
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

π-COT: PROLOG-INITIALIZED CHAIN-OF-THOUGHT
PROMPTING FOR MULTI-HOP QUESTION-ANSWERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Chain-of-Thought (CoT) prompting significantly enhances large language models’
(LLMs) problem-solving capabilities, but still struggles with complex multi-hop
questions, often falling into circular reasoning patterns or deviating from the logical
path entirely. This limitation is particularly acute in retrieval-augmented generation
(RAG) settings, where obtaining the right context is critical. We introduce
Prolog-Initialized Chain-of-Thought (π-CoT), a novel prompting strategy that
combines logic programming’s structural rigor with language models’ flexibility.
π-CoT reformulates multi-hop questions into Prolog queries decomposed as
single-hop sub-queries. These are resolved sequentially, producing intermediate
artifacts, with which we initialize the subsequent CoT reasoning procedure.
Extensive experiments demonstrate that π-CoT significantly outperforms standard
RAG and in-context CoT on multi-hop question-answering benchmarks.

1 INTRODUCTION

Chain-of-thought (CoT) reasoning has emerged as a powerful paradigm for enhancing the
problem-solving capabilities of large language models, substantially improving performance on
arithmetic, commonsense, and symbolic reasoning tasks (Wei et al., 2022; Kojima et al., 2022). By
encouraging models to articulate their reasoning process through intermediate steps, CoT enables
more systematic and interpretable problem-solving approaches (Zhang et al., 2022; Wang et al., 2022).
However, as the complexity of reasoning tasks increases—particularly in multi-hop scenarios where
multiple interconnected inferences must be made—CoT systems have been observed to generalize
poorly (Dziri et al., 2023) and become trapped in circular reasoning patterns (Lo et al., 2023; Yao
et al., 2023).

This limitation becomes especially pronounced in retrieval-augmented generation (RAG) systems,
where CoT excels at single-hop questions that require straightforward document retrieval and
reasoning, but struggles significantly with multi-hop queries that demand the integration of
information across multiple sources and reasoning steps (Asai et al., 2023). The fundamental
challenge lies in CoT’s inherent trade-off: while its flexibility allows for creative and adaptive
reasoning, this same flexibility can lead to unstructured exploration that fails to maintain logical
consistency across complex reasoning chains.

Recent work has explored decomposition-based approaches that break multi-hop questions into
manageable single-hop questions (Khot et al., 2023; Zhou et al., 2023; Min et al., 2019).
However, even with decomposition, critical gaps remain: models struggle to generate high-quality
decompositions without supervision (Patel et al., 2022; Wolfson et al., 2020), fail at reliable fact
composition across steps (Press et al., 2023), and lose track of intermediate state in long reasoning
chains (Yen et al., 2024; Liu et al., 2024). These failures suggest the need for a more principled
reasoning framework that can enforce structure while maintaining flexibility.

In contrast to natural-language reasoning pioneered by CoT, the structured reasoning paradigm has
been extensively studied for decades in artificial intelligence and logic programming (Kowalski and
Smoliar, 1982; Russell et al., 1995; McCarthy et al., 1960; Simon and Newell, 1971). Prolog, a
declarative programming language explicitly designed for structured reasoning tasks, exemplifies
this approach through its systematic query resolution mechanisms and logical rule-based inference
(Robinson, 1965; Kowalski and Smoliar, 1982; Clocksin and Mellish, 2003). While Prolog’s rigid

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

structure ensures logical consistency, it lacks the flexibility to handle ambiguous natural language,
cannot easily incorporate unstructured text from documents, and requires precise logical formulations
that may not capture the nuanced reasoning needed for real-world questions.

Recognizing that Prolog and CoT possess complementary strengths and weaknesses, we introduce
Prolog-Initialized Chain-of-Thought (π-CoT), a novel prompting strategy that combines the
structural rigor of logic programming with the contextual flexibility of natural language reasoning.
Our approach begins by algorithmically reformulating complex multi-hop reasoning questions into
equivalent Prolog queries, where each query is deliberately decomposed into a sequence of single-hop
sub-queries. These sub-queries are then resolved systematically: each is translated into natural
language and posed to a RAG (Lewis et al., 2020; Gao et al., 2023) or in-context CoT system, which
retrieves relevant documents and generates answers. The resulting answers are translated back into
Prolog facts and incorporated into the evolving knowledge base.

The key insight underlying π-CoT is that by structuring the reasoning process through Prolog’s
query resolution mechanism, we ensure that the retrieved context remains highly relevant. Rather
than allowing the model to freely explore the reasoning space, potentially losing track of relevant
information or pursuing irrelevant tangents (Yao et al., 2023; Dziri et al., 2023), our approach
maintains a structured trajectory that systematically builds toward the final answer.

At the completion of the Prolog resolution process, we concatenate the original question, all retrieved
documents, and the structured Prolog derivation to create a comprehensive context that initializes
the final CoT reasoning step. Because most of the heavy-lifting already happens in the initialization
process, the final CoT reasoning is far simpler and more successful.

Through extensive experimental evaluation, we demonstrate that π-CoT is on par or better than
traditional RAG and in-context systems on multi-hop question-answering (QA) benchmarks, including
HotpotQA, 2WikiMultiHopQA, MuSiQue, and PhantomWiki. Our results suggest that the principled
integration of symbolic reasoning structures with neural language models offers a promising direction
for developing more reliable and interpretable reasoning systems.

2 RELATED WORKS

Decomposition for multi-hop question-answering. Breaking down a complex problem into smaller,
manageable parts is a common technique in LLM prompting (Zhou et al., 2023; Khot et al., 2023;
Wei et al., 2022). For open-domain QA, Press et al. (2023) prompt the model to generate follow-up
questions, and Trivedi et al. (2023) take each new sentence in a CoT as input to the retriever.
Importantly, the language model decomposes the question in natural-language steps. Recent works
have also explored the use of explicit plans, usually in the form of Python programs (Surís et al.,
2023; Khattab et al., 2022). While we do not provide a direct comparison due to different model sizes
and/or retrieval setups, Monte Carlo Tree Search (Tran et al., 2024), test-time scaling (Wang et al.,
2025), and reinforcement learning methods (Li et al., 2025; Jin et al., 2025a; Song et al., 2025) are
emerging as promising approaches to open-domain QA.

Improving language model reasoning with Prolog. Many prior works generate Prolog from natural
language to improve arithmetic reasoning or multi-hop question-answering. Wu and Liu (2025);
Vakharia et al. (2024); Borazjanizadeh and Piantadosi (2024) translate questions into Prolog, then
query a knowledge base. However, they assume the knowledge base has already been populated
with facts. Therefore, they do not address retrieval from unstructured documents. Tan et al. (2024);
Yang et al. (2024) utilize Prolog as a source of supervised training signals for math and logical
reasoning. Weber et al. (2019) propose a weak unification strategy in Prolog based on semantic
similarity. However, their approach requires training and uses pre-defined predicates extracted from
the training text. The method closest to our work is that of Chen et al. (2019). They train an LSTM
“programmer” to generate programs, which are executed using a BERT-based “reader” to produce
answers. In this work, we contribute a training-free strategy and demonstrate its effectiveness with
recent LLMs like Llama-3.3-70B-Instruct and Deepseek-R1-Distill-Qwen-32B, using both sparse
and dense retrievers. The results of Chen et al. (2019) are also limited by the strictness of a pure
Prolog execution.

Fact extraction and summarization. Extracting knowledge graph triples from unstructured text
is a classical problem in NLP, also known as open information extraction (OpenIE) (Angeli et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2015; Pei et al., 2023; Zhou et al., 2022). To enhance conventional retrieval techniques, LightRAG
(Guo et al., 2024) and HippoRAG (Jimenez Gutierrez et al., 2024; Gutiérrez et al., 2025) demonstrate
the effectiveness of fact extraction and GraphRAG (Edge et al., 2024) and RAPTOR (Sarthi et al.,
2024) propose methods for clustering and summarization. Among these methods, HippoRAG 2
from Gutiérrez et al. (2025) performs the best on HotpotQA, 2WikiMultiHopQA, and MuSiQue. We
provide a direct comparison of our method to HippoRAG 2 in the results section below.

3 PRELIMINARIES

Dating back to the 1970s, Prolog1 is a powerful way to represent factual knowledge and perform
logical inference (Colmerauer and Roussel, 1996; Russell et al., 1995; Sterling and Shapiro, 1994).
Solutions in Prolog are verifiable and compositional, making it particularly well-suited for multi-hop
question answering where intermediate steps must be chained reliably.

Representing factual knowledge. Consider the the following English sentence about Harry Potter
(Rowling, 1997):

“Lockhart is a Defense against the Dark Arts teacher at Hogwarts.”

This statement can be represented as the following Prolog fact:
DADA_teacher("Lockhart", "Hogwarts").

In Prolog, DADA_teacher is a predicate and “Lockhart” and “Hogwarts” are assignments. A
large amount of real-world knowledge can be encoded in this structured, relational form. In fact, as
of early 2025, Wikidata contained over 1.65 billion such knowledge triples.2 Throughout the paper,
we refer to a collection of Prolog facts as a knowledge base.

Multi-hop questions as Prolog queries. Prolog doesn’t just store facts—it also allows us to query
them. A Prolog query comprises one or more predicates with unassigned variables and asks whether
any satisfying variable assignment exists. Consider the following example:

“Who is the wife of the Defense against the Dark Arts teacher at Hogwarts
who is also a werewolf?”

(1)

One way of answering this question involves first identifying all the Defense against the Dark Arts
teachers at Hogwarts, then filtering for those who are also werewolves, and finally retrieving the wives
of the selected people. Each step depends on resolving the previous step(s), and the intermediate
space of possible answers can be large. (Note that J.K. Rowling’s books mention seven Defense
against the Dark Arts teachers at Hogwarts, so a language model would have to consider seven
separate reasoning paths to answer the question.) A concise way of expressing question (1) is the
following Prolog query:

DADA_teacher(X, "Hogwarts"),

werewolf(X),

wife(X, Y),

(2)

with Y representing the answer. Translating questions in natural language to structured queries is a
classical problem in the community (Zelle and Mooney, 1996; Zettlemoyer and Collins, 2012).

A solution to a Prolog query is a set of variable assignments. Assuming we have a
pre-populated knowledge base, the solutions are obtained by executing the query. For example,
a knowledge base containing the facts DADA_teacher("Lockhart", "Hogwarts"),
werewolf("Lupin"), and wife("Lupin", "Tonks") yields the following solution to
query (2):

X = "Lupin",

Y = "Tonks".

1We specifically use the SWI-Prolog implementation (Wielemaker et al., 2012) of Prolog due to its rich
support of aggregation and if-then-else logic, which allows us to resolve questions like “How many Defense
against the Dark Arts teachers have been at Hogwarts?”.

2https://en.wikipedia.org/wiki/Wikidata

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 METHOD: π-COT — PROLOG-INITIALIZED CHAIN-OF-THOUGHT

SLICE
Passages

Y = [...]

q3 S2

SLICE
Passages

X = [...]

q2 S1

SLICE

Passages

X = [...]

q1 S0=ø

Prolog Guidance

Prolog Output:

Let’s think step by step...

Y = “Tonks”

Notes

Passages

Notes

Passages

Notes

Passages

Question:

?

Who is the wife of
the Defense Against
the Dark Arts
teacher at Hogwarts
who is also a
werewolf

LLM

Answer: Tonks

LLM Context

Prolog Query

werewolf(X)

q1
q2
q3

DADA_teacher(X,“Hogwarts”)

wife(X, Y)

answer:Y

S3

Figure 1: Overview of π-CoT. Left: π-CoT
executes an LLM-generated Prolog query, using
the SLICE module to resolve each sub-query
qt. Right: π-CoT uses the passages, notes, and
(potentially) answer from the SLICE modules to
initialize the CoT prompt for the final LLM call.

Prolog and LLMs are both powerful tools
for reasoning, but they have complementary
strengths and weaknesses. While Prolog
provides a precise and verifiable framework
for multi-hop reasoning, it assumes access to
a structured database, which is often difficult
to obtain in practice. In contrast, LLMs can
adeptly retrieve and extract information from
unstructured text, but cannot guarantee logical
consistency across reasoning steps.

Motivated by these observations, we combine
Prolog and LLMs in two ways: a) we initialize
the CoT prompt with the execution trace of a
Prolog query. This mitigates LLMs’ tendency
to diverge from successful reasoning paths for
CoT prompting.

b) we retrieve relevant information from
available documents with the LLM and generate
Prolog facts. This provides Prolog an indirect
mechanism to interface natural-language
documents and create a structured database.

Prolog-Initialized CoT. Our resulting
workflow (π-CoT) is illustrated in Fig. 1.
Given the question in natural language, we
first prompt3 the LLM to generate a structured
Prolog query:

Q = (q1, q2, . . . , qT).

Here, qi is a sub-query. The query Q can be
resolved step-by-step, one sub-query at a time.
By design, the answer to the original question
lies in one of these sub-queries, usually the last
one. For example, the question in eq.(1) yields
the Prolog query (2) with T = 3 and answer Y.

π-CoT resolves the query step-by-step and logs
the execution trace along the way. At step t,
π-CoT stores the set of all possible solutions, St,
to the partially formed Prolog query (q1, . . . , qt).
Each element in St is a dictionary of key-value
pairs, where the keys are the names of all
variables (e.g. X, Y) in the Prolog query and the values are valid assignments (e.g. Lupin).

4.1 SINGLE-STEP EXECUTION WITH SLICE

Each step t follows a fixed procedure, which we refer to as SLICE4. Given St−1 from the previous
iteration, we resolve the next sub-query qt and create St. The sub-query qt can be of exactly two
types: Verification (e.g. werewolf(X)), or Extraction (e.g. wife(X,Y)). Verification queries
reduce the set of solutions in St−1 to those compatible with the query (e.g. removing all teacher
names assigned to X that are not werewolves). This scenario is shown in Fig. 2 for sub-query q2.
Extraction queries add new variables to St that satisfy the query constraint (e.g. adding variable
Y and assigning it the names of all teachers’ wives already assigned to X). We resolve both query
types with the help of the LLM and the available reference documents, while logging the retrieved

3We provide the query generation prompt in App. B.1.
4SLICE stands for Single-step Logical Inference with Contextual Evidence

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

S1= [{X:“Quirrell”}, {X:“Lockhart”}, {X:“Lupin”},...]q2=werewolf(X)

S2= [{X:“Lupin”}]

Question:

Is the following statement T or F?

Quirrell is a werewolf.

Lockhart is a werewolf.

Lupin is a werewolf.

werewolf(“Quirrell”)

werewolf(“Lockhart”)

...
werewolf(“Lupin”)

F,F, ...T,
Added Fact:

werewolf(“Lupin”)
LLM

...

 Passages

Prolog→NL

Prolog←NL

Figure 2: SLICE module for fact verification in the RAG setting. At step t = 2, the module takes
in the previous state S1 containing variable assignments, the current sub-query q2, and the corpus
C (not shown) as inputs and outputs S2. Only the Prolog fact (in green) corresponding to a valid
statement is added to a growing knowledge base.

document passages and Prolog facts (rephrased in natural language as Notes). The Prolog facts are
stored in a Prolog knowledge base, allowing us to execute the query (q1, . . . , qt) with an off-the-shelf
Prolog interpreter and log its answer. We initialize S0 = ∅, as the empty set. We provide additional
details of the SLICE module in App. A.

4.2 SLICE CHAINING

The inputs to the SLICE module are the sub-query qt, the previous solutions St−1, and the document
corpus C. The output of the SLICE module is St. To derive the final solution, we chain the SLICE
modules as follows:

St = SLICE(qt, St−1, C) for t = 1, 2, . . . , T with S0 = ∅.
By design, the set of solutions is initially empty (i.e., S0 = ∅). As the Prolog execution
progresses—and more Prolog facts are collected—St gets closer to the final solution. After all
sub-queries are resolved, ST is a set of solutions containing the final answer. For example, Fig. 1
shows S3 = [{Y : "Tonks"}] as the final solution.

4.3 COMBINING SYMBOLIC AND NATURAL LANGUAGE REASONING

In summary, the iterative process of SLICE chaining generates the following artifacts:

• a collection of retrieved passages from each SLICE execution5;

• a collection of Prolog facts, which we convert into natural language (i.e., “notes”); and

• the answer from Prolog execution.

The passages contain the necessary factual context to answer the original question. Since these
passages may also contain superfluous information, the notes help to focus the model only on
relevant information. Due to their iterative construction, these notes also serve to guide the LLM like
breadcrumbs toward the final answer. When the final solution is non-empty, the LLM merely needs

5In the in-context setting, the retrieved passages and original passages are the same.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Accuracy of prompting-based methods on open-domain QA. We report mean ± 1 standard
error for exact match (EM) and F1 score across 500 randomly chosen questions from each dataset.
Given a dataset and metric, we perform a repeated measures ANOVA followed by Tukey’s HSD with
α = 0.05 to test significance of paired differences between methods. Bold indicates that no other
method performs significantly better.

HotpotQA 2WikiMultiHopQA MuSiQue
Method EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑
Standard RAG 38.8 ± 2.2 52.6 ± 2.0 37.2 ± 2.2 40.4 ± 2.1 11.0 ± 1.4 18.1 ± 1.5
Self-Ask 19.2 ± 1.8 28.0 ± 1.8 15.8 ± 1.6 21.8 ± 1.7 5.6 ± 1.0 9.1 ± 1.2
IRCoT 40.4 ± 2.2 52.9 ± 2.0 32.4 ± 2.1 42.5 ± 2.0 17.6 ± 1.7 24.5 ± 1.8
π-CoT (Ours) 42.0 ± 2.2 59.1 ± 1.9 49.4 ± 2.2 57.5 ± 2.1 15.2 ± 1.6 25.7 ± 1.7

Table 2: Efficiency of prompting-based methods on open-domain QA. We report mean ± 1
standard error number of BM25 queries, LLM calls, and total tokens for the same questions used in
Tab. 1. We further break down the total tokens into prompt and completion tokens in Tab. 7.

HotpotQA 2WikiMultiHopQA MuSiQue
Method BM25 LLM Tokens BM25 LLM Tokens BM25 LLM Tokens

Standard RAG 1 1 3.6×103 1 1 3.7×103 1 1 2.4×103

Self-Ask 3.36 3.36 1.5×104 3.44 3.44 1.6×104 3.29 3.29 1.2×104

IRCoT 3.07 3.07 6.2×104 3.47 3.47 5.9×104 3.51 3.51 4.5×104

π-CoT (Ours) 2.82 4.82 1.8×104 2.14 4.14 2.2×104 3.42 5.42 1.5×104

to return it. For the best results, we provide all three artifacts to the LLM and invoke chain-of-thought
reasoning to produce the final answer6.

5 MAIN RESULTS

We consider two settings: (1) open-domain question-answering, when the corpus is too large to fit
within the model’s context window, and (2) in-context question-answering, when the corpus does
fit within the model’s context window. The open-domain and in-context QA settings are also known
as the fullwiki and distractor settings in the literature (Yang et al., 2018). To overcome the context
limitations in the open-domain QA setting, we use retrieval augmented generation (RAG) to first
fetch relevant passages before generation. Since π-CoT is a prompting method, we require a strong
instruction-tuned model and employ the Llama-3.3-70B-Instruct model from Grattafiori et al. (2024).
We also provide results utilizing the Deepseek-R1-Distill-Qwen-32B model from (Guo et al., 2025)
in the in-context question-answering setting.

5.1 OPEN-DOMAIN QUESTION-ANSWERING

We evaluate π-CoT on three multi-hop QA datasets: (1) HotpotQA from Yang et al. (2018), (2)
2WikiMultiHopQA from Ho et al. (2020), and (3) MuSiQue from Trivedi et al. (2022). Since these
datasets are curated from Wikipedia, we can assess Prolog’s effectiveness in handling real-world
knowledge. For our retrieval setup, we use the preprocessed December 18, 2020 corpus from
FlashRAG (Jin et al., 2025b), which contains 20M chunks each of size 100 words, and use BM25
(Robertson et al., 2009) as our retriever. We provide supplementary experiment details in Sec. C.1.

Tab. 1 compares π-CoT to standard RAG and two multi-hop RAG baselines that also rely on
decomposition (via prompting) to handle multi-hop reasoning: (1) Self-Ask from Asai et al.

6See App. B.3 for the prompt template.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Comparison to the state-of-the-art OpenIE method. We report exact match (EM) and F1
on the splits from Gutiérrez et al. (2025, Tab. 2). We use Llama-3.3-70B-Instruct for generation and
NV-Embed-v2 for embedding passages with k = 5 per query.

HotpotQA 2WikiMultiHopQA MuSiQue
Method EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑
Standard RAG 61.2 74.5 58.3 63.2 34.9 44.8
HippoRAG 2 (Gutiérrez et al., 2025) 62.6 75.3 65.5 72.0 37.6 49.5
π-CoT (Ours) 60.3 76.8 71.1 79.6 38.5 56.2

(2023) and (2) IRCoT from (Trivedi et al., 2023). Among all training-free7 methods in the
FlashRAG repository, IRCoT was the top-performing training-free method on HotpotQA and
the second top-performing method on 2WikiMultiHopQA at the time of writing. On HotpotQA,
standard RAG, IRCoT, and π-CoT are comparable in terms of accuracy, with neither method
significantly outperforming the other two as determined by a Tukey’s HSD test with α = 0.05.
On 2WikiMultiHopQA, π-CoT significantly outperforms all other methods in terms of exact match
and F1 score. On MuSiQue, IRCoT and π-CoT achieve comparable accuracy. Despite requiring
only a single retriever call, standard RAG achieves surprisingly competitive accuracy on HotpotQA.
Min et al. (2019); Chen and Durrett (2019) reveal that multi-hop reasoning is not required for
many examples in HotpotQA, possibly explaining our findings. Notably, we find that π-CoT never
performs worse than standard RAG, and does significantly better in the case of 2WikiMultiHopQA
and MuSiQue.

To assess the efficiency of the methods in Tab. 1, we measure the number of BM25 queries, the
number of LLM calls, and the total token usage. As shown in Tab. 2, π-CoT uses a similar number of
BM25 queries as IRCoT and Self-Ask. We also observe π-CoT using more LLM calls on average
than IRCoT and Self-Ask, which makes sense given that π-CoT must generate a Prolog query and
perform the final chain-of-thought reasoning step. For the price of two extra LLM call, π-CoT enjoys
lower total token usage. In particular, the use of Prolog allows intermediate steps to use separate,
short contexts during execution, rather than a single, long context that grows with the number of
steps. Our results in Tab. 2 reflect this fundamental difference.

Next, we compare π-CoT to HippoRAG 2, an OpenIE-augmented retrieval method that outperforms
GraphRAG (Edge et al., 2024), RAPTOR (Sarthi et al., 2024), and LightRAG (Guo et al., 2024) on
multi-hop QA. We follow the experimental setup of Gutiérrez et al. (2025, Tab. 2), which uses the
NV-Embed-v2 embedding model of Lee et al. (2024) for retrieval. Instead of using full Wikipedia as
the corpus, this experiment uses 9811 passages for HotpotQA, 6119 passages for 2WikiMultiHopQA,
and 11656 passages for MuSiQue. Tab. 3 reports mean exact match and F1 score on the provided
1000 samples for each dataset. These results show π-CoT outperforming both Standard RAG and
HippoRAG 2, demonstrating that offline fact extraction is not necessary for good accuracy on
multi-hop question-answering tasks.

5.2 IN-CONTEXT QUESTION-ANSWERING

When all the necessary information fits in the context window of the model, a natural question is
when does formal reasoning (via π-CoT) benefit reasoning in natural-language (via CoT)?. To
investigate this, we employ the distractor variants of HotpotQA, 2WikiMultiHopQA, and MuSiQue,
where the gold passages are presented in-context alongside a small number of irrelevant (“distractor”)
passages. We also include two versions of the PhantomWiki benchmark from Gong et al. (2025):
PW-S and PW-M. Unlike the other three datasets that are curated from Wikipedia, PhantomWiki
generates challenging multi-hop questions from fictional universes to ensure contamination-free LLM
evaluation. We provide supplementary experiment details in Sec. C.2.

Tab. 4(a) shows that on HotpotQA, 2WikiMultiHopQA, and MuSiQue, there is no significant
difference in accuracy between CoT and π-CoT. Providing the gold passages to model makes the task
considerably easier than considering all of Wikipedia (Min et al., 2019). Thus, Llama-3.3-70B-Instruct

7Fine-tuned approaches are currently the state-of-the-art on HotpotQA, 2WikiMultiHopQA, and MuSiQue.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Accuracy of prompting-based methods on in-context QA. We report exact match (EM)
and F1 score on HotpotQA, 2WikiMultiHopQA, MuSiQue, PhantomWiki with a corpus size of 50
articles (PW-S), and PhantomWiki with a corpus size of 500 articles (PW-M). Bold indicates that
π-CoT significantly outperforms CoT (p < 0.05) according to a paired samples t-test given a dataset
and metric. We report the computational cost in Tab. 8.

HotpotQA 2WikiMultiHopQA MuSiQue
Method EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑
Llama-3.3-70B-Instruct
CoT 62.4 ± 2.2 77.4 ± 1.6 76.4 ± 1.9 83.9 ± 1.5 51.2 ± 2.2 63.7 ± 1.9
π-CoT 58.0 ± 2.2 77.7 ± 1.5 72.8 ± 2.0 82.5 ± 1.5 46.4 ± 2.2 63.1 ± 1.9

DeepSeek-R1-Distill-Qwen-32B
CoT 57.0 ± 2.2 74.2 ± 1.7 75.2 ± 1.9 82.9 ± 1.6 45.8 ± 2.2 57.3 ± 2.0
π-CoT 56.8 ± 2.2 75.2 ± 1.6 74.6 ± 1.9 84.2 ± 1.5 46.0 ± 2.2 59.6 ± 2.0

(a) Real-world (Wikipedia-based) multi-hop QA datasets

PW-S PW-M
Method EM ↑ F1 ↑ EM ↑ F1 ↑
Llama-3.3-70B-Instruct
CoT 52.8 ± 1.3 71.9 ± 1.0 27.5 ± 1.2 41.7 ± 1.1
π-CoT 78.8 ± 1.1 91.4 ± 0.6 31.1 ± 1.2 56.9 ± 1.0

DeepSeek-R1-Distill-Qwen-32B
CoT 54.4 ± 1.3 75.6 ± 0.9 17.5 ± 1.0 28.0 ± 1.0
π-CoT (Ours) 82.7 ± 1.0 88.2 ± 0.8 18.4 ± 1.0 31.1 ± 1.0

(b) Synthetic multi-hop QA datasets

with CoT may be hitting a performance ceiling. On PW-S, Llama-3.3-70B-Instruct with CoT achieves
an F1 score of 71.9 ± 1.0%. This increases to 91.4 ± 0.6% with π-CoT. On PW-M, which has a
corpus 10 times the size of PW-S, the performance of Llama-3.3-70B-Instruct with CoT drops to
41.7 ± 1.1% F1. We posit this drop is mainly due to the inherent challenges of long-context retrieval.
On PW-M, π-CoT significantly boosts the F1 score to 56.9 ± 1.0 F1—a relative gain of 36%. In
Tab. 4(b), we report similar findings using Deepseek-R1-Distill-Qwen-32B as the language model.

Finally, to understand where the gains on PW-S and PW-M come from, we plot accuracy versus the
ground-truth difficulty level that comes associated with each question. Gong et al. (2025) defines
this difficulty level as the number of hops required to answer the question. According to Fig. 3, the
accuracy of π-CoT and CoT is similar for questions with low difficulty. However, π-CoT diverges
from CoT as the difficulty increases. Since higher difficulty questions require traversing more
reasoning paths than lower difficulty questions, our results show that π-CoT is better able to keep
track of multi-hop, multi-branch reasoning than CoT.

6 ABLATION ANALYSIS

In this section, we want to analyze how each component in π-CoT contributes to answering the
multi-hop question.

Contributions of the Prolog component. Note that when Prolog execution succeeds, the LLM
in the final CoT step is instructed to simply copy the Prolog answer as the final output. This setup
naturally induces the following categorization: Prolog execution either returns a non-empty solution
set (ST ̸= ∅) or an empty one (ST = ∅), and the final CoT answer is either correct (π-CoT ✓) or

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

34.0%

39.0%

8.0%

19.0%

HotpotQA

47.8%

32.2%
1.6%

18.4%

2WikiMultiHopQA

13.6%
46.8%

1.6%
38.0%

MuSiQue

ST 6= ∅, π-CoT 3

ST 6= ∅, π-CoT 7

ST = ∅, π-CoT 3

ST = ∅, π-CoT 7

Figure 4: Analysis of Prolog component based on execution success. ST ̸= ∅ means that Prolog
outputs an answer, while ST = ∅ means that Prolog does not output an answer. π-CoT ✓ means that
π-CoT generated the ground-truth answer exactly, while π-CoT ✗ means that π-CoT generated an
incorrect answer. We use the results from Tab. 1.

incorrect (π-CoT ✗). Here, an answer is considered correct only if it exactly matches the ground-truth
answer.

1 3 5 7 9

Reasoning difficulty

0.25

0.5

0.75

1

F1

CoT

-CoT

Llama-3.3-70B-Instruct
DeepSeek-R1-Distill-Qwen-32B

Figure 3: F1 score vs. difficulty, as measured by
number of reasoning steps. We use the synthetic
PW-S benchmark from Gong et al. (2025) and
display mean ± 1 standard error. For each model,
we evaluate CoT and π-CoT prompting.

Fig. 4 shows a breakdown of the predictions
from Tab. 1 across these four cases. Across
datasets, Prolog execution returns an answer in
73% (HotpotQA), 80% (2WikiMultiHopQA),
and 60.4% (MuSiQue) of cases. When Prolog
returns an answer, π-CoT is consistently more
accurate (46.6%, 60.0%, 22.5%) than the best
baseline method in Tab. 1 (40.4%, 37.2%,
17.6%). Even when Prolog sometimes does
not return an answer, using the artifacts coming
from the Prolog execution can help lead to
a correct final answer. Notably, 7.8% of
the questions in HotpotQA can be answered
correctly this way. For the remaining (27%,
20%, 39.6%) cases, we provide a detailed
categorization of the failures in App. E.

Contributions of components in the final CoT
prompt. We remove specific components from
the prompt when generating the final answer
(Sec. 4). Tab. 5 shows that removing the
passages leads to a (4.7%, 1.2%, 2.4%) drop in
F1. This suggests that most of the information
needed to answer the question already lies in
the notes and Prolog answer. We next remove
the notes and see performance drop by (4.8%, 0.6%, 0.8%) F1. On HotpotQA especially, notes
are important for fuzzy matching when exact string matching fails. Finally, we remove the
Prolog answer and see performance drop to near zero for 2WikiMultiHopQA and MuSiQue. This
demonstrates the utility of the Prolog answer to the final chain-of-thought reasoning step. Interestingly,
Llama-3.3-70B-Instruct is able to achieve 24.1% F1 solely using its internal knowledge. We did not
find that including the passages to pose a challenge with long context. Thus, we included all three
components for our final model for the best accuracy.

7 CONCLUSIONS & FUTURE WORK

In this work, we investigate how formal reasoning can guide reasoning in natural language. We
introduce π-CoT, a novel prompting strategy that initializes the context of an LLM with the
intermediate outputs of Prolog-guided execution. Our results show that even strong LLMs like

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 5: Ablation analysis of the components in the final chain-of-thought reasoning step. We
use the experimental setup from Tab. 1.

HotpotQA 2WikiMultiHopQA MuSiQue
Method EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑
π-CoT 42.0 59.1 49.4 57.5 15.2 25.7

w/o Passages 37.2 54.4 48.4 56.3 12.6 23.3
w/o Notes 34.0 49.6 47.8 55.7 12.4 22.5

w/o Prolog Answer 19.2 24.1 1.0 1.0 3.2 4.2

Llama-3.3-70B-Instruct and Deepseek-R1-Distill-Qwen-32B benefit from being guided through
structured reasoning steps, especially on complex, multi-step tasks. More broadly, our work
demonstrates the potential of bringing explicit planning and state tracking into language model
behavior.

Despite being a purely prompting-based strategy, π-CoT has potential implications for training future
language models to serve as agents that can piece together knowledge across large, dynamic corpora.
Inspired by DeepSeek R1 (Guo et al., 2025), significant effort has been made to couple reasoning
with retrieval using reinforcement learning (Li et al., 2025; Jin et al., 2025a; Song et al., 2025). An
interesting future direction is training language models to generate structured queries instead. π-CoT
provides a way to execute these queries without a pre-existing database. Some steps in π-CoT may
not even require calling an LLM, if the information resides directly in a pre-existing database. Thus,
enabling π-CoT to leverage both unstructured and structured data is a natural next step.

ETHICS STATEMENT

Our work adheres to the ICLR Code of Ethics, and does not pose any societal, personal, or
organizational risks.

REPRODUCIBILITY STATEMENT

To encourage reproducibility, we use free and open-source software and LLMs. We also include
details of our experimental setups in Sec. C. We report sample sizes, standard errors, and random
seeds where possible.

REFERENCES

Gabor Angeli, Melvin Jose Johnson Premkumar, and Christopher D Manning. Leveraging linguistic
structure for open domain information extraction. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pages 344–354, 2015. (Cited on page 2.)

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference on
Learning Representations, 2023. (Cited on pages 1 and 6.)

Nasim Borazjanizadeh and Steven T Piantadosi. Reliable reasoning beyond natural language. arXiv
preprint arXiv:2407.11373, 2024. (Cited on page 2.)

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. The snli corpus.
2015. (Cited on page 15.)

Jifan Chen and Greg Durrett. Understanding dataset design choices for multi-hop reasoning. arXiv
preprint arXiv:1904.12106, 2019. (Cited on page 7.)

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xinyun Chen, Chen Liang, Adams Wei Yu, Denny Zhou, Dawn Song, and Quoc V Le. Neural
symbolic reader: Scalable integration of distributed and symbolic representations for reading
comprehension. In International Conference on Learning Representations, 2019. (Cited on page 2.)

William F Clocksin and Christopher S Mellish. Programming in PROLOG. Springer Science &
Business Media, 2003. (Cited on page 1.)

Alain Colmerauer and Philippe Roussel. The birth of prolog. In History of programming
languages—II, pages 331–367. 1996. (Cited on page 3.)

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36:
70293–70332, 2023. (Cited on pages 1 and 2.)

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130, 2024.
(Cited on pages 3 and 7.)

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023. (Cited on page 2.)

Albert Gong, Kamilė Stankevičiūtė, Chao Wan, Anmol Kabra, Raphael Thesmar, Johann Lee,
Julius Klenke, Carla P Gomes, and Kilian Q Weinberger. Phantomwiki: On-demand datasets for
reasoning and retrieval evaluation. In Forty-second International Conference on Machine Learning,
2025. (Cited on pages 7, 8, and 9.)

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024. (Cited on page 6.)

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu,
Ruoyu Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through
reinforcement learning. Nature, 645(8081):633–638, 2025. (Cited on pages 6 and 10.)

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast
retrieval-augmented generation. arXiv preprint arXiv:2410.05779, 2024. (Cited on pages 3 and 7.)

Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory:
Non-parametric continual learning for large language models. In Forty-second International
Conference on Machine Learning, 2025. (Cited on pages 3 and 7.)

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. In Proceedings of the 28th International
Conference on Computational Linguistics, pages 6609–6625, 2020. (Cited on page 6.)

Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag:
Neurobiologically inspired long-term memory for large language models. Advances in Neural
Information Processing Systems, 37:59532–59569, 2024. (Cited on page 3.)

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025a. (Cited on pages 2 and 10.)

Jiajie Jin, Yutao Zhu, Zhicheng Dou, Guanting Dong, Xinyu Yang, Chenghao Zhang, Tong Zhao,
Zhao Yang, and Ji-Rong Wen. Flashrag: A modular toolkit for efficient retrieval-augmented
generation research. In Companion Proceedings of the ACM on Web Conference 2025, pages
737–740, 2025b. (Cited on page 6.)

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive nlp. arXiv preprint arXiv:2212.14024, 2022. (Cited on page 2.)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. In The
Eleventh International Conference on Learning Representations, 2023. (Cited on pages 1 and 2.)

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022. (Cited on page 1.)

Robert Kowalski and Steve Smoliar. Logic for problem solving. ACM SIGSOFT Software Engineering
Notes, 7(2):61–62, 1982. (Cited on page 1.)

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems principles,
pages 611–626, 2023. (Cited on page 17.)

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models.
In The Thirteenth International Conference on Learning Representations, 2024. (Cited on page 7.)

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in neural information processing systems,
33:9459–9474, 2020. (Cited on page 2.)

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025. (Cited on pages 2 and 10.)

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024. (Cited on page 1.)

Robert Lo, Abishek Sridhar, Frank F Xu, Hao Zhu, and Shuyan Zhou. Hierarchical prompting
assists large language model on web navigation. In Findings of the Association for Computational
Linguistics: EMNLP 2023, pages 10217–10244, 2023. (Cited on page 1.)

John McCarthy et al. Programs with common sense. RLE and MIT computation center Cambridge,
MA, USA, 1960. (Cited on page 1.)

Sewon Min, Eric Wallace, Sameer Singh, Matt Gardner, Hannaneh Hajishirzi, and Luke Zettlemoyer.
Compositional questions do not necessitate multi-hop reasoning. arXiv preprint arXiv:1906.02900,
2019. (Cited on pages 1 and 7.)

Pruthvi Patel, Swaroop Mishra, Mihir Parmar, and Chitta Baral. Is a question decomposition unit
all we need? In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pages 4553–4569, 2022. (Cited on page 1.)

Kevin Pei, Ishan Jindal, Kevin Chen-Chuan Chang, ChengXiang Zhai, and Yunyao Li. When to use
what: An in-depth comparative empirical analysis of openie systems for downstream applications.
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 929–949, 2023. (Cited on page 3.)

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages 5687–5711, 2023. (Cited on pages 1 and 2.)

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009. (Cited on page 6.)

John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM (JACM), 12(1):23–41, 1965. (Cited on page 1.)

JK Rowling. Harry Potter, volume 2007. London Bloomsbury, 1997. (Cited on page 3.)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Stuart Russell, Peter Norvig, and Artificial Intelligence. A modern approach. Artificial Intelligence.
Prentice-Hall, Egnlewood Cliffs, 25(27):79–80, 1995. (Cited on pages 1 and 3.)

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Manning.
Raptor: Recursive abstractive processing for tree-organized retrieval. In The Twelfth International
Conference on Learning Representations, 2024. (Cited on pages 3 and 7.)

Herbert A Simon and Allen Newell. Human problem solving: The state of the theory in 1970.
American psychologist, 26(2):145, 1971. (Cited on page 1.)

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning.
arXiv preprint arXiv:2503.05592, 2025. (Cited on pages 2 and 10.)

Leon Sterling and Ehud Y Shapiro. The art of Prolog: advanced programming techniques. MIT
press, 1994. (Cited on page 3.)

Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
11888–11898, 2023. (Cited on page 2.)

Xiaoyu Tan, Yongxin Deng, Xihe Qiu, Weidi Xu, Chao Qu, Wei Chu, Yinghui Xu, and Yuan Qi.
Thought-like-pro: Enhancing reasoning of large language models through self-driven prolog-based
chain-of-thought. arXiv preprint arXiv:2407.14562, 2024. (Cited on page 2.)

Hieu Tran, Zonghai Yao, Junda Wang, Yifan Zhang, Zhichao Yang, and Hong Yu. Rare:
Retrieval-augmented reasoning enhancement for large language models. arXiv preprint
arXiv:2412.02830, 2024. (Cited on page 2.)

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022. (Cited on page 6.)

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving retrieval
with chain-of-thought reasoning for knowledge-intensive multi-step questions. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 10014–10037, 2023. (Cited on pages 2, 7, and 17.)

Priyesh Vakharia, Abigail Kufeldt, Max Meyers, Ian Lane, and Leilani H Gilpin. Proslm: A
prolog synergized language model for explainable domain specific knowledge based question
answering. In International Conference on Neural-Symbolic Learning and Reasoning, pages
291–304. Springer, 2024. (Cited on page 2.)

Liang Wang, Haonan Chen, Nan Yang, Xiaolong Huang, Zhicheng Dou, and Furu Wei.
Chain-of-retrieval augmented generation. ArXiv, abs/2501.14342, 2025. URL https://api.
semanticscholar.org/CorpusID:275906944. (Cited on page 2.)

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. arXiv preprint arXiv:2203.11171, 2022. (Cited on page 1.)

Leon Weber, Pasquale Minervini, Jannes Münchmeyer, Ulf Leser, and Tim Rocktäschel. Nlprolog:
Reasoning with weak unification for question answering in natural language. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, 2019. (Cited on page 2.)

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022. (Cited on pages 1 and 2.)

Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. Swi-prolog. Theory and
Practice of Logic Programming, 12(1-2):67–96, 2012. (Cited on page 3.)

13

https://api.semanticscholar.org/CorpusID:275906944
https://api.semanticscholar.org/CorpusID:275906944

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gardner, Yoav Goldberg, Daniel Deutch, and Jonathan
Berant. Break it down: A question understanding benchmark. Transactions of the Association for
Computational Linguistics, 8:183–198, 2020. (Cited on page 1.)

Katherine Wu and Yanhong A Liu. Lp-lm: No hallucinations in question answering with logic
programming. arXiv preprint arXiv:2502.09212, 2025. (Cited on page 2.)

Xiaocheng Yang, Bingsen Chen, and Yik-Cheung Tam. Arithmetic reasoning with llm: Prolog
generation & permutation. In Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 2:
Short Papers), pages 699–710, 2024. (Cited on page 2.)

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pages 2369–2380, 2018. (Cited on page 6.)

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. (Cited on pages 1 and 2.)

Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
and Danqi Chen. Helmet: How to evaluate long-context language models effectively and thoroughly.
arXiv preprint arXiv:2410.02694, 2024. (Cited on page 1.)

John M Zelle and Raymond J Mooney. Learning to parse database queries using inductive
logic programming. In Proceedings of the national conference on artificial intelligence, pages
1050–1055, 1996. (Cited on page 3.)

Luke S Zettlemoyer and Michael Collins. Learning to map sentences to logical form: Structured
classification with probabilistic categorial grammars. arXiv preprint arXiv:1207.1420, 2012. (Cited
on page 3.)

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. arXiv preprint arXiv:2210.03493, 2022. (Cited on page 1.)

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In The Eleventh International Conference on Learning
Representations, 2023. (Cited on pages 1 and 2.)

Shaowen Zhou, Bowen Yu, Aixin Sun, Cheng Long, Jingyang Li, Haiyang Yu, Jian Sun, and Yongbin
Li. A survey on neural open information extraction: Current status and future directions. arXiv
preprint arXiv:2205.11725, 2022. (Cited on page 3.)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A IMPLEMENTATION DETAILS OF SLICE MODULE

Inputs. At step t ∈ {1, 2, . . . , T}, SLICE8 takes as input:

• the sub-query, qt;

• the solution from the previous step, St−1; and

• the document corpus, C.

At step t = 1, there are no solutions, so S0 = ∅. At step t > 1, we assign any values in St−1 to the
variables in qt. Let’s take the second sub-query, q2, from Fig. 1 as an example. As shown in Fig. 2,
the previous solution S1 assigns the following values to X: “Quirrell,” “Lockhart,” “Lupin,” etc. These
must be substituted into q2 = werewolf(X), yielding the queries werewolf("Quirrell"),
werewolf("Lockhart"), werewolf("Lupin"), etc. to resolve for the current step.

While the query werewolf("Quirrell") provides a succinct way of checking whether the
claim, “Quirrell was a werewolf,” is true, it’s still uninterpretable to an LLM. Thus, we need a
mechanism to translate Prolog facts to natural-language statements. Our solution is to prompt9 the
LLM to generate a definition for qt. Each definition comprises two templates:

• A question template, which maps qt to a question (e.g., “Who are the Defense against the Dark
Arts teachers at Hogwarts?”).

• A statement template, which maps qt to a claim (e.g., “Lockhart is a Defense against the Dark
Arts teacher at Hogwarts.”).

Each template serves a different purpose, either fact extraction or fact verification.

Fact extraction. When qt introduces a new unassigned variable, SLICE uses the question template
to map qt to a natural-language question (see Prolog→NL in Fig. 2). Next, we call the LLM using
chain-of-thought prompting to answer this question (see LLM in Fig. 2). We provide the LLM
prompt in Sec. B.2. In this work, we consider two strategies to retrieve the relevant evidence for the
question:

(S1) In the RAG setting, we use an external retriever to obtain the top-k passages from C.

(S2) In the in-context setting, all passages of C are provided in the prompt.

Using its innate reading comprehension abilities, the LLM locates the answer to the question from the
provided passages and responds with (potentially) multiple answers (e.g., Quirrell, Lockhart, Lupin,
etc). These answers are parsed back into Prolog facts (see Prolog←NL in Fig. 2) and added to the
knowledge base.

Fact verification. When all variables in qt can be assigned values from St−1, we must check that the
fact is true. SLICE uses the statement template to generate an entailment question (Bowman et al.,
2015). For example, werewolf("Quirrell") corresponds to the question, “Is the following
statement true or false? Quirrell was a werewolf.” Equipped with S1 or S2, the LLM answers this
question (see LLM in Fig. 2). A true claim is added to the knowledge base as a fact; a false claim
is simply ignored (and nothing is added to knowledge base). In our running example, the only fact
added to the knowledge base at step t = 2 is werewolf("Lupin") (see green text in Fig. 2).

Output. Finally, the output of SLICE is the updated solution St, which can be obtained by querying
the knowledge base with (q1, . . . , qt).

B PROMPT TEMPLATES

B.1 PROLOG QUERY AND DEFINITIONS GENERATION

We use the following prompt template for the Prolog query generation of Sec. 4:

8short for Single-step Logical Inference with Contextual Evidence
9We provide the definitions generation prompt in Sec. B.1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

You will be provided a question. Your goal is to devise a
Prolog query to answer this question. Your response must end in
"**Query:** <query>\n**Target:** <target>\n**Definition:**
<definition>", where <query> is a Prolog query that when
executed, will yield the answer to the question, <target>
is the target variable in the Prolog query to be returned
as the final answer, and <definition> defines the semantic
meaning of predicates in the Prolog query.

Here are some examples:
(START OF EXAMPLES)
{examples}
(END OF EXAMPLES)

Question: {question}
Answer:

To form the prompt, examples is replaced with few-shot examples specific to each dataset and
question is replaced with the natural-language question.

B.2 CHAIN-OF-THOUGHT FACT EXTRACTION AND VERIFICATION

You are given the following evidence:
(BEGIN EVIDENCE)
{{evidence}}
(END EVIDENCE)

You will be provided a question. If there is a single answer,
your response must end with the final answer enclosed in tags:
<answer>FINAL_ANSWER</answer>
If there are multiple answers, your response must end with the
final answers enclosed in tags:
<answer>FINAL_ANSWER_1, FINAL_ANSWER_2, ..., FINAL_ANSWER_N</answer>.
If FINAL_ANSWER_N is a string, it must be enclosed in double quotes.
For example, <answer>"FINAL_ANSWER_1", "FINAL_ANSWER_2"</answer>
If FINAL_ANSWER_N is a date, it must be formatted as
date(year, month, day).
If no information is available to answer the question,
your response must end with: <answer></answer>.

Here are some examples:
(START OF EXAMPLES)
{{examples}}
(END OF EXAMPLES)

Question: {{question}}
Answer:

To instantiate the prompt, evidence is replaced by relevant passages, examples is replaced with
dataset-specific few-shot examples, and question is replaced with the natural-language question
(in the case of fact extraction) or entailment question (in the case of fact verification). Both the
instructions and few-shot examples encourage the model to format the answer as Prolog literals so
that they can be properly inserted into the Prolog knowledge base.

B.3 π-COT

You are given the following information:
(BEGIN NOTES)
{{notes}}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(END NOTES)

(BEGIN EVIDENCE)
{{evidence}}
(END EVIDENCE)

You will be provided a question and an answer from a previous
attempt. If the previous answer is not empty
(e.g. <answer>...</answer>), you should copy the answer directly.
If the previous answer is empty (i.e. <answer></answer>),
you should try to answer the question using
the notes and evidence provided. If there is a single answer,
your response must end with the final answer enclosed in tags:
<answer>FINAL_ANSWER</answer>
If there are multiple answers, your response must end with the
final answers enclosed in tags:
<answer>FINAL_ANSWER_1,FINAL_ANSWER_2,...,FINAL_ANSWER_N</answer>.
If no information is available to answer the question,
your response must end with: <answer></answer>.

Here are some examples:
(START OF EXAMPLES)
{{examples}}
(END OF EXAMPLES)
Question: {{question}}
Previous Answer: <answer>{{answer}}</answer>
Answer:

C SUPPLEMENTARY EXPERIMENT DETAILS

C.1 FULLWIKI EXPERIMENT DETAILS

Retrieval setup. We use the wiki18_100w corpus from https://huggingface.co/
datasets/RUC-NLPIR/FlashRAG_datasets and use the code from https://github.
com/RUC-NLPIR/FlashRAG to build our BM25 index. We allow k = 14, k = 16, and k = 8
chunks per retrieval call for HotpotQA, 2WikiMultiHopQA, and MuSiQue, respectively.

Baseline implementations. For standard RAG, we use the Python implementation of
CoTRAGAgent from https://github.com/kilian-group/phantom-wiki and write
few-shot examples for each dataset. For Self-Ask, we use the Python implementation and
few-shot examples from https://github.com/RUC-NLPIR/FlashRAG. For IRCoT,
we use the Python implementation from https://github.com/RUC-NLPIR/FlashRAG
and the GPT3 (code-davincii-002) few-shot examples from https://github.com/
StonyBrookNLP/ircot (see also (Trivedi et al., 2023, App. G)). We set the maximum iterations
for Self-Ask and IRCoT to be 4.

LLM configuration. We run Llama-3.3-70B-Instruct on 8 A6000s using vLLM (Kwon et al., 2023)
and use greedy decoding with maximum generation tokens 4096. We use the full 128K context
length.

C.2 DISTRACTOR EXPERIMENT DETAILS

LLM configuration. For the Llama-3.3-70B-Instruct results, we use vLLM running on 8 A6000s and
use greedy decoding with maximum generation tokens 4096. For the Deepseek-R1-Distill-Qwen-32B
results, we use vLLM running on 6 A6000s and use sampling temperature 0.6, top-p 0.95, and max
generation tokens 16384. We use the full 128K context length for both models.

17

https://huggingface.co/datasets/RUC-NLPIR/FlashRAG_datasets
https://huggingface.co/datasets/RUC-NLPIR/FlashRAG_datasets
https://github.com/RUC-NLPIR/FlashRAG
https://github.com/RUC-NLPIR/FlashRAG
https://github.com/kilian-group/phantom-wiki
https://github.com/RUC-NLPIR/FlashRAG
https://github.com/RUC-NLPIR/FlashRAG
https://github.com/StonyBrookNLP/ircot
https://github.com/StonyBrookNLP/ircot

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

PhantomWiki dataset. For the experiment of Tab. 4(b), we use the code at https://github.
com/kilian-group/phantom-wiki to generate two synethic multi-hop QA datasets. Tab. 6
lists the configurations for PW-S and PW-M. Each dataset has 1500 questions.

Table 6: Configurations for PhantomWiki dataset generation.

Parameter PW-S PW-M
Question depth 20 20

Number of family trees 10 100
Max family tree size 50 50

Max family tree depth 20 20
Mode Easy Easy

Number of questions per template 10 10
Seeds {1,2,3} {1,2,3}

C.3 LLM USAGE STATEMENT

Large language models were used for proofreading, revising, and literature search. All claims and
arguments were drafted and verified by the authors.

D ADDITIONAL DETAILS OF COMPUTATIONAL COST

E ANALYSIS OF PROLOG ERRORS

We manually inspected the results in Tab. 1 and identified the following Prolog errors:

• Prolog Parsing Errors:

– Prolog query parsing error: The LLM-generated Prolog query could not be parsed by our
Prolog grammar. This error typically occurs due to missing double quotes (see examples in
Tab. 10 and 11).

– Extraction or verification parsing error: the LLM-generated answer to the fact extraction or
fact verification step is an invalid Prolog literal. This error typically occurs due to nested double
quotes (see Tab. 12).

• Prolog Execution Errors:

– Intermediate predicate existence error: Information is missing to solve at least one of the
intermediate sub-queries.

– Final predicate existence error: execution reaches the final step, but no match is returned. For
this type, we observe two patterns: 1) genuinely missing information in the final sub-query, 2)

Table 7: Token cost of open-domain QA. We report mean ± 1 standard error number of prompt
tokens P (in thousands) and completion tokens C (in thousands) for the results in Tab. 2. We use
the vLLM inference engine with prefix caching enabled and report the number of cached tokens in
parentheses next to the prompt tokens.

HotpotQA 2WikiMultiHopQA MuSiQue
Method P ×103 C ×103 P ×103 C ×103 P ×103 C ×103

Standard RAG 3.46 (0.032) 0.159 3.63 (0.032) 0.106 2.21 (0.073) 0.136
Self-Ask 14.5 (10.5) 0.402 15.7 (10.9) 0.682 11.4 (9.06) 0.750
IRCoT 62.3 (51.5) 0.047 59.2 (44.6) 0.053 45.3 (38.1) 0.057
π-CoT (Ours) 18.0 (5.07) 0.483 21.1 (4.21) 0.543 14.4 (3.28) 0.654

18

https://github.com/kilian-group/phantom-wiki
https://github.com/kilian-group/phantom-wiki

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Computational cost of in-context QA. We report the mean ± 1 standard error number of
prompt tokens P (in thousands), completion tokens C (in thousands), and LLM calls for the results in
Tab. 4. We use the vLLM inference engine and report the number of cached tokens in parentheses
next to the prompt tokens when prefix caching was enabled.

HotpotQA 2WikiMultiHopQA MuSiQue
Method P ×103 C ×103 Calls P ×103 C ×103 Calls P ×103 C ×103 Calls

Llama-3.3-70B-Instruct
CoT 2.68 0.110 1 2.10 0.0845 1 3.43 0.116 1
π-CoT 12.4 0.412 4.37 11.0 0.437 4.47 16.1 0.553 4.90

DeepSeek-R1-Distill-Qwen-32B
CoT 2.77 0.305 1 2.20 0.298 1 3.57 0.520 1
π-CoT 11.1 1.66 4.09 9.59 1.55 4.28 12.3 1.95 4.65

(a) Real-world (Wikipedia-based) multi-hop QA datasets

PW-S PW-M
Method P ×103 C ×103 Calls P ×103 C ×103 Calls

Llama-3.3-70B-Instruct
CoT 8.12 (8.09) 0.400 1 68.7 (68.6) 0.375 1
π-CoT (Ours) 174 (173) 1.59 23.9 2800 (2754) 2.6 40

DeepSeek-R1-Distill-Qwen-32B
CoT 8.30 (8.26) 1.42 1 70.8 (70.6) 1.13 1
π-CoT (Ours) 234 (207) 7.28 21.0 1260 (1230) 7.09 16.8

(b) Synthetic multi-hop QA datasets

Error Type HotpotQA 2WikiMultiHopQA MuSiQue
Parsing: Prolog query parsing error 0.8% 0% 0.8%
Parsing: Execution parsing error 0.8% 0% 0.8%
Execution: Intermediate predicate existence error 16.2% 19.8% 37.4%
Execution: Final predicate existence error 9.2% 0.2% 0.6%

Total errors 27.0% 20.0% 39.6%

Table 9: Percentage breakdown of Prolog errors for the results in Tab. 1. We define the errors in
App. E and provide examples for each.

mismatches due to Prolog’s strict string equality. The latter can often be resolved when facts
are provided back to the model for CoT reasoning. We provide two examples for this type (see
examples in Tab. 13 and Tab. 14)

Table 10: Prolog query parsing error from HotpotQA. The constant “...Ready for It?” is missing
double quotes in the Prolog query.

Question ...Ready for It? is a Taylor Swift song from the album
scheduled to be released on what date?

Prolog Query album_of_song(...Ready for It?, A1),
release_date(A1, A2)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11: Prolog query parsing error from MuSiQue. Negations (\+) are not allowed by our
Prolog parser.

Question which professional sports team would you not see play a home game
in the arena where the last place Cream performed?

Prolog Query last_performance_venue("Cream", A1),
all_professional_sports_teams(A3),
\+home_teams(A1, A3)

Table 12: Fact extraction parsing error from HotpotQA. The double quotes in the generated
answer are incorrectly escaped.

Question What Cantonese slang term can mean both “ghost man”
and to refer to Westerners?

Response “Gweilo” or “gwailou”

Table 13: Execution error from HotpotQA. The generated Prolog query involves the sub-query
(A1 == A2) and cannot be satisfied by the facts in the knowledge base. Note that the literal “Royal
Air Force (RAF)” and the literal “No. 11 Group RAG” are semantically similar, but are not the same
under the Prolog operator ==. The ground-truth answer is Royal Air Force.

Question What where both Hawker Hurricane and No. 1455 Flight apart of?
Prolog Query part_of("Hawker Hurricane", A1),

part_of("No. 1455 Flight", A2), (A1 == A2)

Facts part_of("Hawker Hurricane",
"Royal Air Force (RAF)")

part_of("Hawker Hurricane",
"Royal Yugoslav Air Force (VVKJ)")

part_of("Hawker Hurricane",
"Royal Canadian Air Force")

part_of("No. 1455 Flight", "No. 11 Group RAF")

Table 14: Execution error from MuSiQue. The generated Prolog query involves a string unification
(A1 = A2) and cannot be satisfied by the facts in the knowledge base. The ground-truth answer is
John D. Loudermilk.

Question Who wrote turn me on, which was performed by the person
who also performed Chasing Pirates?

Prolog Query performer("Chasing Pirates", A1),
performer("turn me on", A2), A1 = A2 ->
writer("turn me on", A3)

Facts performer("Chasing Pirates", "Norah Jones")
performer("turn me on", "Sean Smith")
writer("turn me on", "Greg Lake")
writer("turn me on", "Logan Lynn")
writer("turn me on", "Joni Mitchell")

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F ADDITIONAL IN-CONTEXT EXPERIMENTS

Table 15: Accuracy of CoT with majority voting. We report mean exact match (EM) and F1 score
on a subset of the datasets from Tab. 4

HotpotQA 2WikiMultiHopQA MuSiQue PW-S
Samples EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑ EM ↑ F1 ↑
Llama-3.3-70B-Instruct
1 63.0 79.8 76.8 84.2 49.6 64.3 55.73 75.43
2 63.2 80.3 77.0 84.1 48.4 62.7 54.00 73.95
4 63.4 80.5 76.0 83.4 50.2 63.9 53.93 74.39
8 63.2 80.2 76.0 83.3 51.0 63.8 53.13 73.83

DeepSeek-R1-Distill-Qwen-32B
1 57.0 74.7 75.8 83.4 45.0 56.4 53.67 74.53
2 57.0 74.8 75.6 83.2 45.6 56.2 54.73 76.14
4 57.0 75.1 76.6 83.4 46.8 57.2 54.47 75.49
8 58.0 75.9 77.4 84.0 49.4 59.3 54.93 75.58

We compare standard CoT to the simplest inference-time intervention method: CoT with majority
voting. We sample 8 evaluations for each question with the hyperparameters in Tab. 16 and
compute the performance when majority voting10 across 2, 4, and 8 of these samples. On
HotpotQA, 2WikiMultiHopQA, and MuSiQue, CoT with majority voting over 4 samples is similar in
computational cost to π-CoT (see Tab. 8). Tab. 15 shows that the benefits of repeated sampling over
single sampling are marginal to none.

Table 16: Sampling hyperparameters for the results in Tab. 15.

Model Temperature Top-p Repetition Penalty Max Output Tokens
Llama-3.3-70B-Instruct 0.6 0.9 1.0 4096
DeepSeek-R1-Distill-Qwen32B 0.6 0.95 1.0 16384

G EXAMPLES OF GENERATED PROLOG QUERIES AND DEFINITIONS

We show five examples of generated Prolog queries and definitions on HotpotQA, 2WikiMultiHopQA,
MuSiQue, and PhantomWiki. Examples are randomly chosen.

H EXAMPLES OF EXECUTION TRACES OF π-COT

We show the full π-CoT workflow on one example from each of 2WikiMultiHopQA, and MuSiQue.
We use the generated predictions from the experiment of Tab. 1. Examples are randomly chosen.

10We use the majority definition from https://github.com/EleutherAI/
lm-evaluation-harness.

21

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Question Query Target Definitions
At what age
did Cieli di
Toscana’s
singer
become
blind?

singer("Cieli di
Toscana", A1)
age_became_blind(A1,
A2)

A2 singer(<literal1>, <answer>) -> The
singer of <literal1> is <answer>. ;
Who is the singer of <literal1>?

age_became_blind(<literal1>, <answer>)
-> <literal1> became blind at the
age of <answer>. ; At what age did
<literal1> become blind?

Cooperative
Living
Organization
is located in
a city that is
the county
seat of what
county in
Florida?

city("Cooperative
Living Organization",
A1),
county_seat(A1, A2)

A2 - city(<literal1>, <answer>) -> The
city where <literal1> is located is
<answer>. ; What city is <literal1>
located in?

- county_seat(<literal1>, <answer>)
-> <literal1> is the county seat of
<answer>. ; What county is <literal1>
the county seat of?

Repertoire
of Pluecido
Domingo
appeared
in an opera
written by
whom which
was based
on a play
by William
Shakespeare?

opera("Repertoire of
Pluecido Domingo",
A1),
writer(A1, A2),
based_on(A1, A3)

A2 - opera(<literal1>, <answer>) -> The
opera in which <literal1> appeared is
<answer>. ; What opera did <literal1>
appear in?

- writer(<literal1>, <answer>) ->
The writer of the opera <literal1>
is <answer>. ; Who wrote the opera
<literal1>?

- based_on(<literal1>, <answer>) -> The
opera <literal1> was based on a play by
William Shakespeare <answer>. ; What
play by William Shakespeare was the
opera <literal1> based on?

In what 2
countries
did both
X-Large and
A Bathing
Ape have
stores?

x_large_countries(A1),
bape_countries(A2),
intersection(A1, A2,
A3)

A3 - x_large_countries(<answer>) ->
X-Large had stores in <answer>
countries. ; In what countries did
X-Large have stores?

- bape_countries(<answer>) -> A Bathing
Ape had stores in <answer> countries.
; In what countries did A Bathing Ape
have stores?

- intersection(<literal1>, <literal2>,
<answer>) -> The common countries
between <literal1> and <literal2>
are <answer>. ; What are the common
countries between <literal1> and
<literal2>?

Edmund
Robert
Harris is the
principal
benefactor
of a museum
located
where ?

museum("Edmund
Robert Harris", A1),
location(A1, A2)

A2 - museum(<literal1>, <answer>) -> The
museum that <literal1> is the principal
benefactor of is <answer>. ; What
museum is <literal1> the principal
benefactor of?

- location(<literal1>, <answer>) -> The
location of <literal1> is <answer>. ;
Where is <literal1> located?

Table 17: 5 examples on generated queries and definitions on HotpotQA.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Question Query Target Definitions
Which film
has the
director born
later, Brutti Di
Notte or Bir
Türk’E Gönül
Verdim?

director("Brutti Di
Notte", A1),
director("Bir Türk’E
Gönül Verdim", A2),
date_of_birth(A1, A3),
date_of_birth(A2, A4),
A3 @> A4 → A5

A5 - director(<literal>, <answer>) ->
The director of <literal> is <answer>.
; Who is the director of <literal>?

- date_of_birth(<literal>, <answer>)
-> The date of birth of <literal> is
<answer>. ; When was <literal> born?

Where did
M. K. Muthu’s
father die?

father("M. K. Muthu",
A1),
place_of_death(A1, A2)

A2 - father(<literal>, <answer>) -> The
father of <literal> is <answer>. ;
Who is the father of <literal>?

- place_of_death(<literal>, <answer>)
-> The place of death of <literal> is
<answer>. ; Where did <literal> die?

What
nationality is
Julia Parker
(Astrologer)’s
husband?

husband("Julia Parker
(Astrologer)", A1),
nationality(A1, A2)

A2 - husband(<literal>, <answer>) -> The
husband of <literal> is <answer>. ;
Who is the husband of <literal>?

- nationality(<literal>, <answer>)
-> The nationality of <literal> is
<answer>. ; What is the nationality
of <literal>?

Are the
directors of
both films
The Snake
Brothers and
Kooky from
the same
country?

director("The Snake
Brothers", A1)
director("Kooky", A2),
country_of_citizenship(A1,
A3),
country_of_citizenship(A2,
A4),
A3 == A4 → A5

A5 - director(<literal>, <answer>) ->
The director of <literal> is <answer>.
; Who is the director of <literal>?

- country_of_citizenship(<literal>,
<answer>) -> The country of
citizenship of <literal> is <answer>.
; What is the country of citizenship
of <literal>?

What is the
place of
birth of the
director of
film Kiss The
Sky (Film)?

director("Kiss The Sky
(Film)", A1),
place_of_birth(A1, A2)

A2 - director(<literal>, <answer>) ->
The director of <literal> is <answer>.
; Who is the director of <literal>?

- place_of_birth(<literal>, <answer>)
-> The place of birth of <literal>
is <answer>. ; Where was <literal>
born?

Table 18: 5 examples of generated queries and definitions on 2WikiMultiHopQA.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Question Query Target Definitions
Who was the
mother of
the person
who found
the sacred
writings that
became the
Book of
Mormon?

founder_of_book_of
_mormon(A1),
mother(A1, A2)

A2 - founder_of_book_of_mormon(<answer>)
-> The person who found the sacred
writings that became the Book of
Mormon is <answer>. ; Who found the
sacred writings that became the Book
of Mormon?

- mother(<literal>, <answer>) -> The
mother of <literal> is <answer>. ;
Who is the mother of <literal>?

Who wrote
Turn Me
On by the
Thinking
About You
performer?

performer("Thinking
About You", A1),
writer("Turn Me On",
A1, A2)

A2 - performer(<literal>, <answer>)
-> The performer of <literal> is
<answer>. ; Who performed <literal>?

- writer(<literal1>, <literal2>,
<answer>) -> The writer of <literal1>
by <literal2> is <answer>. ; Who
wrote <literal1> by <literal2>?

What did
M. King
Hubbert’s
employer
announce it
was in the
process of
doing in April
2010?

employer("M. King
Hubbert", A1),
announcement(A1,
"April 2010", A2)

A2 - employer(<literal>, <answer>) ->
The employer of <literal> is <answer>.
; Who is the employer of <literal>?

- announcement(<literal>, <date>,
<answer>) -> <literal> announced it
was in the process of doing <answer>
on <date>. ; What did <literal>
announce it was doing on <date>?

What is the
experimental
satellite being
forerunner to
communication
satellite of
INSAT-4CR’s
manufacturer
called?

manufacturer("INSAT-
4CR", A1),
experimental_satellite
(A1, A2)

A2 - manufacturer(<literal>, <answer>)
-> The manufacturer of <literal> is
<answer>. ; Who is the manufacturer
of <literal>?

- experimental_satellite(<literal>,
<answer>) -> The experimental
satellite being the forerunner to
the communication satellite of
<literal> is <answer>. ; What is
the experimental satellite being
the forerunner to the communication
satellite of <literal>?

The Socialist
Autonomous
Province
of the city
where there
were mass
executions
of Danube
Swabian
population
are located in
where?

city_with_mass
_executions("Danube
Swabian", A1),
socialist_autonomous
_province(A1, A2),
location(A2, A3)

A3 - city_with_mass_executions(<literal>,
<answer>) -> The city with mass
executions of <literal> population
is <answer>. ; What city had
mass executions of the <literal>
population?

- socialist_autonomous_province(<literal>,
<answer>) -> The Socialist Autonomous
Province of <literal> is <answer>.
; What is the Socialist Autonomous
Province of <literal>?

- location(<literal>, <answer>) ->
<literal> is located in <answer>. ;
Where is <literal> located?

Table 19: 5 examples on generated queries and definitions on MuSiQue.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Question Query Target Definitions
How many
children does
Shelly Reece
have?

aggregate_all(count,
distinct(child("Shelly
Reece", A1)), A2)

A2 - child(<literal>, <answer>) -> The
child of <literal> is <answer>. ;
Who is the child of <literal>?

How many
friends does
the friend of
the person
whose hobby
is aerospace
have?

hobby(A1,
"aerospace"),
friend(A1, A2),
aggregate_all(count,
distinct(friend(A2,
A3)), A4)

A4 - hobby(<answer>, <literal>) -> The
hobby of <answer> is <literal>. ;
Who is the person whose hobby is
<literal>?

- friend(<literal>, <answer>) -> The
friend of <literal> is <answer>. ;
Who is the friend of <literal>?

How many
children does
the mother
of the child
of the person
whose date
of birth is
0985-04-02
have?

dob(A1,
"0985-04-02"),
child(A1, A2),
mother(A2, A3),
aggregate_all(count,
distinct(child(A3,
A4)), A5)

A5 - dob(<answer>, <literal>) ->
The date of birth of <answer> is
<literal>. ; Who is the person whose
date of birth is <literal>?

- child(<literal>, <answer>) -> The
child of <literal> is <answer>. ;
Who is the child of <literal>?

- mother(<literal>, <answer>) -> The
mother of <literal> is <answer>. ;
Who is the mother of <literal>?

How many
mothers does
the friend of
the sister of
the sister of
the child of
the parent of
the person
whose hobby
is mineral
collecting
have?

hobby(A1, "mineral
collecting"),
parent(A1, A2),
child(A2, A3),
sister(A3, A4),
sister(A4, A5),
friend(A5, A6),
aggregate_all(count,
distinct(mother(A6,
A7)), A8)

A8 - hobby(<answer>, <literal>) -> The
hobby of <answer> is <literal>. ;
Who is the person whose hobby is
<literal>?

- parent(<literal>, <answer>) -> The
parent of <literal> is <answer>. ;
Who is the parent of <literal>?

- child(<literal>, <answer>) -> The
child of <literal> is <answer>. ;
Who is the child of <literal>?

- sister(<literal>, <answer>) -> The
sister of <literal> is <answer>. ;
Who is the sister of <literal>?

- friend(<literal>, <answer>) -> The
friend of <literal> is <answer>. ;
Who is the friend of <literal>?

- mother(<literal>, <answer>) -> The
mother of <literal> is <answer>. ;
Who is the mother of <literal>?

How many
children does
the sibling of
the brother of
the brother of
the sister of
Jamal Song
have?

sister("Jamal Song",
A1),
brother(A1, A2),
brother(A2, A3),
sibling(A3, A4),
aggregate_all(count,
distinct(child(A4,
A5)), A6)

A6 - sister(<literal>, <answer>) -> The
sister of <literal> is <answer>. ;
Who is the sister of <literal>?

- brother(<literal>, <answer>) -> The
brother of <literal> is <answer>. ;
Who is the brother of <literal>?

- sibling(<literal>, <answer>) -> The
sibling of <literal> is <answer>. ;
Who is the sibling of <literal>?

- child(<literal>, <answer>) -> The
child of <literal> is <answer>. ;
Who is the child of <literal>?

Table 20: 5 examples on generated queries and definitions on PhantomWiki-S.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Question
Did John Updike and Tom Clancy both publish more than 15 bestselling novels?

Query
bestselling_novels(John Updike, A1),
bestselling_novels("Tom Clancy", A2),
(A1 @> 15 -> B1 = "Yes" ; B1 = "No"),
(A2 @> 15 -> B2 = "Yes" ; B2 = "No"),
(B1 == "Yes" -> (B2 == "Yes" -> A3 = "Yes" ; A3 = "No") ; A3 = "No")

Definitions
bestselling_novels(<literal1>, <answer>) → <literal1> published <answer> bestselling
novels. How many bestselling novels did <literal1> publish?

Sub-Query 1: How many bestselling novels did John Updike publish?
Retrieved passages: John Updike bibliography, Tom Wolfe, Toward the End of
Time, John Updike, John Updike
Answer: more than 20

Sub-Query 2: How many bestselling novels did Tom Clancy publish?
Retrieved passages: Duty and Honor, Line of Sight (novel), Tom Clancy’s EndWar,
Mike Maden, Mark Greaney (novelist)
Answer: 17

Notes
John Updike published more than 20 bestselling novels.
Tom Clancy published 17 bestselling novels.

Prolog Answer:
Final Answer: Yes

Table 21: One example on the execution trace of a question on HotpotQA.

Question
Who is Wisigard’s father-in-law?

Query
spouse(Wisigard, A1),
father(A1, A2)

Definitions
spouse(<literal>, <answer>)‘ -> The spouse of <literal> is <answer>. ; Who is the
spouse of <literal>? father(<literal>, <answer>)‘ -> The father of <literal> is <answer>.
; Who is the father of <literal>?

Sub-Query 1: Who is the spouse of Wisigard?
Retrieved passages: Wisigard, Wisigard, Deuteria, Deuteria, Theudebert I
Answer: Theudebert I

Sub-Query 2: Who is the father of Theudebert I?
Retrieved passages: Theudebert of Soissons, Theudebert of Soissons, Theudebert
I, Theudebert I, Theudebert I
Answer: Theuderic I

Notes
The spouse of Wisigard is Theudebert I.
The father of Theudebert I is Theuderic I.

Prolog Answer: Theuderic I

Final Answer: Theuderic I

Table 22: One example on the execution trace of a question on 2WikiMultiHopQA.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Question
In what region of the country containing A Luoi is the birthplace of John Phan located?

Query
contains("A Luoi", A1),
birthplace("John Phan", A2),
region(A1, A2, A3)

Definitions
contains(<literal>, <answer>)‘ -> <literal> is contained in the country <answer>. ;
What country contains <literal>?
birthplace(<literal>, <answer>)‘ -> The birthplace of <literal> is <answer>. ; What is
the birthplace of <literal>?
region(<literal1>, <literal2>, <answer>)‘ -> <literal2> is located in the <answer>
region of <literal1>. ; What region of <literal1> is <literal2> located in?

Sub-Query 1: What country contains A Luoi?
Retrieved passages: A Luoi Camp, A Luoi District, A Luoi District, A Luoi Camp,
A Luoi District
Answer: Vietnam

Sub-Query 2: What is the birthplace of "John Phan"?
Retrieved passages: John Phan, Phan Boi Châu, Peter C. Phan, John Phan, Phan
Ðình Phùng
Answer: Da Nang, Vietnam

Sub-Query 3: What region of "Vietnam" is "Da Nang, Vietnam" located in?
Retrieved passages: Da Nang, Da Nang Air Base, Da Nang University of
Economics, Hoàng Sa District, Da Nang
Answer: South Central Coast

Notes
A Luoi is contained in the country Vietnam.
The birthplace of John Phan is Da Nang, Vietnam.
Da Nang, Vietnam is located in the South Central Coast region of Vietnam.
Prolog Answer: South Central Coast

Final Answer: South Central Coast

Table 23: 1 example on the execution trace of a question on MuSiQue.

27

	Introduction
	Related Works
	Preliminaries
	Method: π-CoT — Prolog-Initialized Chain-of-Thought
	Single-Step Execution with SLICE
	SLICE Chaining
	Combining Symbolic and Natural Language Reasoning

	Main Results
	Open-Domain Question-Answering
	In-Context Question-Answering

	Ablation Analysis
	Conclusions & Future Work
	Implementation Details of SLICE Module
	Prompt Templates
	Prolog Query and Definitions Generation
	Chain-of-Thought Fact Extraction and Verification
	π-CoT

	Supplementary Experiment Details
	Fullwiki experiment details
	Distractor Experiment Details
	LLM Usage Statement

	Additional Details of Computational Cost
	Analysis of Prolog Errors
	Additional in-context experiments
	Examples of Generated Prolog Queries and Definitions
	Examples of execution traces of π-CoT

