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Abstract— Planar pushing is a hybrid dynamics system due
to the different possible contact interaction modes between the
robot and the object, such as sticking, sliding, and separation.
Previous Reinforcement Learning (RL) literature addressing
the planar pushing task achieves low accuracy, non-smooth
trajectories, and only simple motions, i.e. without orientation of
the manipulated object. We conjecture that previously used uni-
modal exploration strategies fail to capture the inherent hybrid
dynamics of the task. In this paper, we incorporate the hybrid
dynamics into an RL framework by proposing a multimodal
exploration approach through categorical distributions, which
enables us to train planar pushing RL policies for arbitrary
initial and target object poses, i.e. positions and orientations,
and with improved accuracy. We show that the learned policies
are robust to external disturbances, scalable to tasks with
multiple pushers, and exhibit smooth pushing trajectories.
Furthermore, we validate the transferability of the policies,
trained entirely in simulation, to a physical robot hardware
using the KUKA iiwa robot arm. See our supplemental video:
https://youtu.be/vTdva1mgrk4.

I. INTRODUCTION AND RELATED WORK

Nonprehensile manipulation, defined as manipulation
without grasping, endows robots with versatile behaviors,
enabling them to perform a wide range of motions on objects
with different properties [1], [2]. However, allowing the pose
of the object relative to the end-effector to change requires
the robot to constantly adapt the contact positions, leading
to different possible contact modes in the form of sticking,
sliding, and separation. As a result, multiple interesting
challenges arise. Most notably, the underactuated nature of
the system makes it infeasible to realize arbitrary motions
of the object [3], in addition to the complexity of hybrid
dynamics resulting from the transitions between different
contact modes [3], and the hard to model frictional inter-
actions exacerbating the uncertainty in the contact modes
and the object motion [4], [5].

In this paper we consider the task of planar pushing,
widely studied in the nonprehensile literature [1], [3], [5]–
[7]. The task consists of using a robotic pusher to control
the motion of an object sliding on a flat surface. Previ-
ous works developed robot controllers for planar pushing,
generally following one of two approaches: model-based via
Model Predictive Control (MPC) [3], [7], or model-free via
Reinforcement Learning (RL) [8]–[11].

These approaches typically face different open problems.
MPC lacks scalability to more complex scenarios, such as
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Fig. 1. Illustration of the planar pushing system.

multiple contacts and switching contact faces [3], [12]. On
the other hand, RL methods achieve low accuracy, with
position errors greater than 2 cm, non-smooth trajectories,
and only simple motions, i.e. without orientation of the
sliding object [8]–[11], which we aim to consider. These
RL methods share a common trait: they use a multivariate
Gaussian with diagonal covariance for exploration, thereby
limiting the exploration to unimodal policies across each
action space dimension. However, the model-based literature
[3], [7] identifies the planar pushing problem as a hybrid
dynamics system due to the different possible contact modes
(sticking, sliding left, sliding right, and separation). This
provides us with the insight that perhaps planar pushing is
fundamentally a multimodal control problem, which moti-
vates our proposed multimodal exploration approach through
categorical distributions.

II. BACKGROUND

A. Planar Pushing

We consider the task of pushing a box to a specified
target pose, composed of the box position and orientation,
from a random initial system configuration, composed of
the initial box pose and robot pusher position, all within
a bounded planar workspace. Fig. 1 illustrates the planar
pushing system, where (vx,p, vy,p) is the velocity of the
pusher, located at (xp, yp), (xb, yb, θb) is the pose of the
box, and (xtarg, ytarg, θtarg) is the target box pose.

B. Problem Formulation

We formulate the problem as a finite horizon
goal-conditioned Partially Observable Markov
Decision Process (POMDP) defined by the tuple
(S,Ω,G,A,O,P,R, H, ρ0, ρg) [10], [13]. At each time
step t, the environment has state st ∈ S, we receive an
observation ot ∈ Ω, our goal is gt ∈ G, and we take an
action at ∈ A. Note that the goal remains fixed during an
episode. Additionally, O : S×A → Pr(Ω) is the observation
model, P : S × A → Pr(S) is the transition dynamics,
and R : S × A × G → R is the reward function. We limit
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episodes to have a maximum horizon H . Finally, the initial
state and goal of an episode are distributed according to ρ0
and ρg respectively.

C. Proximal Policy Optimization

We wish to learn a stochastic policy πθ : Ω×G → Pr(A)
parametrized by θ. To this end, we use Proximal Policy
Optimization (PPO) [14], a popular on-policy RL algorithm
widely applied in various control tasks, including in-hand
manipulation [15] and locomotion [16]. PPO uses a truncated
Generalized Advantage Estimation (GAE) [17] to estimate
the advantage function for time step t ∈ [0, T ] as

Ât =

T−t∑
i=0

(γλ)iδt+i, (1)

where

δt = rt + γVϕ(ot+1, gt+1)− Vϕ(ot, gt), (2)

rt is the reward, Vϕ : Ω × G → R is the value function,
parametrized by ϕ, λ is the GAE parameter, and γ is the
discount factor. Then, πθ and Vϕ can be learned together
through mini-batch stochastic gradient ascent on the objec-
tive function

Lt(θ, ϕ) = Êt

[
min

(
πθ(at | ot, gt)
πθold(at | ot, gt)

· Ât,

clip
(

πθ(at | ot, gt)
πθold(at | ot, gt)

, 1− ϵ, 1 + ϵ

)
Ât

)
− c1L

Vϕ

t + c2S
πθ
t

]
, (3)

where we compute the expectation over a mini-batch of
samples. The first term within the expectation is the surrogate
objective of the policy, LVϕ

t is the loss of the value function,
Sπθ
t is an entropy bonus, c1, c2 are weights, and ϵ controls

the clip range [14].

III. METHOD

A. Observation, Goal, Action, and Reward

Observation. The environment observation ot consists
of the current box pose (xb, yb, θb) and the current pusher
position (xp, yp). There is important information from the
environment state that this observation fails to capture, for
instance, the frictional contact forces and the box velocity.
We consider two architectures of the policy and value net-
works to attempt to capture this hidden information: an MLP
with observation stacking [8], [18] and an LSTM [8], [15].

Goal and Action. The goal gt of the policy is to reach
a particular target box pose (xtarg, ytarg, θtarg). Given a goal
gt and an observation ot, the policy takes an action at =
(vx,p, vy,p), which consists of the x and y velocity of the
pusher. We limit the velocity on each axis to the range
[−0.1, 0.1] m s−1.

Reward. If the box reaches the target, the episode ter-
minates successfully with a positive reward rt = α. If the
box fails to reach the target within the maximum horizon, or
the workspace boundaries are violated by the pusher or box,

TABLE I. Dynamics Randomization and Observation Noise Parameters

Parameter Sampling Distribution
Friction U([0.5, 0.7])

Restitution U([0.4, 0.6])

Box Length U([0.115, 0.125]) m

Box Width U([0.095, 0.105]) m

Box Mass U([0.4, 0.6]) kg

Pusher Radius U([0.012, 0.013]) m

Time Step Duration N (1/30, (1/320)2) s

Position Noise N (0, 0.0012) m

Orientation Noise N (0, 0.022) rad

the episode terminates unsuccessfully with a negative reward
rt = −β. Otherwise, the reward is rt = k1(1−dx,y)+k2(1−
dθ) + k3(1 − vp), where dx,y is the normalized distance to
the target position, dθ is the normalized angular distance to
the target orientation, vp is the normalized magnitude of the
pusher velocity, and k1, k2, k3 are weights.

B. Exploration Strategies

Gaussian Exploration. Previous RL methods for planar
pushing have used Gaussian exploration. In PPO, given an
observation and goal pair, the policy function outputs the
mean velocities in x and y, denoted as µx and µy . Combin-
ing them with the corresponding learned state-independent
variances σ2

x and σ2
y results in a multivariate Gaussian with

diagonal covariance from which we can sample the action
[14]. Soft Actor Critic (SAC) [19] is a popular off-policy RL
algorithm. We include SAC with Gaussian exploration and
an MLP architecture as a baseline in our experiments since
the current state-of-the-art RL policies for planar pushing
use the same configuration [10]. In SAC, the policy function
outputs µx, µy , σ2

x, and σ2
y [19].

Categorical Exploration. To enable multimodal explo-
ration, capable of capturing the hybrid dynamics of the task,
we propose discretizing the action space and using categori-
cal distributions for exploration, which can approximate any
type of distribution. In particular, we discretize vx,p and vy,p
using 11 bins for each velocity [15], [20]. Then, given an
observation and goal pair, the policy function outputs 11
logits that define a categorical distribution over vx,p and
another 11 logits that define a categorical distribution over
vy,p. We sample the action from these distributions.

C. Sim-to-Real Transfer

We train the policies entirely in simulation and use dy-
namics randomization, observation noise, and synthetic dis-
turbances to bridge the sim-to-real gap. At the start of every
episode, we sample random values for: (a) the friction and
restitution of the floor, box, and pusher; (b) the dimensions
of the box and the pusher; and (c) the mass of the box.
Additionally, we randomize the duration of every time step
[8]. We also add correlated noise, sampled at the beginning of
each episode, and uncorrelated noise, sampled at every time
step, to the observations of the box pose and pusher position,
to simulate sensor uncertainty. Table I details the parameters
and sampling distributions for the dynamics randomization
and observation noise. Finally, we apply a disturbance to the



box with probability 1% at each time step, in a uniformly
random position, and with force in x and y independently
sampled from U([−25, 25]) N.

D. Curriculum Learning

We define success thresholds Tx,y and Tθ, corresponding
to the position and the orientation, such that, if ∥(xb, yb) −
(xtarg, ytarg)∥ ≤ Tx,y and |θb − θtarg| ≤ Tθ, then the episode
terminates successfully. Smaller Tx,y and Tθ lead to more
accurate learned policies, however, at the expense of in-
creased task complexity and a sparser reward signal, which
can lead to much slower learning, or lack of convergence
entirely. To mitigate this issue, we define a curriculum such
that the learning starts with larger thresholds Tx,y = 1.5 cm
and Tθ = 0.34 rad ≈ 19.5°. Then, if the policy exceeds a
90% average success rate, we halve the success thresholds
to Tx,y = 0.75 cm and Tθ = 0.17 rad ≈ 9.7°.

E. Implementation Details

We train the policies with data collected from 128 parallel
actors in simulated planar pushing systems. The simula-
tions are performed using PyBullet [21]. Additionally, the
maximum episode length is H = 300 time steps. For the
reward function, we use parameter values α = 50, β = 20,
k1 = 0.1, k2 = 0.02, and k3 = 0.004. Our implementations
of PPO and SAC are based on Stable Baselines3 [22]. We
design a custom planar pushing environment for learning.
At the beginning of every episode, we uniformly sample the
starting configuration and the target box pose. All policies
are trained in a single workstation with an Intel Core i9
3.60GHz, GeForce RTX 2080, and 64 GiB of RAM.

The MLP architecture uses a stack of 10 previous observa-
tions as well as 2 hidden linear layers for the policy and value
networks of size (512, 512) and (1024, 1024) respectively.
The LSTM architecture uses 3 hidden layers arranged as lin-
ear (128) → LSTM (256) → linear (128) for both the policy
and value networks. We use tanh nonlinearities with PPO
[14] and ReLu nonlinearities with SAC [19]. Additionally,
PPO learns a state value function [14] while SAC learns two
state-action value functions [19].

We use the Adam [23] optimizer with a learning rate of
3 · 10−4 and a batch size of 7680 for PPO and SAC. In
PPO, we use value function and entropy bonus coefficients
c1 = 0.5, c2 = 0, as well as early stopping of model updates
when the KL divergence of the new policy and the old policy
exceeds 0.01 [22]. In SAC, we use a replay buffer of size 106

and apply a tanh squashing function to the sampled actions
[10], [19]. The remaining hyperparameters of PPO and SAC
have standard values from [14] and [19] respectively.

We evaluate the scalability of our framework on a planar
pushing task with two pushers. To encourage the policy to
perform motions that are feasible for a bi-manual manipula-
tion platform, we add two constraints: (a) each pusher can
exert pushing forces with a maximum magnitude of 75N;
and (b) the distance between pushers in the x coordinate
must be at least 5 cm. The episode terminates unsuccessfully
if the policy violates any of these constraints.

Fig. 2. Policy training performance. Success rate is averaged over the last
100 episodes completed by each of the 128 parallel actors.

IV. EXPERIMENTS AND RESULTS

A. Simulation

We first consider the standard set-up with one pusher. We
train PPO policies with the MLP and LSTM architectures,
and compare the categorical and Gaussian exploration strate-
gies for each configuration. We also train a SAC policy
with the MLP architecture and Gaussian exploration. The
resulting learning curves are shown in Fig 2. We find that
only the policies using the proposed categorical exploration
approach manage to learn the task. Additionally, the LSTM
architecture provides substantially faster convergence. The
PPO (LSTM + Categorical) policy achieves over 98% aver-
age success rate with the reduced success thresholds.

We further investigate whether exploration through cate-
gorical distributions indeed leads to multimodal strategies.
We examine the evolution during training of the categorical
distribution in PPO (LSTM + Categorical) for the action vy,p
in various environment states. As expected, we often find
that the action distribution is multimodal. Fig. 4 shows the
results for one of these cases. In particular, it broadly has two
modes that correspond to upward and downward motions.
Therefore, it seems that the categorical exploration strategy
enables the policy to explore different possible contact modes
concurrently during training.

To evaluate the scalability of our framework, we train the
PPO (LSTM + Categorical) policy on a planar pushing task
with two pushers. The resulting learning curve is shown in
Fig. 5. The policy scales well to this more complex task
and achieves an average success rate greater than 97% with
the reduced success thresholds. Nevertheless, convergence is
slower, which is expected due to the increased dimensionality
of the problem. Some additional simulation experiments and
results can be found in [24].

B. Hardware

We investigate the performance of the PPO (LSTM + Cat-
egorical) policy on a physical planar pushing set-up with the
KUKA iiwa robot. We use the Vicon motion capture system
to track the current and target box pose, and use OpTaS [25]
to map policy actions in the end-effector task-space to robot
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Fig. 3. Key frames of the KUKA iiwa robot pushing the box to a target pose. (a) Shows the starting configuration, a large disturbance is applied in (b),
and (c)-(f) exhibit the RL policy recovering from the disturbance and reaching the goal.

joint configurations. We use the ROS-Pybullet interface [26]
to develop and test the robot software implementation.

Fig. 3 shows a sequence of key frames of the
robot pushing the box to a target pose and recover-
ing from an external disturbance. The supplemental video
(https://youtu.be/vTdva1mgrk4) clearly demonstrates the be-
havior of the policy in simulation and on the physical robot.
We find that the policy translates well to the real world and
is able to effectively cope with the dynamics of the new
environment. It is robust to large external disturbances as
well as changes in the initial and target pose, and achieves
both accurate and smooth pushing trajectories.

We evaluate the success rate and time to target on the phys-
ical robot, using success thresholds Tx,y = 0.75 cm, Tθ =
0.17 rad, and a time limit of 30 s. We uniformly sample 5
target poses and, for each target pose, we run the policy from
15 uniformly sampled initial configurations. The average suc-
cess rate and time to target are 97.3% and 6.5 s. In simulation
with the same success thresholds and time limit, the average
success rate and time to target are 99.2% and 5.0 s. The
policy exhibits similar performance in simulation and in the
physical robot, indicating good sim-to-real transfer.

Fig. 4. Evolution during training of the categorical action distribution for
the pusher velocity in the y axis (vy,p) for the configuration shown above.

V. SUMMARY AND DISCUSSION

In this paper, we incorporate hybrid dynamics into an RL
framework by proposing a multimodal exploration approach,
through categorical distributions on a discrete action space,
to enable the learning of planar pushing RL policies for
arbitrary initial and target object poses, i.e. different positions
and orientations, with improved accuracy. Our experiments
demonstrate that the policies, trained only in simulation,
successfully recover from external disturbances and achieve
both smooth trajectories and small target error when executed
on the physical robotic hardware. Furthermore, we show that
our framework can be easily scaled to a planar pushing task
with two pushers.

One of the key realizations in this work was that, when
attempting to learn planar pushing RL policies for the case
of arbitrary object poses, the use of a multivariate Gaussian
with diagonal covariance for exploration as per previous
literature [8]–[11], would lead to the RL failing to converge.
Borrowing the insight from the model-based literature [3],
[7], that planar pushing has hybrid dynamics reflected in a set
of different contact modes that constraint the control actions,
we hypothesized that we can reason about planar pushing
as a multimodal control problem. Therefore, we proposed
describing the action space through categorical distributions
to capture the multimodal nature of the problem, potentially
leading to more effective exploration of different contact
modes during training. We have also shown that indeed,
during training, the categorical action distributions exhibit
multimodal exploration strategies.

Fig. 5. Training performance on a planar pushing task with two pushers.
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