xi =
∑
i∈I+

a

︸ ︷︷ ︸
L·a

+
∑
i∈I−

(−b)

︸ ︷︷ ︸
N ·(−b)

= La + N (− b) = La − N b = 0 =⇒ La = N b. (57)

Similarly, we have:
C∑
i=1

x2i = La2 + N b2 = 1. (58)

we define: p+ =
∑

i∈I+
pi, p− =

∑
i∈I−

pi and p++p− = 1, where p+, p− ∈ (α, 1−α) because each pi ∈ (α, 1−α).
The weighted mean z can be rewritten as:

z =

C∑
i=1

pi xi = p+ (+a) + (p−) (−b) = p+ a − p− b. (59)

The objective function can be rewritten as:

C∑
i=1

pi (xi − z)2 = p+ (a− z)2 + p− (− b− z)2. (60)

We then define the Lagrangian:

L(a, b, p+; λ, µ) = p+ (a− z)2 + (1− p+) (− b− z)2 + λ (La−N b) + µ (La2 +N b2 − 1), (61)

where z = p+ a − (1− p+) b = p+ a b + p+ b = p+ (a+ b) − b.
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We then can solve this optimal function by taking partial derivatives ∂L
∂a = 0, ∂L

∂b = 0, ∂L
∂p+

= 0. The results gives
L = N, a = b, p+ = α, p− = 1− α.

By substituting everything back, we can get z = α (+ a) + (1− α)(− a) = a (α − (1− α)) = (2α − 1) a. Hence, we
have a− z = a− (2α− 1) a = 2 (1− α) a, − a− z = − a− (2α− 1) a = − 2αa.

Therefore, we have:
C∑
i=1

pi (xi − z)2 = α [a− z]2 + (1− α) [−a− z]2

= α [2(1− α)a]2 + (1− α) [−2αa]2

= 4 a2
[
α (1− α)2 + (1− α)α2

]
. =

= 4 a2 α (1− α).

(62)

Recall that La2 +N a2 = C a2 = 1, thus a2 = 1/C, so Eq. (62) can be rewritten as:

C∑
i=1

pi (xi − z)2 =
4

C
α (1− α). (63)

By using the result of Eq. (63), include the parameter T , we get:

σmin(Jp(z
′)) ≥ 4α(1− α)

CT
, (64)

We define:
Gα(T ) =

CT

4α(1− α)
, (65)

which serves as an upper bound for the operator norm of the inverse Jacobian.

Using the bounded inverse Jacobian, we then relate the differences in logits to the differences in the softmax outputs.
Consider the student and teacher models with reduced softmax function for input xi:

p′S(xi; θ
(e)
k ) = p(z′S(xi; θ

(e)
k )), p′T(xi) = p(z′T(xi)). (66)

Hence, we have:
z′S(xi; θ

(e)
k )− z′T(xi) = p−1(p′S(xi; θ

(e)
k ))− p−1(p′T(xi)). (67)

Applying the Mean Value Theorem for vector-valued functions, there exists a point ξ on the line segment between p′S(xi; θ
(e)
k )

and p′T(xi) such that:
z′S(xi; θ

(e)
k )− z′T(xi) ≤ Jp−1(ξ) · (p′S(xi; θ

(e)
k )− p′T(xi)). (68)

Taking the L2 norm on both sides:

∥z′S(xi; θ
(e)
k )− z′T(xi)∥2≤ ∥Jp−1(ξ)∥2→2·∥p′S(xi; θ

(e)
k )− p′T(xi)∥2. (69)

Substituting the bound on the inverse Jacobian:

∥z′S(xi; θ
(e)
k )− z′T(xi)∥2≤ Gα(T ) · ∥p′S(xi; θ

(e)
k )− p′T(xi)∥2. (70)

We then extend the bound in Eq. (70) by relax the reduced softmax to the full softmax. First, we extend the LHS. Recall
that zS and zT are the full C-dimensional logit vectors for the student and teacher models, respectively. The reduced logit
vectors z′S and z′T exclude the last component (fixed to 0), i.e., z′S = (zS,1, zS,2, . . . , zS,C−1) and similarly for z′T . Since
the last logit is fixed (zS,C , zT,C = 0), the Euclidean distance between the full logits is equal to the Euclidean distance
between the reduced logits:

∥zS − zT ∥22=
C∑

c=1

(zS,c − zT,c)
2 =

C−1∑
c=1

(z′S,c − z′T,c)
2 + (zS,C − zT,C)

2 = ∥z′S − z′T ∥22+0 (71)
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To extend the RHS of Eq. (70), recall that pS = softmax(zS), pT = softmax(zT ), p′S = (pS,1, pS,2, . . . , pS,C−1),
p′T = (pT,1, pT,2, . . . , pT,C−1), pS,C = 1−

∑C−1
c=1 pS,c, and pT,C = 1−

∑C−1
c=1 pT,c. The norm of full softmax distributions

can be express as:

∥pS − pT ∥22=
C−1∑
c=1

(pS,c − pT,c)
2 + (pS,C − pT,C)

2. (72)

For the RHS of Eq. (72), we have:

pS,C − pT,C =

(
1−

C−1∑
c=1

pS,c

)
−

(
1−

C−1∑
c=1

pT,c

)
=

C−1∑
c=1

(pT,c − pS,c). (73)

Plugging this back into Eq. (72), we have:

∥pS − pT ∥22=
C−1∑
c=1

(pS,c − pT,c)
2 +

(
C−1∑
c=1

(pT,c − pS,c)

)2

. (74)

Notice that
(∑C−1

c=1 (pT,c − pS,c)
)2
≥ 0. Hence, we have:

∥pS − pT ∥22≥
C−1∑
c=1

(pS,c − pT,c)
2 = ∥p′S − p′T ∥22. (75)

Therefore, the bound in Eq. (70) can be extended by:

∥zS − zT ∥2= ∥z′S − z′T ∥2≤ Gα(T ) · ∥p′S − p′T ∥2≤ Gα(T ) · ∥pS − pT ∥2. (76)

To connect the KL divergence to the Euclidean distance between the softmax outputs, we utilize Pinsker’s Inequality along
with norm relationships:

KL(pT(xi)∥pS(xi; θ(e)k )) ≥ 1

2
∥pT(xi)− pS(xi; θ(e)k )∥21. (77)

Additionally, in RC , the L1 and L2 norms satisfy:

∥pT(xi)− pS(xi; θ(e)k )∥2≤ ∥pT(xi)− pS(xi; θ(e)k )∥1. (78)

Derivation of ∥p(z1)− p(z2)∥2≤ ∥p(z1)− p(z2)∥1:

We start with the L1-norm and L2-norm definitions: ∥p(z1)− p(z2)∥1 =
∑C

i=1|pi(z1)− pi(z2)|, ∥p(z1)− p(z2)∥22 =∑C
i=1(pi(z1)− pi(z2))

2
. Then, we square of the L1-norm:

∥p(z1)− p(z2)∥21 =

(
C∑
i=1

|pi(z1)− pi(z2)|

)2

=

C∑
i=1

|pi(z1)− pi(z2)|
C∑

j=1

|pj(z1)− pj(z2)|. (79)

Eq. (79) can be decomposed as:

C∑
i=1

|pi(z1)− pi(z2)|
C∑

j=1

|pj(z1)− pj(z2)| =
C∑
i=j

|pi(z1)− pi(z2)|2 +
∑
i̸=j

|pi(z1)− pi(z2)||pj(z1)− pj(z2)|. (80)

This implies:
∥p(z1)− p(z2)∥21 = ∥p(z1)− p(z2)∥22 +

∑
i ̸=j

|pi(z1)− pi(z2)||pj(z1)− pj(z2)|. (81)

Therefore, we proofed the LHS of Eq. (78):

∥p(z1)− p(z2)∥22 ≤ ∥p(z1)− p(z2)∥
2
1. (76)
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Combining Eq. (77) and Eq. (78), we obtain:

∥pT(xi)− pS(xi; θ(e)k )∥2≤
√
2 ·KL(pT(xi)∥pS(xi; θ(e)k )). (82)

Establishing the Upper Bound on Logit Mismatch

By combining Eq. (76) and Eq. (82), we can get the logit mismatch bound:

∥ẑS(xi; θ(e)k )− ẑT(xi)∥2≤ Gα(T ) ·
√

2 ·KL(pT(xi)∥pS(xi; θ(e)k )). (83)

To establish a linear relationship, we employ the inequality
√
x ≤ x

2 + 1
2 :√

2 ·KL(pT(xi) ∥ pS(xi; θ(e)k )) ≤
2 ·KL(pT(xi) ∥ pS(xi; θ(e)k ))

2
+

1

2
. (84)

Substituting back:

∥ẑS(xi; θ(e)k )− ẑT(xi)∥2≤ Gα(T ) ·

(
2 ·KL(pT(xi) ∥ pS(xi; θ(e)k ))

2
+

1

2

)
. (85)

Hence, we have:

∥ẑS(xi; θ(e)k )− ẑT(xi)∥2≤ Gα(T ) ·KL(pT(xi) ∥ pS(xi; θ(e)k )) +
Gα(T )

2
. (86)

Define:

κ = 2Gα(T ), δ0 =
Gα(T )

2
, (87)

we obtain:
∥ẑS(xi; θ(e)k )− ẑT(xi)∥2≤ κ ·KL(pT(xi) ∥ pS(xi; θ(e)k )) + δ0. (88)

Deriving the final bound

By averaging the above inequality over all samples in the training dataset Dk
train, we get:

E(xi,yi)∈Dk
train

[
∥ẑS(xi; θ(e)k )− ẑT(xi)∥2

]
≤ κ · LKDpure(θ

(e)
k ) + δ0, (89)

where:
LKDpure(θ

(e)
k ) =

1

|Dk
train|

∑
xi∈Dk

train

KL(pT(xi)∥pS(xi; θ(e)k )). (90)

Substituting back the regularized objective LKD(θ
(e)
k ), and by using Eq. (28) we have:

E(xi,yi)∈Dk
train

[
∥ẑS(xi; θ(e)k )− ẑT(xi)∥2

]
≤ κ · LKDpure(θ

(e)
k ) + δ0 ≤ κ · LKD(θ

(e)
k ) + δ0, (91)

By substituting back the Gα(T ), κ, and δ0, we have

E(xi,yi)∈Dk
train

[
∥ẑS(xi; θ(e)k )− ẑT(xi)∥2

]
≤ CT

2α(1− α)
· LKD(θ

(e)
k ) +

CT

8α(1− α)
. (92)

|RS(θ
(e)
k ) − R(Awk

)| ≤ L · E(xi,yi)∈Dk
train

[
∥ẑS(xi; θ(e)k )− ẑT(xi)∥

]
. (93)

Let’s then combine Eq. (93) and Eq. (31):

|RS(θ
(e)
k )−R(Awk

)| ≤ L · CT
2α(1− α)

· LKD(θ
(e)
k ) +

L · CT
8α(1− α)

. (94)

Final Bound and Conclusion. Combining the above mismatch and KL relationships, we obtain

|RS(θ
(e)
k )−R(Awk

)| ≤ L · C T
α(1− α)

[LKD(θ
(e)
k )

2
+

1

8

]
. (95)

This completes the proof of Theorem 1.
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B.3. Proof of Theorem 2

Proof. In order to prove Theorem 2, we first need to expand the SGD update rule:

Recall the update rule:
θr+1
k = θrk − η∇LKD,k(θ

r
k, ξ

r
k). (96)

Since we want to bound ∥θr+1
k − θ∗k∥2, let’s expand the squared norm:

∥θr+1
k − θ∗k∥2= ∥θrk − θ∗k − η∇LKD,k(θ

r
k, ξ

r
k)∥

2
. (97)

Using (u− v)2 = ∥u∥2−2⟨u, v⟩+ ∥v∥2, we have:

∥θr+1
k − θ∗k∥2= ∥θrk − θ∗k∥2 − 2 η⟨θrk − θ∗k, ∇LKD,k(θ

r
k, ξ

r
k)⟩ + η2 ∥∇LKD,k(θ

r
k, ξ

r
k)∥2. (98)

We then take conditional expectation given θrk on both side of Eq. (98),

E[∥θr+1
k − θ∗k∥2 | θrk] = ∥θrk − θ∗k∥2 − 2 η E[⟨θrk − θ∗k, ∇LKD,k(θ

r
k, ξ

r
k)⟩]︸ ︷︷ ︸

Term A

+ η2 E[∥∇LKD,k(θ
r
k, ξ

r
k)∥2]︸ ︷︷ ︸

Term B

. (99)

By the definition of the stochastic gradient (the expectation of the stochastic gradient equals the true gradient), we have:

E[∇LKD,k(θ
r
k, ξ

r
k)] = ∇LKD,k(θ

r
k). (100)

Hence, Term A = ⟨θrk − θ∗k, ∇LKD,k(θ
r
k)⟩.

The derivation for the Term A:

By the definition of the inner product for vectors, we have:

⟨θrk − θ∗k, ∇LKD,k(θ
r
k, ξ

r
k)⟩ =

n∑
i=1

(θrk[i]− θ∗k[i]) · ∇LKD,k(θ
r
k, ξ

r
k)[i], (101)

where θrk[i], θ
∗
k[i], and ∇LKD,k(θ

r
k, ξ

r
k)[i] are the i-th components of θrk, θ∗k, and the stochastic gradient, respectively.

We then take the expectation on both side of Eq. (101) over ξrk,

E[⟨θrk − θ∗k, ∇LKD,k(θ
r
k, ξ

r
k)⟩] = E

[ n∑
i=1

(θrk[i]− θ∗k[i]) · ∇LKD,k(θ
r
k, ξ

r
k)[i]

]
. (102)

Since the expectation operator E is linear, so we can rearrange the above equation as:

E[⟨θrk − θ∗k, ∇LKD,k(θ
r
k, ξ

r
k)⟩] =

n∑
i=1

(θrk[i]− θ∗k[i]) · E[∇LKD,k(θ
r
k, ξ

r
k)[i]]. (103)

Substituting Eq. (100) into the above equation, we have:

n∑
i=1

(θrk[i]− θ∗k[i]) · E[∇LKD,k(θ
r
k, ξ

r
k)[i]] =

n∑
i=1

(θrk[i]− θ∗k[i]) · ∇LKD,k(θ
r
k)[i]. (104)

Note that the summation
∑n

i=1(θ
r
k[i]− θ∗k[i]) · ∇LKD,k(θ

r
k)[i] is the definition of the inner product between θrk − θ∗k and

∇LKD,k(θ
r
k):

⟨θrk − θ∗k, ∇LKD,k(θ
r
k)⟩ =

n∑
i=1

(θrk[i]− θ∗k[i]) · ∇LKD,k(θ
r
k)[i]. (105)

Thus, Term A can be defined as:

E[⟨θrk − θ∗k, ∇LKD,k(θ
r
k, ξ

r
k)⟩] = ⟨θrk − θ∗k, ∇LKD,k(θ

r
k)⟩. (106)
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For Term B, we use the assumption 3:

E[∥∇LKD,k(θ
r
k, ξ

r
k)∥2] ≤ ∥∇LKD,k(θ

r
k)∥2+σ2. (107)

Therefore, we have:

E[∥θr+1
k − θ∗k∥2 | θrk] ≤ ∥θrk − θ∗k∥2 − 2 η ⟨θrk − θ∗k, ∇LKD,k(θ

r
k)⟩ + η2

(
∥∇LKD,k(θ

r
k)∥2+σ2

)
. (108)

Next, we need to leverage the µ-strong convexity property to establish certain key facts. Since LKD,k(.) it is µ-strong
convexity, by the definition, we have:

LKD,k(θ
′) ≥ LKD,k(θ) + ⟨∇LKD,k(θ), θ

′ − θ⟩ +
µ

2
∥θ′ − θ∥2. (109)

Eq. (109) can be rewritten as:

⟨∇LKD,k(θ
r
k)−∇LKD,k(θ

∗
k), θ

r
k − θ∗k⟩ ≥ µ ∥θrk − θ∗k∥2. (110)

The derivation of Eq. (110):

Let’s define function L(θ) is µ-strongly convex if for all θ, θ′ ∈ Rp:

L(θ′) ≥ L(θ) + ⟨∇L(θ), θ′ − θ⟩+ µ

2
∥θ′ − θ∥2. (111)

Using the strong convexity inequality at both θ and θ′, we get two inequalities:

1. At θ:
L(θ′) ≥ L(θ) + ⟨∇L(θ), θ′ − θ⟩+ µ

2
∥θ′ − θ∥2. (112)

2. At θ′:
L(θ) ≥ L(θ′) + ⟨∇L(θ′), θ − θ′⟩+ µ

2
∥θ − θ′∥2. (113)

Rearranging these two inequalities, we have:

(L(θ′)− L(θ)) ≥ ⟨∇L(θ), θ′ − θ⟩+ µ

2
∥θ′ − θ∥2, (114)

(L(θ)− L(θ′)) ≥ ⟨∇L(θ′), θ − θ′⟩+ µ

2
∥θ − θ′∥2. (115)

Adding these two inequalities together, we have:

0 ≥ ⟨∇L(θ), θ′ − θ⟩+ ⟨∇L(θ′), θ − θ′⟩+ µ∥θ − θ′∥2. (116)

Simplify:
⟨∇L(θ)−∇L(θ′), θ − θ′⟩ ≥ µ∥θ − θ′∥2. (117)

Hence, we have:
⟨∇LKD,k(θ

r
k)−∇LKD,k(θ

∗
k), θ

r
k − θ∗k⟩ ≥ µ ∥θrk − θ∗k∥2. (109)

Since at optimum θ∗k, ∇LKD,k(θ
∗
k) = 0, we have:

⟨∇LKD,k(θ
r
k), θ

r
k − θ∗k⟩ ≥ µ ∥θrk − θ∗k∥2. (118)

Therefore, we have:
− 2 η ⟨θrk − θ∗k,∇LKD,k(θ

r
k)⟩ ≤ − 2 η µ ∥θrk − θ∗k∥2. (119)

Since function LKD,k is µ-strong convexity, it also satisfies the Polyak–Łojasiewicz (PL) condition with parameter µ > 0
if for all θ ∈ Rp. Hence, we have:

1

2
∥∇LKD,k(θ)∥2≥ µ(LKD,k(θ)− LKD,k(θ

∗
k)), (120)
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The derivation of Eq. (120):

Applying the definition of µ-strong convexity with θ′ = θ∗k, we have:

LKD,k(θ
∗
k) ≥ LKD,k(θ) + ⟨∇LKD,k(θ), θ

∗
k − θ⟩+

µ

2
∥θ∗k − θ∥2. (121)

Rearranging the above equation, we have:

LKD,k(θ)− LKD,k(θ
∗
k) ≤ ⟨∇LKD,k(θ), θ − θ∗k⟩ −

µ

2
∥θ − θ∗k∥2. (122)

Using the Cauchy-Schwarz inequality, we have:

⟨∇LKD,k(θ), θ − θ∗k⟩ ≤ ∥∇LKD,k(θ)∥∥θ − θ∗k∥. (123)

Applying Young’s inequality ab ≤ a2

2µ + µb2

2 with a = ∥∇LKD,k(θ)∥ and b = ∥θ − θ∗k∥, we have:

∥∇LKD,k(θ)∥∥θ − θ∗k∥≤
1

2µ
∥∇LKD,k(θ)∥2+

µ

2
∥θ − θ∗k∥2. (124)

Substituting back, we have:

LKD,k(θ)− LKD,k(θ
∗
k) ≤

1

2µ
∥∇LKD,k(θ)∥2+

µ

2
∥θ − θ∗k∥2−

µ

2
∥θ − θ∗k∥2. (125)

Simplifying the above equation, we have:

LKD,k(θ)− LKD,k(θ
∗
k) ≤

1

2µ
∥∇LKD,k(θ)∥2. (126)

Multiplying both sides by 2µ, we have:

µ(LKD,k(θ)− LKD,k(θ
∗
k)) ≤

1

2
∥∇LKD,k(θ)∥2. (127)

Therefore, we have:
1

2
∥∇LKD,k(θ)∥2≥ µ(LKD,k(θ)− LKD,k(θ

∗
k)). (120)

Building on the results above, we proceed to bound ∥∇LKD,k(θ
r
k)∥2 using the Ls-smoothness and µ-strong convexity

properties of LKD,k(.).

From the PL condition, we have:

1

2
∥∇LKD,k(θ)∥2≥ µ (LKD,k(θ)− LKD,k(θ

∗
k)) . (128)

Rearranging the above equation, we have:

∥∇LKD,k(θ)∥2≥ 2µ (LKD,k(θ)− LKD,k(θ
∗
k)) . (119)

Since at optimum θ∗k,∇LKD,k(θ
∗
k) = 0, from Ls-smoothness, specifically the gradient norm bound, we have:

∥∇LKD,k(θ)∥≤ Ls∥θ − θ∗k∥. (129)

Squaring both sides, we have:
∥∇LKD,k(θ)∥2≤ L2

s∥θ − θ∗k∥2. (130)
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From Eq. (120) and Eq. (130), we have:

2µ (LKD,k(θ)− LKD,k(θ
∗
k)) ≤ ∥∇LKD,k(θ)∥2≤ L2

s∥θ − θ∗k∥2. (131)

Hence, we have:
2µ (LKD,k(θ)− LKD,k(θ

∗
k)) ≤ L2

s∥θ − θ∗k∥2. (132)

Dividing both sides by 2µ, we have:

LKD,k(θ)− LKD,k(θ
∗
k) ≤

L2
s

2µ
∥θ − θ∗k∥2. (133)

Hence, we have:

∥∇LKD,k(θ)∥2 ≤ 2Ls

(
LKD,k(θ)− LKD,k(θ

∗
k)
)
≤ 2Ls ·

[L2
s

2µ
∥θ − θ∗k∥2

]
=
L3
s

µ
∥θ − θ∗k∥2. (134)

For simplicity, define C =
L3
s

µ
, so

∥∇LKD,k(θ)∥2 ≤ C ∥θ − θ∗k∥2. (135)

Next, we use the above results to simplify the Eq. (108), we get:

E[∥θr+1
k − θ∗k∥2| θrk] ≤ ∥θrk − θ∗k∥2 − 2 η ⟨θrk − θ∗k, ∇LKD,k(θ

r
k)⟩︸ ︷︷ ︸

gradient alignment

+ η2
(
∥∇LKD,k(θ

r
k)∥2+σ2

)

≤ ∥θrk − θ∗k∥2 − 2 η µ ∥θrk − θ∗k∥2 + η2 C ∥θrk − θ∗k∥2 + η2 σ2

=
(
1− 2 η µ+ C η2

)
∥θrk − θ∗k∥2 + η2 σ2.

(136)

The second inequality used the fact that − 2 η ⟨θrk − θ∗k, ∇L⟩ ≤ −2 η µ ∥θrk − θ∗k∥2 (Eq. (119)) and the bound
∥∇LKD,k(θ

r
k)∥2≤ C∥θrk − θ∗k∥2 from Eq. (135).

To simplify the above equation, we define:

γ = (1− 2 η µ+ C η2), β = η2 σ2. (137)

Finally, we expand Eq. (136) to derive its global (unconditional) expectation version. Specifically, we define the global
(unconditional) expectation of the squared distance at iteration r as:

Er := E[∥θrk − θ∗k∥2], (138)

From Eq. (136), we have:
E
[
∥θr+1

k − θ∗k∥2 | θrk
]
≤ γ ∥θrk − θ∗k∥2 + β. (139)

Since, we have:E
[
E[X | Y ]

]
= E[X], by taking expectation on both sides, we have:

E
[
∥θr+1

k − θ∗k∥2
]
≤ γ E

[
∥θrk − θ∗k∥2

]
+ β, (140)

Hence, we can get:
Er+1 = E[∥θr+1

k − θ∗k∥2] ≤ γ Er + β. (141)

We now write Eq. (141) for each r = 0, 1, . . ..

In particular:

E1 ≤ γ E0 + β,

E2 ≤ γ E1 + β ≤ γ
(
γ E0 + β

)
+ β = γ2 E0 + γ β + β = γ2 E0 + (γ + 1)β,

E3 ≤ γ E2 + β ≤ γ
(
γ2 E0 + (γ + 1)β

)
+ β = γ3 E0 + (γ2 + γ)β + β = γ3 E0 + (γ2 + γ + 1)β.

(142)
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Observing the pattern, we find:

Er ≤ γr E0 + (γr−1 + γr−2 + · · ·+ γ + 1)β. (143)

Therefore, we have

Er = E[∥θrk − θ∗k∥2] ≤ γr ∥θ0k − θ∗k∥2 +

r−1∑
τ=0

γτ β (144)

This completes the proof of Theorem 2.

C. Additional Experiment Materials
C.1. Additional Experiments on the Hurricane Dataset at ψ = 0.7

To demonstrate the performance improvement achieved by satellites other than those three evaluated in the main text, we
conduct six additional experiments on the Hurricane dataset at ψ = 0.7. Table 4 reports the test accuracies (%) for these six
additional satellites. The results confirm that both FOL-A and FOL maintain consistent performance gains across a broader
range of clients.

Table 4. Test accuracies (%) for six additional clients on the Hurricane dataset with ψ = 0.7.
Dataset Hurricane

Satellite # 41 3 9 22 56 51
Methods ψ = 0.7

Local 90.45 82.35 88.63 90.67 86.01 91.18
FOL-A (E=1) 94.27 91.18 92.73 93.10 93.87 96.57
FOL-A (E=2) 95.54 94.12 93.64 93.68 95.16 97.06
FOL-A (E=3) 96.18 96.06 94.09 95.40 95.74 97.55
FOL (E=1) 93.11 85.29 90.02 91.95 89.81 93.63
FOL (E=2) 93.63 91.33 91.82 92.53 90.07 94.12
FOL (E=3) 94.27 93.04 92.27 94.25 91.92 95.59
DENSE 70.02 67.35 68.13 71.31 69.57 70.16
Co-Boosting 74.61 69.16 72.51 73.63 75.21 74.47

To demonstrate convergence of clients under our proposed FOL method, we provide the loss-vs-epoch curves for the six
additional satellites during distillation in Figure 1. All six clients exhibit a rapid initial decrease in training loss and steadily
converge to a stable low-loss plateau, confirming the robustness of the FOL distillation process across diverse satellites.
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Figure 1. Training loss convergence over 83 epochs for six additional Hurricane clients at ψ = 0.7.
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C.2. Additional Hyperparameter Settings

In our experiments on CIFAR-10, CIFAR-100, SVHN, and the satellite datasets (Wildfire and Hurricane), we set λp =
0.1, γshared = 0.05, γunshared = 0.02 in Equation (5), and we set the distillation regularization weight in Equation (12) to
0.01. These values were selected via cross-validation and were found to consistently yield robust performance, effectively
balancing alignment, diversity retention, and model personalization.

C.3. Summary of Datasets

Note that, by default, some datasets provide separate training, validation, and testing subsets. To streamline the presentation
and ensure consistency, we merged the validation samples into the testing dataset in the table below.

Table 5. Summary of datasets used in the experiments.
Name #Training Samples #Testing Samples #Classes Image Size

Wildfire 30,250 12,600 2 350×350×3
Hurricane 10,000 4,000 2 128×128×3
CIFAR-10 50,000 10,000 10 32×32×3
CIFAR-100 50,000 10,000 100 32×32×3
SVHN 73,257 26,032 10 32×32×3

C.4. Performance of DENSE and Co-Boosting on the Wildfire and Hurricane Datasets

The original authors of DENSE and Co-Boosting have extensively evaluated their methods on various image classification
benchmark datasets, consistently demonstrating that these methods achieve optimal performance when n = 5. In this study,
we adopt their methods, evaluation metrics (testing the model on the entire testing dataset), and default configurations to
further assess their performance. Specifically, we evaluate whether these methods retain their optimal performance on
real-world satellite image datasets when n = 5. To simulate non-IID data distributions, the datasets were divided among 5
and 10 clients using a Dirichlet distribution with parameter ψ = 0.7 for the binary classification tasks Wildfire and Hurricane.
For each configuration, results are reported as the average of 5 runs with different random seeds.

Table 6. Test Accuracy (%) of the Final Server Model on the Wildfire and Hurricane Datasets.

Dataset Wildfire Hurricane

Method n = 5, ψ = 0.7 n = 10, ψ = 0.7 n = 5, ψ = 0.7 n = 10, ψ = 0.7

DENSE 89.87 ± 1.32 83.38 ± 1.57 69.35 ± 1.69 63.95 ± 1.55
Co-Boosting 92.35 ± 0.86 85.46 ± 1.12 75.45 ± 1.27 68.05 ± 1.42

C.5. Neural Network Structures for Each Dataset
Table 7. Cifar-10 Network Structure (Model Architecture for Each Base Model).

Layer (type) Input Shape Output Shape Param #

Conv2d [1, 3, 224, 224] [1, 128, 222, 222] 3,584
MaxPool2d [1, 128, 222, 222] [1, 128, 111, 111] 0
Conv2d [1, 128, 111, 111] [1, 128, 109, 109] 147,584
MaxPool2d [1, 128, 109, 109] [1, 128, 54, 54] 0
Conv2d [1, 128, 54, 54] [1, 128, 52, 52] 147,584
Linear [169, 2048] [169, 10] 20,490

Table 8. Network structure for Hurricane and CIFAR-100 Datasets.

Dataset Structure Usage

CIFAR-100 ResNet18 (Non-pretrained) Model architecture for each base model
Hurricane ResNet18 (Non-pretrained) Model architecture for each base model
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Table 9. Wildfire network structure (Model Architecture for Each Base Model).

Layer (type) Input Shape Output Shape Param #

Conv2d [1, 3, 224, 224] [1, 64, 224, 224] 1,792
BatchNorm2d [1, 64, 224, 224] [1, 64, 224, 224] 128
ReLU [1, 64, 224, 224] [1, 64, 224, 224] 0
MaxPool2d [1, 64, 224, 224] [1, 64, 112, 112] 0
Conv2d [1, 64, 112, 112] [1, 128, 112, 112] 73,856
BatchNorm2d [1, 128, 112, 112] [1, 128, 112, 112] 256
ReLU [1, 128, 112, 112] [1, 128, 112, 112] 0
MaxPool2d [1, 128, 112, 112] [1, 128, 56, 56] 0
Conv2d [1, 128, 56, 56] [1, 256, 56, 56] 295,168
BatchNorm2d [1, 256, 56, 56] [1, 256, 56, 56] 512
ReLU [1, 256, 56, 56] [1, 256, 56, 56] 0
MaxPool2d [1, 256, 56, 56] [1, 256, 28, 28] 0
Conv2d [1, 256, 28, 28] [1, 512, 28, 28] 1,180,160
BatchNorm2d [1, 512, 28, 28] [1, 512, 28, 28] 1,024
ReLU [1, 512, 28, 28] [1, 512, 28, 28] 0
MaxPool2d [1, 512, 28, 28] [1, 512, 14, 14] 0
AdaptiveAvgPool2d [1, 512, 14, 14] [1, 512, 1, 1] 0
Flatten [1, 512, 1, 1] [1, 512] 0
Linear [1, 512] [1, 2] 1,026

C.6. Selected Satellites and Dataset Sizes

The table below summarizes the selected satellites and their corresponding dataset sizes, including the number of training,
validation, and testing samples used for evaluation under ψ = 0.7. For the Wildfire dataset, satellites #13, #28, and #48
were chosen, with training dataset sizes ranging from 693 to 2,627 samples. Similarly, for the Hurricane dataset, satellites
#35, #32, and #44 were selected, with training dataset sizes ranging from 732 to 1,507 samples.

Table 10. Selected Satellites and Dataset Sizes for Evaluation.
ψ = 0.7

Dataset Name Satellite # #Training #Validation #Testing

Wildfire
13 1,488 319 320
28 2,627 563 564
48 693 148 149

Hurricane
35 1,507 323 323
32 732 157 158
44 778 167 167
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