
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

π-COT: PROLOG-INITIALIZED CHAIN-OF-THOUGHT
PROMPTING FOR MULTI-HOP QUESTION-ANSWERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Chain-of-Thought (CoT) prompting significantly enhances large language models’
(LLMs) problem-solving capabilities, but still struggles with complex multi-hop
questions, often falling into circular reasoning patterns or deviating from the logical
path entirely. This limitation is particularly acute in retrieval-augmented generation
(RAG) settings, where obtaining the right context is critical. We introduce
Prolog-Initialized Chain-of-Thought (π-CoT), a novel prompting strategy that
combines logic programming’s structural rigor with language models’ flexibility.
π-CoT reformulates multi-hop questions into Prolog queries decomposed as
single-hop sub-queries, which are resolved systematically through SLICE—a
procedure that seamlessly bridges symbolic and neural reasoning by translating
each sub-query to natural language for LLM-powered question-answering, then
converting answers back to an evolving knowledge base. By grounding each
retrieval step in Prolog’s systematic query resolution, we maintain a focused
reasoning trajectory used to initialize the final CoT reasoning step. Extensive
experimental evaluation demonstrates that π-CoT significantly outperforms RAG
and in-context baselines on multi-hop question-answering benchmarks.

1 INTRODUCTION

Chain-of-thought (CoT) reasoning has emerged as a powerful paradigm for enhancing the
problem-solving capabilities of large language models, substantially improving performance on
arithmetic, commonsense, and symbolic reasoning tasks (Wei et al., 2022; Kojima et al., 2022). By
encouraging models to articulate their reasoning process through intermediate steps, CoT enables
more systematic and interpretable problem-solving approaches (Zhang et al., 2022; Wang et al., 2022).
However, as the complexity of reasoning tasks increases—particularly in multi-hop scenarios where
multiple interconnected inferences must be made—CoT systems have been observed to generalize
poorly (Dziri et al., 2023) and become trapped in circular reasoning patterns (Lo et al., 2023; Yao
et al., 2023).

This limitation becomes especially pronounced in retrieval-augmented generation (RAG) systems,
where CoT excels at single-hop questions that require straightforward document retrieval and
reasoning, but struggles significantly with multi-hop queries that demand the integration of
information across multiple sources and reasoning steps (Asai et al., 2023). The fundamental
challenge lies in CoT’s inherent trade-off: while its flexibility allows for creative and adaptive
reasoning, this same flexibility can lead to unstructured exploration that fails to maintain logical
consistency across complex reasoning chains.

Recent work has explored decomposition-based approaches that break multi-hop questions into
manageable single-hop questions (Khot et al., 2023; Zhou et al., 2023; Min et al., 2019).
However, even with decomposition, critical gaps remain: models struggle to generate high-quality
decompositions without supervision (Patel et al., 2022; Wolfson et al., 2020), fail at reliable fact
composition across steps (Press et al., 2023), and lose track of intermediate state in long reasoning
chains (Yen et al., 2024; Liu et al., 2024). These failures suggest the need for a more principled
reasoning framework that can enforce structure while maintaining flexibility.

In contrast to natural-language reasoning pioneered by CoT, the structured reasoning paradigm has
been extensively studied for decades in artificial intelligence and logic programming (Kowalski and

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Smoliar, 1982; Russell et al., 1995; McCarthy et al., 1960; Simon and Newell, 1971). Prolog, a
declarative programming language explicitly designed for structured reasoning tasks, exemplifies
this approach through its systematic query resolution mechanisms and logical rule-based inference
(Robinson, 1965; Kowalski and Smoliar, 1982; Clocksin and Mellish, 2003). While Prolog’s rigid
structure ensures logical consistency, it lacks the flexibility to handle ambiguous natural language,
cannot easily incorporate unstructured text from documents, and requires precise logical formulations
that may not capture the nuanced reasoning needed for real-world questions.

Recognizing that Prolog and CoT possess complementary strengths and weaknesses, we introduce
Prolog-Initialized Chain-of-Thought (π-CoT), a novel prompting strategy that combines the
structural rigor of logic programming with the contextual flexibility of natural language reasoning.
Our approach begins by algorithmically reformulating complex multi-hop reasoning questions into
equivalent Prolog queries, where each query is deliberately decomposed into a sequence of single-hop
sub-queries. These sub-queries are then resolved systematically: each is translated into natural
language and posed to a RAG (Lewis et al., 2020; Gao et al., 2023) or in-context CoT system, which
retrieves relevant documents and generates answers. The resulting answers are translated back into
Prolog facts and incorporated into the evolving knowledge base.

The key insight underlying π-CoT is that by structuring the reasoning process through Prolog’s
query resolution mechanism, we ensure that the retrieved context remains highly relevant. Rather
than allowing the model to freely explore the reasoning space, potentially losing track of relevant
information or pursuing irrelevant tangents, (Yao et al., 2023; Dziri et al., 2023), our approach
maintains a structured trajectory that systematically builds toward the final answer. At the completion
of the Prolog resolution process, we concatenate the original question, all retrieved documents, and
the structured Prolog derivation to create a comprehensive context that initializes the final CoT
reasoning step.

Through extensive experimental evaluation, we demonstrate that π-CoT significantly outperforms
traditional RAG and in-context systems on multi-hop question-answering (QA) benchmarks, including
HotpotQA, 2WikiMultiHopQA, MuSiQue, and PhantomWiki. Our results suggest that the principled
integration of symbolic reasoning structures with neural language models offers a promising direction
for developing more reliable and interpretable reasoning systems.

2 RELATED WORKS

Decomposition for multi-hop question-answering. Breaking down a complex problem into smaller,
manageable parts is a common technique in LLM prompting (Zhou et al., 2023; Khot et al., 2023;
Wei et al., 2022). For open-domain QA, Press et al. (2023) prompt the model to generate follow-up
questions, and Trivedi et al. (2023) take each new sentence in a CoT as input to the retriever.
Importantly, the language model decomposes the question in natural-language steps. Recent works
have also explored the use of explicit plans, usually in the form of Python programs (Surís et al.,
2023; Khattab et al., 2022). While we do not provide a direct comparison due to different model sizes
and/or retrieval setups, Monte Carlo Tree Search (Tran et al., 2024), test-time scaling (Wang et al.,
2025), and reinforcement learning methods (Li et al., 2025; Jin et al., 2025a; Song et al., 2025) are
emerging as promising approaches to open-domain QA.

Use of logic programming languages with LLMs. Weber et al. (2019) propose a weak unification
strategy in Prolog based on semantic similarity. However, their approach requires training and uses
pre-defined predicates extracted from the training text. Wu and Liu (2025) translate natural language
questions to Prolog queries using Prolog definite clause grammar (DCG) parsing, but rely on access
to a pre-determined knowledge base. The method closest to our work is that of Chen et al. (2019).
They train an LSTM “programmer” to generate programs, which are executed using a BERT-based
“reader” to produce answers. In this work, we contribute a training-free strategy and demonstrate its
effectiveness with recent LLMs like Llama-3.3-70B-Instruct and Deepseek-R1-Distill-Qwen-32B,
using both sparse and dense retrievers. The results of Chen et al. (2019) are also limited by the
strictness of a pure Prolog execution.

Fact extraction and summarization. Extracting knowledge graph triples from unstructured text
is a classical problem in NLP, also known as open information extraction (OpenIE) (Angeli et al.,
2015; Pei et al., 2023; Zhou et al., 2022). To enhance conventional retrieval techniques, LightRAG

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(Guo et al., 2024) and HippoRAG (Jimenez Gutierrez et al., 2024; Gutiérrez et al., 2025) demonstrate
the effectiveness of fact extraction and GraphRAG (Edge et al., 2024) and RAPTOR (Sarthi et al.,
2024) propose methods for clustering and summarization. Among these methods, HippoRAG 2
from Gutiérrez et al. (2025) performs the best on HotpotQA, 2WikiMultiHopQA, and MuSiQue. We
provide a direct comparison of our method to HippoRAG 2 in the results section below.

3 PRELIMINARIES

Dating back to the 1970s, Prolog is a powerful way to represent factual knowledge and perform
logical inference (Colmerauer and Roussel, 1996; Russell et al., 1995; Sterling and Shapiro, 1994).
Solutions in Prolog are verifiable and compositional, making it particularly well-suited for multi-hop
question answering where intermediate steps must be chained reliably.

Representing factual knowledge. Consider the the following English sentence about Harry Potter:

“Lockhart was a Defense against the Dark Arts teacher at Hogwarts.”

This statement can be represented as the following Prolog fact:
DADA_teacher("Lockhart", "Hogwarts").

In Prolog, DADA_teacher is a predicate and “Lockhart” and “Hogwarts” are constants. A large
amount of real-world knowledge can be encoded in this structured, relational form. In fact, as of
early 2025, Wikidata contained over 1.65 billion such knowledge triples.1 Throughout the paper, we
refer to a collection of Prolog facts as a knowledge base.

Multi-hop questions as Prolog queries. Prolog doesn’t just store facts—it also allows us to query
them. A Prolog query comprises one or more predicates with unassigned variables and asks whether
any satisfying variable assignment exists. Consider the following example:

“Who is the wife of the Defense against the Dark Arts teacher at Hogwarts
who was also a werewolf?”

(1)

One way of answering this question involves first identifying all the Defense against the Dark Arts
teachers at Hogwarts, then filtering for those who were also werewolves, and finally retrieving the
wives of the selected people. Each step depends on resolving the previous step(s), and the intermediate
space of possible answers can be large. (Note that there are seven Defense against the Dark Arts
teachers at Hogwarts, so a language model would have to consider seven separate reasoning paths to
answer the question.) A concise way of expressing question (1) is the following Prolog query:

DADA_teacher(X, "Hogwarts"),

werewolf(X),

wife(X, Y),

(2)

with Y representing the answer. Translating questions in natural language to structured queries is a
classical problem in the community (Zelle and Mooney, 1996; Zettlemoyer and Collins, 2012).

Assuming we have a pre-populated knowledge base, the answer is obtained by directly executing the
query. For example, a knowledge base containing the facts DADA_teacher("Lockhart",
"Hogwarts"), werewolf("Lupin"), and wife("Lupin", "Tonks") yields the
following solution to query (2):

X = "Lupin",

Y = "Tonks".

Complex reasoning. While several implementations of the Prolog programming language are
available, we use SWI-Prolog implementation (Wielemaker et al., 2012) due to its inclusion of
advanced features beyond standard Prolog. For example, the question, “How many Defense
against the Dark Arts teachers have been at Hogwarts?” can be mapped to the Prolog query,
aggregate_all(count, DADA_teacher(X, "Hogwarts"), Y), with Y representing
the desired numerical answer. Here, the aggregate_all predicate is built into SWI-Prolog. Other
built-in predicates provide functionality for arithmetic and if-then-else logic.

1https://en.wikipedia.org/wiki/Wikidata

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 METHOD: π-COT — PROLOG-INITIALIZED CHAIN-OF-THOUGHT

SLICE
Passages

Y = [...]

q3 S2

SLICE
Passages

X = [...]

q2 S1

SLICE

Passages

X = [...]

q1 S0=ø

Prolog 
Guidance

Prolog Output:

Let’s think step by step...

Y = ...

Notes

Passages

Notes

Passages

Notes

Passages

Question: 


?

Who is the wife of
the Defense Against 
the Dark Arts 
teacher at Hogwarts
who was also a 
werewolf

LLM

Answer

LLM Context

Prolog Query

werewolf(X)

q1
q2
q3

DADA_teacher(X,“Hogwarts”)

wife(X, Y)
target:Y

Sfinal

Figure 1: Overview of π-CoT. Left: π-CoT
follows the guidance from an LLM generated
Prolog query, and resolves each sub-query qt with
SLICE. SLICE updates the state St−1 to St at
each step, iteratively solving unknown variables in
the Prolog query, until all the variables are solved
after the final step. Right: Intermediate outputs
from SLICE modules (passages, notes) and the
target variable assignment from the final state are
used as initialization of the CoT reasoning for the
LLM.

While Prolog provides a precise and verifiable
framework for multi-hop reasoning, it assumes
access to a structured database, which can be
difficult to obtain in practice. On the other
hand, LLMs can adeptly retrieve and extract
information from unstructured text, but cannot
guarantee logical consistency across reasoning
steps. Our method, π-CoT, combines the two: it
uses Prolog to guide symbolic execution (see
Fig. 1, left) and LLMs to interface with the
unstructured text. π-CoT augments vanilla CoT
by using passages and notes resulting from
symbolic execution to initialize the prompt of
an LLM for chain-of-thought reasoning (see
Fig. 1, right). With this structure, π-CoT
improves logical coherence while operating over
unstructured inputs. Fig. 1 provides a high-level
overview of our method.

To acquire the Prolog-guided execution trace,
π-CoT proceeds as follows. First, given a
question in natural language, we prompt the
LLM to generate a structured Prolog query,

Q = (q1, q2, . . . , qT ), (3)

where each sub-query qi represents an
intermediate step in solving the original
multi-hop question. We provide the query
generation prompt in Sec. A.1. We also instruct
the model to generate the target variable τ
corresponding to the final answer. We use T
to denote the total number of steps (or “hops”)
in the question. For the sake of illustration, the
example question (1) yields the Prolog query
(2) with T = 3 and target variable τ = Y (see
Fig. 1, top left).

As we process each sub-query step-by-step,
we simultaneously update our knowledge by
inserting facts into a knowledge base. We
also define the state St at a certain step t to
be the set of variable assignments at step t.
At each step, a sub-query qt is resolved by a
SLICE module (detailed in §4.1), which takes
the current state St−1, and updates the state with
St. Details of chaining the SLICE modules
are discussed in §4.2. After reaching the final
state Sfinal, we collect intermediate outputs from
each SLICE module and use them to initialize
the CoT reasoning before the model outputs the
final answer (see §4.3).

4.1 SINGLE-STEP EXECUTION WITH
SLICE

We now introduce our procedure for resolving each sub-query with SLICE (Single-step Logical
Inference with Contextual Evidence). SLICE bridges symbolic execution and natural language

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

S1= [{X:“Quirrell”}, {X:“Lockhart”}, {X:“Lupin”},...]q2=werewolf(X)

S2= [{X:“Lupin”}]

Question:

Is the following statement T or F?


Quirrell was a werewolf.

Lockhart was a werewolf.

Lupin was a werewolf.

werewolf(“Quirrell”)

werewolf(“Lockhart”)


...
werewolf(“Lupin”)


F,F, ...T,
Added Fact:


werewolf(“Lupin”)
LLM

...

 Passages

Prolog→NL

Prolog←NL

Figure 2: a SLICE module for fact verification in the RAG setting. At step t = 2, the module
takes in the previous state S1 containing variable assignments, the current sub-query q2, and the
corpus C (not shown) as inputs and outputs S2. Only the Prolog fact corresponding to the correct
statement is added to the knowledge base (green).

understanding: it grounds one Prolog sub-query at a time by gathering relevant text and updating
both the knowledge base and a running notepad of natural language notes.

Inputs. At each step t, SLICE takes as input:

• The t-th Prolog sub-query, qt;
• The state from the previous step, St−1;
• A corpus of unstructured text, C.

We propose a simple training-free method for translating between Prolog and natural language
(NL). We start by assigning values to as many variables in qt using the set of variable assignments,
St−1. In Fig. 2 (top left), only X has assigned values in S1, and we proceed by substituting X in q1
with “Quirrell,” “Lockhart,” “Lupin,” etc. A challenge with using the Prolog sub-query qt directly is
that it losses semantic meaning about the original question: only by looking at the original question
do we know that the predicate werewolf(X) means “X was a werewolf” or that the predicate
DADA_teacher symbolizes Defense against the Dark Arts teacher. To solve this issue, we prompt
the LLM to generate a definition for each qi in addition to generating the Prolog query (3). We
provide the definitions generation prompt in Sec. A.1. Specifically, each definition comprises:

• A question template, which maps qi to a natural-language question (e.g., “Who were the Defense
against the Dark Arts teachers at Hogwarts?”).

• A statement template, which maps an instantiated qi to a factual claim (e.g., “Lockhart was a
Defense against the Dark Arts teacher at Hogwarts.”).

The question template is used for fact extraction and the statement template is used for fact verification.
We describe these two sub-routines as follows:

Fact extraction. When qt introduces a new unassigned variable, SLICE uses the question template
to map qt to a natural-language question (see Prolog→NL in Fig. 2). Next, we call the LLM using

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

chain-of-thought prompting to answer this single-hop question (see LLM in Fig. 2). We provide the
LLM prompt in Sec. A.2. In this work, we consider two strategies to retrieve the relevant evidence
for the single-hop question:

(S1) In the RAG setting, we use an external retriever to obtain the top-k passages from C.
(S2) In the in-context setting, all passages are provided in full.

Using its innate reading comprehension abilities, the LLM locates the answer to the question from
the provided passages and responds with (potentially) multiple answers (e.g., Quirrell, Lockhart,
Lupin). These answer are parsed back into Prolog facts (see Prolog←NL in Fig. 2) and added to the
knowledge base.

Fact verification. When all variables in qt can be assigned values from St−1, we must check a
fact. SLICE uses the statement template to generate an entailment question (Bowman et al., 2015).
For example, werewolf("Quirrell") maps to the question, “Is the following statement true or
false? Quirell was a werewolf.” Again, we call an LLM to answer this question (see LLM in Fig. 2),
leveraging S1 and S2 in the same way as during fact extraction. A statement that evaluates to true
is added to the knowledge base as a fact; a statement that evaluates to false is simply ignored (and
nothing is added to knowledge base). In our running example, the only fact added to the knowledge
base at step t = 1 is werewolf("Lupin") (see green text in Fig. 2).

Output. Finally, the output of SLICE is the updated set of partial solutions, which we obtain by
querying the knowledge base with the query (q1, . . . , qt). We denote the result of this query St.

4.2 SLICE CHAINING

To execute the full Prolog query Q, we start with an empty state S0 = ∅ and sequentially apply
SLICE:

St = SLICE(qt, St−1, C) for t = 1, 2, . . . , T.

After executing the current step and updating the state with SLICE, we instantiate the next query
with the resolved variables and solve it again with SLICE. This iterative execution produces our final
state Sfinal = ST with all variables resolved. The answer to the original question corresponds to the
value of the target variable τ in Sfinal. In our running example, Sfinal = [{Y : "Tonks"}], yielding
"Tonks" as the final answer.

Beyond the final answer, this process generates three key components for the subsequent reasoning
phase:

• A collection of retrieved passages from each SLICE execution (in the RAG setting);
• A grounded knowledge base containing all corpus-derived facts necessary to derive the answer;
• Natural language notes that verbalize each Prolog fact using statement templates.

4.3 COMBINING SYMBOLIC AND NATURAL LANGUAGE REASONING

Having completed the structured Prolog resolution, we now leverage its outputs to initialize a final
CoT reasoning step (see Fig. 1, right). We construct a comprehensive prompt containing: (i) the
natural language notes derived from Prolog facts via statement templates, providing a structured
reasoning trace; (ii) the Prolog-derived answer, serving as a strong reasoning anchor; and (iii) all
retrieved passages from the sub-query executions; and (iv) all retrieved passages from the original
question, supplying the necessary factual context. This rich initialization guides the LLM to produce
a coherent final answer that benefits from both the logical rigor of the Prolog execution and the natural
language understanding capabilities of the LLM. By grounding the CoT reasoning in this structured
context, we prevent the model from diverging into irrelevant reasoning paths while maintaining the
flexibility to generate natural, contextually appropriate responses.

5 MAIN RESULTS

We consider two settings: (1) open-domain question-answering, when the corpus is too large to fit
within the model’s context window, and (2) in-context question-answering, when the corpus does

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Accuracy of RAG methods on open-domain QA. We report mean ± 1 standard error
for exact match (EM) and F1 score across 500 questions from each dataset. For each dataset and
metric pair, we perform a repeated measures ANOVA followed by Tukey BSD with α = 0.05 to test
significance of paired differences between methods. Bold indicates that no other method performs
significantly better.

HotpotQA 2WikiMultiHopQA MuSiQue
Method EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑
Standard RAG 38.8 ± 2.2 52.6 ± 2.0 37.2 ± 2.2 40.4 ± 2.1 11.0 ± 1.4 18.1 ± 1.5
Self-Ask 19.2 ± 1.8 28.0 ± 1.8 15.8 ± 1.6 21.8 ± 1.7 5.6 ± 1.0 9.1 ± 1.2
IRCoT 40.4 ± 2.2 52.9 ± 2.0 32.4 ± 2.1 42.5 ± 2.0 17.6 ± 1.7 24.5 ± 1.8
Memento (Ours) 42.0 ± 2.2 59.1 ± 1.9 49.4 ± 2.2 57.5 ± 2.1 15.2 ± 1.6 25.7 ± 1.7

Table 2: Efficiency of RAG methods on open-domain QA. We report mean ± 1 standard error
number of calls to the retriever (BM25) across 500 questions from each dataset. Bold indicates the
method with the lowest number of calls.

Method HotpotQA 2WikiMultiHopQA MuSiQue
Self-Ask 3.36 ± 0.04 3.44 ± 0.04 3.29 ± 0.05
IRCoT 3.07 ± 0.03 3.47 ± 0.03 3.51 ± 0.03
Memento (Ours) 3.82 ± 0.22 3.14 ± 0.04 4.42 ± 0.17

fit within the model’s context window. The open-domain and in-context QA settings are also known
as the fullwiki and distractor settings in the literature (Yang et al., 2018). To overcome the context
limitations in the open-domain QA setting, we use retrieval augmented generation (RAG) to first
fetch relevant passages before generation. Since π-CoT is a prompting method, we require a strong
instruction-tuned model and employ the Llama-3.3-70B-Instruct model from Grattafiori et al. (2024).
We also provide results utilizing the Deepseek-R1-Distill-Qwen-32B model from (Guo et al., 2025)
in the in-context question-answering setting.

5.1 OPEN-DOMAIN QUESTION-ANSWERING

We evaluate π-CoT on three multi-hop QA datasets: (1) HotpotQA from Yang et al. (2018), (2)
2WikiMultiHopQA from Ho et al. (2020), and (3) MuSiQue from Trivedi et al. (2022). Since these
datasets are curated from Wikipedia, we can assess Prolog’s effectiveness in handling real-world
knowledge. For our retrieval setup, we use the preprocessed December 18, 2020 corpus from
FlashRAG (Jin et al., 2025b), which contains 20M chunks each of size 100 words, and use BM25
(Robertson et al., 2009) as our retriever. We provide supplementary experiment details in Sec. B.1.

Tab. 1 compares π-CoT to standard RAG and two RAG baselines that also rely on decomposition to
handle multi-hop reasoning: (1) Self-Ask from Asai et al. (2023) and (2) IRCoT from (Trivedi et al.,
2023). Among all training-free methods in the FlashRAG repository, IRCoT was the top-performing
training-free method on HotpotQA and the second top-performing method on 2WikiMultiHopQA at
the time of writing. On HotpotQA, standard RAG, IRCoT, and π-CoT are comparable in terms of
accuracy, with neither method significantly outperforming the other two as determined by a Tukey
BSD test with α = 0.05. On 2WikiMultiHopQA, π-CoT significantly outperforms all other methods
in terms of exact match and F1 score. On MuSiQue, IRCoT and π-CoT achieve comparable accuracy.
Despite requiring only a single retriever call, standard RAG achieves surprisingly competitive
accuracy on HotpotQA. Min et al. (2019); Chen and Durrett (2019) reveal that multi-hop reasoning is
not required for many examples in HotpotQA, possibly explaining our findings. Notably, we find
that π-CoT never performs worse than standard RAG, and does significantly better in the case of
2WikiMultiHopQA and MuSiQue. In terms of efficiency, π-CoT uses a similar number of retriever
calls as IRCoT and Self-Ask, as shown by Tab. 2.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comparison to the state-of-the-art OpenIE method. We report exact match (EM) and
F1 on 1000 random samples from the splits provided by Gutiérrez et al. (2025, Tab. 2). We use
Llama-3.3-70B-Instruct for generation and NV-Embed-v2 for embedding passages with k = 5 per
query.

HotpotQA 2WikiMultiHopQA MuSiQue
Method EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑

Standard RAG 61.2 74.5 58.3 63.2 34.9 44.8
HippoRAG 2 (Gutiérrez et al., 2025) 62.6 75.3 65.5 72.0 37.6 49.5
π-CoT (Ours) 60.3 76.8 71.1 79.6 38.5 56.2

Next, we compare π-CoT to HippoRAG 2, an OpenIE-augmented retrieval method that outperforms
GraphRAG (Edge et al., 2024), RAPTOR (Sarthi et al., 2024), and LightRAG (Guo et al., 2024) on
multi-hop QA. We follow the experimental setup of Gutiérrez et al. (2025, Tab. 2), which uses the
NV-Embed-v2 embedding model of Lee et al. (2024) for retrieval. Instead of using full Wikipedia as
the corpus, this experiment uses 9811 passages for HotpotQA, 6119 passages for 2WikiMultiHopQA,
and 11656 passages for MuSiQue. Tab. 3 reports mean exact match and F1 score on the provided
1000 samples for each dataset. These results show π-CoT outperforming both Standard RAG and
HippoRAG 2, demonstrating that offline fact extraction is not necessary for good accuracy on
multi-hop question-answering tasks.

5.2 IN-CONTEXT QUESTION-ANSWERING

HotpotQA 2WikiMultiHopQA MuSiQue
Method EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑
Llama-3.3-70B-Instruct
CoT 62.4 ± 2.2 77.4 ± 1.6 76.4 ± 1.9 83.9 ± 1.5 51.2 ± 2.2 63.7 ± 1.9
π-CoT (Ours) 58.0 ± 2.2 77.7 ± 1.5 72.8 ± 2.0 82.5 ± 1.5 46.4 ± 2.2 63.1 ± 1.9

DeepSeek-R1-Distill-Qwen-32B
CoT 57.0 ± 2.2 74.2 ± 1.7 75.2 ± 1.9 82.9 ± 1.6 45.8 ± 2.2 57.3 ± 2.0
π-CoT (Ours) 56.8 ± 2.2 75.2 ± 1.6 74.6 ± 1.9 84.2 ± 1.5 46.0 ± 2.2 59.6 ± 2.0

(a) Real-world (Wikipedia-based) multi-hop QA datasets

PW-S PW-M
Method EM ↑ F1 ↑ EM ↑ F1 ↑
Llama-3.3-70B-Instruct
CoT 52.8 ± 1.3 71.9 ± 1.0 27.5 ± 1.2 41.7 ± 1.1
π-CoT (Ours) 78.8 ± 1.1 91.4 ± 0.6 31.1 ± 1.2 56.9 ± 1.0

DeepSeek-R1-Distill-Qwen-32B
CoT 54.4 ± 1.3 75.6 ± 0.9 17.5 ± 1.0 28.0 ± 1.0
π-CoT (Ours) 82.7 ± 1.0 88.2 ± 0.8 18.4 ± 1.0 31.1 ± 1.0

(b) Synthetic multi-hop QA datasets

Table 4: Accuracy on in-context QA. We report exact match (EM) and F1 score on HotpotQA
(HP), 2WikiMultiHopQA (2Wiki), MuSiQue (MSQ), PhantomWiki with a corpus size of 50 articles
(PW-S), and PhantomWiki with a corpus size of 500 articles (PW-M). Bold indicates that π-CoT
significantly outperforms CoT (p < 0.05). Specifically, we use a paired samples t-test for each
combination of dataset and metric.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1 3 5 7 9

Reasoning difficulty

0.25

0.5

0.75

1

F1

CoT

-CoT

Llama-3.3-70B-Instruct
DeepSeek-R1-Distill-Qwen-32B

Figure 3: F1 score vs. difficulty, as measured by
number of reasoning steps. We use the synthetic
PW-S benchmark from Gong et al. (2025) and
display mean ± 1 standard error. For each model,
we evaluate CoT and π-CoT prompting.

When all the necessary information fits
in the context window of the model, a
natural question is when does formal
reasoning (via π-CoT) benefit reasoning
in natural-language (via CoT)?. To investigate
this, we employ the distractor variants of
HotpotQA, 2WikiMultiHopQA, and MuSiQue,
where the gold passages are presented
in-context alongside a small number of
irrelevant (“distractor”) passages. We also
include two versions of the PhantomWiki
benchmark from Gong et al. (2025): PW-S
and PW-M. Unlike the other three datasets
that are curated from Wikipedia, PhantomWiki
generates challenging multi-hop questions from
fictional universes to ensure contamination-free
LLM evaluation. We provide supplementary
experiment details in Sec. B.2.

Tab. 4(a) shows that on HotpotQA,
2WikiMultiHopQA, and MuSiQue, there
is no significant difference in accuracy between
CoT and π-CoT. Providing the gold passages to
model makes the task considerably easier than
considering all of Wikipedia (Min et al., 2019).
Thus, Llama-3.3-70B-Instruct with CoT may be
hitting a performance ceiling. On PW-S, Llama-3.3-70B-Instruct with CoT achieves an F1 score of
71.9 ± 1.0%. This increases to 91.4 ± 0.6% with π-CoT. On PW-M, which has a corpus 10 times the
size of PW-S, the performance of Llama-3.3-70B-Instruct with CoT drops to 41.7 ± 1.1% F1. We
posit this drop is mainly due to the inherent challenges of long-context retrieval. On PW-M, π-CoT
significantly boosts the F1 score to 56.9 ± 1.0 F1—a relative gain of 36%! In Tab. 4(b), we report
similar findings using Deepseek-R1-Distill-Qwen-32B as the language model.

Finally, to understand where the gains on PW-S and PW-M come from, we plot accuracy versus the
ground-truth difficulty level that comes associated with each question. Gong et al. (2025) defines
this difficulty level as the number of hops required to answer the question. According to Fig. 3, the
accuracy of π-CoT and CoT is similar for questions with low difficulty. However, π-CoT diverges
from CoT as the difficulty increases. Since higher difficulty questions require traversing more
reasoning paths than lower difficulty questions, our results show that π-CoT is better able to keep
track of multi-hop, multi-branch reasoning than CoT.

6 CONCLUSIONS & FUTURE WORK

In this work, we investigate how formal reasoning can guide reasoning in natural language. We
introduce π-CoT, a novel prompting strategy that initializes the context of an LLM with the
intermediate outputs of Prolog-guided execution. Our results show that even strong LLMs like
Llama-3.3-70B-Instruct and Deepseek-R1-Distill-Qwen-32B benefit from being guided through
structured reasoning steps, especially on complex, multi-step tasks. More broadly, our work
demonstrates the potential of bringing explicit planning and state tracking into language model
behavior.

Despite being a purely prompting-based strategy, π-CoT has potential implications for training future
language models to serve as agents that can piece together knowledge across large, dynamic corpora.
Inspired by DeepSeek R1 (Guo et al., 2025), significant effort has been made to couple reasoning
with retrieval using reinforcement learning (Li et al., 2025; Jin et al., 2025a; Song et al., 2025). An
interesting future direction is training language models to generate structured queries instead. π-CoT
provides a way to execute these queries without a pre-existing database. Some steps in π-CoT may
not even require calling an LLM, if the information resides directly in a pre-existing database. Thus,
enabling π-CoT to leverage both unstructured and structured data is a natural next step.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work adheres to the ICLR Code of Ethics, and does not pose any societal, personal, or
organizational risks.

REPRODUCIBILITY STATEMENT

To encourage reproducibility, we use free and open-source software and LLMs. We also include
details of our experimental setups in Sec. B. We report sample sizes, standard errors, and random
seeds where possible.

REFERENCES

Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D Manning. Leveraging linguistic
structure for open domain information extraction. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 344–354, 2015. (Cited on page 2.)

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference on
Learning Representations, 2023. (Cited on pages 1 and 7.)

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. The snli corpus.
2015. (Cited on page 6.)

Jifan Chen and Greg Durrett. Understanding dataset design choices for multi-hop reasoning. arXiv
preprint arXiv:1904.12106, 2019. (Cited on page 7.)

Xinyun Chen, Chen Liang, Adams Wei Yu, Denny Zhou, Dawn Song, and Quoc V Le. Neural
symbolic reader: Scalable integration of distributed and symbolic representations for reading
comprehension. In International Conference on Learning Representations, 2019. (Cited on page 2.)

William F Clocksin and Christopher S Mellish. Programming in PROLOG. Springer Science &
Business Media, 2003. (Cited on page 2.)

Alain Colmerauer and Philippe Roussel. The birth of prolog. In History of programming
languages—II, pages 331–367. 1996. (Cited on page 3.)

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36:
70293–70332, 2023. (Cited on pages 1 and 2.)

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130, 2024.
(Cited on pages 3 and 8.)

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023. (Cited on page 2.)

Albert Gong, Kamilė Stankevičiūtė, Chao Wan, Anmol Kabra, Raphael Thesmar, Johann Lee,
Julius Klenke, Carla P Gomes, and Kilian Q Weinberger. Phantomwiki: On-demand datasets for
reasoning and retrieval evaluation. In Forty-second International Conference on Machine Learning,
2025. (Cited on page 9.)

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024. (Cited on page 7.)

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu,
Ruoyu Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through
reinforcement learning. Nature, 645(8081):633–638, 2025. (Cited on pages 7 and 9.)

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast
retrieval-augmented generation. arXiv preprint arXiv:2410.05779, 2024. (Cited on pages 3 and 8.)

Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory:
Non-parametric continual learning for large language models. In Forty-second International
Conference on Machine Learning, 2025. (Cited on pages 3 and 8.)

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th International
Conference on Computational Linguistics, pages 6609–6625, 2020. (Cited on page 7.)

Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag:
Neurobiologically inspired long-term memory for large language models. Advances in Neural
Information Processing Systems, 37:59532–59569, 2024. (Cited on page 3.)

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025a. (Cited on pages 2 and 9.)

Jiajie Jin, Yutao Zhu, Zhicheng Dou, Guanting Dong, Xinyu Yang, Chenghao Zhang, Tong Zhao,
Zhao Yang, and Ji-Rong Wen. Flashrag: A modular toolkit for efficient retrieval-augmented
generation research. In Companion Proceedings of the ACM on Web Conference 2025, pages
737–740, 2025b. (Cited on page 7.)

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive nlp. arXiv preprint arXiv:2212.14024, 2022. (Cited on page 2.)

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. In The
Eleventh International Conference on Learning Representations, 2023. (Cited on pages 1 and 2.)

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022. (Cited on page 1.)

Robert Kowalski and Steve Smoliar. Logic for problem solving. ACM SIGSOFT Software Engineering
Notes, 7(2):61–62, 1982. (Cited on pages 1 and 2.)

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems principles,
pages 611–626, 2023. (Cited on page 15.)

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models.
In The Thirteenth International Conference on Learning Representations, 2024. (Cited on page 8.)

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in neural information processing systems,
33:9459–9474, 2020. (Cited on page 2.)

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025. (Cited on pages 2 and 9.)

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024. (Cited on page 1.)

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Robert Lo, Abishek Sridhar, Frank F Xu, Hao Zhu, and Shuyan Zhou. Hierarchical prompting
assists large language model on web navigation. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 10217–10244, 2023. (Cited on page 1.)

John McCarthy et al. Programs with common sense. RLE and MIT computation center Cambridge,
MA, USA, 1960. (Cited on page 2.)

Sewon Min, Eric Wallace, Sameer Singh, Matt Gardner, Hannaneh Hajishirzi, and Luke Zettlemoyer.
Compositional questions do not necessitate multi-hop reasoning. arXiv preprint arXiv:1906.02900,
2019. (Cited on pages 1, 7, and 9.)

Pruthvi Patel, Swaroop Mishra, Mihir Parmar, and Chitta Baral. Is a question decomposition unit
all we need? In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 4553–4569, 2022. (Cited on page 1.)

Kevin Pei, Ishan Jindal, Kevin Chen-Chuan Chang, ChengXiang Zhai, and Yunyao Li. When to use
what: An in-depth comparative empirical analysis of openie systems for downstream applications.
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 929–949, 2023. (Cited on page 2.)

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages 5687–5711, 2023. (Cited on pages 1 and 2.)

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009. (Cited on page 7.)

John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM (JACM), 12(1):23–41, 1965. (Cited on page 2.)

Stuart Russell, Peter Norvig, and Artificial Intelligence. A modern approach. Artificial Intelligence.
Prentice-Hall, Egnlewood Cliffs, 25(27):79–80, 1995. (Cited on pages 2 and 3.)

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Manning.
Raptor: Recursive abstractive processing for tree-organized retrieval. In The Twelfth International
Conference on Learning Representations, 2024. (Cited on pages 3 and 8.)

Herbert A Simon and Allen Newell. Human problem solving: The state of the theory in 1970.
American psychologist, 26(2):145, 1971. (Cited on page 2.)

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning.
arXiv preprint arXiv:2503.05592, 2025. (Cited on pages 2 and 9.)

Leon Sterling and Ehud Y Shapiro. The art of Prolog: advanced programming techniques. MIT
press, 1994. (Cited on page 3.)

Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
11888–11898, 2023. (Cited on page 2.)

Hieu Tran, Zonghai Yao, Junda Wang, Yifan Zhang, Zhichao Yang, and Hong Yu. Rare:
Retrieval-augmented reasoning enhancement for large language models. arXiv preprint
arXiv:2412.02830, 2024. (Cited on page 2.)

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022. (Cited on page 7.)

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
with chain-of-thought reasoning for knowledge-intensive multi-step questions. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 10014–10037, 2023. (Cited on pages 2, 7, and 15.)

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Liang Wang, Haonan Chen, Nan Yang, Xiaolong Huang, Zhicheng Dou, and Furu Wei.
Chain-of-retrieval augmented generation. ArXiv, abs/2501.14342, 2025. URL https://api.
semanticscholar.org/CorpusID:275906944. (Cited on page 2.)

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022. (Cited on page 1.)

Leon Weber, Pasquale Minervini, Jannes Münchmeyer, Ulf Leser, and Tim Rocktäschel. Nlprolog:
Reasoning with weak unification for question answering in natural language. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, 2019. (Cited on page 2.)

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022. (Cited on pages 1 and 2.)

Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. Swi-prolog. Theory and
Practice of Logic Programming, 12(1-2):67–96, 2012. (Cited on page 3.)

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gardner, Yoav Goldberg, Daniel Deutch, and Jonathan
Berant. Break it down: A question understanding benchmark. Transactions of the Association for
Computational Linguistics, 8:183–198, 2020. (Cited on page 1.)

Katherine Wu and Yanhong A Liu. Lp-lm: No hallucinations in question answering with logic
programming. arXiv preprint arXiv:2502.09212, 2025. (Cited on page 2.)

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 2369–2380, 2018. (Cited on page 7.)

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. (Cited on pages 1 and 2.)

Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
and Danqi Chen. Helmet: How to evaluate long-context language models effectively and thoroughly.
arXiv preprint arXiv:2410.02694, 2024. (Cited on page 1.)

John M Zelle and Raymond J Mooney. Learning to parse database queries using inductive
logic programming. In Proceedings of the national conference on artificial intelligence, pages
1050–1055, 1996. (Cited on page 3.)

Luke S Zettlemoyer and Michael Collins. Learning to map sentences to logical form: Structured
classification with probabilistic categorial grammars. arXiv preprint arXiv:1207.1420, 2012. (Cited
on page 3.)

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. arXiv preprint arXiv:2210.03493, 2022. (Cited on page 1.)

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In The Eleventh International Conference on Learning
Representations, 2023. (Cited on pages 1 and 2.)

Shaowen Zhou, Bowen Yu, Aixin Sun, Cheng Long, Jingyang Li, Haiyang Yu, Jian Sun, and Yongbin
Li. A survey on neural open information extraction: Current status and future directions. arXiv
preprint arXiv:2205.11725, 2022. (Cited on page 2.)

13

https://api.semanticscholar.org/CorpusID:275906944
https://api.semanticscholar.org/CorpusID:275906944


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROMPT TEMPLATES

A.1 PROLOG QUERY AND DEFINITIONS GENERATION

We use the following prompt template for the Prolog query generation of Sec. 4:

You will be provided a question. Your goal is to devise a
Prolog query to answer this question. Your response must end in
"**Query:** <query>\n**Target:** <target>\n**Definition:**
<definition>", where <query> is a Prolog query that when
executed, will yield the answer to the question, <target>
is the target variable in the Prolog query to be returned
as the final answer, and <definition> defines the semantic
meaning of predicates in the Prolog query.

Here are some examples:
(START OF EXAMPLES)
{examples}
(END OF EXAMPLES)

Question: {question}
Answer:

To form the prompt, examples is replaced with few-shot examples specific to each dataset and
question is replaced with the natural-language question.

A.2 CHAIN-OF-THOUGHT FACT EXTRACTION AND VERIFICATION

You are given the following evidence:
(BEGIN EVIDENCE)
{{evidence}}
(END EVIDENCE)

You will be provided a question. Your response must end in the
following sentence: The answer is <answer>.
Here, <answer> must be either a single answer or a
list of answers separated by ’{constants.answer_sep}’.

Here are some examples:
(START OF EXAMPLES)
{{examples}}
(END OF EXAMPLES)

Question: {{question}}
Answer:

To form the prompt, evidence is replaced by relevant passages, examples is replaced with
few-shot examples specific to each dataset, and question is replaced with the natural-language
question (in the case of fact extraction) or entailment question (in the case of fact verification). To
ensure that the answer can be added to the Prolog database, our few-shot examples format <answer>
as Prolog literals.

B SUPPLEMENTARY EXPERIMENT DETAILS

B.1 FULLWIKI EXPERIMENT DETAILS

Retrieval setup. We use the wiki18_100w corpus from https://huggingface.co/
datasets/RUC-NLPIR/FlashRAG_datasets and use the code from https://github.

14

https://huggingface.co/datasets/RUC-NLPIR/FlashRAG_datasets
https://huggingface.co/datasets/RUC-NLPIR/FlashRAG_datasets
https://github.com/RUC-NLPIR/FlashRAG
https://github.com/RUC-NLPIR/FlashRAG
https://github.com/RUC-NLPIR/FlashRAG


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

com/RUC-NLPIR/FlashRAG to build our BM25 index. We allow k = 14, k = 16, and k = 8
chunks per retrieval call for HotpotQA, 2WikiMultiHopQA, and MuSiQue, respectively.

Baseline implementations. For standard RAG, we use the Python implementation of
CoTRAGAgent from https://github.com/kilian-group/phantom-wiki and write
few-shot examples for each dataset. For Self-Ask, we use the Python implementation and
few-shot examples from https://github.com/RUC-NLPIR/FlashRAG. For IRCoT,
we use the Python implementation from https://github.com/RUC-NLPIR/FlashRAG
and the GPT3 (code-davincii-002) few-shot examples from https://github.com/
StonyBrookNLP/ircot (see also (Trivedi et al., 2023, App. G)). We set the maximum iterations
for Self-Ask and IRCoT to be 4.

LLM configuration. We run Llama-3.3-70B-Instruct on 8 A6000s using vLLM (Kwon et al., 2023)
and use greedy decoding with maximum generation tokens 4096. We use the full 128K context
length.

B.2 DISTRACTOR EXPERIMENT DETAILS

LLM configuration. For the Llama-3.3-70B-Instruct results, we use vLLM running on 8 A6000s and
use greedy decoding with maximum generation tokens 4096. For the Deepseek-R1-Distill-Qwen-32B
results, we use vLLM running on 6 A6000s and use sampling temperature 0.6, top-p 0.95, and max
generation tokens 16384. We use the full 128K context length for both models.

PhantomWiki dataset. For the experiment of Tab. 4(b), we use the code at https://github.
com/kilian-group/phantom-wiki to generate two synethic multi-hop QA datasets. Tab. 5
lists the configurations for PW-S and PW-M. Each dataset has 1500 questions.

Table 5: Configurations for PhantomWiki dataset generation.

Parameter PW-S PW-M
Question Depth 20 20

Number of family trees 10 100
Max family tree size 50 50

Max family tree depth 20 20
Mode Easy Easy

Number of questions per template 10 10
Seeds 1, 2, 3 1, 2 ,3

B.3 LLM USAGE STATEMENT

Large language models were used for proofreading, revising, and literature search. All claims and
arguments were drafted and verified by the authors.

15

https://github.com/RUC-NLPIR/FlashRAG
https://github.com/RUC-NLPIR/FlashRAG
https://github.com/RUC-NLPIR/FlashRAG
https://github.com/RUC-NLPIR/FlashRAG
https://github.com/RUC-NLPIR/FlashRAG
https://github.com/kilian-group/phantom-wiki
https://github.com/RUC-NLPIR/FlashRAG
https://github.com/RUC-NLPIR/FlashRAG
https://github.com/StonyBrookNLP/ircot
https://github.com/StonyBrookNLP/ircot
https://github.com/kilian-group/phantom-wiki
https://github.com/kilian-group/phantom-wiki

	Introduction
	Related Works
	Preliminaries
	Method: π-CoT — Prolog-Initialized Chain-of-Thought
	Single-Step Execution with SLICE
	SLICE Chaining
	Combining Symbolic and Natural Language Reasoning

	Main Results
	Open-Domain Question-Answering
	In-Context Question-Answering

	Conclusions & Future Work
	Prompt Templates
	Prolog Query and Definitions Generation
	Chain-of-Thought Fact Extraction and Verification

	Supplementary Experiment Details
	Fullwiki experiment details
	Distractor Experiment Details
	LLM Usage Statement


