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ABSTRACT
Defect recognition in solar panels is critical to safeguard their per-
formance and efficiency. Traditional image recognition models
have limitations in fine-grained defect feature extraction, which
affects the accuracy and efficiency of recognition. In this paper, we
propose an EfficientNet-B3 network optimization model based on
the CBAM attention mechanism, which significantly improves the
recognition of tiny defects in solar panels by combining deep learn-
ing techniques and attention mechanisms. Experimental results
show that our model exhibits high accuracy on both training and
validation sets with gradually decreasing loss. The model achieves
an accuracy of 95.22% in complex and variable defect categories,
which is significantly better than existing baseline models. An in-
depth performance evaluation shows that the model has significant
advantages in key performance metrics such as precision, recall,
and F1 value, demonstrating its effectiveness and adaptability in
the solar panel defect recognition task.
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1 INTRODUCTION
Solar energy, as a clean and renewable energy source, occupies
an increasingly important position in the global energy mix. As
solar panels are widely deployed around the world, the assurance
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of their operational efficiency and reliability has become a focus
of research and industrial attention. Defects that may occur in
panels during operation, such as hot spots, cracks and dust, not
only reduce the energy conversion efficiency, but also may cause
safety issues [1]. Therefore, it is of great significance to develop an
efficient and accurate defect recognition method for solar anels.

The traditional image detection methods for defect detection
mainly include electroluminescence image detection method, in-
frared image detection method and photoluminescence image de-
tection method. [2] proposed a method for detecting and localizing
solar panel damage using thermography, which detects and lo-
calizes surface hot spots through image processing techniques to
indicate damage or defects. [3] proposed a method for automated
visual inspection of solar cell images using improved morpholog-
ical and edge detection algorithms using multiple morphological
and refined edge detection and tuned parameters to extract and
highlight defects on solar cells. [4] used PCA and ICA methods to
detect defects in solar panels through thermal imaging. However,
these methods are designed based on the features of a specific de-
fective region, which has limited adaptability and usually needs to
be redesigned for specific problems, resulting in their weak gen-
eralization ability. In addition, the soiling problem faced by PV
panels in outdoor environments makes it difficult for traditional
algorithms to distinguish between actual damage and soiling [5]. If
dirt is incorrectly recognized as damage, it will not only increase
the workload of maintenance personnel, but also may lead to a
large waste of resources.

In recent years, the field of deep learning has gained widespread
acclaim for its exceptional capability in identifying patterns and
classifying them, finding application across a myriad of areas includ-
ing self-driving cars, robotics, and medical diagnostics. The schol-
arly work has introduced a variety of automatic classification tech-
niques grounded in deep learning, including notable frameworks
like AlexNet [6]„ VGG [7], GoogleNet [8], and ResNet [9].Deitsch
and colleagues introduced a pair of automated defect detection
systems leveraging Convolutional Neural Networks (CNNs) and
Support Vector Machines (SVMs) [10]. Similarly, Imad Zyout im-
plemented a transfer learning-based deep convolutional neural
network to assess the surfaces of photovoltaic panels for defect
detection [11]. Despite their effectiveness, these approaches often
require significant computational resources for large dataset anal-
ysis and may struggle with identifying uncommon or new types
of defects. Consequently, this paper selects the EfficientNet-B3
architecture enhanced with the CBAM attention mechanism. This
choice allows for a balanced expansion in network depth, width,
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Figure 1: EfficientNet-B3 structure.

and resolution through an ingeniously simple composite coeffi-
cient, enabling better accuracy and operational efficiency without
the burden of increased model size or computational demands.

2 EFFICIENTNET-B3 NET BASED ON CBAM
ATTENTION MECHANISM

2.1 EfficientNet-B3 net
In the field of solar panel defect recognition, accurate extraction
of panel feature information is crucial for improving recognition
accuracy. Similar to the traditional image recognition task, this
process not only needs to focus on the basic attributes of the panel
such as color and texture, but also should take into account the
microscopic defect features such as cracks, stains, etc., which are
of great significance for accurately identifying various types of
defects.

The EfficientNet model achieves excellent image recognition
performance with low training resource consumption by adopting
an efficient network structure design. One of the key innovations
of the model is the introduction of the residual neural network
design concept as a way to increase the depth of the network. The
application of this deep network allows for more detailed and multi-
layered feature extraction, thus capturing richer information in the
image. By dynamically adjusting the number of feature extractors
in different layers, EfficientNet is able to realize a more efficient
information extraction mechanism. In addition, the model further
enhances the network’s ability to learn and express image details by
increasing the resolution of the input image, which is particularly
important for improving the accuracy of the model. In this study,
EfficientNet-B3 is adopted as the basic framework. Its structure is
shown in Figure 1.

2.2 EfficientNet-B3 net
The Convolutional Block Attention Module (CBAM) stands out as
an effective and elegantly organized module for attention mecha-
nisms, crafted for easy integration with any Convolutional Neural
Network (CNN) setup. It synergizes two distinct sub-modules—
Channel Attention and Spatial Attention—to delicately modify fea-
ture attributes across both channel and spatial realms. Initially,

Figure 2: Channel attention module of CBAM.

Figure 3: Spatial attention module of CBAM.

the module applies the Channel Attention sub-module to the in-
coming feature maps, enhancing them within the channel domain.
These enhanced maps are then refined by the Spatial Attention
sub-module, which further processes them to produce the final,
spatially-weighted feature maps. CBAM’s strategy significantly
boosts the network’s capacity to analyze input features by high-
lighting crucial data and minimizing the less relevant information.
The workings of CBAM, including its channel and spatial attention
mechanisms, are illustrated in Figure 2 and Figure 3, demonstrating
its dual-modulation capability.

2.3 Grad-CAM
Grad-CAM is a visual interpretation method used in deep learning
models, especially in CNN. It generates a rough localization map
by using the gradient information of the target concepts to high-
light the regions of the image that are important for the predicted
concepts.

The core idea of Grad-CAM is to utilize the feature maps of the
last convolutional layer of the CNN and the gradient information
of the target category. Specifically, for a given category 2 , Grad-
CAM first computes the gradient of the category 2 for each feature
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map, and then performs Global Average Pooling (GAP) on these
gradients to obtain the weights F2

:
for each feature map. These

weights represent the importance of each feature map for category
c. Finally, all feature maps are multiplied and summed with their
corresponding weights to obtain the class activation map, i.e., Grad-
CAM.

!2Grad−CAM = ReLU

(∑
:

F2
:
�:

)
(1)

where Ak is the :th feature map and IGrad−CAMc is the class activa-
tion map for category c. The ReLU function is used to retain only
positive influences, i.e., to focus only on those features that have
a positive predictive effect on category 2 . With Grad-CAM, we
can visualize the regions that the model focuses on when making
decisions, providing some interpretability to the model.

3 EXPERIMENTAL AND DATA RESULTS
3.1 Experimental environment setup
In this paper, we use python 3.6.8 language and PyTorch 1.10 frame-
work for deep learning experiments, and use CUDA version 11.4
and NVIDIA RTX3050 graphics card to accelerate the computation.
In the experiments, we set the learning rate to 0.001, the batch size
to 32, the epoch number to 100, and the optimizer to Adam. We use
cross entropy as the loss function, and accuracy, precision, recall
and F1 score as the evaluation metrics.

To ensure the reproducibility of the experimental results, we
rigorously configured and tested the experimental environment. We
also conducted experiments with different hyperparameter settings
to assess their impact on model performance. In addition, we used
a number of regularization techniques, such as Dropout and Batch
Normalization, to prevent model overfitting.

3.2 Datasets
The dataset utilizes a private dataset consisting of solar panels
extracted using Electroluminescence (EL) technology on a solar
panel production line in Shenyang, China. Electroluminescence
is an advanced inspection method that captures an image of the
resulting light radiation by applying an electric current to a solar
panel to demonstrate defects or irregularities that may not be visible
under normal conditions, and in this paper the collected data is
categorized into defective and non-defective categories.

In this paper, we perform detailed preprocessing of the dataset
including denoising, contrast enhancement and image segmenta-
tion to improve the accuracy of defect detection. In addition, we
employ data enhancement techniques such as rotation, flipping and
scaling to increase the generalization ability of the model.

3.3 Evaluating indicator
To evaluate the accuracy of our model, we utilize four principal
metrics for classifying results: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). The labels ”true” and
”false” signify if the model’s classification of images is correct or in-
correct, respectively. ”True positive” and ”true negative” outcomes
indicate accurate categorization of images as either positive or neg-
ative. In contrast, a false positive refers to an instance where the
model erroneously identifies a negative observation as positive. On

Figure 4: Training Accuracy vs. Loss Iteration Change Plot.

Table 1: Performance Comparison of Defect Recognition
Models.

Model Acc Precision Recall �1

resnet50 0.9154 0.9193 0.9154 0.9152
densenet169 0.9485 0.9501 0.9485 0.9485
mobilenet_v2 0.9154 0.9193 0.9154 0.9152
squeezenet1_0 0.9338 0.9362 0.9338 0.9337
EfficientNet-B3 0.9449 0.9460 0.9449 0.9448
EfficientNet-
B3+CBAM

0.9522 0.9524 0.9522 0.9522

the flip side, a false negative is when the model mistakenly labels a
positive observation as negative. By applying these four categories,
we proceed to compute the following performance indicators:

�22 =
)% +)#

)% +)# + �% + �#
(2)

%A428B8>= =
)%

)% + �%
(3)

'420;; =
)%

)% + �#
(4)

�1 =
2 × %A428B8>= × '420;;

%A428B8>= + '420;;
(5)

3.4 Results
To enhance the precision and speed of recognition, this study
trained the model across 50 distinct batches utilizing the training
dataset. The outcomes from this training indicate that the model
reached a peak accuracy of 97.25% on the validation set. Figure 4
displays the model’s iterative outcomes, illustrating a consistent de-
cline in the model’s loss function as the training iterations progress,
alongside a corresponding improvement in localization accuracy.
This trend underscores the model’s capability to efficiently learn
and identify defects.

After completing 50 epochs of training, the model demonstrated
excellent performance on the test set with an accuracy of 95.22%.
In order to fully evaluate the efficacy of the model, this paper trains
and tests several other popular deep learningmodels under the same
hardware configuration and software environment. The results are
shown in Table 1.

The results show that the EfficientNet-B3+CBAM model out-
performs the EfficientNet-B3 model alone in all evaluation metrics.
This indicates that the addition of CBAM attentionmechanism effec-
tively improves the model’s ability to recognize defective features.
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Figure 5: Grad-CAM Positioning Chart.

Meanwhile, compared with other baseline models, EfficientNet-
B3+CBAM performs particularly well in terms of accuracy and
�1 scores. For example, compared with ResNet-50, EfficientNet-
B3+CBAM has about 7% higher accuracy and similar improvement
in �1 scores. This result further confirms the efficiency of the Effi-
cientNet architecture in handling image recognition tasks and the
effectiveness of the CBAM module in enhancing model attention.

We used Grad-CAM to view the region of the model’s attention
to the image, as shown in Figure 5.

It is observed through the localization map that the model mainly
focuses on the regions to the left and right of the center, as well
as the edge portion of the image while processing the image. This
finding indicates that the model assigns higher importance to these
regions during the recognition process. The left-of-center and right-
of-center focus may represent the model’s search for specific de-
fective features, such as cracks or stains, that are commonly found
within these regions of the solar panel image. The heat maps gen-
erated by Grad-CAM reveal the significant role of these regions in
the model’s predictions; the focus on the edges of the image, on
the other hand, may be due to the noise generated by the dataset
during the segmentation process. During the segmentation and
preprocessing stages of the solar panel images, the edge regions
may have introduced noise due to mishandling, and these noises
were mistakenly recognized by the model as potential defective
features.

4 CONCLUSION
In this paper, an EfficientNet-B3 network based on the CBAM at-
tention mechanism is proposed, which is specifically optimized for

the solar panel defect recognition task. By combining the deep
learning technique and the attention mechanism, the model is able
to accurately capture the subtle defect features in the panel image,
realizing the efficient recognition of panel defects.

Experimental results show that the model achieves a high ac-
curacy of 95.22% on the solar panel defect recognition task, sig-
nificantly outperforming the existing baseline model. Through
in-depth performance evaluation, this paper finds that the model
performs well in key performance metrics such as precision, recall,
and F1 value, which demonstrates the effectiveness of the CBAM at-
tention mechanism in enhancing the model’s recognition capability.
Future work will be devoted to further improve the generalization
ability of the model, especially the recognition accuracy of different
types of defects in complex environments.
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