
Adversarial Robustness via Deformable Convolution with Stochasticity

Yanxiang Ma * 1 Zixuan Huang * 2 Minjing Dong 3 Shan You 4 Chang Xu 1

Abstract
Random defense represents a promising strategy
to protect neural networks from adversarial at-
tacks. Most of these methods enhance robustness
by injecting randomness into the data, increasing
uncertainty for attackers. However, this random-
ness could reduce the generalization capacity of
defense, as defense performance could be sensi-
tive to the hyperparameters of noise added to the
data, making it difficult to generalize across dif-
ferent datasets. Additionally, the involvement of
randomness always comes with a reduction of nat-
ural accuracy, which leads to a delicate trade-off
between them, which is seldom studied in random
defense. In this work, we propose incorporat-
ing randomness into the network structure instead
of data input by designing stochastic deformable
convolution, where a random mask replaces the
convolutional offset. This process promotes data
independence, enhancing generalization across
datasets. To study the trade-off, we conduct a the-
oretical analysis of both robust and clean accuracy,
from a perspective of gradient cosine similarity
and natural inference. Based on the analysis, we
reformulate the adversarial training in our random
defense framework. Extensive experiments show
that our method achieves SOTA adversarial ro-
bustness and clean accuracy compared with other
random defense methods. Code is available here.

1. Introduction
Despite the remarkable success of deep neural networks
(DNNs) in classification tasks (Park et al., 2022; He et al.,
2016; Zagoruyko & Komodakis, 2016; Dosovitskiy et al.,

*Equal contribution 1School of Computer Science, University
of Sydney, NSW, Austrilia 2International School, Beijing Univer-
sity of Posts and Telecommunications, Beijing, China 3School of
Computer Science, City University of Hong Kong, Hong Kong,
China 4SenseTime Research, Beijing, China. Correspondence to:
Chang Xu <c.xu@sydney.edu.au>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2020), they remain susceptible to subtle adversarial per-
turbations, which can mislead them into making incorrect
predictions (Madry et al., 2017; Szegedy et al., 2013a; Dong
et al., 2017; Moosavi-Dezfooli et al., 2016; Croce & Hein,
2020). There have been various approaches explored to
improve model robustness (Zhang et al., 2019; Wang et al.,
2020; Chakraborty et al., 2021; Xie et al., 2017; Carbone
et al., 2021; Li et al., 2019; Cohen et al., 2019; Dong et al.,
2022; Fu et al., 2021; Ma et al., 2023; Panousis et al., 2021).
Among them, random defense methods (Xie et al., 2017;
Carbone et al., 2021; Li et al., 2019; Cohen et al., 2019;
Dong et al., 2022; Fu et al., 2021; Ma et al., 2023; Panousis
et al., 2021) shows notable effectiveness due to their ran-
domness that disrupts adversarial strategies.

Existing random defense algorithms widely adopt additive
noises to involve randomness, which makes the defense per-
formance sensitive to the hyperparameters of noises. For
example, some random defense methods add noises to the
data or feature maps in the networks to achieve adversar-
ial robustness (Xie et al., 2017; Carbone et al., 2021; Ma
et al., 2023; Li et al., 2019). However, the noise distribution,
variance, etc., always requires careful tuning to achieve sat-
isfactory performance, which makes it difficult to generalize
to different datasets. Meanwhile, some random defense
methods (Dong et al., 2022; Xie et al., 2017; Carbone et al.,
2021; Panousis et al., 2021) focus on reducing adversarial
transferability among different sampled paths, there is no
in-depth analysis of the trade-off between natural accuracy
and robustness, even though the clean accuracy could be
significantly influenced by the introduced randomness.

In this paper, we incorporate randomness into the network
structure instead of data input to achieve a framework with
data independence and generalization across datasets. Con-
sidering the commonality of convolutional layers in neural
networks, we cooperate with deformable convolutions (Dai
et al., 2017; Zhu et al., 2018) and replace the fixed offsets
with random masks to design a Deformable Convolution
with Stochasticity (DCS), which effectively reduces the sim-
ilarity of the gradient in a data-independent way. Based
on our designed framework, we theoretically analyze the
trade-off between robustness and clean accuracy from the
perspectives of gradient cosine similarity and natural infer-
ence. On the one hand, we derive an upper bound for the
kernel size to satisfy gradient cosine similarity constraints.

1

https://github.com/theSleepyPig/Deformable_Convolution_with_Stochasticity

Adversarial Robustness via Deformable Convolution with Stochasticity

On the other hand, we calculate a lower bound for the kernel
size using the distance between two predictions to enhance
clean accuracy affected by the introduced randomness. By
demonstrating the data independence of both bounds, we
selected an optimal kernel size at their intersection, estab-
lishing our data-independent framework. Finally, by adap-
tively optimizing the DCS during AT to remove points with
similar gradient sources, we further enhance the robustness
of our proposed framework. Our work has the following
main contributions:

1. We design a data-independent framework called DCS to
achieve random defense against adversarial attacks.

2. We theoretically explore how kernel size manages the
trade-off between natural accuracy and gradient similarity,
keeping it within a data-independent range.

3. We design a gradient-selective adversarial training
(GSAT) algorithm to remove points with similar gradient
origins in DCS, reducing attack transferability.

2. Related Works
Deep Neural Networks (DNNs) are vulnerable to adversar-
ial perturbations (Goodfellow et al., 2014a; Szegedy et al.,
2013b), which results in the development of attack and
defense algorithms (Szegedy et al., 2013a; Madry et al.,
2017; Croce & Hein, 2020; Carbone et al., 2021; Li & Xu,
2023; Dong et al., 2020; Cheng et al., 2023; Dong et al.,
2021; 2022; Li et al., 2019; Panousis et al., 2021; Mei et al.,
2025; Gong et al., 2024a;b; Bartoldson et al., 2024; Chen
& Lee, 2024; Amini et al., 2024; Moosavi-Dezfooli et al.,
2016; Wang et al., 2023; Carlini & Wagner, 2017; Dong
et al., 2017). Commonly, the white-box attacks generate
adversarial examples via gradients on the input (Szegedy
et al., 2013a; Dong et al., 2017; Madry et al., 2017; Croce
& Hein, 2020; Athalye et al., 2018b). These algorithms
design very small adversarial perturbations along the direc-
tion of gradient ascent. The white-box attacks are very hard
to detect but do a lot of harm to network performance. In
recent years, to defend against white-box attacks, several
randomized-based algorithms have been proposed to defend
against adversarial perturbations (Chakraborty et al., 2021;
Carbone et al., 2021; Dong et al., 2022; Dong & Xu, 2023;
Li et al., 2019; Panousis et al., 2021; Ma et al., 2023; Mei
et al., 2025; Gong et al., 2024a;b; Bartoldson et al., 2024;
Chen & Lee, 2024; Amini et al., 2024). Some of the works
inserted extra random layers with random weights and mul-
tiplied them with a specific feature map during the forward
propagation (Chakraborty et al., 2021; Carbone et al., 2021).
(Ma et al., 2023) designed a trainable randomized layer that
fits the network through training, to optimize the effect of
randomness. Additionally, the random parameters can also
be added to the feature map as a regularization term (Li et al.,

2019). Other works added randomness in the network struc-
ture by randomly choosing different normalization meth-
ods (Dong et al., 2022). Later, (Panousis et al., 2021) adds
randomness to the parallel random convolutional layer and
then filters the multiple outputs to compose a new feature
map. This method introduces extra parameters which are
expensive in training. Furthermore, these structural ran-
domization methods are not pure structural randomization.
The weights of each randomized structure are independent,
which is effectively mixed structure-weight randomization.
Adversarial Training (AT) (Madry et al., 2017) is a training
method inspired by adversarial generative networks, which
is the most commonly used training method for adversarial
robust models. To prevent overfitting in this process, (Rice
et al., 2020) proposes an early-stop algorithm. AT is widely
used in many adversarial defense methods (Chakraborty
et al., 2021; Carbone et al., 2021; Dong et al., 2022; Dong
& Xu, 2023; Li et al., 2019; Panousis et al., 2021; Ma et al.,
2023; Mei et al., 2025; Gong et al., 2024b).

3. Preliminary
3.1. Deformable Convolution

To tackle complex spatial variations in data, Deformable
Convolution Networks (DCNs) are proposed to replace the
normal convolution layer with a deformable convolution
layer (Dai et al., 2017; Zhu et al., 2018). In the deformable
convolution layer, an offset varies the location of points
in the kernel to deform it. The offset can be considered
as a binary mask, which masks out the original location
and exposes a new location. With this thought, DCN first
defines an initial convolutional kernel K whose kernel size
is a learnable variable k0. Then we determined a collection
of masks Mk×k where every mask M ∈M passes n points.
The deformed kernel K can then be built by K = M ⊙K.
The dimension of deformed kernel K is defined as n ×
Cin × Cout, where n is the receptive field of the deformed
kernel. In this paper for variable convolution, kernel K is
considered as a collection of points. By these definitions,
DCN can be pixel-wised defined using masks as

yl = DCN(l) =
∑

Ki∈K

w(Ki) ·Xi+l, (1)

where l is the position of kernel performed on feature map
X . In DCN, k0 is a learnable variable, while in our method
k0 is fixed onto a certain value k.

3.2. Randomized Adversarial Defenses

We denote h ∈ H as the classifier that maps the input
X ∈ XH×W×C to the logits h(X), where H is the hypothe-
sis space of image classification models and H ×W × C
is the size of the input image. In white-box settings, adver-
sarial attacks maximize the loss function L(h) by adding an

2

Adversarial Robustness via Deformable Convolution with Stochasticity

adversarial perturbation ∆ to X, which forms adversarial
examples (AEs) X̃. Given the maximum perturbation size
ϵd and the true label y, AE can be defined as,

X̃ = argmax
X̃:∥X̃−X∥p≤ϵd

L(h(X̃),y), (2)

where ∆ is constrained by ϵd via lp-norm. While adversarial
attacks maximize the loss function, adversarial training (AT)
minimizes it. By using the predefined adversarial example
as training data, AT finds h∗ that satisfies,

h∗ = argmin
h∈H

EX,y∼X,Y[L(h(X̃),y)]. (3)

Different from adversarial training, randomized de-
fenses prevent attackers from generating accurate
AEs (Chakraborty et al., 2021; Carbone et al., 2021; Dong
et al., 2022; Fu et al., 2021; Ma et al., 2023). Given
two classifiers h1 and h2 randomly sampled from subset
H ⊂ H, the defense scheme is formulated as

H∗ = argmin
h2∈H

EX,y∼X,Y[L(h2(X̃
′
1),y], (4)

where X̃′
1 = argmaxX̃′

1:∥X̃′
1−X∥p≤ϵd

L(h1(X̃
′
1), y). In h1

and h2, The parameters or structures h2 vary from those
in h1, which lead to different forward paths. White-box
attack settings can be thus downgraded to black-box settings
since h1 and h2 are randomly sampled. The objective is
thus converted to the reduction of adversarial transferability
between h1 and h2, which achieves adversarial defense.

4. Methodology
4.1. Deformable Convolution with Stochasticity

Randomized defense methods are always sensitive to their
hyperparameters about randomness. In existing works, most
of the bounds on hyperparameters are data-dependent (Ma
et al., 2023; Dong et al., 2022; Li et al., 2019; Carbone et al.,
2021). When applying these defense methods to unknown
data, the hyperparameters need to be fine-tuned via a large
amount of observation experiments. To address this limita-
tion, we incorporate randomness into the network structure,
isolating the hyperparameters that control randomness from
the data flow in the pipeline. To make structural randomness
generalizable across different CNNs and their variants, we
randomize convolution layers via deformable convolution.

Specifically, we propose Deformable Convolution with
Stochasticity (DCS), which accomplishes structural ran-
domized defense by constructing a random space for de-
formed convolution kernels. In detail, following the defi-
nition of Sec. 3.1, we randomly sample some masks from
M to construct a random space for the deformed kernels
Kn×Cin×Cout , where all the kernels in the random space

Network
Input

Network
Output

Original
Layers

Original
Layers

X

Cin

y

�

Cout

Deformable Convolution with
Stochasticity Layer

Cin*Cout

Deformed
Kernel �

Masks

Randomly
sample

Collection of Deformed
Kernels

Initial
Kernel

Boundary of Deformed Kernel
Masked Pixels in Boundary
Sampled Pixels in Kernel
Feature Maps
Example Patch/Pixel on
Feature Map

Figure 1. This figure shows how DCS performs random defense
on a predefined network. The top half of this figure shows the
process by which DCS generates a collection of deformed kernels
and the internal situation of the deformed kernel. The lower half
shows the pipeline of a network containing a DCS, where the DCS
layer is shown specifically.

distribute uniformly. In each of the network forward prop-
agation, DCS samples a deformed kernel K ∼ K. The
structure of DCS in a predefined network is shown in Fig. 1

In DCS, the hyperparameters that control randomness are
the receptive field of the deformed kernel n, the initial kernel
size k, and the stride S. To keep the dimension of the output
feature maps consistent with the demand of the network
data flow, S keeps consistent with the original convolutional
layers. k is close to the kernel size of the original convo-
lution layer, varying padding to fit the demand of output
dimension. Thus, randomness can only be controlled via n,
which is independent of data. Thus, DCS solves the limita-
tion on the randomness of the data sensitivity. Based on the
description above, we define the function of DCS as

Definition 1. Denote Kl ∼ Kl a sampled deformed kernel
at location l, whose input feature map is X and output
feature map is y. Denote Xi the pixel on X at location
i, and Ki the point on Kl at location i. Following the
definition of DCNs in Eq. 1 we define DCS on the pixel level
as,

yl = DCS(l) =
∑

Ki∈Kl

w(Ki) ·Xi+l, (5)

where the receptive field of K at each channel is n.

Given definition 1, we can regard normal m∗m convolution
as a special case for DCS, where k = n = m2. Replacing a
normal convolution with DCS can be regarded as generaliz-
ing a special case into a normal one. Thus, DCS can replace
any convolutional layers theoretically, which provides a high
DCS generality of DCS among convolution-based networks.

3

Adversarial Robustness via Deformable Convolution with Stochasticity

Image Patch Slide Kernel 1

Conv 1 Slide

Stride=2

Kernel 1
Value

Path 1 Backpropagation

Image Patch

Conv 2

Kernel 2

Value

Path 2 Backpropagation

Cosine similarity

: 𝕏𝑠

: 𝕏𝑔

: 𝕏𝑢

: Predited 𝑦𝑖

: Neighbor of 𝑦𝑖

: Kernel Value

Figure 2. An illustration of three different cases corresponding to
the three terms in Eq. 7. The upper Path 1 represents the attacked
path and the lower Path 2 shows the inference path, where the
dark orange, light orange, and gray points represent points in the
collection Xs, Xg and Xu, respectively.

4.2. Transferability Analysis of Random Kernels

The defined DCS introduces different inference paths. To
increase its robustness, we reduce the adversarial transfer-
ability between different inference paths by controlling their
gradient similarity on DCS input feature maps X , using
the receptive field n. The gradient similarity on the input
feature map between each inference path can be defined as

Cos < ∇X ,∇X′ >=
∇X · ∇′

X

∥∇X∥∥∇′
X∥

, (6)

where ∇X is the gradient of the example that the attacker
can access, and ∇′

X is the gradient that the network will
have in inference. A small gradient similarity represents
that it is hard for the attacks to transfer from the attacked
path to the inference path. For a detailed analysis of n, we
downgrade the gradient similarity to pixel-level. Specifi-
cally, we first divide the points on the input feature map into
three types. In the first inference, we define Xs the collec-
tion points selected by the kernel from location i, Xg the
collection points not in Xs but are selected by kernels from
locations other than i, and Xu the points not selected from
any location. The three types of points are shown in Fig. 2.
We then expand formula 6 into point level considering these
three types of points as

E{Cos < ∇X ,∇′
X >} =

N∑
i=0

[ps · Cos(
∂Xs

i

∂yi
,
∂′Xs

i

∂′yi
)

+ pg · Cos(
∂Xg

i

∂yi
,
∂′Xg

i

∂′yi
) + pu · Cos(

∂Xu
i

∂yi
· ∂

′Xu
i

∂′yi
)] · 1

N
,

(7)

where N is the number of pixels in the output feature map.
Denote pu, pg and ps the probability of picking Xi from Xu

Xg , and Xs in the second inference by the kernel from loca-
tion i, respectively. It obvious that, Cos(∂X

u
i

∂yi
,
∂′Xu

i

∂′yi
) = 0,

Cos(
∂Xs

i

∂yi
,
∂′Xs

i

∂′yi
) = 1, and that 0 ⩽ Cos(

∂Xg
i

∂yi
,
∂′Xg

i

∂′yi
) ⩽ 1.

Taking into account the probabilities, for the fixed kernel,

pu and pg are both 0 and ps is 1. In comparison, our ran-
domized kernel will decrease ps and increase pu and pg.
Thus, theoretically, the random kernel can reduce the at-
tack’s transferability in DCS.

Given Eq. 7, we then analyze how the hyperparameters of
DCS affect the gradient similarity. Specifically, consider
a DCS layer with a stride of S, initial kernel size of k,
and receptive field of n. In pure random sampling, the
probabilities in Eq. 5 can be represented as ps = n

k , pg =
Pg(n, k, S), and pu = 1− ps − pg, where Pg(n, k, S) can
be calculated via n, k and S. The detailed constraints of
Pg(n, k, S) are given in the supplementary materials. S and
k are limited by the dimension of the output feature map.

Lemma 1. Consider a fixed stride and boundary of DCS
as S and k separately. To guarantee the expectation of
gradient cosine similarity to be smaller than a minimum
amount ϵc, the size of kernel n is strictly upper bounded as

n ⩽ S2 · ϵc. (8)

The detailed proof is in the supplementary material.
To minimize the gradient similarity, ϵc should be minimized,
which leads to minimizing n. In addition, since the variables
in Eq. 8 are not related to data, the only undetermined hyper-
parameter of DCS n can obtain a strict data-independent
upper bound, which proved our claim of DCS to be data-
independent in Sec. 4.1. This bound guarantees a small
gradient similarity between each inference paths, thus im-
proving the adversarial robustness of DCS.

4.3. Balancing Robust and Natural Accuracy

It has been proved that decreasing n can minimize the gra-
dient similarity. However, lowering the receptive field may
lead to a reduction of robustness intuitively. So there is
a trade-off between the natural accuracy and the gradient
similarity. However, existing articles on stochastic defense
usually fail to notice this trade-off. To bridge this limitation,
in this section, we analyze this trade-off by deriving the
relationship between n and the natural accuracy. Intuitively,
the receptive field in convolution will limit the performance
of the convolution. To quantify the performance, we first
assume an optimal path of DCS whose output feature map
is y. Given the optimal case, we use the L1 distances be-
tween y and the output feature maps y′ from other inference
paths to evaluate the performances of DCS on clean data.
Specifically, under the definitions in Sec. 4.2, after multiply-
ing normalization parameter ν, the L1 distance betwen the
output feature maps, ν · ∥y − y′∥ can be defined as

ν · ∥y − y′∥ =
N/S2∑
i=0

|
∑

Kj ,K′
j∈K,K′

νi[w(Kj) ·Xj+i

− ·w(K ′
j) ·X ′

j+i]|,

(9)

4

Adversarial Robustness via Deformable Convolution with Stochasticity

Algorithm 1 Gradient-Selective Adversarial Training

Input: Training dataset: X,Y; Classifier: h(X) with ini-
tial weight: w and repeated points Xs = ∅; Attack
iterations: t; Size of perturbation: ϵd; Replaced layer
numbers: L; Size of deformed convolution kernel in
each DCS: n; Other hyperparameters of each DCS: S, k

1: Sample δ from a set of i.i.d.standard Gaussian distribu-
tion;

2: Replace the convolution layer with DCS at layers L in
the network;

3: while not converged do
4: Sample a batch of (X,y) ∈ (X,Y);
5: Initialize adversarial perturbation δx;
6: Sample a deformed convolution kernel for each DCS

in the network;
7: Updated and record the Xs;
8: for i← 1 to t do
9: δx = clipϵd(sign(∇xL(h(X),y)) · η);

10: end for
11: Set points in Xs as 0 and re-sample a deformed con-

volution kernel for each DCS in the network;
12: W = W −∇WL(h(X+ δx,),y);
13: end while

where K, X versus K ′, X ′ represents variables in two dif-
ferent inference path, and νi is the normalization parameter
at location i. Since K and K′ are randomly sampled, the
inconsistency varies at each sampling of DCS. Thus, we turn
to analysis the expectation of the L1 distance. To consider
points in Xs,Xg and Xu separately, we reformulate Eq. 9 by

E{ν · ∥y − y′∥} =
N/S2∑
i=0

|
∑

Kj ,K′
j∈K,K′

puνi[X
′u
i+j · w(K ′

j)]

+ pgνi[X
g
i+j · w(Kj−S∗z)−X ′g

i+j · w(K
′
j)] + ps · 0|,

(10)

where z is a drift that represents the number of sliding steps
from i to the location of the kernel that chooses points from
Xg. According to the derivation in Sec. 4.2 for pu and pg,
the inconsistency of the output feature map can be related
to the DCS hyperparameter n.

Lemma 2. Assume that the expectation of the inconsistency
is less than a small number ϵl > 0, the size of the deformed
kernel is strictly lower bounded as,

n ⩾
S2 − 2kS + k2 + k4(1− ϵlS

2

N)

4kS
(11)

See detailed proof in the supplementary material.

The lower bound on the definition of receptive field in
Lemma 2 shows that to decrease the upper bound of the
normalized distance, n should be enlarged. In contrast, the
upper bound in Lemma 1 wants to decrease n to guarantee

Algorithm 2 Adversarial Defense under White-Box Attack

Input: Test dataset: X,Y; Classifier: h(X) with pretrained
weight: w; Attack iterations: t; Size of perturbation: ϵd;
Replaced layer numbers: L; Size of deformed convolu-
tion kernel in each DCS: n; Other hyperparameters in
each DCS: S, κ
Replace the convolution layer with DCS at layers L in
the network;

Output: ỹ
2: while having data not tested do

Sample a batch of (X,y) ∈ (X,Y);
4: Sample a new deformed convolution kernel for each

DCS in the network;
Initialize adversarial perturbation δx;

6: for i← 1 to t do
∆x = clipϵd(η · sign(∇xL(h(X+ δx),y)))

8: end for
Re-Sample a new deformed convolution kernel for
each DCS in the network;

10: ỹ = h(X+ δx);
end while

a small gradient similarity between each inference path. To
satisfy the trade-off between the gradient similarity and the
natural accuracy, both bounds should be taken into account,
which results in a data-independent constrain for n as

S2 − 2kS + k2 + k4(1− ϵlS
2

N)

4kS
⩽ n ⩽ S2 · ϵc. (12)

With this constraint, we find the trade-off between attack
transferability and natural accuracy while addressing the
limitation of data dependency in randomized defense. In
conclusion, when n obeys the constraint in Eq. 12, DCS can
trade-off between the adversarial transferability of different
inference paths and the natural accuracy, and provide strong
adversarial robustness to the applied network regardless of
the challenges from any dataset.

4.4. Gradient-Selective Adversarial Training

The above theoretical derivation finds the trade-off in the
data-independent case. In practice, however, Eq. 7 and 10
also remind us that data can affect trade-off. The points
in Xg and Xu influence the gradient similarity and output
inconsistency, while Xs hardly affects these two values. To
further explore the potential performance of the network
on a specific dataset, we enhance the adversarial training
by eliminating less significant cases corresponding to Xs.
Specifically, we find Xs by peeking the chosen inference
paths of the attacks in AT, and then manually mask out (set
0) the points on the attacked paths. In formula, following

5

Adversarial Robustness via Deformable Convolution with Stochasticity

the definition of AT in Eq. 3, we have,

H∗ = argmin
h2∈∁Hh1

EX,y∼X,Y[L(h2(X̃
′
1),y], (13)

where ∁Hh1 = h|h ∈ H, and h ̸= h1. The details of
gradient-selective AT (GSAT) are shown in Algorithm 1.

During inference, we will not make any assumptions about
the attack strategy to obtain a fair result. However, every
DCS will sample n points inside the boundaries purely
randomly and independently as a new convolutional kernel
for the DCS before each inference. The detailed inference
method is shown in Algorithm 2.

5. Experiment
5.1. Experiment Setup

We evaluate DCS on CIFAR dataset (Krizhevsky, 2012)
and Imagenet dataset (Krizhevsky et al., 2017). Various
convolution-based networks are used for baseline networks,
including ResNet18 (Park et al., 2022), ResNet50 (He et al.,
2016) and WideResNet34 (Zagoruyko & Komodakis, 2016).
In our experiments, unless specifically labeled, DCS re-
places the second convolutional layer. All other layers keep
the original settings.

Experiments on CIFAR The CIFAR 10 and CIFAR 100
datasets contain 10 and 100 classes, respectively. Each
dataset consists 5.0× 104 training samples and 1.0× 104

test samples, with all images resized to 32x32 pixels with
three color channels. We implement DCS by replacing the
third convolutional layer on both ResNet18 and WRN34
for the CIFAR datasets. The hyperparameter n in DCS is
set to 2 and k = 5 for both networks. In our experiments,
we split the dataset into batches of 128, setting the weight
decay at 5.0× 10−4. We employed an SGD optimizer with
a momentum of 0.9. The initial learning rate was set at
0.1 and was decreased according to a multi-step schedule.
The model was trained over 200 epochs, with learning rate
reductions by a factor of 10 at epochs 60 and 120. For
adversarial training, we configured ϵ at 8

255 and the step
length η at 2

255 for a 7-step PGD (Madry et al., 2017). The
model is implemented using PyTorch (Paszke et al., 2019)
and trained on an NVIDIA GeForce RTX 4090 GPU.

Experiments on ImageNet The ImageNet dataset consists
of 1.2× 106 training examples and 5.0× 104 test examples,
classified into 1000 distinct classes. Each image is in a
3-channel RGB format with a resolution of 224× 224 pix-
els. We implement DCS on ResNet50 for this dataset. The
hyperparameters of DCS remain the same as on ResNet 18.
In our experiments, we divide the dataset into batches of
512 examples. The weight decay is 1.0 × 10−4 with the
initial learning rate set at 0.1 and managed using a cosine
annealing scheduler. The model is fine-tuned using adver-

sarial training for 90 epochs, with 10-step PGD (Madry
et al., 2017) generating adversarial examples, setting ϵ to
4

255 and the step length η to 4
255 . The parameters for DCS

are consistent with those from the CIFAR setup. The entire
model is developed using PyTorch (Paszke et al., 2019) and
evaluated using four NVIDIA GeForce RTX 4090 GPUs.

Benchmarks We evaluate DCS under SOTA attacks in
TorchAttacks (Kim, 2020). For Projected Gradient De-
scent (PGD) (Madry et al., 2017), ϵ = 8/255 with 2/255
step size and 20 steps, employing random starts. We also
assess Momentum Iterative Fast Gradient Sign Method
(MIFGSM) (Dong et al., 2017) with ϵ = 8/255, a step
size of 2/255, 5 steps, and a decay factor of 1.0. The
DeepFool (Moosavi-Dezfooli et al., 2016) attack we used
involves 50 steps with an overshoot of 0.02. We also per-
form the CW attack with a learning rate of 0.01, and Au-
toAttack (Croce & Hein, 2020) with ϵ = 8/255. In ad-
dition, we evaluated DCS under complex attacks by Ex-
pectation over Transformations PGD (EOTPGD). All the
experiments were repeated 10 times to get the mean value.

5.2. Main Results

We evaluated DCS on ResNet 18 and WideResNet 34
(WRN 34). The results are shown in Table. 1. We com-
pared DCS with other baselines to prove the advanced per-
formance of DCS. In detail, we compare against a normal
convolution layer and a normal DCN layer. Our DCS in
main experiments performed GSAT whose effectiveness is
proved later in ablation study in Sec. 5.3.2. As demonstrated
in the tables, our approach significantly outperforms both
standard convolution and fixed DCN. When applying DCS
in ResNet 18 on the CIFAR 10 dataset, comparing against
the normal network, our approach progressed 20.94% un-
der the PGD attacks and 26.07% under AA, while making
progress on natural accuracy of 7.94%. On CIFAR 100
dataset, the advancement of robust accuracy 18.26% under
PGD attacks and 24.44% under AA, while progressing the
natural accuracy by 9.57% On WRN 34 DCS with GSAT
have also achieved high performances. In detail, on CI-
FAR 10, our approach is 21.84% more accurate under PGD
attacks and 24.62% under AA. CIFAR 100 yields similar
results at an advancement of 16.07% under the PGD attacks
and 24.21% under AA. The natural accuracy also increases
by 4.40% and 6.59% on CIFAR 10 and 100 respectively.
From these results, DCS with GSAT are proven to have
advanced performance on both CIFAR 10 and CIFAR 100.

5.3. Ablation Study

5.3.1. INFLUENCE OF KERNEL SIZE ON ROBUSTNESS

As mentioned in Lemma 1, the initial kernel size k of the de-
formed kernel can influence the transferability of the attacks

6

Adversarial Robustness via Deformable Convolution with Stochasticity

Table 1. The results of robust accuracy on CIFAR 10 and 100 of adversarial defense algorithms.
Dataset Model Method Natural PGD20 AA CW12 MIFGSM DeepFool

CIFAR 10

RN 18
Conv 81.17 51.16 47.34 77.69 54.07 5.63
DCN 80.33 52.23 48.04 77.07 54.91 8.01

DCS(ours) 89.11 ± 0.10 72.10 ± 2.49 73.41 ± 2.04 88.56 ± 0.29 69.75 ± 2.05 88.24 ± 0.58

WRN 34
Conv 86.18 54.00 50.84 82.50 57.99 4.48
DCN 82.25 52.54 49.11 78.36 55.29 0.90

DCS(ours) 90.58 ± 0.08 75.84 ± 2.00 75.46 ± 1.62 90.28 ± 0.01 76.86 ± 1.79 90.20 ± 0.12

CIFAR 100

RN 18
Conv 55.14 28.31 24.57 50.61 29.55 5.07
DCN 54.06 23.23 19.82 48.88 25.41 1.05

DCS(ours) 64.71 ± 0.05 46.57 ± 1.96 49.01 ± 1.10 64.33 ± 0.07 49.38 ± 1.27 64.43 ± 0.26

WRN 34
Conv 60.10 31.98 28.15 55.35 33.87 3.47
DCN 58.90 27.02 24.47 53.88 29.65 4.79

DCS(ours) 66.69 ± 0.07 48.05 ± 1.81 52.36 ± 1.14 66.55 ± 0.06 51.24 ± 1.03 66.59 ± 0.30

0 10 20 30 40 50 60 70 80 90 100
Steps of PGD attack

72.5
75.0
77.5
80.0
82.5
85.0
87.5
90.0

Ac
cu

ra
cy

 (%
)

WRN34
ResNet18

(a)

1 3 5 7 9 11 13 15 17 19
Epsilon of PGD attack (/255)

55
60
65
70
75
80
85
90

Ac
cu

ra
cy

 (%
)

WRN34
ResNet18

(b)

0 1 2 3 4 5 6 7 8 9 10
Iterations of EOTPGD attack

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

WRN34
ResNet18

(c)

Figure 3. Evaluation of robustness under different attack settings: (a) PGD steps, (b) ϵ in PGD, (c) EOT iterations of EOTPGD attacks.

Table 2. Comparison with SOTA methods.

Type Methods CIFAR 10 Imagenet
PGD AA PGD AA

Overfit (Rice et al., 2020) 55.06 52.24 39.85 -
DWQ (Fu et al., 2021) 52.18 49.70 42.88 -

AT RobustWRN (Huang et al., 2021) 59.13 52.48 31.14 -
WRN+DCN+AT (Zhu et al., 2018) 52.54 49.11 40.66 -

DiffAT (Wang et al., 2023) - 70.69 - 31.30
Additive Noise (Li et al., 2019) 62.36 58.47 - -

Random AdvWRN (Bartoldson et al., 2024) - 73.71 - -
Noise DF (Chen & Lee, 2024) - 58.22 - 40.60

MeanSparse (Amini et al., 2024) - 75.28 - 59.64
Certified Cert-RA (Chiang et al., 2020) 68.60 - - -
Random LWTA(Panousis et al., 2021) 81.87 74.71 - -
Structure SAF (Wang et al., 2018) 67.40 - - -

DCS(ours) 75.84 75.46 52.38 66.79

Table 3. Evaluation on Gradient-Selective AT.
Baseline AT method Natural Acc Robust Acc

ResNet 18
Normal AT 83.53 ± 0.35 60.64 ± 0.02

GSAT 89.11 ± 0.10 73.41 ± 2.04

WRN 34
Normal AT 90.58 ± 0.10 54.45 ± 0.00

GSAT 90.58 ± 0.08 75.46 ± 1.62

by controlling the upper bound of n. We evaluate the impact
of the initial kernel size on the robustness of DCS under
PGD20 attacks, given a fixed receptive field. The results
are shown in Table. 4. Specifically, we fixed the receptive
field to 4 and then tested the case with initial kernel sizes of

GSAT Normal AT Non AT Non AT
(Base)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

0.03 0.04

Natural Acc
Robust Acc

Cosine Similarity

1.0

0.5

0.0

0.5

1.0

Co
sin

e

(a)

s g u

100.0

99.9

99.8

C s
 /*

1e
-4

+0
.9

9

3.5

2.5

1.5

0.5

0.5

1.5

C g
, C

u /
*1

e-
2

(b)

Figure 4. Observation of Cosine similarity: (a) comparison be-
tween different training techniques, (b)comparison between ker-
nels that sample points from different collections.

3,5,7 and 9. The results show that larger boundaries help
to enhance robustness and also provide more stable results.
However, changing k changes the padding and introduces
more network parameters. Therefore, k is recommended
to be small. In the table, the robustness increases from
k = 3 to 5. With k > 5, more additional parameters will be
introduced, but the increases are smaller.

5.3.2. EVALUATION ON GRADIENT-SELECTIVE AT

The AT that is adapted to DCS is expected to boost the
robustness via decreasing the attack transferability, as men-
tioned in Sec. 4.4. We believe that this adversarial training
can effectively minimize the effect of the batch of points

7

Adversarial Robustness via Deformable Convolution with Stochasticity

Table 4. Effectiveness of DCS over different k w/o GSAT.
k Natural Acc Robust Acc

9*9 87.12 ± 0.12 68.64 ± 1.14
7*7 90.63 ± 0.10 66.39 ± 3.20
5*5 90.58 ± 0.10 62.93 ± 4.48
3*3 15.44 ± 0.27 37.52 ± 5.29

Table 5. GSAT over different receptive fields with a normal test
against the test that canceled Xu.

n Include Xu PGD20 AA
4 ✔ 62.93 ± 4.48 64.18 ± 0.91
3 ✔ 70.75 ± 2.55 72.88 ± 1.47
2 ✔ 72.10 ± 2.49 73.41 ± 2.04
1 ✔ 61.83 ± 1.25 64.40 ± 1.89
4 ✘ 63.50 ± 3.80 56.40 ± 1.53
3 ✘ 65.15 ± 3.26 65.83 ± 0.88
2 ✘ 64.64 ± 2.04 66.14 ± 1.60
1 ✘ 56.82 ± 1.84 58.88 ± 1.67

Xs on the network and decrease the gradient similarity. To
measure its effectiveness, we first observe the gradient simi-
larities and accuracies of ResNet 18 using GSAT, AT, and
normal training on CIFAR 10. The results are shown in
Fig. 4a. It can be found that the GSAT reduces the cosine
similarity and boosts the natural accuracy compared to AT,
which consists of our expectations. For more generalized
situations, We evaluated the GSAT on CIFAR 10 and 100
using ResNet 18 and WRN 34 as the baselines under Au-
toAttack. The results are shown in Table. 3. We can find
that with larger n, GSAT will be more unstable. We give an
explanation as: when Eq. 12 gives **larger bounds** for n,
which refers to larger n in practice, the percentage paths in
unselected random space will increase. This increases the
probability for DCS performance decrement in the networks
using GSAT for training, which leads to greater instability.
Thus, as shown in Table. 3, n is suggested to be small for a
stable GSAT. Table. 3 also shows that DCS obtains higher
robust accuracy and natural accuracy via GSAT, which is
consistent with our analysis.

5.3.3. OBSERVATION OF GRADIENT SIMILARITY

To further verify the validity of the study of Eq. 7 on gradient
similarity, we directly observed the three cases correspond-
ing to Xs, Xg and Xu. Specifically, we manually designed
three sets of deformed kernels with n = 4 corresponding
to the three cases represented. The detailed kernel is illus-
trated in the supplementary material. We used ResNet 18
as a baseline and randomly selected 1000 points on CI-
FAR 10 for observation, and the distribution of gradient
similarity for each case is shown in Fig. 4b. In this figure
Cs is Cos

(
∂Xs

∂yi
, ∂′Xs

∂′yi

)
, Cg means Cos

(
∂Xg

∂yi
, ∂′Xg

∂′yi

)
, Cu

means Cos
(

∂Xu

∂yi
, ∂′Xu

∂′yi

)
. The results are consistent with

what we analyzed in Sec.4.2, proving that the analysis in
Lemma 1 on Eq. 7 and the data-independent upper bound of
n are consistent with the facts. Moreover, according to our
observation, the cosine similarity is also low when points
belonging to Xg are sampled the second time. We hypoth-
esize that this is due to the different sources of gradients
generated by the two inference paths for the same point.
This phenomenon also implies that the upper bound of n
can be loosened a bit in some datasets.

5.3.4. INFLUENCES ON RECEPTIVE FIELD

To verify the trade-off mentioned in Sec. 4.3, we evalu-
ated the performance of DCS over different receptive fields.
Specifically, we use ResNet 18 as the baseline for this abla-
tion study and follow the settings of the major experiments.
Given the observation about the gradient similarity on CI-
FAR 10, as analyzed in Sec. 5.3.3, the upper bound of n can
be loosened. Therefore, we evaluate of the effect of n in a
wide range of values on CIFAR 10. The results are shown in
the first four lines of Table. 5, where DCS-applied networks
achieved the highest robust accuracy of 72.10% under PGD
attacks and 73.41% under AA with the receptive field of 2.
From the table, there is a clear trend of trade-off for n on
robustness, which consists of our derivation in Eq. 12.

Furthermore, based on the observation in Sec. 5.3.3 about
the cosine similarity of points in Xg, if Eq. 7 holds, then
the DCS will maintain strong robustness even if pu = 0.
To verify the validity of Eq. 7, we manually fix pu = 0
by canceling points in Xu in the second inference. The
results are shown in the last four lines in Table. 5. The best
robustness is higher than the baseline but suffers a minor
decrement compared to the DCS including points in Xu.
This result proves that in Eq. 7, 0 < ∂Xi

∂X ·
∂′Xi

∂′Xg < 1. In
addition, given our observations on gradient similarity, Eq. 7
holds, which verifies the validity of Lemma 1.

5.3.5. ROBUSTNESS UNDER DIFFERENT STRENGTH OF
ATTACK

We evaluated the defense capacity of DCS against attacks
of different strengths using ResNet 18 and WRN 34 as the
baseline on CIFAR 10. We evaluate DCS via three groups
of experiments under different settings of PGD attacks.

PGD steps. Since the effectiveness of white-box attacks
such as PGD depends on strength and adversarial transfer-
ability. In order to avoid the effect of attack strength on the
robustness provided by the DCS, we conducted experiments
on the CIFAR 10 dataset using ResNet 18 and WRN 34
with DCS under PGD attacks of different strengths. The
evaluations are performed at different levels of PGD attacks
at each 10 step from clean settings, until 100 steps. The

8

Adversarial Robustness via Deformable Convolution with Stochasticity

Table 6. DCS under black-box attacks.
Baseline Natural Query-based Transfer-based Adaptive

SQUARE Pixel FGSM FGSM-base BPDA BPDA+EOT
RN18 89.11 80.53 86.32 84.95 65.71 78.66 77.78

WRN34 90.58 82.45 86.31 90.53 68.34 80.03 80.47

Table 7. DCS applied to ViT.
Method PGD

ViT-t+Conv 32.31
ViT-t+DCS 55.71

results are shown in Fig. 3a. We found that even under
strong attacks, PGD can still provide strong robustness to
the baseline network, despite some fluctuation.

PGD perturbation boundary ϵ. In addition to the changed
number of steps for generating the adversarial perturbation,
the attack strength can be changed by varying the bound-
aries of the adversarial perturbation ϵd. We evaluated the
performance of DCS under attacks of different ϵd. The re-
sults are shown in Fig. 3b. It can be seen that the robustness
of the DCS is gradually decreasing as the perturbations be-
come stronger. This suggests that DCS has difficulty in
reducing the adversarial transferability of an attack to 0. We
attribute this to the fact that the trade-off prevents the cosine
similarity from being reduced close to 0.

Iterations of EOTPGD Finally, we also evaluate the robust-
ness of the DCS under multi-step attacks. Specifically, we
used EOTPGD as a benchmark for multi-step attacks and
evaluated the robustness of models embedded with DCS
under EOT attacks from 1 to 10 EOT steps. The results
of which are shown in Fig. 3c, which shows that DCS re-
mains robust even under multi-step EOTPGD attacks. This
indicates that DCS can adapt to complex multi-step attacks.

5.3.6. ROBUSTNESS UNDER BLACK-BOX ATTACKS

Considering from the gradient perspective, DCS objectively
shields a portion of the gradient. The defense performance
of DCS, as a gradient-masking defense method, against
black-box attacks is difficult to theoretically infer.

To have a complete understanding of the robustness of
DCS, we observed the defense capability of DCS against
black-box attacks. We evaluate DCS under query-based,
transfer-based (Goodfellow et al., 2014b) and adaptive at-
tacks (Athalye et al., 2018a) on CIFAR 10 with ResNet 18
and WideResNet 34. The results are shown in table 6. DCS
is found to have some defense capability against black-box
attacks. We attribute this phenomenon to the fact that the
random masking of the convolutional kernel by DCS also
shields a portion of the adversarial perturbations, which de-

stroys the integrity of the black-box attack thereby reducing
its effectiveness. For ataptive attacks like BPDA and EOT-
BPDA, DCS also shows high robustness. We attribute this
to randomness in conjunction with gradient masking.

5.3.7. DCS ON TRANSFORMER

We confirm that DCS is tailor-made for convolutional op-
erations. We believe that convolution is still an important
tool in image processing. Transformer is out of the research
scope of this work. However, we briefly explored that DCS
fits Vision Transformer (ViT).

ViT uses a 16× 16 convolution in patch embedding. Large
kernel size makes lower bound of n increases and hinders
finding a suitable n. To avoid this, we notice that patch
embedding can be split into multiple concatenated 3 × 3
convolutions. Our baseline follows the settings in (Xiao
et al., 2021) and then replace the second 3× 3 convolution
with DCS. The results are shown in Table 7. We can find
that DCS also achieves strong robustness on ViT.

Training Stages. The network is trained on CIFAR-10
in two stages. All stages are trained using SGD as the
optimizer, with a weight decay of 5e-4, an initial learning
rate of 0.01 and a batch size of 128. Stage one fixes a
pretrained ViT-tiny and trains the FC layer and convolutions
from scratch with 200 epochs using the multistep scheduler,
where the learning rate is divided by 10 at epoch 50 and 100.
Stage two adversarially finetunes the entire network using
GSAT with 90 epochs with a cosine scheduler.

6. Conclusion
In this paper, we proposed a random structural defense
method named DCS. We proved that DCS solved two major
limitations in existing random defense methods, which are
data-dependent hyperparameters and the trade-off between
gradient similarity and natural accuracy. Through theoreti-
cal derivations, we design a set of bounds for DCS to reduce
the adversarial transferability between each of its inference
paths without degrading the natural accuracy. Finally, we
design GSAT for DCS to enhance the robustness of DCS.
We experimentally validate the above theory and demon-
strate the SOTA robustness of DCS. In future research, we
expect that data-independent defense methods similar to
DCS can demonstrate defenses in various areas of computer
vision to fit 0-shot inference scenarios.

9

Adversarial Robustness via Deformable Convolution with Stochasticity

Acknowledgement
This work was supported in part by the Start-up Grant (No.
9610680) of the City University of Hong Kong, Young
Scientist Fund (No. 62406265) of NSFC, and the Aus-
tralian Research Council under Projects DP240101848 and
FT230100549.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Amini, S., Teymoorianfard, M., Ma, S., and Houmansadr,

A. Meansparse: Post-training robustness enhancement
through mean-centered feature sparsification, 2024. URL
https://arxiv.org/abs/2406.05927.

Athalye, A., Carlini, N., and Wagner, D. Obfuscated gra-
dients give a false sense of security: Circumventing de-
fenses to adversarial examples. In International confer-
ence on machine learning, pp. 274–283. PMLR, 2018a.

Athalye, A., Engstrom, L., Ilyas, A., and Kwok, K. Synthe-
sizing robust adversarial examples, 2018b.

Bartoldson, B. R., Diffenderfer, J., Parasyris, K., and
Kailkhura, B. Adversarial robustness limits via scaling-
law and human-alignment studies, 2024. URL https:
//arxiv.org/abs/2404.09349.

Carbone, G., Sanguinetti, G., and Bortolussi, L. Ran-
dom projections for improved adversarial robustness. In
2021 International Joint Conference on Neural Networks
(IJCNN), pp. 1–7, 2021. doi: 10.1109/IJCNN52387.2021.
9534346.

Carlini, N. and Wagner, D. Towards evaluating the robust-
ness of neural networks. In 2017 ieee symposium on
security and privacy (sp), pp. 39–57. Ieee, 2017.

Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., and
Mukhopadhyay, D. A survey on adversarial attacks and
defences. CAAI Transactions on Intelligence Technology,
6(1):25–45, 2021.

Chen, E.-C. and Lee, C.-R. Data filtering for
efficient adversarial training. Pattern Recog-
nition, 151:110394, 2024. ISSN 0031-3203.
doi: https://doi.org/10.1016/j.patcog.2024.110394.
URL https://www.sciencedirect.com/
science/article/pii/S0031320324001456.

Cheng, Z., Li, Y., Dong, M., Su, X., You, S., and Xu, C.
Neural architecture search for wide spectrum adversarial
robustness. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 442–451, 2023.

Chiang, P.-y., Ni, R., Abdelkader, A., Zhu, C., Studer,
C., and Goldstein, T. Certified defenses for adversar-
ial patches. arXiv preprint arXiv:2003.06693, 2020.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial
robustness via randomized smoothing. In international
conference on machine learning, pp. 1310–1320. PMLR,
2019.

Croce, F. and Hein, M. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free
attacks. In International conference on machine learning,
pp. 2206–2216. PMLR, 2020.

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., and
Wei, Y. Deformable convolutional networks, 2017. URL
https://arxiv.org/abs/1703.06211.

Dong, M. and Xu, C. Adversarial robustness via random
projection filters. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
4077–4086, 2023.

Dong, M., Li, Y., Wang, Y., and Xu, C. Adversarially robust
neural architectures. arXiv preprint arXiv:2009.00902,
2020.

Dong, M., Wang, Y., Chen, X., and Xu, C. Towards stable
and robust addernets. Advances in Neural Information
Processing Systems, 34:13255–13265, 2021.

Dong, M., Chen, X., Wang, Y., and Xu, C. Random nor-
malization aggregation for adversarial defense. Advances
in Neural Information Processing Systems, 35:33676–
33688, 2022.

Dong, Y., Liao, F., Pang, T., Hu, X., and Zhu, J. Discovering
adversarial examples with momentum. arXiv preprint
arXiv:1710.06081, 5, 2017.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Fu, Y., Yu, Q., Li, M., Chandra, V., and Lin, Y. Double-
win quant: Aggressively winning robustness of quantized
deep neural networks via random precision training and
inference. In International Conference on Machine Learn-
ing, pp. 3492–3504. PMLR, 2021.

10

https://arxiv.org/abs/2406.05927
https://arxiv.org/abs/2404.09349
https://arxiv.org/abs/2404.09349
https://www.sciencedirect.com/science/article/pii/S0031320324001456
https://www.sciencedirect.com/science/article/pii/S0031320324001456
https://arxiv.org/abs/1703.06211

Adversarial Robustness via Deformable Convolution with Stochasticity

Gong, H., Dong, M., Ma, S., Camtepe, S., Nepal, S., and
Xu, C. Stealthy physical masked face recognition attack
via adversarial style optimization. IEEE Transactions on
Multimedia, 26:5014–5025, 2024a. doi: 10.1109/TMM.
2023.3330089.

Gong, H., Dong, M., Ma, S., Camtepe, S., Nepal, S., and
Xu, C. Random entangled tokens for adversarially robust
vision transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 24554–24563, June 2024b.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and
harnessing adversarial examples. CoRR, abs/1412.6572,
2014a.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014b.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, H., Wang, Y., Erfani, S., Gu, Q., Bailey, J., and
Ma, X. Exploring architectural ingredients of adversar-
ially robust deep neural networks. Advances in Neural
Information Processing Systems, 34:5545–5559, 2021.

Kim, H. Torchattacks: A pytorch repository for adversarial
attacks. arXiv preprint arXiv:2010.01950, 2020.

Krizhevsky, A. Learning multiple layers of features from
tiny images. University of Toronto, 05 2012.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Communications of the ACM, 60(6):84–90, 2017.

Li, B., Chen, C., Wang, W., and Carin, L. Certified adver-
sarial robustness with additive noise. Advances in neural
information processing systems, 32, 2019.

Li, Y. and Xu, C. Trade-off between robustness and accuracy
of vision transformers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 7558–7568, 2023.

Ma, Y., Dong, M., and Xu, C. Adversarial robustness
through random weight sampling. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 37657–37669. Curran Associates,
Inc., 2023.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to

adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Mei, H., Dong, M., and Xu, C. Efficient image-to-
image diffusion classifier for adversarial robustness. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 39(6):6081–6089, Apr. 2025. doi: 10.1609/
aaai.v39i6.32650. URL https://ojs.aaai.org/
index.php/AAAI/article/view/32650.

Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. Deep-
fool: a simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2574–2582,
2016.

Panousis, K. P., Chatzis, S., and Theodoridis, S. Stochastic
local winner-takes-all networks enable profound adversar-
ial robustness. arXiv preprint arXiv:2112.02671, 2021.

Park, S., Yoo, C.-H., and Shin, Y.-G. Effective shortcut
technique for generative adversarial networks. Applied
Intelligence, 53(2):2055–2067, may 2022. doi: 10.1007/
s10489-022-03666-2. URL https://doi.org/10.
1007%2Fs10489-022-03666-2.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Rice, L., Wong, E., and Kolter, Z. Overfitting in adversari-
ally robust deep learning. In Intern ational Conference
on Machine Learning, pp. 8093–8104. PMLR, 2020.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013a.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013b.

Wang, B., Lin, A. T., Zhu, W., Yin, P., Bertozzi, A. L., and
Osher, S. J. Adversarial defense via data dependent acti-
vation function and total variation minimization. arXiv
preprint arXiv:1809.08516, 2018.

Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., and Gu, Q. Im-
proving adversarial robustness requires revisiting misclas-
sified examples. In International Conference on Learning
Representation, 2020.

Wang, Z., Pang, T., Du, C., Lin, M., Liu, W., and Yan,
S. Better diffusion models further improve adversarial
training, 2023. URL https://arxiv.org/abs/
2302.04638.

11

https://ojs.aaai.org/index.php/AAAI/article/view/32650
https://ojs.aaai.org/index.php/AAAI/article/view/32650
https://doi.org/10.1007%2Fs10489-022-03666-2
https://doi.org/10.1007%2Fs10489-022-03666-2
https://arxiv.org/abs/2302.04638
https://arxiv.org/abs/2302.04638

Adversarial Robustness via Deformable Convolution with Stochasticity

Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollár, P.,
and Girshick, R. Early convolutions help transformers
see better. Advances in neural information processing
systems, 34:30392–30400, 2021.

Xie, C., Wang, J., Zhang, Z., Ren, Z., and Yuille, A. Miti-
gating adversarial effects through randomization. arXiv
preprint arXiv:1711.01991, 2017.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and
Jordan, M. Theoretically principled trade-off between
robustness and accuracy. In International conference on
machine learning, pp. 7472–7482. PMLR, 2019.

Zhu, X., Hu, H., Lin, S., and Dai, J. Deformable convnets
v2: More deformable, better results, 2018. URL https:
//arxiv.org/abs/1811.11168.

12

https://arxiv.org/abs/1811.11168
https://arxiv.org/abs/1811.11168

Adversarial Robustness via Deformable Convolution with Stochasticity

A. Proof of Theorems
A.1. Proof of Lemma 1

We start with explaining the pixel-level gradient similarity. The cosine similarity in pixel level can be redefined as,

Cos < ∇X ,∇′
X >=

∑N
i=0∇Xi∇′

Xi

M
, (14)

where M = ∥∇X∥∥∇X∥. For each poin, considering the three types, the cosine similarities can be divided into three
terms as is demonstrated in Eq. 7 in the main text. We define E(Cos < ∇Xi∇′

Xi >) =
∑N

i=0 Ci
∥∇Xi∥∥∇′

Xi∥
M , where

Ci = Cos < ∇Xi,∇′
Xi > represents the gradient similarity at each poin. Considering pg = 1− pu − ps, we have

Ci =
n

k2
(1− Cg

i) + Cg
i − pu · Cg

i , (15)

where Cg
i =

∂Xg
i

∂yi
· ∂

′Xg
i

∂′yi
∈ [−1, 1]. When Cg

i ⩽ 0, it can be guaranteed that Ci ⩽ n
k2 . Thus, we concentrate on the case

that Cg
i > 0. From Eq. 15, Cg

i is decided by the data and the network parameters. As the data is unknown, to minimize
Ci, we maximize pu. Since pu is decided by the random sampling results, we turn to maximize the lower bound of pu to
guarantee a small upper bound of Ci. Given a pointX0 in the first inference, the Xg produced by it can stay in S2 different
shapes. There are three kinds of sizes for those differently shaped Xg. Denote m ≡ k2 (mod S2), the number of Xg in
size ⌈ kS ⌉

2 is m2, in size ⌈ kS ⌉⌊
k
S ⌋ is 2m(k −m), and in size ⌊ kS ⌋

2 is (k −m)2, where ⌊·⌋ for rounding down and ⌈·⌉ for
rounding up. Denote k

S = α, and (k −m) = β, the lower bound of pu in Eq. 7 in the main text can be defined as

pu ⩾


k2−n⌈α⌉2

k2 , if n ⩽ m2;
k2−m2⌈α⌉2−(n−m2)⌈α⌉⌊α⌋

k2 , if m2 < n ⩽ m2 + 2mβ;
(S2−n)⌊α⌋2

k2 , if m2 + 2mβ < n ⩽ S2;

0, if n > S2,

(16)

From Eq. 17, when n > S2, the lower bound of pu is 0 which makes no guarantee that the Ci is small. Thus we concentrate
on the cases where n < S2. When n < S2, a looser bound of pu from Eq. 16 can be derived as

pu ⩾
(S2 − n)⌊α⌋2

k2
. (17)

Then, as the upper bound of Ci is expected to be smaller than ϵc, it can be formulated as

Ci ⩽
n

k2
(1− Cg

i) + Cg
i −

(S2 − n)⌊α⌋2

k2
· Cg

i ⩽ ϵc, (18)

From Eq. 18, the upper bound of n can be derived as

n ⩽
k2ϵc + (S2⌊α⌋2 − k2)Cg

i

1 + (⌊α⌋2 − 1)Cg
i

. (19)

When considering the worst case, where Cg
i = 1, the upper bound of n can be rewritten as

n ⩽
k2(ϵc − 1)

⌊α⌋2
+ S2. (20)

From Eq. 20, as ⌊α⌋ ⩽ k2

S2 , there is a looser bound for n as

n ⩽ S2ϵc. (21)

A.2. Proof of Lemma 2

In Lemma. 2, we constrain the L1 distance between the output features after normalization into a small boundary. To expand
the L1 distance into pixel level, we divide the points into three type, which are sampled from Xs, Xg , and Xu respectively,

13

Adversarial Robustness via Deformable Convolution with Stochasticity

Kernel 1 Kernel 𝕏𝑠 Kernel 𝕏𝑔 Kernel 𝕏𝑢

Figure 5. Illustration of Kernel Pairs

as shown in Eq. 10 in the main text. Denote ∆g ∈ [0, 1] by the average value of
∑k2

j=0 νi[Xi+jw(Kj)−X ′g
i+jw(K

′
j)] and

∥γ∥ by the expectation of
∑N/S2

i=0 νi
∑k2

j=0[X]iS2+jw(K
′
j)]

1. the constrain in L1 distance in pixel level is

pu∥γ∥+
(1− pu − n

k2)∆gN

S2
⩽ ϵl (22)

To satisfy Eq. 22 we compare the boundary with the upper bound of pu. Similar to the analysis in Section. A.1, we divide
the upper bound of pu into three cases as

pu ⩽


k2−⌈ n

⌈α⌉2
⌉⌈α⌉2

k2 , if n ⩽ m2⌈α⌉2
k2−m2⌈α⌉2−⌈ (n−m2)

⌈α⌉⌊α⌋ ⌉⌈α⌉⌊α⌋
k2 , if m2⌈α⌉2 < n ⩽ k2 − β2⌊α⌋2;

⌊ (k2−n)

⌊α⌋2
⌋⌊α⌋2

k2 , if k2 − β2⌊α⌋2 < n;

(23)

For the 3 terms to the right hand side in Eq. 23, the goal is to leave only n into the numerator part. Thus the relationship
between pu and n can be clear. We loose the terms by considering −⌈·⌉ as −(·) and ⌊·⌋ as (·) For the first term

pu ⩽ 1− nα2

⌈α⌈2k2

For the second term

pu ⩽ 1− (
m2α2

k2
+

nα

k2⌈α⌉
− m2α

k2⌊α⌋
) ⩽ 1− (

nα

k2⌈α⌉
)

For the third term

pu ⩽ 1− nα2

k2⌊α⌋2

We set the strictest bounds for pu. Bringing in α = k
S , there is a looser boundary of pu considering all cases as

pu ⩽ 1− n

⌊α⌋2S2
, (24)

where n < ⌊α⌋2S2. As mentioned in Section. A.1, we consider the situations where n < S2, and ⌊α⌋ ⩾ 1, n always
satisfies the condition n < ⌊α⌋2S2. To satisfy Eq. 22, for given k and S, n must be greater than a lower bound as

n ⩾
⌊α⌋2 − ⌈α⌉2(ϵlS

2k2

N∆g
− 1)k2

⌈α⌉2 − ⌊α⌋2
(25)

As α− 1 ⩽ ⌊α⌋ ⩽ α and α ⩽ ⌈α⌉ ⩽ α+ 1, a looser boundary can be found for n as

n ⩾
(α− 1)2 − α2k2(ϵlS

2

N∆g
− 1)

4α
(26)

1N here is the size of input feature map including the padding point

14

Adversarial Robustness via Deformable Convolution with Stochasticity

When consider the worst case where ∆g = 1, taking α = k
S into Eq. 26, n is lower bounded as

n ⩾
S2 − 2kS + k2 − k4(ϵlS

2

N − 1)

4kS
. (27)

The form in Eq. 27 consists of the form in Lemma. 2.

A.3. Constrain of Pg

Based on the boundary of pu mentioned in Section. A.1 and Section. A.2, we can derive the boundary of Pg from
Pg = 1− pu − ps as

n

⌊α⌋2S2
− n

k2
⩽ Pg ⩽ 1− (S2 − n)⌊α⌋2 − n

k2
, (28)

where n < S2. From Section. A.1 and Section. A.2, we claim that in the derivation of Lemma.1 and Lemma. 2, Pg is
bypassed through replacing Pg into 1− pu − ps, where ps =

n
k . The exact form of Pg is not important for Lemma. 1 and

Lemma. 2. Thus we do not specify Pg in the derivation in Sec. 4.

B. Additional Experiments
B.1. Explanation of the instability of GSAT

According to Eq. 13, GSAT modifies the sample space sampled by the DCS layer in forward propagation during training by
selection. Below we explain the reason for the instability of GSAT shown in Table 3.

We have demonstrated both theoretically and experimentally that paths in Xg and Xu are not easy to attack, while paths in
Xs are very easy to be attacked by gradient-based algorithms (see Eq. 7, 10 and Sec. 5.3.3 for details). This means that when
the network is attacked, the gradients generated by the paths in Xg and Xu will be in different direction from the attacked
gradients generated by the paths in Xs.

To minimize the influence of inaccurate attacked gradients in training, we select and remove paths in Xs from X, and build
the selected random space, as demonstrated in Eq. 13. This corresponds to step 11 in Algorithm 1. The selected random
space is used for sampling paths in the forward and backward propagation for each training step separately.

We understand that using GSAT the network are only limited optimized on the paths in Xs under each adversarial examples.
So when the DCS samples paths in Xs in inference, there are performance decrement compared to the other sampled paths.
The decrement will cause the instability in GSAT. The larger probability the performance drop in DCS, the greater instability
in GSAT.

B.2. Illustration of Toy Kernel Pairs

2 4 6 8
Position of DCS

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Natural
PGD

Figure 7. DCS at Different Position

To observe the gradient similarity in Section 5.3.3 in the main text, we
choose some toy kernel pairs, where the points sampled in the second
kernels are in Xs, Xg , and Xu respectively. The shapes of these toy kernel
pairs are illustrated in Fig. 5. In the figure, Kernel 1 represents the kernel
sampled in the first inference, and Kernel Xs, Xg, and Xu represents the
kernel sampled with points only in collection Xs, Xg , and Xu, respectively.

B.3. Grid Search of k and n in DCS

We did grid search on the hyperparameters of DCS. As S is determined by
the network, there lefts two hyperparameters to be determined, which are
k and n. The results are shown in Fig. 6. From the figure, it is clear that
under the assumption of n < S2, when k = 5 and n = 2, DCS can reach
the best performance under both AA and PGD attacks. Thus, we choose
this group of hyperparameters in the major experiments.

15

Adversarial Robustness via Deformable Convolution with Stochasticity

3 5 7 9 11
Kernel Size k

2
3

4
Re

ce
pt

iv
e

Fi
el

d
n

57.03 72.15 65.50 56.01 55.40

43.56 65.15 70.19 62.41 56.78

37.52 62.93 66.39 68.64 63.07

PGD Accuracy (%)

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

(a)

3 5 7 9 11
Kernel Size k

2
3

4
Re

ce
pt

iv
e

Fi
el

d
n

51.49 73.34 70.07 58.85 61.15

37.59 65.83 72.81 65.57 60.20

11.66 64.18 65.71 72.12 66.56

AA Accuracy (%)

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

(b)

Figure 6. Heatmaps of accuracy under different attack settings: (a) PGD, (b) AA.

B.4. DCS at Different Position

We initially explored the accuracy of DCS when implemented at various positions within a ResNet under PGD20 attacks, the
results of which are illustrated in Fig. 7. Our findings indicate that the accuracy is relatively close to a peak value in the
first six layers. The accuracy at the eighth layer is comparatively lower than at other positions. Consequently, in our major
experiments, we choose the second convolution layer to be replaced with the DCS layer.

B.5. Computational Overhead

Despite the difference in training time, their time consumption during inference is very similar. The time gap in training is
due to the introduction of additional parameters in the DCS layer. However, during inference, the extra time consumption
caused by the extra parameters is not as dramatic as training due to the absence of backpropagation. The results are shown
in Table 8.

Table 8. Training and reasoning overhead comparison.
Model Training Overhead/min Reasoning Overhead/sec

baseline 213.47 5.94
DCS 379.96 6.67

B.6. Impact of Downsampling Layer Substitution

We compare the results by replacing the DCS to the downsampled layer (layer 6) with the closest normal convolution layer
(layer 5, 7). The results are shown in Table 9.

Table 9. Downsampling layer substitution.
Layer PGD AA

5 68.12 70.72
6 72.03 75.74
7 69.36 72.11

We notice that the performance of DCS on downsampling layers is better than the normal convolution layers. According
to the lemmas, larger stride S helps to reduce the assumed small numbers ϵc and ϵl in the lemmas. It results in a smaller
gradient similarity and output distance, and finally increases the robustness and clean accuracy. In addition, larger S also
helps the bounds in both lemmas to be numerically looser in practice. This helps to find a suitable n easier.

16

