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Abstract

Large language models (LLMs) exhibit en-001
hanced reasoning at larger scales, driving ef-002
forts to distill these capabilities into smaller003
models via teacher-student learning. Previ-004
ous works simply fine-tune student models on005
teachers’ generated Chain-of-Thoughts (CoTs)006
data. Although these methods enhance in-007
domain (IND) reasoning performance, they008
struggle to generalize to out-of-domain (OOD)009
tasks. We believe that the widespread spu-010
rious correlations between questions and an-011
swers may lead the model to preset a specific012
answer which restricts the diversity and gen-013
eralizability of its reasoning process. In this014
paper, we propose Cascading Decomposed015
CoTs Distillation (CasCoD) to address these is-016
sues by decomposing the traditional single-step017
learning process into two cascaded learning018
steps. Specifically, by restructuring the train-019
ing objectives—removing the answer from out-020
puts and concatenating the question with the ra-021
tionale as input—CasCoD’s two-step learning022
process ensures that students focus on learning023
rationales without interference from the pre-024
set answers, thus improving reasoning general-025
izability. Extensive experiments demonstrate026
the effectiveness of CasCoD on both IND and027
OOD benchmark reasoning datasets1.028

1 Introduction029

Recent developments in LLMs have brought re-030

markable improvements in reasoning tasks via CoT031

prompting (Wei et al., 2022b). However, these032

great reasoning capabilities are often associated033

with more parameters (Wei et al., 2022a), which is034

not practical to emergent in smaller language mod-035

els (SLMs). Existing works (Magister et al., 2023;036

Ho et al., 2023; Fu et al., 2023; Zhou and Ai, 2024)037

try to make the reasoning capabilities isolated and038

distilled to student SLMs by simply fine-tuning039

1Code can be found at https://anonymous.4open.
science/r/ef334sf-FB92

(a) Answer SFT consistently outperform Std-CoT on OOD tasks.

(b) A case of spurious correla on between ques ons and answers.

Question: Why did someone bring a swimsuit to a ski resort?

Options:

(A) To swim in a heated pool.

(B) To wear as an underlayer for warmth.

(C) To use as a fashion statement.

(D) To participate in a polar bear plunge event.

Answer: (A) To swim in a heated pool.

OODIND

Figure 1: (a) Empirical results of standard CoT dis-
tillation (Std-CoT) and directly fine-tuning on answer
labels without CoTs (Answer SFT) on one in-domain
(BBH-test) and the other four out-of-domain benchmark
reasoning datasets. (b) In the given example, the se-
mantic similarity between "swimsuit" in the question
and "swim" in the answer demonstrates a high level
of match, which could allow the model to predict the
answer using simple keyword matching or certain rules.

on teacher LLMs generated CoTs data, known as 040

standard CoTs distillation (Std-CoT). Although the 041

method effectively leverages the LLMs’ CoTs to 042

boost the reasoning performance of student models 043

on seen tasks, it does not ensure effective reasoning 044

in OOD settings, leading to weak generalization 045

on unseen tasks. Our pioneer study demonstrates 046

that, as shown in Figure 1 (a), when using the same 047

IND training dataset, student models developed via 048

the method Std-CoT perform better on IND tasks 049

but significantly worse on OOD tasks compared 050
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to models fine-tuned directly with question-answer051

pairs. The surprising findings indicate that students’052

CoTs do not effectively transfer to new domains053

and these SLMs seem to be more adept at learning054

to predict answers directly from questions.055

We attribute these issues to the spurious correla-056

tions between questions and answers that are com-057

monly found in implicit reasoning tasks (Gururan-058

gan et al., 2018; Zellers et al., 2019; Blodgett et al.,059

2020), as illustrated in Figure 1 (b). The Std-CoT060

approach requires models to learn both the rationale061

and the answer in a single step, where the learned062

spurious correlations in training stage can adversely063

affect the quality of rationale generation during in-064

ference. That is to say, upon reading a question,065

student models may fastly, unconsciously, and auto-066

matically formulate a "preset answer" (Hagendorff067

et al., 2022), which in turn may lead them to im-068

plicitly reduce the token generation space when069

producing CoT. This results in diminished diversity070

and generalizability of their rationales.071

In this paper, we propose Cascading decom-072

posed CoTs Distillation (CasCoD), a straightfor-073

ward yet effective method to address these issues.074

Specifically, we decompose the traditional single-075

step learning process of Std-CoT into two cascaded076

learning steps: a rationale learning step and an an-077

swer learning step. In the rationale learning step,078

the training objective, with the answer removed, is079

defined as 2: q → r. In the answer learning step,080

we concatenate the question with the target output081

from the rationale learning step and use this com-082

bined input for the answer learning step, setting083

the training objective as q, r → a. This cascad-084

ing two-step learning configuration mitigates the085

capture of spurious correlations between questions086

and answers during the training phase, ensuring087

that students focus on learning rationales without088

interference from the preset answers. Furthermore,089

the inference phase execution pipeline is aligned090

with the training phase; the model first generates091

a rationale when given a question, and then, based092

on the question-rationale pair, predicts the final an-093

swer, further alleviating potential reasoning biases094

caused by spurious correlations.095

Extensive experiments demonstrate that CasCoD096

outperforms the baselines on both IND and OOD097

benchmark reasoning datasets (§4.3). Besides, we098

validate the generalizability of CasCoD across dif-099

ferent models, model sizes, and training data sizes100

2q: the question, r: the rationale, a: the answers.

(§4.4). Further analyses validate our hypothesis 101

(§5.1) and confirm the significant impact of the 102

two-step cascading learning process (§5.2) and the 103

robustness of CasCoD (§5.3). The experiments 104

on reasoning faithfulness (§5.4) and case studies 105

(§5.5) indicate that models distilled by CasCoD can 106

reason more consistently and demonstrate better 107

generalization than baselines, effectively address- 108

ing interference from question-answer spurious cor- 109

relations. Our contributions are as follows: 110

• We find that standard CoT distillation methods 111

exhibit limited generalizability on OOD tasks, 112

almost performing worse than methods fine- 113

tuned directly with question-answer pairs. 114

• We decompose the traditional single-step 115

learning process into two cascading learning 116

steps to alleviate the impact of spurious corre- 117

lations between questions and answers. 118

• Extensive experiments confirm the effective- 119

ness of our method across both IND and OOD 120

datasets, showing that CasCoD can generate 121

more generalizable CoTs. 122

2 Related Works 123

CoT Capability of Language Models. LLMs 124

have demonstrated a wide array of capabilities in 125

numerous natural language processing tasks, under- 126

scored by various studies (Chowdhery et al., 2023; 127

Wei et al., 2022a). One notable manifestation of 128

this is the CoT prompting technique (Wei et al., 129

2022b), which facilitates models in articulating a 130

series of deductive reasoning steps. This method 131

has substantially enhanced LLMs’ problem-solving 132

abilities, as evidenced in several works (Kojima 133

et al., 2022a; Wang et al., 2023b; Huang et al., 134

2023). Despite these advancements, the effec- 135

tiveness of CoT prompting notably diminishes in 136

smaller models (Wei et al., 2022a). Research by 137

Chung et al. (2022) indicates that with targeted 138

training on CoT data via instruction tuning, SLMs 139

can unlock CoT capabilities. In our study, we show 140

that SLMs’ CoT performance can be further en- 141

hanced by decomposing the standard CoT distilla- 142

tion process into two cascaded learning steps. 143

Distilling Knowledge from LLMs. Numerous 144

studies (Taori et al., 2023; Chiang et al., 2023; 145

Peng et al., 2023) have explored the knowledge 146

distillation from advanced LLMs like ChatGPT 147

(OpenAI, 2023). These efforts typically focus on 148
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Figure 2: Overview of our proposed method Cascading Decomposed CoTs Distillation (CasCoD). Different from
the standard CoTs distillation, we decompose the single CoT learning step into two comprehensive learning steps
including the rationale learning step and the answer learning step, and then learn them in a cascaded way.

distilling a broad range of abilities via instruction149

tuning on extensive and varied datasets (Xu et al.,150

2023; Wu et al., 2023; Jiang et al., 2023b; Li et al.,151

2024). However, our work is aimed at distilling152

the CoT reasoning capabilities from LLMs, in line153

with Magister et al. (2023); Ho et al. (2023), who154

propose standard CoTs distillation by directly fine-155

tuning SLMs on teacher LLMs’ CoTs. Fu et al.156

(2023) expands on this by using various reason-157

ing data formats for specializing domain-specific158

SLMs. Wang et al. (2023c) distill SLMs via learn-159

ing from self-reflection and feedback in an inter-160

active, multi-round paradigm with teacher LLMs.161

Hsieh et al. (2023) propose to learn the rationale162

and answers as separate goals for optimizing. Li163

et al. (2022) propose learning the entire CoTs and164

the single answers to enhance the reasoning of stu-165

dents. Based on these, Liu et al. (2023) introduce166

an additional distillation objective, self-evaluation,167

aiming for SLMs to assess the accuracy of their168

CoTs akin to LLMs’ evaluative processes. And169

Chen et al. (2024) maximize the mutual informa-170

tion between objectives. Ranaldi and Freitas (2024)171

use in-family and out-family teachers to gener-172

ate more CoTs for fine-tuning students. However,173

these methods are affected by the spurious correla-174

tions due to their isolated optimization objectives.175

In contrast, we reorganize the training objectives176

to effectively mitigate this issue.177

3 Methodology 178

In this section, we introduce our new distillation 179

method that decomposes the single-step leanring 180

process of standard CoTs distillation into two cas- 181

caded learning steps, as illustrated in Figure 2. 182

Formally, the standard CoTs distillation objective 183

q → CoT is split into two learning processes, ra- 184

tionale step learning with the objective q → r and 185

answer step learning with the objective q, r → a. 186

Below we first describe how to extract CoTs from 187

teacher LLMs in §3.1. Then we describe the stan- 188

dard CoTs distillation method and discuss its lim- 189

itations in §3.2. Finally, we provide a detailed 190

presentation of our method in §3.3. 191

3.1 Extract CoTs From Teacher LLMs 192

The initial phase of the distillation is to extract 193

CoTs from teacher LLMs for each question-answer 194

pair {q, a} in a raw dataset. This involves em- 195

ploying the CoT prompting technique (Wei et al., 196

2022b), which guides the teacher LLMs to generate 197

CoTs that follow a prescribed format with multiple 198

reasoning steps. The prompt template is shown in 199

Appendix C.1. Note that CoTs produced by LLMs 200

may not always be correct. To maintain CoTs qual- 201

ity, following the previous work (Magister et al., 202

2023; Hsieh et al., 2023), we retain only those that 203

match the ground truth answer in the dataset, build- 204
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ing a CoT dataset D = {q, CoT} for training the205

student model. Additionally, to facilitate the intro-206

duction of CasCoD, we explicitly split the extracted207

CoTs into two parts based on predefined rules in208

CoT prompting, formalizing this as CoT = r ⊕ a.209

For instance, we use the phrase "Therefore, the210

answer is" to divide the CoT, categorizing the text211

before this delimiter as the rationale r and the text212

after it as the answer a.213

3.2 Preliminaries for CoTs Distillation214

Previous standard CoTs distillation (Magister et al.,215

2023; Ho et al., 2023), referred to as single-step216

learning, is to teach SLMs to generate the CoT in217

one time as follows:218

LStd-CoT = Eq,CoT∼D [ℓ (q, CoT )] (1)219

where ℓ signifies the negative log-likelihood loss220

function, expressed as:221

ℓ (x, y) = −
∑
yt∈y

logP (yt | x, y<t) (2)222

However, this method requires the model to si-223

multaneously learn both rationales and answers224

in a single step, readily leading to the cap-225

ture of question-answer spurious correlations in226

widespread implicit reasoning datasets (Blodgett227

et al., 2020). These correlations degrade the quality228

of CoT generation during inference, resulting in229

weak reasoning generalization. In other words, this230

implicit learning of correlations might lead student231

models to preset answers after reading the ques-232

tions, potentially causing a state reduction in the233

token generation space when producing CoTs.234

3.3 Cascading Decomposed CoTs Distillation235

Different from the training strategy in standard236

CoTs distillation, our method decomposes its237

single-step learning process into two cascaded238

learning steps, one for the rationale learning step239

and the other for the answer learning step.240

For the rationale learning step, each question241

is combined with a rationale learning delimiter242

"Rationale:" as the input q, with the rationale r243

produced by the teacher serving as the label for244

distilling the rationale. With the answer objective245

removed, this training strategy allows models to246

engage in learning rationales without the interfer-247

ence of spurious correlations. The loss function of248

rationale step learning is as follows:249

Lrationale = Eq,r,a∼D [ℓ (q, r)] (3)250

For the answer learning step, we concatenate 251

both the input and output of the rationale learning 252

step with an answer learning delimiter "Therefore, 253

the answer is" as the input, and the answer a serves 254

as the label for distilling the answer. This strategy 255

helps students learn to reason consistently from the 256

question-rationale pair rather than merely preset- 257

ting spurious answers based solely on the question. 258

The loss function of answer learning step is thus: 259

Lanswer = Eq,r,a∼D [ℓ (q ⊕ r, a)] (4) 260

Due to the inherent tight connection between 261

rationale learning and answer learning, for each 262

instance in the dataset, we optimize both learning 263

objectives simultaneously for the CoTs distillation: 264

LCasCoD = (1− α)Lrationale + αLanswer (5) 265

where α is a hyperparameter used to weight the 266

loss in the two learning steps. 267

During inference, student models follow the 268

same pipeline as in training: first, generate a ra- 269

tionale based on the question, and then predict the 270

final answer using the question-rationale pair. The 271

cascading training objectives reduce the probabil- 272

ity of student models capturing spurious correla- 273

tions between questions and answers in the train- 274

ing phase, thereby alleviating potential reasoning 275

biases caused by spurious correlations in the infer- 276

ence stage, thus enhancing CoTs generalizability. 277

4 Experiments 278

In this section, we conduct extensive experiments 279

and analysis to evaluate the effectiveness of our 280

method across both IND and OOD datasets. 281

4.1 Datasets 282

In-domain Dataset: BIG-Bench Hard (BBH) 283

(Suzgun et al., 2023) comprises 27 challenging 284

tasks covering arithmetic, symbolic reasoning et 285

al. from BIG-Bench (BB) (Guo et al., 2023). The 286

majority of the data involve multiple-choice ques- 287

tions, with a few being open-ended. To underscore 288

the superiority of our approach, we chose to per- 289

form distillation on this most challenging dataset. 290

We randomly divide the BBH dataset into a train- 291

ing set (BBH-train) for distillation and a test set 292

(BBH-test) for IND evaluation, in a 4:1 ratio. 293

Out-of-domain Datasets: (1) BIG-Bench Sub 294

(BB-sub). BB is a popular benchmark consisting of 295

203 tasks covering a wide range of topics, including 296
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mathematics, common-sense reasoning, and vari-297

ous other domains. For ease of evaluation, we filter298

the subtasks within BB based on subtask keywords,299

focusing on tasks related to "multiple-choice" and300

"reasoning", and ensure that tasks from BBH were301

excluded, resulting in 61 subtasks. Then we ran-302

domly sample up to 100 instances for each subtask,303

resulting in BB-sub. (2) AGIEval (Zhong et al.,304

2023) is a renowned human-centric benchmark305

used to assess LMs’ reasoning abilities, whose306

tasks span various domains, including college en-307

trance exams (English / Math / Law), logic tests et308

al. We evaluate our method on the subtasks that are309

related to multiple-choice questions in the English310

language. (3) AI2 Reasoning Challenge (ARC)311

(Clark et al., 2018) consists of ARC-Easy (ARC-E)312

and ARC-Challenge (ARC-C). The distinction lies313

in ARC-E consisting of relatively simpler questions314

from middle and high school science exams, while315

ARC-C comprises more complex and challenging316

questions. We utilize the testing set of the ARC317

dataset for evaluation. The statistics of all above318

datasets can be found in Appendix B.1.319

4.2 Models & Baselines & Setup320

Models. We employ the popular open-source321

language model LLaMA2-7B (Touvron et al.,322

2023) as the student SLM in the main experi-323

ment and also explore different student models324

in §4.4. Considering the pricing and capabili-325

ties, we utilize OpenAI’s powerful black-box LLM,326

gpt-3.5-turbo-0613, as teacher LLMs to extract327

CoTs with the same manual prompt used in the328

previous work (Suzgun et al., 2023).329

Baselines. We compare our method with the fol-330

lowing baselines: (1) Teacher & Vanilla Student331

under various settings, e.g., Zero-shot (+CoT) or332

Few-shot (+CoT), for showing the impact of dis-333

tilling reasoning ability from LLMs. (2) Std-CoT334

(Magister et al., 2023; Ho et al., 2023), which is the335

standard CoTs distillation method that directly fine-336

tune student models on the CoTs data. (3) Step-by-337

step (Hsieh et al., 2023) is a multi-task CoTs distil-338

lation method that distills rationales and answers339

separately. (4) MT-CoT (Li et al., 2022) is also340

a multi-task CoTs distillation method, but unlike341

Step-by-step, it simultaneously optimizes the objec-342

tives of answer prediction and entire CoTs learning.343

(5) SCOTT (Wang et al., 2023a) that enhances344

the reasoning consistency of the student model by345

introducing additional counterfactual data.346

Setup. We employ LoRA (Hu et al., 2022) for 347

parameter-efficient fine-tuning of the student SLMs. 348

In §5.3, our empirical results indicate that the op- 349

timal weight is set α at 0.3. However, to mitigate 350

the effects of unbalanced weighting, we include an 351

additional method setup for comparison against the 352

baselines in Table 1, labeled CasCoD (α = 0.5). All 353

experiments are conducted using a mixed-precision 354

training strategy on 4 × A100 GPUs. For the infer- 355

ence stage, vLLM3(Kwon et al., 2023) is utilized to 356

accelerate inference, employing a greedy decoding 357

strategy to generate text on one single A100 GPU. 358

More details on training and hyperparameters can 359

be found in Appendix B.2. 360

4.3 Main Results 361

Table 1 presents the automatic evaluation results of 362

our proposed CasCoD and baselines. 363

CoTs distillation enhances the reasoning perfor- 364

mance of students. Comparing with the Zero-shot- 365

CoT and Few-shot-CoT settings of student models, 366

the performance of those with distillation is sig- 367

nificantly improved by learning CoTs. Except for 368

BB-sub, the student model has 3-4 times improve- 369

ment compared to vanilla ones across all datasets. 370

CasCoD overcomes limitations of distillation 371

baselines in OOD performance. From the Ta- 372

ble 1, we can find that Answer-SFT on the OOD 373

datasets outperforms all the distillation baselines by 374

an average of 5%, which indicates that it seems stu- 375

dent models’ performance decreases when learning 376

the CoTs. This pattern is also noticeable in mod- 377

els without distillation, as evidenced by the com- 378

parison between Zero-shot and Zero-shot-CoT (or 379

Few-shot and Few-shot-CoT) settings. We attribute 380

this to spurious correlations between questions and 381

answers as introduced in Figure 1 (b), which stu- 382

dents can easily learn. The distillation baselines 383

that require students to consider predicting answers 384

while generating the rationale, inadvertently make 385

the simpler task of answer prediction interfere with 386

the rationale learning, thus reducing the general- 387

ization of CoTs. In contrast, CasCoD* not only 388

surpasses Answer-SFT by 7.9% in IND datasets 389

but also achieves comparable results in OOD sce- 390

narios. This underscores the effectiveness of our 391

cascade two step learning strategy, which restruc- 392

tures training objectives to mitigate the impact of 393

spurious correlations, in enhancing reasoning capa- 394

bilities across diverse datasets. 395

3https://github.com/vllm-project/vllm
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Method Distill? Gen CoT? BBH-test BB-sub AGIEval ARC-E ARC-C AVG
In-domain? ✓ ✕ ✕ ✕ ✕

Teacher: ChatGPT (gpt-3.5-turbo)

Zero-shot-CoT ✕ ✓ 42.7 44.1 49.5 91.9 81.1 61.9
Few-shot-CoT ✕ ✓ 73.1 - - - - -

Student: LLaMA2-7B

Zero-shot ✕ ✕ 14.8 15.5 6.9 18.2 13.9 13.9
Zero-shot-CoT ✕ ✓ 10.6 7.7 7.1 18.4 14.8 11.7
Few-shot ✕ ✕ 15.1 28.5 25.5 25.5 25.4 24.0
Few-shot-CoT ✕ ✓ 16.3 25.3 9.9 17.2 17.2 17.2
Answer-SFT ✕ ✕ 51.5 33.2 31.2 71.6 53.7 48.2

Std-CoT (Magister et al., 2023) ✓ ✓ 54.2 28.7 21.6 59.6 45.1 41.8
SCOTT (Wang et al., 2023a) ✓ ✓ 42.4 18.8 13.0 45.7 34.1 30.8
MT-CoT (Li et al., 2022) ✓ ✓ 56.8 30.3 22.0 49.4 38.2 39.3
Step-by-step (Hsieh et al., 2023) ✓ ✓ 42.4 27.7 28.8 68.5 48.6 43.2
CasCoD (ours, α = 0.5) ✓ ✓ 52.5 36.4 28.1 71.8 54.7 48.7
CasCoD* (ours, α = 0.3) ✓ ✓ 59.4 37.0 28.3 70.6 52.7 49.6

Table 1: Accuracy (%) on in-domain and out-of-domain datasets with different methods. We employ "Let’s think
step by step" (Kojima et al., 2022b) for Zero-shot-CoT settings and the manually curated prompt (Suzgun et al.,
2023) for Few-shot-CoT settings. The best performance among distilled student models is marked in bold, and the
second-best performance is indicated by an underline.

CasCoD significantly outperforms the distilla-396

tion baselines across IND and OOD datasets.397

From Table 1, it can be observed that CasCoD sig-398

nificantly outperforms baselines on both IND and399

OOD datasets in most cases, regardless of whether400

the loss is weighted. Specifically, CasCoD* secures401

an average in-domain improvement of 5.2% and402

an out-of-domain enhancement of 8.4% over the403

Std-CoT, along with an overall 6.4% improvement404

compared to the multi-task learning (Step-by-step)405

approach. Impressively, CasCoD* achieves 80.1%406

of the teacher LLM’s performance in Zero-shot-407

CoT settings. These results underscore the efficacy408

of CasCoD, significantly boosting the generative409

capabilities of CoTs on unseen tasks.410

4.4 Ablation Study on Model & Data Sizes411

CasCoD is universally applicable to models of412

varying sizes. We perform model distillation on413

TinyLLaMA-1.1B4 (Zhang et al., 2024), LLaMA2-414

7B, and LLaMA2-13B, respectively and compare415

with standard CoTs distillation (Std-CoT) and416

multi-task distillation (MT-CoT & Step-by-step).417

In Figure 3 and 7, we can find that CasCoD consis-418

tently outperforms the baselines on both IND and419

OOD datasets across various sizes of student mod-420

els. Notably, the performance improvement of our421

method is the most obvious in the BB-sub, where422

4https://huggingface.co/TinyLlama/TinyLlama-1.
1B-intermediate-step-1431k-3T

the performance of the 13B student model reaches 423

92.7% of the teacher LLM’s performance. Further- 424

more, as model sizes increase, the performance 425

gap between CasCoD and the baselines widens on 426

OOD datasets, highlighting CasCoD’s superior ef- 427

ficiency in distilling CoTs for larger models. 428

CasCoD is universally applicable to models of 429

different architectures. We perform model distil- 430

lation on CodeLLaMA-7B (Touvron et al., 2023), 431

LLaMA3-8B (AI@Meta, 2024) and Mistral-7B- 432

v0.2 (Jiang et al., 2023a), respectively, and com- 433

pare with Std-CoT and Step-by-step. From the 434

Table 3, we can see that regardless of whether it’s 435

CodeLLaMA, LLaMA3, or Mistral, CasCoD sig- 436

nificantly outperforms the baselines on OOD tasks, 437

demonstrating its high effectiveness and scalability. 438

Particularly, on the powerful base model Mistral, 439

the superiority of our method is further amplified. 440

CasCoD significantly outperforms standard 441

CoTs distillation on OOD with much less train- 442

ing data. In Figure 6, CasCoD achieves a 6.3% 443

improvement over Std-CoT on the BB-sub dataset, 444

using only 25% of the full BBH-train data. In 445

the case of other OOD datasets, CasCoD requires 446

merely 12.5% of the full training data to surpass 447

the Std-CoT trained with the full dataset by 5% to 448

7% in performance. These results demonstrate the 449

efficiency of CasCoD, capable of enhancing CoTs 450

generalization with a smaller amount of CoTs data. 451
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Figure 3: Ablation study on model size for four OOD datasets. The dotted line indicates the performance of the
teacher LLM under the Zero-shot-CoT setting. The results in IND dataset can be found in Appendix A.2.1.

5 Analysis452

5.1 Hypothesis Validation453

In this subsection, we aim to validate our hypothe-454

sis that student learning of spurious correlations455

affects the quality of their generated rationales.456

Due to the nature of causal language models—457

autoregression, we incorporate "The answer is"458

into input prompts to directly prompt models to459

provide the answer immediately (which we treat as460

the "preset answer" referred to §1) after reading the461

question, rather than generating rationales before462

providing an answer. We define the following met-463

rics to assist the validation: (1) A: The proportion464

of incorrect CoT reasoning when the preset answer465

is wrong. A higher ratio indicates a greater negative466

impact of the preset answer on CoT reasoning; (2)467

B: The proportion of correct CoT reasoning when468

the preset answer is correct. A higher ratio indi-469

cates a greater positive impact of the preset answer;470

(3) C = A−B (combine A and B). We com-471

pare CasCoD with Std-CoT using these metrics on472

four OOD tasks. The results are shown in Table 2.473

We observe that Std-CoT significantly outperforms474

CasCoD in metrics ’A’ and ’C’, while significantly475

underperforms CasCoD in metric ’B’ on all four476

OOD tasks. This indicates that our method can477

selectively utilize spurious correlations to some ex-478

tent, suppressing the negative effects of incorrect479

preset answers on reasoning and reinforcing the480

positive effects of correct preset answers on reason-481

ing, thereby enhancing performance on OOD tasks,482

which experimentally validate our hypothesis.483

5.2 Two-Step vs. Single-Step Implementation484

In this subsection, we explore whether CasCoD’s485

two-step training objectives can be achieved in a486

single-step computation. Upon analysis of the two487

Method & Metric BB-sub AGIEval ARC-E ARC-C

Std-CoT (A) ↓ 79.7 82.2 63.7 50.8
Std-CoT (B) ↑ 47.5 30.6 58.1 69.7
Std-CoT (C) ↓ 32.2 51.6 5.6 -18.9
CasCoD (A) ↓ 73.3 77.9 61.8 50.9
CasCoD (B) ↑ 57.4 36.7 71.4 83.9
CasCoD (C) ↓ 15.9 41.2 -9.6 -33.0

Table 2: Hypothesis validation results (%) on four OOD
tasks. The hypothesis is better supported when ’A’ is
lower, ’B’ is higher, and ’C’ is lower.

cascaded learning steps, we find that under teacher- 488

forcing (Goodfellow et al., 2016), CasCoD closely 489

mirrors Std-CoT, with key distinctions including 490

adjustable token-level weights and the omission 491

of delimiters in loss calculations. Each sample in 492

CasCoD’s original framework undergoes two for- 493

ward calculation, raising the question of whether a 494

similar outcome is possible with only one. To inves- 495

tigate this, we introduce a variant, CasCoD-single, 496

which is designed to fulfill the two-step training 497

objectives through a single forward computation. 498

Figure 4 indicates that the two-step CasCoD con- 499

sistently surpasses the single-step variant across all 500

BBH-test BB-sub AGIEval ARC-E ARC-C0

20

40

60

80

Ac
cu

ra
cy

 (%
)

CasCoD-single CasCoD

Figure 4: Comparison between two-step and single-step
training implementations of CasCoD.
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Figure 5: Ablation study on task weights α. The results are reported by IND-AVG and OOD-AVG that respectively
denote averge accuracy on IND and OOD datasets. The best performance among weights are marked with "✩".

datasets. This underscores that a single forward cal-501

culation does not suffice to meet CasCoD’s training502

objectives, emphasizing the critical importance of503

the cascading two-step learning process.504

5.3 Impact of Weights505

In this subsection, we explore how variations in506

weights affect the performance of models with507

different parameter sizes on both IND and OOD508

datasets, as shown in Figure 5.509

Students’ performance is not sensitive to weights510

on OOD datasets. From the figure, we observe511

that regardless of weight changes, CasCoD consis-512

tently outperforms Std-CoT in OOD by average,513

even at α = 0.9 (meaning the model allocated only514

10% of its attention to rationales generation). This515

demonstrates that CasCoD exhibits robust general-516

ization in OOD and also underscores the effective-517

ness of decomposing CoTs for distillation.518

CasCoD is more robust for smaller student mod-519

els. We observe that the 1.1B model shows less520

variation in performance compared to the 7B and521

13B models in IND. Notably, the performance of522

the 13B model drops sharply as α changes from 0.5523

to 0.9, indicating that larger models are more sus-524

ceptible to weight adjustments in the IND dataset.525

Prioritizing the rationale over the answer yields526

better results. It is evident that across different527

model sizes, the optimal weights on both IND and528

OOD datasets range approximately from 0.01 to529

0.3, indicating that focusing on the rationale help530

improve the generalizability of CoTs.531

5.4 Faithfulness of Students532

To ensure that the rationale provided by students533

supports their predicted answers, another metric534

for evaluating CoTs distillation is the faithfulness 535

of students. Following the previous work (Wang 536

et al., 2023a), we use the LAS metric (Hase et al., 537

2020), whose core idea is to measure the extent 538

that the rationales r′ aid a simulator in predicting 539

the answers a′, defined as: 540

LAS = Acc
(
q, r′ → a′

)
−Acc

(
q → a′

)
(6) 541

where we employ ChatGPT and GPT4 as the simu- 542

lator, respectively. The results are shown in Table 4. 543

CasCoD is observed to generate rationales that are 544

more consistent with answers than baselines. This 545

suggests that despite CasCoD’s multi-step learn- 546

ing process, the introduction of cascading learning 547

ensures that students can faithfully reason. 548

5.5 Case Study 549

Due to page limitations, we provide a systematic 550

case study in Appendix D to illustrate our hypothe- 551

sis and the improvement in CoT generalizability. 552

6 Conclusion 553

We propose a simple yet effective CoTs distillation 554

method CasCoD to address the issue of question- 555

answer spurious correlations that previous CoTs 556

distillation methods suffer from. Specifically, we 557

decompose the traditional single-step learning pro- 558

cess into two cascaded learning steps and restruc- 559

ture their training objectives. Extensive experi- 560

ments show that CasCoD significantly outperforms 561

the baselines across both IND and OOD datasets. 562

Further analysis reveals that CasCoD is robust to 563

model size, training data size, different models, and 564

weights and can lead to faithful student models. 565
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Limitations566

In our study, we explore distilling CoTs into two567

cascading steps, which is an initial step toward un-568

derstanding finer decompositions. Research (Scha-569

effer et al., 2023a) suggests that the emergent abili-570

ties of LLMs result from managing multiple sub-571

tasks simultaneously, hinting at the potential for572

more intricate cascading steps in CoTs. Our current573

work does not yet define the precise rules for such574

more steps decomposition, nor the optimal timing575

and methods for focusing learning on specific steps.576

We hope our work can inspire the community and577

leave these aspects for future exploration, intended578

to refine and extend the CoT reasoning capabilities579

of SLMs as suggested by our findings.580

Ethics Statement581

Our work utilizes CoT data extracted from Chat-582

GPT for distillation, which may result in inheriting583

the social biases (Schaeffer et al., 2023b) and hal-584

lucination (Zhang et al., 2023) present in LLMs.585

However, we are optimistic that future advance-586

ments in resolving these issues in LLMs will nat-587

urally lead to the development of student models588

with reduced toxicity.589
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A Additional Experimental Results 850

A.1 Detailed Results on Mathematical 851

Reasoning Tasks 852

Given the community’s focus on mathematical rea- 853

soning, we present detailed experimental results for 854

math-related subtasks from our evaluation datasets 855

in Table 5. It should be noted that the subtasks 856

in the datasets we utilized involve mathematical 857

reasoning tasks. We list as follows: 858

1. BB-sub: includes subtasks like ’elemen- 859

tary_math_qa’ and ’identify_math_theorems’, 860

as detailed in Table 9. 861

2. BBH: includes subtasks such as ’DateUnder- 862

standing’ and ’Multi-StepArithmetic’, as de- 863

tailed in Table 8. 864

3. AGIEval: includes subtasks like ’AQuA-RAT’ 865

and ’SAT-Math’, as detailed in Table 6. 866

While ARC does not specifically feature tasks for 867

mathematical computation, we identify a number 868

of scientific questions within this dataset that in- 869

volve mathematical calculations. From the Table 5, 870

We can observe that CasCoD has achieved perfor- 871

mance improvements on mathematical reasoning 872

tasks as well. 873

A.2 Ablation Study on In-domain Dataset 874

A.2.1 W.R.T. Model Size 875

The results of the model size ablation study on 876

IND datasets are presented in Figure 7. We observe 877

that CasCoD outperforms the baselines on both the 878

7B and 13B model and significantly surpasses the 879

teacher LLMs in the Zero-shot CoT setting. 880

A.2.2 W.R.T. Training Data Size 881

The results of the training data ablation study on 882

IND datasets, as shown in Figure 8, indicate that 883

CasCoD outperforms standard CoTs distillation 884

across various sizes of training data. This demon- 885

strates the efficiency of our proposed method. 886
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Models & Methods BBH-test BB-sub AGIEval ARC-E ARC-C AVG

In-domain? ✓ ✕ ✕ ✕ ✕

CodeLLaMA-7B + Std-CoT 56.2 29.7 19.2 42.0 32.2 35.9
CodeLLaMA-7B + Step-by-step 40.7 29.0 23.9 41.5 32.8 33.6
CodeLLaMA-7B + CasCoD 54.8 35.4 25.8 42.9 31.7 38.1

LLaMA3-8B + Std-CoT 66.9 33.9 32.7 69.8 60.2 52.7
LLaMA3-8B + Step-by-step 44.2 35.5 38.8 83.7 70.7 54.5
LLaMA3-8B + CasCoD 65.2 42.9 40.1 87.2 74.0 61.9

Mistral-7B-v0.2 + Std-CoT 72.2 37.6 32.0 68.8 57.9 53.7
Mistral-7B-v0.2 + Step-by-step 56.4 38.9 20.1 76.4 62.3 50.8
Mistral-7B-v0.2 + CasCoD 71.7 42.5 40.1 83.9 74.2 62.5

Table 3: Accuracy (%) on IND and OOD datasets with different student models distilled by different methods.
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Figure 6: Ablation study on training data size for four OOD datasets. The dotted line indicates the performance of
fine-tuning the student models by standard CoTs distillation using the full set (100% of) BBH-train dataset. The
results in IND dataset can be found in Appendix A.2.2.

Method ChatGPT GPT4 AVG

Teacher 41.1 36.3 38.7

Std-CoT 40.8 29.8 35.3
SCOTT 36.2 29.4 32.8
MT-CoT 36.2 25.8 31

Step-by-step 6.6 -0.1 3.25
CasCoD (ours) 40.8 31.6 36.2

Table 4: Faithfulness (LAS, %) of the compared meth-
ods with different LLM evaluators on the IND dataset.
The prompt templates can be found in Appendix C.2

.

B Details of Experiment887

B.1 Dataset Statistics888

Table 6, Table 7, Table 8 and Table 9 show the889

data statistics of AGIEval, ARC, BIG-Bench Hard890

(BBH) and BIG-Bench Sub (BB-sub)5, respec-891

tively.892

5For detailed descriptions of the subtasks in BIG-Bench,
please refer to https://github.com/google/BIG-bench/

B.2 Hyperparameters Settings 893

In our study, we ensure consistency in the hyperpa- 894

rameter settings across all baselines, including our 895

proposed CasCoD approach, to maintain the fair- 896

ness of our comparative analysis. Here, we detail 897

the hyperparameter configurations employed in our 898

experiments. 899

Training Steps and Batch Size. The number of 900

training steps is determined based on the size of 901

the training dataset, the batch size, and the number 902

of gradient accumulation steps required. We main- 903

tain a consistent batch size across all baselines to 904

eliminate any performance discrepancies that could 905

arise from varying batch sizes. 906

Learning Rate. Our exploratory experiments 907

initially focus on the standard CoTs distillation 908

method using the LLaMA-2 model, revealing that 909

while the batch size had minimal impact on perfor- 910

blob/main/bigbench/benchmark_tasks/README.md.
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Models & Tasks elementary_math_qa identify_math_theorems DateUnderstanding Multi-StepArithmetic AVG

Std-CoT 11.0 20.7 82.0 8.0 30.4
SCOTT 12.0 34.0 58.0 4.0 27.0
MT-CoT 10.0 9.4 74.0 6.0 24.9
Step-by-step 17.0 32.1 68.0 0.0 29.3
CasCoD 22.0 36.2 86.0 8.0 38.1

Table 5: Accuracy (%) on mathematical reasoning tasks with different distillation methods.
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Figure 7: Ablation study on model size in the IND
(BBH-test). The dotted line indicates the performance
of the teacher LLM under the Zero-shot-CoT setting.

No. Task Size # Choices

1 AQuA-RAT 254 5
2 LogiQA-EN 651 4
3 LSAT-AR 230 5
4 LSAT-LR 510 5
5 LSAT-RC 269 5
6 SAT-Math 220 4
7 SAT-EN 206 4
8 SAT-EN (w/o Psg.) 206 4

Sum 2546 -

Table 6: Statistics of AGIEval dataset.

mance, the learning rate was a critical factor. We911

test learning rates of 1e-4, 2e-4, and 3e-4 and ob-912

serve optimal performance at 2e-4 across Std-CoT913

and other distillation baselines as well as our Cas-914

CoD. Therefore, we set the learning rate to 2e-4 for915

all methods involved in our study.916

Epochs and Evaluation Strategy. Throughout917

our training process, we monitor the training loss918

curve and note that it generally plateaued by919

the 15th epoch, suggesting that the models have920

achieved convergence. Accordingly, we set the921

number of epochs to 15 for 7B models. The pro-922

cess of determining the number of epochs for other923

model sizes follows a similar pattern. To mitigate924
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Figure 8: Ablation study on training data size in the
IND (BBH-test). The dotted line indicates the perfor-
mance of fine-tuning the student models by standard
CoT distillation using the full set (100% of) BBH-train
dataset.

Task Size # Choices

ARC-E 2376 4-5
ARC-C 1172 4-5

Table 7: Statistics of ARC test dataset.

the potential risk of overfitting and to ensure that 925

our evaluation reflects the most effective model 926

configuration, we systematically select the check- 927

points from the epoch that demonstrate the best 928

performance on the IND task. These checkpoints 929

are then used to evaluate performance on OOD 930

tasks. 931

Finally, the detailed hyperparameters in training 932

and inference can be found in Table 10 and Table 933

11, respectively. 934

C Prompts 935

C.1 Prompts of Generating CoTs for 936

ChatGPT 937

We use the prompt template shown in Table 12 to 938

call the ChatGPT API to generate the CoTs for the 939

BBH-train datasets. 940
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No. Task Size # Choices

1 Boolean Expressions 250 2
2 Causal Judgement 187 2
3 Date Understanding 250 6
4 Disambiguation QA 250 4
5 Dyck Languages 250 -
6 Formal Fallacies Syllogisms Negation 250 2
7 Geometric Shapes 250 11
8 Hyperbaton (Adjective Ordering) 250 2
9 Logical Deduction (3 objects) 250 3
10 Logical Deduction (5 objects) 250 5
11 Logical Deduction (7 objects) 250 7
12 Movie Recommendation 250 5
13 Multi-Step Arithmetic 250 -
14 Navigate 250 2
15 Object Counting 250 -
16 Penguins in a Table 146 5
17 Reasoning about Colored Objects 250 18
18 Ruin Names 250 11
19 Salient Translation Error Detection 250 6
20 Snarks 178 2
21 Sports Understanding 250 2
22 Temporal Sequences 250 4
23 Tracking Shuffled Objects (3 objects) 250 3
24 Tracking Shuffled Objects (5 objects) 250 5
25 Tracking Shuffled Objects (7 objects) 250 7
26 Web of Lies 250 2
27 Word Sorting 250 -

Sum 6511 -

Table 8: Statistics of BIG-Bench Hard dataset.

C.2 Prompts of Simulators941

We use the prompt templates shown in Table 13942

and Table 14 to call the ChatGPT and GPT4 API943

to predict the answers given a question or with an944

additional rationale, respectively.945

D Case Study946

Here we show 4 cases in Table 15, 16, 17 and 18947

to compare the CoT generated by CasCoD with948

the teacher LLM and the standard CoTs distillation949

method (Std-CoT). We utilize ✓ and ✗ to denote950

whether the CoT is correct or incorrect, respec-951

tively.952

Table 15 and 16 show that while Std-CoT cor-953

rectly predicts the final answer on in-domain tasks,954

it generates incorrect intermediate reasoning steps,955

indicating that Std-CoT causes student models to956

capture spurious correlations between questions957

and answers, without learning to reason with diver-958

sity. This is evidenced by the fact that its gener-959

ated rationales are almost identical to the teacher’s960

CoTs. In contrast, CasCoD produces more dis-961

tinct CoTs, differing from the teacher’s reasoning962

format, which indicates an enhancement in the stu-963

dent’s reasoning generalizability. Tables 17 and 18964

illustrate that on out-of-domain tasks, Std-CoT fails965

to reason correctly, including logical and factual966

mistakes, whereas CasCoD can clearly understand967

the question and provides concise, logically rich968

No. Task Size # Choices

1 abstract_narrative_understanding 100 5
2 anachronisms 100 2
3 analogical_similarity 100 7
4 analytic_entailment 70 2
5 cause_and_effect 100 2
6 checkmate_in_one 100 26
7 cifar10_classification 100 10
8 code_line_description 60 4
9 conceptual_combinations 100 4
10 crass_ai 44 4
11 elementary_math_qa 100 5
12 emoji_movie 100 5
13 empirical_judgments 99 3
14 english_russian_proverbs 80 4
15 entailed_polarity 100 2
16 entailed_polarity_hindi 100 2
17 epistemic_reasoning 100 2
18 evaluating_information_essentiality 68 5
19 fantasy_reasoning 100 2
20 figure_of_speech_detection 59 10
21 goal_step_wikihow 100 4
22 gre_reading_comprehension 31 5
23 human_organs_senses 42 4
24 identify_math_theorems 53 4
25 identify_odd_metaphor 47 5
26 implicatures 100 2
27 implicit_relations 82 25
28 indic_cause_and_effect 100 2
29 intersect_geometry 100 26
30 kanji_ascii 100 5
31 kannada 100 4
32 key_value_maps 100 2
33 logic_grid_puzzle 100 3
34 logical_args 32 5
35 logical_fallacy_detection 100 2
36 metaphor_boolean 100 2
37 metaphor_understanding 100 4
38 minute_mysteries_qa 100 4
39 mnist_ascii 100 10
40 moral_permissibility 100 2
41 movie_dialog_same_or_different 100 2
42 nonsense_words_grammar 50 4
43 odd_one_out 86 5
44 parsinlu_qa 100 4
45 physical_intuition 81 4
46 play_dialog_same_or_different 100 2
47 presuppositions_as_nli 100 3
48 riddle_sense 49 5
49 similarities_abstraction 76 4
50 simple_ethical_questions 100 4
51 social_iqa 100 3
52 strange_stories 100 2
53 strategyqa 100 2
54 swahili_english_proverbs 100 4
55 swedish_to_german_proverbs 72 4
56 symbol_interpretation 100 5
57 timedial 100 3
58 undo_permutation 100 5
59 unit_interpretation 100 5
60 vitaminc_fact_verification 100 3
61 winowhy 100 2

Sum 5384 -

Table 9: Statistics of BIG-Bench sub dataset. We filter
the original dataset by retrieving tasks with keywords
"multiple choice" and randomly sample up to 100 exam-
ples per task. Note, the task in BBH will not be involved
in BB-sub.

reasoning. 969
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Hyperparameter TinyLLaMA-1.1B LLaMA2-7B LLaMA2-13B

gradient accumulation steps 4 4 8
per device batch size 16 16 8
learning rate 2e-4 2e-4 2e-4
epoches 20 15 10
max length 1024 1024 1024
β of AdamW (0.9,0.999) (0.9,0.999) (0.9,0.999)
ϵ of AdamW 1e-8 1e-8 1e-8
γ of Scheduler 0.95 0.95 0.95
weight decay 0 0 0
warmup ratio 0 0 0
rank of LoRA 64 64 64
α of LoRA 32 32 32
target modules q_proj, v_proj q_proj, v_proj q_proj, v_proj
drop out of LoRA 0.05 0.05 0.05

Table 10: Training hyperparameters.

Arguments Student Teacher

do sample False True
temperature - 0.2
top-p 1.0 1.0
top-k - -
max new tokens 1024 2048
# return sequences 1 1

Table 11: Generation configs of students and teachers.
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{Task Description}. Your response should conclude with the format "Therefore, the answer is".

Q: {Task Example Question No.1}
A: Let’s think step by step. {Human-Curated-CoTs No.1}.

Q: {Task Example Question No.2}
A: Let’s think step by step. {Human-Curated-CoTs No.2}.

Q: {Task Example Question No.3}
A: Let’s think step by step. {Human-Curated-CoTs No.3}.

Q: {QUESTION}
A: Let’s think step by step.

Table 12: Prompt template of gpt-3.5-turbo for generating the CoTs data with 3 shots.

system content You are a helpful and precise assistant for following the given instruction.

user content

[Instruction] {Please read the question and then give your answer based on the
question without any explanations.}

Task Description: {TASK_DESCRIPTION}

Question: {QUESTION}

Your Answer:

Table 13: Prompt template of simulators for predicting the answers when given the question.

system content You are a helpful and precise assistant for following the given instruction.

user content

[Instruction] {Please read the question and the rationale, and then give your answer
based on the question and the rationale without any explanations.}

Task Description: {TASK_DESCRIPTION}

Question: {QUESTION}

Rationale: {RATIONALE}

Your Answer:

Table 14: Prompt template of simulators for predicting the answers when given the question and rationale.
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Question: Evaluate the result of a random Boolean expression: not False and False or True or False.

Teacher

Rmember that (i) expressions inside brackets are always evaluated first and that (ii) the order of operations from highest priority to
lowest priority is "not", "and", "or", respectively.

We first simplify this expression "Z" as follows: "Z = not False and False or True or False = A and B or C or D" where
"A = not False", "B = False", "C = True", and "D = False".

Let’s evaluate A: A = not False = not (False) = True.

Plugging in A, B, C, and D, we get: Z = A and B or C or D = True and False or True or False = False or True or False =
True.

Therefore, the answer is True. ✓

Std-CoT

Rmember that (i) expressions inside brackets are always evaluated first and that (ii) the order of operations from highest priority to
lowest priority is "not", "and", "or", respectively.

We first simplify this expression "Z" as follows: "Z = not False and False or True or False = A and B or C or D" where
"A = not False", "B = False", "C = True", and "D = False".

Let’s evaluate A: A = not False = not (False) = True.

Plugging in A, B, C, and D, we get: Z = A and B or C or D = True and False or True or False = False or False or False
= False.

Therefore, the answer is True. ✗

CasCoD

Removing the brackets first: (not False and False) or (True or False) or False.

Let’s evaluate these expressions one by one:

- (not False and False): The boolean expression "not False and False" evaluates to True.

- (True or False): The boolean expression "True or False" evaluates to True.

- False: The boolean expression False evaluates to False.

When we evaluate these expressions, we get True.

Therefore, the answer is True. ✓

Table 15: A boolean-expression case from BIG-Bench Hard.

Question:

Answer extremely simple questions about the colors of objects on a surface. Q:On the table, you see several objects arranged in a row:
a burgundy paperclip, a purple cup, a mauve pencil, a yellow keychain, and a silver teddy bear. What is the color of the object furthest
from the teddy bear?
Options: (A) red (B) orange (C) yellow (D) green (E) blue (F) brown (G) magenta (H) fuchsia (I) mauve (J) teal (K) turquoise (L)
burgundy (M) silver (N) gold (O) black (P) grey (Q) purple (R) pink

Teacher

According to this question, the objects are arranged in a row, from left to right, as follows: (1) a burgundy paperclip, (2) a purple cup,
(3) a mauve pencil, (4) a yellow keychain, (5) a silver teddy bear.

The teddy bear is the last item on the list, namely (5). The object furthest from the teddy bear corresponds to (1), which
is a burgundy paperclip.

The color of the paperclip is burgundy. Therefore, the answer is (L).. ✓

Std-CoT

According to this question, the objects are arranged in a row, from left to right, as follows: (1) a burgundy paperclip, (2) a purple cup,
(3) a mauve pencil, (4) a yellow keychain, (5) a silver teddy bear. The object furthest from the teddy bear is the mauve pencil, which is
the third item on the list.

The color of the mauve pencil is mauve. Therefore, the answer is (L). ✗

CasCoD

Rationale: According to this question, the objects are arranged in a row, from left to right, as follows: (1) a burgundy paperclip, (2) a
purple cup, (3) a mauve pencil, (4) a yellow keychain, (5) a silver teddy bear.

The object furthest from the teddy bear corresponds to (1), which is a burgundy paperclip.

The color of the paperclip is burgundy.

Therefore, the answer is (L). ✓

Table 16: A reasoning about colored objects case from BIG-Bench Hard.
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Question:
h = 3a+ 28.6 A pediatrician uses the model above to estimate the height h of a boy, in inches, in terms of the boy’s age a, in years,
between the ages of 2 and 5. Based on the model, what is the estimated increase, in inches, of a boy’s height each year?
Options: (A)3 (B)5.7 (C)9.5 (D)14.3

Teacher

Step 1: We are given the model h = 3a + 28.6 which represents the estimated height h of a boy in terms of his age a.

Step 2: We need to find the estimated increase in height each year. This means we need to find the change in height for a
change in age of 1 year.

Step 3: To find the change in height, we can subtract the height at age a + 1 from the height at age a. So, the change in
height is (3(a + 1) + 28.6) − (3a + 28.6).

Step 4: Simplifying the expression, we get 3a + 3 + 28.6 − 3a − 28.6.

Step 5: The terms 3a and −3a cancel out, leaving us with 3 + 3.

Step 6: The change in height is 6 inches.

Therefore, the answer is (A) 3. ✗

Std-CoT
This question focuses on the increase in height each year. According to the model, the height of a boy between the ages of 2 and 5 is

approximately 36 inches. Therefore, the estimated increase in height each year is 3 inches. Therefore, the answer is (A). ✗

CasCoD

Rationale: This question asks about the estimated increase, in inches, of a boy’s height each year. According to the model, the height
of a boy increases by 3 inches each year between the ages of 2 and 5.

Therefore, the answer is (A) 3 inches. ✓

Table 17: A sat-math case from AGIEval.

Question: Which gas is the most abundant in Earth’s atmosphere?
Options: (A) oxygen (B) nitrogen (C) water vapor (D) carbon dioxide

Teacher

First, we know that Earth’s atmosphere is primarily composed of gases.

Second, we need to determine which gas is the most abundant.

Third, we can eliminate options (A) oxygen and (C) water vapor because they are present in smaller quantities compared
to the other gases.

Finally, we are left with options (B) nitrogen and (D) carbon dioxide.

Considering that nitrogen makes up about 78% of Earth’s atmosphere, while carbon dioxide only makes up about 0.04%,
it is clear that nitrogen is the most abundant gas in Earth’s atmosphere.

Therefore, the answer is (B) nitrogen. ✓

Std-CoT

The percentage of each gas in the atmosphere is given by the following table:

Gas Percentage

oxygen 20.95

nitrogen 78.09

water vapor 0.4

carbon dioxide 0.04

According to this table, oxygen is the most abundant gas in Earth’s atmosphere. Therefore, the answer is (A). ✗

CasCoD

Rationale: According to the World Bank, the composition of Earth’s atmosphere is approximately 78% nitrogen, 21% oxygen, 0.93%
argon, and small amounts of other gases. Nitrogen is the most abundant gas in Earth’s atmosphere.

Therefore, the answer is (B). ✓

Table 18: A case from AI2 Reasoning Challenge.

18


