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Abstract
Recent text-to-image generative models have
demonstrated remarkable abilities in generating
realistic images. Despite their great success, these
models struggle to generate high-fidelity images
with prompts oriented toward human-object in-
teraction (HOI). The difficulty in HOI genera-
tion arises from two aspects. Firstly, the com-
plexity and diversity of human poses challenge
plausible human generation. Furthermore, un-
trustworthy generation of interaction boundary
regions may lead to deficiency in HOI semantics.
To tackle the problems, we propose a Semantic-
Aware HOI generation framework SA-HOI . It
utilizes human pose quality and interaction bound-
ary region information as guidance for denoising
process, thereby encouraging refinement in these
regions to produce more reasonable HOI images.
Based on it, we establish an iterative inversion
and image refinement pipeline to continually en-
hance generation quality. Further, we introduce
a comprehensive benchmark for HOI generation,
which comprises a dataset involving diverse and
fine-grained HOI categories, along with multi-
ple custom-tailored evaluation metrics for HOI
generation. Experiments demonstrate that our
method significantly improves generation qual-
ity under both HOI-specific and conventional im-
age evaluation metrics. The code is available at
https://github.com/XZPKU/SA-HOI.git

1. Introduction
Recently, the diffusion-based models (HuggingFace, 2022;
Song & Ermon, 2020) have shown great success in text-
to-image generation tasks (Ramesh et al., 2022; Rombach
et al., 2022; Saharia et al., 2022) through extensive training
on large-scale datasets. Despite their impressive ability to
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Figure 1: Existing problems in HOI image generation. (a)
The generated image deviates from the prescribed HOI cate-
gory as it retrieves to another one. (b) Qualitative compar-
isons between Stable Diffusion (Rombach et al., 2022) (top
row) and our SA-HOI (bottom row). Images within each
column are generated with the same text prompt describing
the HOI category on top of them.

produce realistic and diverse images closely aligned with
provided object-oriented text descriptions, our empirical
observations highlight challenges when they are exposed to
human-object interaction (HOI) oriented descriptions. As
shown in Figure 1(a), the generated image from the stable
diffusion model (Rombach et al., 2022) deviates from the
specified “kiss a dog” HOI category and aligns more with
“hug a dog”. Through a human study, we empirically noted
a 60.9% occurrence of semantic misalignment between the
generated 1000 images and their specified texts.
The primary reasons for the difficulty in HOI generation can
be attributed to two factors: (1) Complex Human Struc-
ture and Pose Diversity: Generating human images in-
volves dealing with a complex structure comprising numer-
ous interconnected body parts. As shown in Figure 1(b)
(first row), the recent stable diffusion model sometimes
results in deformations and unreliable poses, such as dis-
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torted hands and missing right leg in the first two images.
(2) Semantic complexity and Variability in Interactions:
merely possessing a plausible human pose falls short of
meeting the semantic demands inherent in HOI, the quality
of interaction boundary region also plays a crucial role. As
shown in Figure 1(b) first row, the third generated image
from the Stable diffusion model lacks the portrayal of the hu-
man wrapping their arms around the cow at the interaction
boundary, compromising the expression of “human hugging
a cow”. Similarly, the fourth generated image fails to ex-
press the “hold” semantic as hand and fork is not contacted.

To address the challenges above, we present a Semantic-
Aware HOI (SA-HOI ) generation framework as shown in
Figure 2. Firstly, we use stable diffusion model to generate
an initial image. We employ a human pose detector trained
on a large dataset of real human poses, to assess the qual-
ity of each generated body part. A lower confidence score
for a specific keypoint from the pose detector indicates a
deviation from typical human poses, signaling a potential
issue with the quality of the generated body part (deformed
body parts). Additionally, we identify interaction boundary
regions by assessing the proximity of human body parts
to the contour of the object with the help of segmentation
tool. Secondly, we utilize a blurring technique on the re-
gion containing deformed body parts and the interaction
boundary, which intentionally removes fine-grained infor-
mation from the corresponding area. Then the remaining
information within blurred content is subsequently utilized
to guide image refinement. Specifically, in the reverse pro-
cess of diffusion models, we leverage pose and interaction
boundary aware attention maps to enhance the overall qual-
ity and minimize artifacts around the highlighted body parts
or interaction boundary area. Thirdly, we introduce an It-
erative inversion and Image Refinement pipeline, allowing
the model to continually improve itself based on the refined
image from the last iteration. This process leads to a gradual
enhancement of generation quality, all achieved without the
need for additional training. Some generated samples from
our approach is presented in Figure 1(b) second row.

To the best of our knowledge, we are the first work concen-
trating on HOI image generation from pure text descriptions.
We introduce a comprehensive benchmark for HOI gener-
ation, consisting of 150 prompts covering human-object,
human-animal, and human-human interactions. The bench-
mark includes diverse yet fine-grained scenarios, such as
“holding” 49 different objects and 16 ways of interacting
with a “horse”. We further propose specific evaluation met-
rics tailored for HOI image generation. These metrics com-
prehensively assess the quality of generated HOI images in
terms of authenticity, plausibility, and fidelity. They reflect
the quality of the generated body pose, HOI spatial config-
uration, and the degree of semantic consistency with the
provided text.

In summary, our contributions are threefold. (1) We intro-
duce a semantic-aware method to enhance overall quality
and reduce artifacts for HOI generation. Equipped with an
iterative inversion and image refinement pipeline, our model
can continually enhance itself in a step-by-step manner. (2)
We propose the first HOI generation benchmark covering
human-object, human-animal and human-human interaction,
along with evaluation metrics that are specifically designed
for HOI generation. (3) Extensive experiments demonstrate
our method outperforms existing diffusion-based methods
under both HOI-specific and conventional evaluation met-
rics for image generation.

2. Related Work
Sampling guidance for diffusion models. Multiple guid-
ance schemes have been proposed for diffusion models re-
cently. Classifier guidance (CG) (Dhariwal & Nichol, 2021)
is proposed to use a classifier to guide the reverse process
toward specific class distribution. (Ho & Salimans, 2022)
proposes classifier-free guidance (CFG) as an alternate strat-
egy for CG. DiffusionCLIP (Kim et al., 2022) expands text-
to-image generation with CLIP guidance. SAG (Hong et al.,
2023) further points out that self-attention maps within dif-
fusion model can be adopted as guidance messages for re-
verse process, by utilizing which model can generate more
high-quality images. However, self-attention maps mainly
concentrate on high-frequency part within image, lacking
targeted guidance toward human pose and interaction bound-
ary region. Instead, our method explicitly concentrates on
human pose and interaction boundary region, enhancing
HOI image quality by refining these areas.

Posed-guided Human Image Generation Pose-guided hu-
man image generation (HIG) has been well explored (Men
et al., 2020; Lv et al., 2021; Ma et al., 2018), which aims to
generate images with source image’s appearance and desired
pose condition. The development of ControlNet (Zhang &
Agrawala, 2023) further leads to more approaches (Ju et al.,
2023) focusing on the accuracy and diversity of pose control.
(Weng et al., 2023) proposes to utilize SMPL (Zhang et al.,
2023) model to provide plausible human pose prior to refine
images. However, pose-guided HIG only targets for the
rationality of human pose, while HOI generation has further
requirements on interaction expression and fidelity to HOI
semantics.

Customized Image generation for diffusion models Cus-
tomized image generation emerges as personalized appli-
cations of diffusion-based models. ControlNet (Zhang &
Agrawala, 2023) introduces additional controls to generate
images with customized signals like depth and skeleton in-
formation. Textual Inversion (Gal et al., 2022) generates
images for specific unique concepts by optimizing corre-
sponding concept embedding with a few exampler images.
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Compared with them, HOI generation not only concerns
instance-level generation for humans and objects, but also
requires semantic-level interaction generation, which has
been seldom explored before. ReVersion (Huang et al.,
2023b) concentrates on relation modelling, targeting for
generating relation-customized images by optimizing rela-
tion embedding in inversion manner. However, it can only
apply to 10 specific relations and need extra training for
each relation, which is not efficient. Instead, our method
not only requires no additional training, but also can be
applied to 150 HOI categories. T2I-CompBench (Huang
et al., 2023a) proposes a comprehensive benchmark for the
compositional image generation and evaluation, primarily
focusing on attribute binding, spatial relationships, and com-
plex object compositions, but the adopted evaluation metrics
lack comprehensive justification for HOI image quality, thus
not ideally suitable for HOI image generation task. Another
attempt InteractGAN(Gao et al., 2020) targets HOI image
generation with a different task formulation, which requires
human images, object images, as well as action categories
as inputs, and generates images with consistent identity for
the input human and object by adjusting the human pose.
Compared with it, our HOI image generation task relies
solely on textual prompts describing HOI categories and
can accommodate 150 HOI categories, embracing greater
diversity and superior scalability.

3. Preliminaries
Denoising Diffusion Probabilistic Models Denoising Dif-
fusion Probabilistic Model (DDPM) recovers an image from
Gaussian distribution noise through an iterative denoising
process. Formally, given an image x0 along with variance
schedule βt at a timestep t∈ {T, T-1, ..., 1}, we can obtain xt

through forward process, which is pre-defined as a Marko-
vian process. For a trained diffusion model parameterized as
ϵθ(xt, t) and Σθ(xt, t), we define its reverse process as fol-
lowing: Σθ(xt, t) = βt = α2

t . For a given xT ∼ N(0, I),
DDPM iteratively sample xT−1, xT−2, ...x0 by computing:

xt−1 =
1
√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) + σtz (1)

where αt = 1 − βt, ᾱt =
∏t

i=0 αi, z ∼ N(0, I) and ϵθ is
network parameterized by θ. By applying reparameteriza-
tion trick, we can obtain x̂0, an intermediate reconstruction
of x0 at a timestep t, using the following equation:

x̂0 =
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt, t)) (2)

Generalized Guidance of Diffusion models Guidance
schemes for diffusion models can be generalized as follows:
the input for a diffusion model at timestep t is generalized
condition ht and perturbed sample xt that lacks ht, and

guidance can be formulated through the utilization of an
imaginary regressor, pim(ht|xt), which aims to predict ht

from xt, whose formulation is:

ϵ̃xt,ht
= ϵθ(xt, ht)− sσt∇xt

logpim(ht|xt) (3)

where s is the guidance scale. By the calculation of the
gradient of pim, samples generated under guidance are ex-
pected to be more suitable with that information stored in
ht. Further, with Bayes’rule, the gradient can be further
formulated as:

∇xt logpim(c|Xt) = −
1

σt
(ϵθ(xt,ht)− ϵθ(xt)) (4)

then we acquire the final expression of ϵ̃xt,ht as follows:

ϵ̃xt,ht
= ϵθ(xt) + (1 + s)(ϵθ(xt, ht)− ϵθ(xt)) (5)

By storing different information inside ht, we can pro-
vide corresponding guidance during the generation process.
Specifically, applying Gaussian kernel Gσ convolution over
xt, i.e., x̃t = Gσ ∗ xt, can be viewed as one simplified guid-
ance scheme, as ht = xt − x̃t and xt = xt in Equation 5,
which is proven (Hong et al., 2023) to effectively guide
diffusion more appropriate to the salient information stored
in ht with a moderate σ in Gaussian kernel, thus harvesting
more high-quality generation.

4. Method
4.1. Overview

The overall framework of SA-HOI is shown in Figure 2.
It consists of two designs: Pose and Interaction Boundary
Guidance (PIBG) and Iterative Inversion and Refinement
(IIR). In PIBG, for given HOI prompt t0 and noise n0, we
first utilize Stable Diffusion to generate I0 as the initial im-
age. To measure the pose quality of I0, we adopt a pose de-
tector to acquire human body joint positions {P pose

i }Npose

i=1

and corresponding confidence score {Spose
i }Npose

i=1 , where
Npose is visible joint number for human in I0. Considering
that a low confidence score signals potentially deformed
generation for specific body parts, we utilize Spose and
P pose to construct pose mask Mpose, which highlights low-
quality pose regions. Considering the spatial context of
interactions, we identify interaction boundary regions by
assessing the proximity of human body parts to the contour
of the object with the help of segmentation tool. These
identified regions are highlighted in the interaction bound-
ary mask M inter to enhance the semantic expression in the
vicinity of interaction boundary areas. For each denoising
step, to guide the model focusing on low pose quality or in-
teraction boundary regions and minimizing artifacts in them,
we adopt Gaussian Blurring on these regions by utilizing
Mpose and M inter as region constraints, and subsequently
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Figure 2: The overall framework of our method SA-HOI (left) and HOI Generation benchmark (right). Our method
SA-HOI contains two designs: Pose and Interaction Boundary Guidance (PIBG), Iterative Inversion and Refinement (IIR).
In PIBG, Low-quality Pose Mask Mpose and interaction boundary mask M inter are adopted to refine low pose quality
part and interaction boundary region of original image I0 in each denoising step as detailed in Algorithm 1. IIR gradually
enhances generation quality based on inversion model N and PIBG as shown in Algorithm 2. Our benchmark includes a
Dataset of realistic images covering human-object, human-animal, and human-human interactions, as well as comprehensive
HOI Evaluation Metrics reflecting authenticity, plausibility and fidelity of generated HOI images.

harvest more reasonable human pose and interaction bound-
ary regions compared to I0. More details about the pose
and interaction boundary guidance process for HOI gen-
eration are provided in Section 4.2 and 4.3. Further, to
continuously improve generation quality, we introduce IIR,
which leverages inversion model N to extract noise n and
text embedding t from the image to be further refined, and
subsequently employs PIBG for the next refinement, then
utilize the quality evaluator Q to assess the refined image
quality. We iterate through <Inverse, Evaluate, Refine>
operations to gradually enhance image quality. More details
about IIR are provided in Section 4.4.

4.2. Pose Guidance for HOI Generation

To deal with the complex and diverse human structure across
various scenarios, we propose to integrate pose guidance
into the process of HOI generation. The pseudo code of our
pose and interaction boundary guided sampling is shown in
Algorithm 1. In each denoising step, we first acquire pre-
dicted noise ϵt and intermediate reconstruction x̂0 (line 5-6)
following conventional design in Stable Diffusion. Then

we apply Gaussian Blurring G on x̂0 to get degraded la-
tent feature x̃0 and x̃t (line 7-8). To apply the derivation
presented in Equation 5, we incorporate pose quality in-
formation within ht by utilizing the pose detection results
P pose and Spose.

Pose Attention and Mask Generation P pose and Spose

are utilized to generate Apose and Mpose, which aims to
highlight low pose quality regions and guide model to di-
minish deformed generation in these regions. For each joint
P pose
i = (xi, yi), the score Spose

i represents the reliabil-
ity of corresponding joint generation, where a lower score
denotes a higher possibility of low-quality generation. To
guide the model to refine the low-quality areas, we highlight
the regions with low pose scores by calculating

Gi(x, y) =
1

(Spose
i )2

exp

(
− (x− xi)

2 + (y − yi)
2

2σ2

)
(6)

where Gi ∈ RH×W , x, y are pixel-wise coordinates of im-
age, H,W are image size and σ is the deviation of Gaussian
distribution. Gi represents the attention centered on the ith

joint, where a lower Spose
i leads to increased emphasis on
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the regions centered around P pose
i . By combining attention

across all joints, we can form the ultimate attention map
Apose ∈ RH×W , guiding the model to focus on all regions
with potential generation problems aforementioned.

Apose(x, y) =

Npose∑
i=1

Gi(x, y) (7)

Further, to preserve the majority of the generated content
in I0, we transform Apose into a mask using a thresh-
old. This allows us to selectively modify only the regions
with high attention, indicating areas that require refine-
ment. The mask Mpose is obtained by downsampling:
Mpose = DownSample(1Apose>ϕt

), where ϕt is the thresh-
old to generate the mask at timestep t, and Mpose are down-
sampled to RH′×W ′

to fit the same spatial dimensions of xt.
To dynamically determine the ratio of refined areas as the
image sample and timestep t vary, we formulate ϕt as

ϕt = ϕ0 · (1− α sin
πt

2T
) ·

Npose∑
i=1

∑
x,y

Gi(x, y) (8)

ϕt concurrently considers two factors: (1) ϕt is scaled by
multiplying with the sum of all joint pose attentions to
accommodate varying sample content and modulate the
scale of attention. (2) as t decreases, ϕt increases and leads
to less activated areas in Mpose, consequently more subtle
changes in the image content.

Pose Blurring Process Using Mpose to activate low pose
quality regions , we sample ht as follows:

ht = Mpose ⊙ xt −Mpose ⊙ x̃t (9)

By calculating the difference of xt and x̃t with the constraint
of Mpose, ht only keeps fine-scale information in high at-
tention areas, i.e., poor pose quality areas. Then degraded
latent features x̌pose

t are constructed as follows:

x̌pose
t = (1−Mpose)⊙ xt +Mpose ⊙ x̃t (10)

x̌pose
t not only precisely applies blurring to the poor pose

quality areas, but also mitigates unwarranted effects on unre-
lated regions across the entire image. Following Equation 5,
we form the final prediction noise ϵ̌poset (line 12 in Algo-
rithm 1) under the guidance of pose quality.

4.3. Interaction Boundary Guidance for HOI generation

Given the significant impact of interactive boundary regions
on HOI semantic expression, we detect these regions to form
interaction boundary attention map Ainter and mask M inter

accordingly, then store interaction boundary information in
ht. We gauge the occurrence of interactive behavior by
detecting the proximity between humans and objects. For-
mally, for a given human-object pair, we detect the joint

Algorithm 1 Pose and Interaction Boundary Guided Sam-
pling

1: Input: Initial image I0, pose attention Apose and inter-
action boundary attention Ainter on I0. ϕt threshold
for attention mask generation.

2: Output: denoised image feature x0

3: Initialize xT ∼ N(0, I).
4: for t = T, T − 1, ..., 1 do
5: ϵt ← U(xt) {U(xt) predicts noise ϵt for xt. }
6: x̂0 ← 1√

ᾱt
(xt −

√
1− ᾱtϵθ(xt, t))

7: x̃0 ← G(x̂0) {G(·) is Gaussian Blurring Function.}
8: x̃t ←

√
αtx̃0 +

√
1− αtϵt

9: Mpose ← DownSample(1Apose>ϕt), M inter ←
DownSample(1Ainter>ϕt

)
10: x̌pose

t ← (1−Mpose)⊙ xt +Mpose ⊙ x̃t

11: x̌inter
t ← (1−M inter)⊙ xt +M inter ⊙ x̃t

12: ϵ̌poset ← U(x̌pose
t ), ϵ̌intert ← U(x̌inter

t )
13: ϵ̃t ← 1

2 (ϵ̌
pose
t +ϵ̌intert )+(1+s)[ϵt− 1

2 (ϵ̌
pose
t +ϵ̌intert )]

14: xt−1 ← N( 1√
αt
(xt − 1−αt√

1−ᾱt
x̃t),Σt)

15: end for

coordinates of the person {Ci}Ki=1 and obtain the outer con-
tour points {Ot}No

t=1 of the object through a segmentation
tool, where No is a fixed number to describe object. Then we
calculate D ∈ RK×No as distance matrix between C and O.
Closer points between C and O proximately contain more in-
teraction semantics, so we choose T pairs of (Ci, Oj) points
with minimum distance within D as keypoints of interac-
tion boundary, which are emsembled as {P inter

i }2Ti=1. The
interactive score Sinter

i for keypoint P inter
i is the minimum

distance of this point within D. Then we form attention
Ainter ∈ RH×W with the same formulation in Equation 6
and Equation 7, where Spose

i changes to the Sinter
i , indicat-

ing points with smaller Sinter, i.e., closer distance, requires
higher attention. Similarly following Equation 9 , we gen-
erate mask M inter ∈ RH′×W ′

by Ainter and threshold ϕt,
and form interaction boundary guided ht with M inter. Then
we predict interaction boundary guided noise ϵ̌intert (line 12
of Algorithm 1). By combing ϵ̌intert and ϵ̌poset , we gener-
ate final noise ϵ̃t ( line 13 in Algorithm 1) and finish one
denoising step.

4.4. Iterative Inversion and Image Refinement Pipeline

To obtain real-time quality assessment of generated images,
we introduce quality evaluator Q, which serves as guideline
for iterative <evaluate + refine> operations. The iterative
refinement enables our model of continual enhancement of
the generation quality in a step by step manner. The pipeline
is shown in Algorithm 2. For image Ik at kth round, we
adopt evaluator Q to acquire its quality score Sk, which in
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Algorithm 2 Iterative Image Refinement Pipeline

1: Input: Threshold θ to stop iterative refinement. Origin
image I0 and score S0 evaluated by Q. Largest iter-
ate rounds K. Irefine = {}, Srefine={} to store refined
images and scores.

2: Output: refined HOI image I in Irefine with highest
score in Srefine.

3: for k = 0, 1, 2, ...,K − 1 do
4: nk, tk ← N(Ik) {Acquire noise and text embedding

for Ik}
5: Ik+1 ← SA-HOI (nk, tk) {Refine image}
6: Sk+1 ← Q(Ik+1){Assess Quality of Ik+1}
7: Irefine ← Irefine + Ik+1 {Store Ik+1}
8: Srefine ← Srefine + Sk+1

9: if Sk+1 − Sk < θ then {No significant change}
10: break { Finish Iterative Refinement}
11: end if
12: end for

this paper by default is the function to calculate PCS1 , and
then we generate Ik+1 based on Ik. To preserve the main
content of the Ik after refining, the corresponding noise is
needed to serve as the initial value for denoising. However,
such noise is not available, so we introduce null-text inver-
sion (Mokady et al., 2022) N to acquire its noised latent
feature nk and text embedding tk, which serves as input
for SA-HOI to generate refined result Ik+1. By comparing
quality scores at consecutive iterations, we judge whether to
continue refining. When Sk+1 and Sk show no significant
difference, i.e., below threshold θ, we finish refinement and
output the image with highest quality score.

5. HOI Generation Benchmark
5.1. Dataset

Our dataset consists of 150 HOI categoires, covering human-
object, human-animal, and human-human interaction sce-
narios for comprehensive evaluation. The categories are all
collected from public HOI detection data-set HICO-DET
(Chao et al., 2015). H-A: <human, verb, animal>, where
all 91 HOI categories concerning animal in HICO-DET are
included. H-O: <human, hold, object>. We meticulously
select 49 HOI categories with “hold” as verb, ensuring phys-
ical contact between human and object. H-H: <human,
verb, human>, which includes all 10 human-human interac-
tion categories in HICO-DET. We select real images from
HICO-DET for these HOI categories as reference images,
with each category randomly sampling up to most 200 im-
ages. To exclude the influence of multiple HOI co-existing

1More details and ablations about PCS are provided in 5.2 and
6.3. In principle, we can adjust the function of Q based on user
requirements.

in one image, we crop the corresponding HOI union part
as real image samples. To sum up, we collect 5k images to
serve as our HOI generation dataset, allowing us to estimate
the distribution of real images. Exampler images of our
dataset are shown in Figure. 5 in Appendix.

5.2. Evaluation Metrics

To better assess the generated HOI image quality, we tai-
lored several metrics for HOI generation, enabling compre-
hensive evaluation of generated images from the perspec-
tives of plausibility, authenticity, fidelity.

Authenticity

Pose Distribution Distance (PDD): Humans typically adopt
similar poses for the same HOI category, thereby conform-
ing to corresponding pose distribution. Consequently, we
measure the distribution distance between real images and
generated images to gauge the authenticity of the gener-
ated human poses. Formally, given Nreal real images
and Nsyn generated images, we detect joints coordinates
{Ji = (Xi, Yi)}Ki=1 for human in each image. We normal-
ize Ji by the width W and height H of human bounding box
to eliminate the influence of human size, and turn {Ji}Ki=1

into {Ĵi}Ki=1 by transforming relative reference system with
the human hip joint as the origin, with the aim to better cap-
ture the pose information. Then we utilize KL-Divergence
to measure the pose distribution distance between real and
generated pose utilizing Ĵ . Given P = {Ĵsyn

j }Nsyn

j=1 and
Q = {Ĵreal

j }Nreal
j=1 , we calculate the distribution distance as

PDD(P,Q) =
∑

i P (i) log
(

P (i)
Q(i)

)
, and average over all

HOI categories to serve as PDD, with a lower PDD suggests
a more precise matching to real poses.

Human-Object Distance Distribution (HODD): Similarly,
human-object pairs involved in the same HOI category ex-
hibit a consistent spatial configuration pattern, approximated
by the distribution of distances between humans and objects.
We utilize human joints and object outer contours to cal-
culate their distances. For a given human object pair, we
detect the joint coordinates of the person {Ci}Ki=1 and ob-
tain the outer contour points {Ot}No

t=1 of the object through
a segmentation model, where K is joint number for human
and No is number for representing object outer contour. The
exact distance between the person and the object is then rep-
resented by computing the closest distance between Ci and
Oi, which is formulated as DIS(C,O) = min

i,j
||Ci −Oj ||2.

Then we measure the distribution distance between gen-
erated and real images with KL-Divergence following the
same procedure as PDD.

Plausibility

Pose Confidence Score (PCS): The confidence score of pose
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showcases the plausibility and rationality of the detected
human joints. Formally, for a detected person with K body
joints along with confidence scores {Si}Ki=1 within image
I , the pose confidence for I is 1

K

∑K
i=1 Si, and we aver-

age pose confidence across all generated images to serve
as PCS. Given that the human pose detector is trained on
an extensive dataset of real human poses, a higher Pose
Confidence Score (PCS) indicates increased plausibility in
the human generation. Conversely, a low score suggests a
departure from typical real human poses used in detector
training, signaling a potential issue with the quality of the
generated body part, termed as deformed body parts.

Fidelity

Human Object Interaction Fidelity (HOIF): To measure
the semantic fidelity between images and HOI categories,
we introduce HOI detector as oracle model to examine the
alignment of images. An off-the-shelf HOI detector g(·)
(Lei et al., 2023) trained on HICO-DET (Chao et al., 2015)
is adopted to detect possible HOI triplets in images. Since
no available ground truth bounding boxes can be treated as
annotation, we simplify the metric as the confidence score
on the target HOI category detection. Given the image I , we
detect all possible HOI triplets for given target HOI category
c and a threshold θ for activate HOI examination, Sc =
g(I, c, θ), where Sc is the confidence score for the detected
HOI. We average over all generated images as HOIF, with
higher HOIF signifying better semantic consistency between
images and HOI text prompts.

R-accuracy: We measure the retrieval accuracy of images to
their HOI categories to measure fidelity. Formally, we uti-
lize CLIP (Radford et al., 2021) to encode image embedding
Ei and HOI categories text embedding Et, and calculate
the accuracy of images retrieved to their own HOI cate-
gories within Et. Higher accuracy is positively correlated
with higher semantic consistency between text prompts and
images.

6. Experiment
6.1. Implementation Details

We employ the Stable Diffusion v1.5 (Rombach et al., 2022)
as the base text-to-image model and apply our SA-HOI on
it. Hyperparameters θ, δ, ϕ0, α, T are set as 0.01, 1, 1, 0.6
and 4. For evaluation, we adopt general image evaluation
metrics, including FID, KID, and our tailored metrics for
HOI generation as introduced in Sec. 5.2. We also include
a subjective evaluation for more comprehensive evaluation
of our method. We utilize our iterative image refinement
pipeline to generate HOI images for evaluation. More details
can be found in Appendix.

Table 1: Comparison on general text-to-image metrics with
other methods.

MODEL SCENARIO FID↓ KID(10−2)↓

STABLE DIFFUSION H-A 58.84 2.022
SAG H-A 56.91 2.019

DIFFUSION HPC H-A 59.42 2.043
OURS H-A 54.55 1.812

STABLE DIFFUSION H-O 78.28 2.896
SAG H-O 75.99 2.845

DIFFUSION HPC H-O 77.92 3.012
OURS H-O 74.70 2.784

STABLE DIFFUSION H-H 137.66 3.5792
SAG H-H 138.06 3.6213

DIFFUSION HPC H-H 139.43 3.9578
OURS H-H 134.72 3.3218

6.2. Comparison with other methods

General Metrics: We compare our methods with Stable
Diffusion (Rombach et al., 2022), SAG (Hong et al., 2023)
and Diffusion HPC (Weng et al., 2023) in Table 1. We ob-
serve: (1) Our method has lower FID and KID than Stable
Diffusion under each scenario (H-A, H-O, H-H), which sig-
nifies by rectifying pose and interaction boundary regions,
our method stably harvests quality improvement by statis-
tical significance. (2) We still harvest lower FID and KID
compared with SAG under each scenario , indicating our
tailored guidance provides more accurate and suitable infor-
mation for the refinement of HOI images than self-attention
maps, thus gaining further improvement. (3) We outperform
Diffusion HPC by 4.87%/ 3.22%/ 4.71% on FID (line 3/ 7/
11), as well as KID. This showcases rectifying interaction
boundary regions further improves overall image quality.

HOI metrics: The results for HOI-specific metrics are
shown in Table 2 , from which we can observe (1) Plausi-
bility: Credit to our pose guidance refining on low-quality
poses, both PCS for body and hand joints are improved
under all scenarios compared to SD, indicating SA-HOI en-
hances the credibility for joint poses. Also, our PCS is com-
parable with Diffusion HPC (line11-12), who utilize extra
SMPL (Pavlakos et al., 2019) model to provide human pose
prior, indicating our plausibility in human pose generation.
(2) Authenticity: Our method surpasses other comparison
approaches on all splits in terms of HODD and PDD metrics.
This suggests that both the distribution of body/hand/animal
pose and the distribution of inter-distance (spatial config-
uration pattern) in our generated images closely resemble
realistic distributions. (3) Fidelity: Thanks to the interac-
tion boundary guidance to improve generation quality on
interaction boundary regions, we achieve the highest HOIF,
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Table 2: Comparison on tailored metrics of HOI Generation with other methods. Each split under the metrics denotes
the evaluation for corresponding region pose, “JOINT” denotes combined pose of human and animal under H-A scenario or
combined pose of two humans under H-H scenario.

MODEL
SCEN
ARIO

PCS(%)↑ HODD(10−2)↓ PPD(10−2)↓ HOIF(%) ↑ R-ACC(%) ↑

BODY HAND BODY HAND BODY HAND ANIMAL JOINT A@1 A@5
SD H-A 69.54 27.83 15.71 18.82 8.14 12.22 9.24 7.63 30.06 38.06 83.38

SAG H-A 71.35 27.93 14.33 17.90 7.92 11.34 7.99 7.06 32.14 38.92 87.50
D HPC H-A 74.58 28.17 15.82 19.91 8.05 11.13 8.67 7.22 31.55 36.18 84.52
OURS H-A 73.88 29.01 12.70 15.77 7.63 11.01 7.19 6.94 34.38 42.48 96.57

SD H-O 67.48 28.86 12.10 14.48 12.87 10.86 - - 25.21 93.08 99.04
SAG H-O 67.05 28.37 12.23 14.37 12.31 10.99 - - 26.93 94.57 99.91

D HPC H-O 67.92 27.53 12.87 14.21 13.55 10.94 - - 27.50 92.16 99.41
OURS H-O 68.69 29.65 11.50 13.97 11.19 10.81 - - 32.77 94.69 99.91

SD H-H 70.67 23.57 11.49 12.89 8.77 13.54 10.18 8.62 27.08 47.83 85.66
SAG H-H 73.40 25.50 11.43 12.77 8.65 13.07 10.18 8.55 28.33 49.10 88.77

D HPC H-H 76.99 27.01 11.03 12.41 8.34 13.76 10.54 8.47 26.01 43.80 86.43
OURS H-H 75.31 26.77 10.82 11.56 7.91 12.00 9.25 7.92 29.32 52.10 93.12

indicating our approach preserves rich HOI semantic infor-
mation and more accurate expression for it. R-Acc are all
improved compared to SD under all scenarios and we reach
the best accuracy among all methods. Both in detection and
retrieval manner, SA-HOI harvests better fidelity towards
HOI semantics, indicating that our model attains better se-
mantic consistency between text prompts and images.

Subjective Evaluation: We carry out a user study for a
subjective evaluation. We invited 26 participants to rate the
quality of the provided images through a questionnaire. Ten
textual prompts describing different HOI categories were
randomly selected, and images were generated accordingly
using different models. Additionally, realistic images from
our benchmark were included for each prompt to enhance
credibility. Participants were instructed to rate images on a
scale from 1 to 5, representing bad quality to perfect qual-
ity. Evaluation criteria included (1) Human Pose Realism,
which assesses the credibility of the length, number, and an-
gles of human limbs. (2) Object Appearance: Evaluating the
appearance of objects in the generated image. (3) Interac-
tion Semantics: Judging the semantic relevance between the
generated images and the given textual prompts. (4) Overall
Quality: Rating the overall quality of the generated image.
With a total of 5.2k responses, insights into the performance
comparison among the different models were obtained. Ta-
ble. 3 shows the performance, from which we can conclude:
(1) our approach outperforms other methods in subjective
evaluation across all metrics; (2) there exists a positive cor-
relation between our proposed evaluation metric HOIF and
human preference, suggesting its reliability. Qualitative
comparisons are shown in Figure. 4 in Appendix.

Table 3: Subjective evaluation of generation results.

MODEL HUMAN↑ OBJECT↑ INTER↑ OVERALL↑

SD 2.48 3.24 3.67 2.98

D HPC 3.01 2.27 2.97 2.15
SAG 3.08 3.37 3.35 3.04
OURS 3.31 3.66 4.03 3.54

GT 4.35 4.34 4.09 4.25

6.3. Ablations and Analysis

In this section, we investigate how the performance of the
proposed method is affected by different model settings.
We study mainly in three aspects: contribution of network
components, the formation of pose guidance and masking
parameter sensitivity analysis.

Contribution of Network Components: We conduct a
detailed ablation study by examining the effectiveness of
each proposed component in our network structure, and the
result are presented in Table 4, from which we can observe:
(1) separately introducing Pose and Interaction boundary
guidance (line 3-4) along with iterative refinement outper-
form Gaussian Blurring (line 2) and SD (line 1) under all
HOI metrics (such as 3.61% body PCS for pose guidance)
and FID (separately minimizes 3.87% and 3.14%), demon-
strating that our guidance schemes are well-suited for HOI
targeted refinement. (2) without iterative refinement based
on quality assessment criteria (line 5), we outperform SD
by only adopting pose and interaction boundary guidance,
indicating their effectiveness. (3) incorporating iterative re-
finement (line 6) harvests continual enhancement over only
one-step refinement (line 5) under all HOI metrics (such

8
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Table 4: Experiments on contribution of network components. “P”, “IB” and “R” denotes Pose guidance, interaction
boundary guidance and iterative refinement.“SD” represents Stable Diffusion, “GB” denotes Gaussian Blurring. Experiments
are conducted under H-A scenario.

MODEL FID↓ PCS(%)↑ HODD(10−2)↓ PPD(10−2)↓ HOIF(%) ↑ R-ACC(%) ↑

BODY HAND BODY HAND BODY HAND ANIMAL JOINT A@1 A@5
SD 58.84 69.54 27.83 15.71 18.82 8.14 12.22 9.24 7.63 30.06 38.06 83.38
GB 57.40 70.08 26.54 15.11 18.83 8.02 12.15 9.11 7.45 30.15 37.34 82.88
P+R 54.97 73.15 29.04 13.70 16.92 7.88 11.84 8.60 7.33 31.26 39.57 86.10
IB+R 55.70 72.43 28.55 13.15 15.99 7.85 11.61 7.89 7.12 33.00 39.11 88.93
P+IB 54.56 73.40 28.77 13.08 16.31 8.11 11.07 8.05 7.09 32.31 41.91 92.73

P+IB+R 54.55 73.88 29.01 12.70 15.77 7.63 11.01 7.19 6.94 34.38 42.48 96.57

as 0.44% Body PCS and 2.07% HOIF), indicating it can
continually improve refined image quality. Notably, all met-
rics are boosted when we adopt PCS as quality assessment
criteria, indicating the strong correlations between PCS and
overall HOI generation quality.

Formation of pose guidance: As shown in Table 5, our
body pose guidance (line 2) surpasses SD (line 1) with
higher PCS and lower PPD. To test the generalization ability
of our pose guidance, we implement more pose guidance
beyond human body. Considering hands hold crucial part
for various HOI categories, we adopt hand pose guidance,
which follows the same process in Algorithm 1, except
the pose attention is generated from hand pose detector
rather than body pose detector. We also adopt animal pose
guidance to improve animal generation. Experiments are
conducted on H-A scenario. From results in Table 5, we
observe: (1) separately applying pose guidance on hand
part (line 3) and animal part (line 4) contributes to not only
higher PCS (1.88% on hand), but also minimizes PDD for
corresponding regions (1.50% on hand and 2.35% on ani-
mal). (2) By incorporating different guidance schemes, we
harvest better performance than single pose guidance (line 5-
7). This underscores the robust extensibility of our approach,
allowing flexible adjustment of applied guidance types and
combinations according to the specific HOI categories.

(a) Effect of s. (b) Effect of σ.

(c) Effect of ϕ0. (d) Effect of α.

Figure 3: Masking Parameter Sensitivity Analysis.

Masking Parameter Sensitivity Analysis: We analyze
the sensitivity of parameters concerning attention masking:
guidance scale s, kernel deviation σ, masking threshold
ϕ0 and α (noted in Equation 8). As shown in Figure 3,
s = 1, σ = 2, ϕ0=1 and α=0.6 separately reaches best per-
formance (54.44 in FID) in guidance scheme. We notice
that extreme value choice for parameters will affect the
performance. For instance, with regards to σ, exceedingly
small value will lead to over-uniform attention distribution,
thereby compelling the model to rectify inconsequential re-
gions. Conversely, excessively large value can cause model
to focus solely on areas with the poorest quality, neglecting
other regions that also require refinement, thus resulting in
a degradation of performance.

Table 5: Experiments on formation of pose guidance.
“SD” represents Stable Diffusion, “B”, “H” and “A” sep-
arately present pose guidance of body, hand and animal.
Experiments are conducted under H-A scenario.

MODEL PCS(%)↑ PPD(10−2)↓
HAND HAND ANIMAL JOINT

SD 27.83 12.22 9.24 7.63
B 29.01 11.01 7.19 6.94
H 29.71 10.72 8.35 7.44
A 28.05 13.11 6.89 6.83

B+H 31.50 10.56 7.67 6.97
B+A 29.67 11.14 6.73 6.40

B+A+H 31.37 10.71 6.67 6.42

7. Conclusion
We present a method SA-HOI that utilizes pose quality and
interaction boundary region information as guidance to gen-
erate high-quality human object interaction (HOI) images.
We further introduce a HOI generation benchmark including
a dataset and multiple tailored metrics for comprehensive
quality evaluation. Experiments show the effectiveness of
our method. With the method and benchmark, our work
contributes novel insights to the HOI image generation field.
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Impact Statement
Human Object Interaction Image Generation carries sig-
nificantly broader impact potential from both positive and
negative sides. By generating realistic images depicting
human-object interactions, our method contributes to di-
verse applications like immersive virtual environment cre-
ation. However, it also raises ethical concerns related to
privacy and misinformation, which must be carefully con-
sidered and addressed to ensure responsible deployment and
minimize potential negative consequences.
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A. Additional Implementational Details
Parameter Setting For the experiments, we use two A100 80G GPUs to sample images from the pre-trained models
Stable Diffusion v1.5 (Rombach et al., 2022). Our SA-HOI is built upon it, with all the available pre-trained weights
from its publicly available repository. For CFG, we adopt guidance scale of 7.5, the text prompt is “A photo of a person
verbing a/an object.” for HOI category <verb, object>, and the negative prompt is set as “”. We adopt DDIMScheduler(von
Platen et al., 2022) with 50 steps for the denoising process, and all the generated images are with size 512×512. For pose
detection, we apply pose detectors from RTMPose toolbox(Chen et al., 2019). For the object segmentation mask, we adopt
Mask-RCNN(Abdulla, 2017) as the segmentation model. For each HOI category, we utilize templated description “A photo
of a human verbing a/an object” as a text prompt for category <human,verb,object>, and sample 50 images with different
seeds.

Combination of pose and interaction boundary guidance with CFG To incorporate our tailored guidance scheme for
HOI into text-2-image models like Stable Diffusion(Rombach et al., 2022), we need to combine our guidance with CFG(Ho
& Salimans, 2022). In practice, we formulate the final guided noise as

ϵ̃(xt) = ϵθ(xt, c) + (1 + sc)(ϵθ(xt, c)− ϵθ(xt, c))+

(1 + sp)(ϵθ(xt,M
pose
t )− ϵθ(xt))+

(1 + si)(ϵθ(xt,M
inter
t )− ϵθ(xt))

(11)

where sc, sp, si are guidance scale for CFG, pose guidance and interaction boundary guidance. c denotes text prompts
describing HOI category, and Mpose

t and M inter
t are masks for corresponding guidance. We simply adopt identical value

for sp and si in practice.

B. Additional Related Work
3D Human Object Interaction Generation Several attempts(Xu et al., 2023; Diller & Dai, 2023; Peng et al., 2023) exist
for 3D Human Object Interaction Generation, which aims to generate motion sequence for HOI instance. 3D HOI generation
differs from 2D HOI generation from following perspectives: (1) their generation target is sparse keypoint information
including coordinates and velocity, while image generation requires dense pixel-wise generation. (2) their main focus lies
on the temporal modeling over motion sequence, while we focus on the realness and fidelity of images. (3) applicable
HOI categories for existing 3D HOI generation approaches are quite limited, while 2D HOI generation could expand to
most common HOI categories. In summary, there are significant differences between 2D and 3D HOI generation in various
aspects. Therefore, we did not compare them in subsequent experiments.

C. Qualitative results
Visualization comparison of different methods We provide several qualitative comparisons for our methods and other
model, which is shown in Figure. 4. Comparing with other three recent methods, our approach showcases enhancements in
human pose, object appearance, and HOI semantic expression simultaneously, resulting in improved overall image quality.

D. Human Object Interaction Image Generation Benchmark
D.1. Exampler dataset images

Some exampler images of our dataset are shown in Figure 5. These images not only exhibit a diverse range of poses and
realistic spatial distances between human object pairs, but also effectively convey the semantic information associated with
their HOI categories, which makes them well-suited for the evaluation of image generation quality.

D.2. HOI category List

We list detailed HOI categories for our H-A, H-O, H-H scenarios as follow,

H-A: <chase, bird>, <feed, bird>, <pet, bird>, <release, bird>, <watch, bird>, <feed, cow>, <herd, cow>, <hold,
cow>, <hug, cow>, <kiss, cow>, <lasso, cow>, <milk, cow>, <pet, cow>, <ride, cow>, <walk, cow>, <carry, dog>,
<dry, dog>, <feed, dog>, <groom, dog>, <hold, dog>, <hose, dog>, <hug, dog>, <inspect, dog>, <kiss, dog>, <pet,
dog>, <run, dog>, <scratch, dog>, <straddle, dog>, <train, dog>, <walk, dog>, <wash, dog>, <chase, dog>, <feed,
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horse>, <groom, horse>, <jump, horse>, <kiss, horse>, <load, horse>, <hop, horse>, <pet, horse>, <race, horse>,
<ride, horse>, <run, horse>, <straddle, horse>, <train, horse>, <walk, horse>, <wash, horse>, <, horse>, <carry,
sheep>, <feed, sheep>, <herd, sheep>, <hold, sheep>, <hug, sheep>, <kiss, sheep>, <pet, sheep>, <ride, sheep>,
<shear, sheep>, <walk, sheep>, <wash, sheep>, <feed, bear>, <hunt, sheep>, <watch, sheep>, <feed, elephant>,
<hold, elephant>, <hose, elephant>, <hug, elephant>, <kiss, elephant>, <hop, elephant>, <pet, elephant>, <ride,
elephant>, <walk, elephant>, <wash, elephant>, <watch, elephant>, <feed, giraffe>, <kiss, giraffe>, <pet, giraffe>,
<ride, giraffe>, <watch, giraffe>, <feed, zebra>, <hold, zebra>, <pet, zebra>, <watch, zebra>.

H-O: <hold, bicycle>, <hold, bird>, <hold, bottle>, <hold, cat>, <hold, chair>, <hold, cow>, <hold, dog>, <hold,
horse>, <hold, motorcycle>, <hold, potted plant>, <hold, sheep>, <hold, apple>, <hold, backpack>, <hold, banana>,
<hold, baseball bat>, <hold, baseball glove>, <hold, cake>, <hold, carrot>, <hold, cellphone>, <hold, clock>, <hold,
cup>, <hold, frisbee>, <hold, handbag>, <hold, keyboard>, <hold, kite>, <hold, knife>, <hold, laptop>, <hold,
mouse>, <hold, orange>, <hold, oven>, <hold, pizza>, <hold, refrigerator>, <hold, remote>, <hold, sandwich>,
<hold, scissors>, <hold, skateboard>, <hold, skis>, <hold, spoon>, <hold, suitcase>, <hold, surfboard>, <hold, teddy
bear>, <hold, tie>, <hold, toothbrush>, <hold, umbrella>, <hold, vase>.

H-H: <greet, person>, <hold, person>, <hug, person>, <kiss, person>, <stab, person>, <tag, person>, <teach,
person>, <lick, person>, <carry, person>, <no interaction, person>
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Figure 4: Qualitative comparisons among Stable Diffusion v1.5(Rombach et al., 2022), Diffusion HPC(Weng et al.,
2023) and SAG(Hong et al., 2023) and our method.

(a) Text prompt: A photo of a person holding a suitcase.

(b) Text prompt: A photo of a person feeding a cow.

(c) Text prompt: A photo of a person kissing a cat.
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Figure 5: Exampler images of our dataset. Images within each HOI category show diverse poses and coherent spatial
correlations between human and object, and they all adhere to their HOI categories semantics tightly.
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