
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STRUCTURED THOUGHTS FOR IMPROVED REASONING
AND CONTEXT PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) excel at generating long chains of thought, but
long reasoning traces are often verbose and memory-inefficient. In this work, we
introduce Structured Thoughts, a framework that organizes reasoning into al-
ternating <try> and <outcome> blocks: <try> captures exploratory scratch
work, while <outcome> contains the distilled conclusion of that step. We con-
struct a dataset of structured thoughts by segmenting reasoning traces into <try>
blocks and prompting an LLM to summarize each step into its corresponding
<outcome>. Fine-tuning pretrained foundation models on this reformatted data
produces models that adopt the structured reasoning style, leading to performance
gains of up to 8.08% on reasoning benchmarks compared to standard SFT. The
explicit structure also enables context pruning: after each <try>/<outcome>
pair, the <try> can be pruned, allowing the model to retain conclusions without
keeping the full scratch work in the context. A proof-of-concept pruning imple-
mentation achieves an average of 85% memory / context savings with an 8.67%
performance drop across mathematical tasks.

1 INTRODUCTION

Standard LLMs often fail on tasks that require multi-step logical or mathematical reasoning. Rea-
soning models extend LLM capabilities on such complex tasks by explicitly generating intermediate
steps before arriving at a final answer. This distinction between generic LLMs and reasoning-
oriented LLMs has proven to be critical for performing well on challenging domains such as
competition-level mathematics, logical reasoning and programming (OpenAI, 2024; Comanici et al.,
2025; Guo et al., 2025; Bercovich et al., 2025)

Transforming a pretrained model into a reasoning model requires post-training with reasoning traces.
The most common first step is supervised fine-tuning (SFT), where the model is trained to imitate
curated chains-of-thought (CoT) that spell out intermediate steps (Wei et al., 2022). SFT is critical
because it provides the model with an initial format and skill set for reasoning. Once the model
has learned to reliably generate reasoning trajectories, reinforcement learning (RL) methods are
applied to further refine them. RL teaches the model to prefer reasoning trajectories that lead to
the correct answers. Recent large-scale efforts illustrate the power of this recipe. OpenAI’s o3 and
o3-mini models, and DeepSeek’s R1 (OpenAI, 2025; Guo et al., 2025) and other models combine
SFT and RL on large scale reasoning datasets, yielding state-of-the-art performance on mathemat-
ical and coding benchmarks. This indicates that reasoning-oriented post-training can substantially
extend the capabilities of pretrained LLMs.

A major focus of current reasoning research is on improving the RL stage of post-training. These
include introducing process supervision to reward intermediate steps (Lightman et al., 2023; Ue-
sato et al., 2022; Shao et al., 2024) as well as refining the optimization objective/algorithm itself,
as in recent analyses of R1-zero-style training (Liu et al.). In contrast, our work does not modify
the optimization procedure or reward design. We impose a syntax in which each problem-solving
step is organized into two blocks: a <try> block containing exploratory scratch work (mathemat-
ical derivations, verification, intermediate proofs) and an <outcome> block which contains the
conclusion of the step. This alternation enforces a clean interface between working and result, anal-
ogous to human reasoning where we deliberate before summarizing a finding. Empirically, we find
that finetuning models on such type of structured traces improves benchmark performance across

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

multiple foundation models. Imposing this reasoning structure further helps with the growth in se-
quence length, KV-cache memory, and attention cost that comes from long traces. In our structured
SFT scheme, each <outcome> summarizes its preceding <try>, so the <try> tokens can be
pruned once the conclusion is generated. We do this by masking the <try> blocks during training
which teaches the model to rely only on outcomes for future reasoning steps. As a result, during
inference, we can prune the completed <try> spans but retain their <outcome> blocks.

In summary, this paper makes two contributions:

1. We demonstrate that SFT on structured thoughts yields improvements on standard reasoning
benchmarks compared to standard SFT which only contains minimal structure in the form of
<think> <answer> tags.

2. We evaluate structure-aware pruning: training-time masking and inference-time pruning that
discards scratch work, reducing context length and memory requirements with modest perfor-
mance degradation.

2 RELATED WORK

Reasoning with explicit intermediate steps. The recent surge in LLM reasoning performance
is closely tied to techniques that elicit and exploit intermediate steps. Chain-of-Thought (CoT)
prompting shows that models benefit from explicit, step-by-step traces (Wei et al., 2022), including
the zero-shot variant that adds a simple instruction like “Let’s think step by step” (Kojima et al.,
2022). Decoding strategies such as self-consistency ensemble diverse reasoning paths and select a
majority answer, further improving accuracy (Wang et al., 2022). Search-based approaches (Tree-
of-Thoughts) widen exploration over latent “thoughts” and enable backtracking and lookahead (Yao
et al., 2023). These lines of work demonstrate that supervising or decoding with intermediate steps
increases reliability across math and logic based tasks.

More recently, researchers have explored directly rewarding intermediate steps. Process supervision
methods assign rewards not just to final answers but also to individual reasoning steps. Examples
include reward models trained to score intermediate solutions (Lightman et al., 2023; Uesato et al.,
2022),and approaches that adaptively allocate test-time compute by rewarding useful intermediate
reasoning (Snell et al., 2024). Qu et al. (2025) introduce the idea of rewarding each intermediate
step if it increases the likelihood of producing the correct answer and find this improves reasoning
efficiency and performance. These approaches highlight that making the intermediate structure of
reasoning explicit and rewarding it can improve reasoning performance.

Long-context and memory-efficient inference. A large body of literature seek to reduce atten-
tion/memory cost for long sequences by modifying attention patterns. Local/sliding-window or
block-sparse attention scale linearly and combine local windows with a few global tokens or ran-
dom links to preserve connectivity (Beltagy et al., 2020; Zaheer et al., 2020). Other families include
hashing-based attention (Reformer) and low-rank/key-projection (Linformer). (Kitaev et al., 2020;
Wang et al., 2020). Unlike these mechanisms, our approach is data-aware: we insert structure into
the reasoning trace itself and then compress along these semantically meaningful boundaries by
pruning <try> blocks while preserving their <outcome> summaries.

PENCIL: learned reduction via call–return syntax. Yang et al. (2025) introduce a reduction
rule that triggers when the generated sequence matches C [CALL] T [SEP] A [RETURN] ⇒ C A:
the intermediate thoughts T and the control tokens are deleted, and the answer A is merged back
into the context C. This enables “long thoughts with short memory” by repeatedly pruning solved
subproblems, and is shown to work strongly on symbolic puzzles (e.g., nearly perfect Einstein’s
puzzle) with a small (∼25M) transformer and a 2,048-token context.

Our work is most closely related to PENCIL but differs in important ways. (1) Structure improves
reasoning: we show that introducing a reasoning syntax into the model by itself improves bench-
mark accuracy after supervised fine-tuning, whereas PENCIL primarily targets memory efficiency
without demonstrating accuracy gains from formatting. (2) Large-scale setting: PENCIL evaluates
on carefully curated puzzle-style tasks with a small model, while we study foundation-scale models
(7B–8B) on large post-training corpora having in the order of millions of examples and on standard

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

reasoning benchmarks. 3) Methodology for scalable structure and pruning: To enable structured
reasoning at scale, we (a) develop an unsupervised methodology to generate structured reasoning
traces from standard reasoning datasets, (b) train models on this structured corpus that produce
structured traces, and (c) introduce a second stage of masked SFT with custom attention masks that
block access to <try> tokens once their <outcome> has been generated. These contributions are
essential for scaling structural pruning beyond toy puzzles to practical LLM training.

3 METHOD

Our goal is to improve the accuracy and efficiency of reasoning models by introducing structure into
reasoning traces and exploiting that structure for pruning. This section describes the motivation,
dataset construction, model training, and pruning mechanism. We outline three stages: (i) supervised
fine-tuning (SFT) on structured data, (ii) SFT with pruning-aware masking, and (iii) inference-time
pruning.

3.1 MOTIVATION: EXPLICIT STRUCTURE FOR BETTER REASONING

For most reasoning models, the bulk of the reasoning process appears inside a single <think>
. . .</think> block followed by a final answer. Within this <think> block, models typically de-
compose the task into multiple sub-problems and solve them step by step. These steps often include
the model utilizing various reasoning techniques such as self-reflection and verification. While use-
ful, these techniques also result in long reasoning traces. The model produces intermediate algebra,
case checks, proofs and partial conclusions for each step. We refer to these granular mathematical
and logical details as the scratch work required to solve a sub-problem.

However, when scratch work, tentative conclusions, and final answers are left intermixed, it may
obscure which tokens drive the solution, making it harder to allocate attention to the most decisive
information. In addition, if scratch work and conclusions remain mixed, later steps might attend
more indiscriminately to redundant or superseded details, which could increase the likelihood of
errors. Consistent with this view, Liu et al. (2023) find that models tend to under-utilize information
in the middle of long contexts (“lost in the middle”), and Wu et al. (2025) show that chain-of-thought
length exhibits an inverted–U relationship with accuracy showing that longer traces can eventually
hurt performance as redundant/irrelevant content accumulates. Additionally, retaining the entire
trace in the context increases latency and memory usage, since every token must be stored in the KV
cache even if only a small fraction is ultimately relevant.

Introducing an explicit structure that separates exploratory scratch work (<try>) from distilled
conclusions (<outcome>) may help the model better discriminate between the reasoning process
and final takeaways, reducing interference from redundant details and clarifying which information
should guide subsequent steps. We make this format explicit with two tags and train the model to
adopt the following reasoning format for each reasoning step:

<try> exploratory reasoning </try> <outcome> distilled conclusion </outcome>

Under supervised fine-tuning, the model learns to reason within <try> blocks and to commit the
step’s main finding in <outcome>, yielding traces where exploratory computation and distilled
conclusions are clearly separated. We believe this separation makes it easy for the model to follow
the logical flow of its reasoning process and help the model learn where to attend. Instead of pro-
cessing a flat sequence where critical insights and low-level exploration are intertwined, the model is
encouraged to learn that <outcome> blocks concentrate the key information from each reasoning
step.

3.2 STAGE 1: STRUCTURED SUPERVISED FINE-TUNING (SFT)

Dataset construction. We begin with existing post-training reasoning datasets such as Llama-
Nemotron Math v1.1 Bercovich et al. (2025), which contain a question and an answer with reasoning
traces for mathematical problems. We preprocess these traces in two steps:

1. Segmentation: Our goal is to obtain a rough but useful notion of the beginning and end of
each independent reasoning step. Therefore, we adopt a heuristic from prior work (Qu et al.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Raw SFT trace Structured trace (<try>/<outcome>)

Question. Find all natural numbers that can be written in the form
(a+b+c)2

abc
, where a, b, c are natural numbers.

. .
Wait, how about a = 1, b = 1, c = 3? Then
(1 + 1 + 3)2/(1 · 1 · 3) = 52/3 = 25/3 ≈ 8.333 . . .
which is not a natural number. Wait, so with
a = 1, b = 4, c = 5, (1 + 4 + 5)2/(1 · 4 · 5) =

102/20 = 100/20 = 5. So 5 is possible. Let’s
check that. 1, 4, 5: sum is 10, squared is 100, divided by
1 · 4 · 5 = 20. Yep, 100/20 = 5. Perfect. How about 4?
. .

Question. Find all natural numbers that can be written . . .

<try> Wait, how about a = 1, b = 1, c = 3? Then (1 +

1 + 3)2/(1 · 1 · 3) = 52/3 = 25/3 ≈ 8.333 . . .
which is not a natural number. Wait, so with
a = 1, b = 4, c = 5, (1 + 4 + 5)2/(1 · 4 · 5) =

102/20 = 100/20 = 5. Yep, 100/20 = 5. Perfect.
How about 4? </try>

<outcome> The values 8 and 6, are attainable, with 5 also being
attainable through the combination a = 1, b = 4, c = 5.
</outcome>

Figure 1: Raw → Structured traces. We convert free-form solutions into block-structured traces
by (i) detecting decision cues (e.g., “Wait” “Hmm”) to segment the answer into step-sized spans, (ii)
wrapping each span as a <try> (scratch work), and (iii) prompting a larger instruction-tuned model
to summarize that span into a concise <outcome> (the step’s takeaway). The underlying problem
and final answer are unchanged and the trace can be semantically pruned at <try>/<outcome>
boundaries.

(2025)) to approximate step boundaries. We scan each reasoning trace for decision cues (e.g.,
“Wait,” “Hmm,” “Let me try again”) and simply split the trace rules at these points. Finally, we
wrap each split between <try> <try> tags. Our segmentation approach is deliberately simple
and we leave more advanced segmentation techniques, such as those using using supervised
models (Somasundaran et al., 2020), to future work.

2. Summarization: We require a brief conclusion for each <try> block. Ideally, we could simply
instruct the reasoning model to produce a conclusion for each reasoning step. However, we find
that publicly available reasoning models are poor at instruction following. Li et al. (2025) find
that CoT based reasoning relates negatively with instruction following capabilities of a model as
they find that CoT prevents attention to instruction-following tokens. Similarly, Fu et al. (2025)
observe a similar relationship between reasoning ability and instruction following on mathemati-
cal tasks and show that instruction following capability worsens with an increase in the length of
a reasoning trace.
Therefore, our solution is to obtain these summaries from an external, instruction-tuned model
(Llama-70B-Instruct). For each <try> block, we provide (i) the original question, (ii) a short
prefix of the evolving answer as local context, and (iii) the current <try> span, together with an
explicit instruction that the goal is to extract the main logical conclusion of this sub-problem in
one or two sentences (or a compact equation), without introducing new facts or re-deriving steps.
The model’s output is wrapped in an <outcome> tag. The actual prompt used is provided in
Appendix B.

The result is a dataset where each problem consists of alternating <try> and <outcome> blocks,
followed by the final solution. We fine-tune pretrained reasoning and instruction-tuned models on
this structured dataset using standard cross-entropy loss. The objective encourages models to pro-
duce reasoning in the structured format. An illustration of a structured thought is provided in Fig-
ure 1.

3.3 STAGE 2: SFT WITH PRUNING-AWARE MASKING

Although introducing structured thought improves benchmark performance, the generated traces re-
main long as every token is still part of the context. Crucially, however, the <try>/<outcome>
format now provides a method for exploring the efficiency side of reasoning. With outcomes serv-
ing as distilled summaries of each step, we want to evaluate whether models can continue reasoning
effectively without retaining the full exploratory text. To investigate this, we design a training proce-
dure that explicitly teaches models to operate under such constraints. Among possible approaches,
we use a masking strategy to simulate pruning as it enforces the exact behavior we want (hide past
<try> blocks once the paired <outcome> block has been generated). Moreover, it does not re-
quire any new losses and fits within our standard SFT pipeline.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Pruning procedure. During generation the model alternates between <try> (blue) and
<outcome> (green) blocks. Once an <outcome> is generated, its preceding <try> block is
removed from the context. This way, only the summarized outcomes are carried forward, while
earlier scratch work is discarded step by step.

Masking strategy. Our structured reasoning traces are compoed of alternating <try> and
<outcome> blocks. Within each paired (<try>, <outcome>) segment, we have standard causal
attention. However, after <outcome>i is produced, we masked its paired <try>i for all subse-
quent positions (including later <try> and <outcome> blocks), while keeping <outcome>i and
all previous <outcome> blocks visible.

This masking simulates pruning at the context level and has two implications for computation and
information flow. First, future tokens operate with a smaller effective receptive field as there is no
contribution from masked <try> blocks. Second, information from a masked <try> block is
not completely lost as its <outcome> block was computed while attending to that <try>, so its
(key, value) content is already baked into the <outcome>’s representation. Since future tokens can
always attend to <outcome> blocks, the distilled state remains available even though the original
<try> tokens can no longer be attended to.

Attention mask implementation. Standard FlashAttention assumes a fixed causal mask and
therefore cannot support our requirement that past <try> tokens become inaccessible once their
corresponding <outcome> has been generated. To capture this behavior, we implement a rule-
based masking layer using Flex Attention (Dong et al., 2024).

For each completed reasoning step, we store a triple (cs, ce, oe), denoting the start and end positions
of the <try> span and the end of its corresponding <outcome> span. During attention, when a
query token at position q attends to a key token at position k, we apply the following rule:

if q ≥ oe and cs ≤ k < ce ⇒ mask(q, k).

Once the outcome of a step is present, all future tokens are prevented from attending back to the
scratch tokens that produced it.

Training procedure. After the initial SFT on structured traces, we run a second round of SFT
on top of the structured SFT model with pruning-aware masking enabled. The only change is the
attention rule explained above.

3.4 STAGE 3: INFERENCE-TIME PRUNING

The final step is to implement pruning during autoregressive decoding.

Pruning procedure. At inference time, we implement a generate–prune–continue loop aligned to
<try>/<outcome> boundaries:

1. Decode until a complete <try> followed by its <outcome> is generated.
2. Prune the <try> span from the context.
3. Continue decoding conditioned on the retained tokens (the prompt, tokens before the first <try>,

and prior <outcome>s.

This loop runs until an answer is produced or we reach a max-length limit.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Pruning-aware train-
ing mask. The plot illustrates how
attention is restricted during train-
ing. Tokens within a <try> block
(blue) are only available until
their corresponding <outcome>
block (green) is produced. Once
an <outcome> is generated, all
subsequent queries are prevented
(crossed out region) from attending
back to the scratch tokens in the
associated <try>. Future tokens
can still access <outcome> rep-
resentations, preserving distilled
information. This setup teaches
the model to reason with outcomes
while discarding raw scratch work.

Position encoding. During inference we do not renumber posi-
tions after pruning. Tokens retain their original RoPE indices,
so pruned spans become empty gaps in the positional timeline.

Runtime support. Efficient inference engines such as
vLLM (Kwon et al., 2023) do not expose the fine-
grained control needed for selective eviction and restarts at
<try>/<outcome> boundaries. We therefore implement
pruning using a custom decoding loop in HuggingFace (Wolf
et al., 2019), which allows direct manipulation of cache states.

4 EVALUATION

We evaluate Structured Reasoning across two reasoning mod-
els on multiple mathematical benchmark tasks. Our experi-
ments and analysis addresses three questions: (i) Does struc-
tured SFT improve reasoning ability compared to unstructured
SFT? (ii) Is it possible to prune the context without catas-
trophic performance degradation? (iii) What is the overhead
introduced by our structured SFT technique and gains in mem-
ory/compute from subsequent pruning.

4.1 DATASETS

We build on the llama-nemotron-math-v1.1 cor-
pus (Bercovich et al., 2025), a large-scale collection of math
reasoning traces. The full dataset contains roughly 2M exam-
ples covering a wide range of problem types. For our experi-
ments, we select the first 1M examples from this dataset. We
use this dataset in two ways:

1. Baseline SFT: supervised fine-tuning on the raw math v1.1 dataset, where each example
consists of a question and a free-form reasoning trace.

2. Structured SFT: supervised fine-tuning on our reprocessed version of math v1.1, where each
trace is reformatted into alternating <try> and <outcome> blocks. The <try> spans are
obtained by segmenting raw reasoning traces at decision tokens (e.g., “Wait,” “Hmm”), while
the corresponding <outcome> blocks are generated by prompting a larger instruction-tuned
model (Llama-70B-Instruct) to summarize each <try> into a concise logical conclusion. This
produces scratch–summary units without changing the underlying problems or answers.

Structured SFT does not introduce new problems or answers. It reuses the exact same 1M examples
as the Baseline SFT, differing only in wrapping the reasoning steps with <try> tags and the addition
of <outcome> blocks

4.2 MODELS

We experiment with two pretrained reasoning models:

1. Llama-Nemotron-8B (Bercovich et al., 2025), part of the Llama-Nemotron family of reasoning
models. These models incorporate post-training stages specialized for mathematical reasoning.
Nemotron models are trained with a mixture of reasoning-oriented datasets and optimized with
supervised CoT traces and reinforcement learning.

2. Qwen2.5-7B-Instruct (s1) (Hui et al., 2024) is part of the Qwen2.5 family of models. The 7B-
Instruct variant is aligned via instruction tuning and further adapted, using SFT, on the s1K-1.1
dataset (Muennighoff et al., 2025), which contains reasoning-style traces. We use the checkpoint
released by Muennighoff et al. (2025) for our experiments.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.3 TRAINING DETAILS

We conduct all experiments on a distributed setup of 8 nodes, each equipped with 8 NVIDIA A100
40GB GPUs connected via EFA. Our training pipeline uses veRL Sheng et al. (2025) and LlamaFac-
tory Zheng et al. (2024). For the main experiments, we fine-tune each model for 2 epochs with a
learning rate of 1× 10−4. We set the maximum context length to 25,000 tokens, enabling the mod-
els to handle long reasoning traces without truncation. To further improve training efficiency, we
apply sequence packing so that multiple shorter samples are concatenated into a single sequence,
maximizing GPU utilization.

4.4 STRUCTURED SFT IMPROVES REASONING PERFORMANCE

We first compare Baseline SFT (training on raw math-v1.1 traces) against Structured SFT (train-
ing on our reformatted traces with <try>/<outcome> blocks). Evaluation is conducted on
seven math reasoning benchmarks: Math500, MinervaMath, AMC23, AIME24, TheoremQA,
OlympiadBench, and GSM8K (Hendrycks et al., 2021; Lewkowycz et al., 2022; AMC; AIM; Chen
et al., 2023; He et al., 2024; Cobbe et al., 2021). Across tasks, Structured SFT consistently outper-
forms the raw baseline. On Llama-Nemotron-8B, Structured SFT yields a relative average gain of
+3.66% over the baseline SFT experiments. On Qwen2.5-7B-Instruct, Structured SFT improves
performance by an average of +8.08%. This demonstrates that structured reasoning provides mea-
surable gains in accuracy. Table 1 reports the full benchmark-level breakdown.

Benchmark
Llama-Nemotron-8B Qwen2.5-7B-Instruct (s1)

Score Score
Baseline SFT Structured SFT Diff (%) Baseline SFT Structured SFT Diff (%)

MATH-500 90.2 93.2 +3.32% 88.0 88.4 +0.45%

Minerva-Math 48.2 53.3 +10.60% 45.1 46.3 +2.66%

GSM8K 90.4 91.3 +1.00% 92.9 91.3 -1.72%

OlympiadBench 60.9 61.9 +1.64% 55.0 57.8 +5.09%

AMC23 92.5 97.5 +5.41% 75.0 87.5 +16.07%

AIME24 60.0 63.3 +5.50 % 33.3 53.3 +60.06%

TheoremQA 55.0 54.9 -0.18% 55.8 56.5 +1.25%

Average 71.0 73.6 +3.66% 63.58 68.7 +8.08%

Table 1: Structured SFT improves reasoning accuracy across benchmarks. Performance of
Baseline SFT (raw traces) vs. Structured SFT (<try>/<outcome> traces) on seven math reason-
ing benchmarks. Structured SFT yields consistent gains: +3.66% relative improvement for Llama-
Nemotron-8B, and +8.08% for Qwen2.5-7B-Instruct.

4.5 PRUNING EXPERIMENTS

Next, we evaluate pruning at inference time using the Llama-Nemotron-8B model. Here, the genera-
tion loop removes <try> tokens as soon as their corresponding <outcome> is produced, retaining
only the compressed reasoning summaries in context. This reduces the effective sequence length and
KV cache footprint, with the tradeoff that the model no longer has access to its raw scratch work.

Table 2 reports performance across math reasoning benchmarks. Pruning leads to an average relative
degradation of 8.76%. Importantly, the model remains competitive overall, with performance levels
that demonstrate pruning is feasible as a proof-of-concept. The observed performance drop can
be explained by several factors. First, the segmentation technique used to identify independent
reasoning steps is heuristic and can misalign with the actual boundary of the step. While this has
little impact during structured SFT as the full scratch work remains visible, pruning makes the model
fully dependent on the outcome blocks. If a segmentation boundary cut occurs in the middle of a
step and then the preceding <try> block is removed, the model is left with an incomplete summary
and cannot properly continue the reasoning chain. Second, the informativeness of outcome blocks

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

is constrained by the summarization model (Llama-70B in our case). If the summarization model
misses or misinterprets the logical conclusion of a <try> block, then the true conclusion of that
step is effectively lost, and after pruning the model has no way to recover it.

Additionally, while our results highlight that structured traces allow the model to sustain reason-
ing even without retaining the full scratch space, our current pruning methodology is not efficient
enough for deployment. Our HuggingFace-based inference loop is significantly slower than opti-
mized engines such as vLLM, and pruning adds further overhead.

4.6 OVERHEAD AND EFFICIENCY ANALYSIS

Introducing structured thoughts increases sequence length because each reasoning step now includes
an additional <outcome> block. On our structured SFT dataset, each record contains on average
7.34 <try> blocks. The typical<try> block spans 688.5 tokens, while the paired <outcome>
summary averages 103.2 tokens. This yields a ratio of outcome-to-try tokens of 0.15. This yields
a compression ratio of almost 85% overall. If we also prune the previous <try> blocks while
keeping the <outcome> before final answer, we shrink both the memory footprint (KV-cache size)
and attention FLOPs during inference.

Llama-Nemotron-8B Benchmark

MATH-500 Minerva-Math GSM8K OlympiadBench AMC23 AIME24 TheoremQA Average

Structured SFT 93.2 53.3 91.3 61.9 97.5 63.3 54.9 73.6
Structured SFT + Pruning 89.6 50.7 86.0 55.9 87.5 46.7 53.8 67.2

Diff (%) -3.86% -4.87% -5.80% -9.69% -10.25% -26.22% -2.00% -8.76%

Table 2: Structured SFT with pruning trades accuracy for efficiency. Benchmark performance
of Llama-Nemotron-8B trained with Structured SFT, evaluated with and without pruning. Pruning
discards <try> tokens once their <outcome> is produced, reducing context length and KV-cache
size. While accuracy drops by an average of 8.76% , the results show that the model remains com-
petitive across benchmarks, validating pruning as a viable proof-of-concept for memory-efficient
reasoning.

4.7 WHY DOES STRUCTURED SFT HELP?

A natural concern is that our <outcome> additions might (i) inject new knowledge, or (ii) help
merely by lengthening the trace and thus increasing the model’s effective compute/memory. We
offer some reasoning behind why simply adding more compute does not always scale performance
and also design an ablation to isolate both factors.

Does a longer context by itself help reasoning? Prior work shows that simply providing (or train-
ing for) longer contexts does not automatically improve reasoning, and can even degrade effective
usage of evidence. For example, Liu et al. (2023) report that LMs over-attend to the beginning/end
of long prompts and under-utilize information in the middle.

Wu et al. (2025) provide evidence that longer chains-of-thought are not always better. They show
that accuracy follows an inverted–U curve as the number of reasoning steps grows. Performance
improves at first, then degrades as chains become too long. They further show two scaling properties:
(i) larger models reach peak accuracy with shorter chains, and (ii) harder tasks benefit from longer
CoT chains. Taken together, this work cautions that raw token count is an unreliable proxy for better
performance on reasoning tasks.

Ablation: no information in <outcome> (compute matched variant). To test whether our
gains come from extra tokens (i.e., more internal compute) rather than structured reasoning traces,
we create a Compute-Matched variant. Starting from the Structured SFT data, we replace every
token inside each <outcome> block with a single MASK symbol repeated to match the original
length (thus preserving sequence length and training FLOPs), while keeping the <try> content
unchanged. No semantic summary remains; only the token budget does. We fine-tune Llama-
Nemotron-8B on this masked corpus for the same number of steps and hyperparameters as Struc-
tured SFT.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Llama-Nemotron-8B Benchmark

MATH-500 Minerva-Math GSM8K OlympiadBench AMC23 AIME24 TheoremQA Average

Baseline SFT 90.2 48.2 90.4 60.9 92.5 60.0 55.0 71.0

Structured SFT 93.2 53.3 91.3 61.9 97.5 63.3 54.9 73.6
Compute-Matched SFT 93.2 52.2 90.0 62.4 95.0 56.7 56.1 72.2

Performance Gain vs. Baseline (%)
Structured SFT +3.32 +10.60 +1.00 +1.64 +5.41 +5.50 -0.18 +3.66
Compute-Matched SFT +3.32 +8.30 -0.44 +2.46 +2.70 -5.50 +2.00 +1.69

Table 3: Structured SFT vs. compute-matched control on Llama-Nemotron-8B. We compare
Baseline SFT, Structured SFT, and a Compute-Matched (CM) variant in which <outcome> tokens
are replaced by mask tokens to preserve sequence length and training compute while removing
summary content. While both Structured SFT and CM exceed the baseline, Structured SFT attains
a larger average gain (+3.66% vs. +1.69%).

Findings. Table 3 summarizes the results for our compute-matched ablation. Relative to the Raw
SFT baseline, Structured SFT yields an average gain of 3.66%, whereas the Compute-Matched
variant (same sequence length but contains mask tokens inside the <outcome> blocks) improves
by 1.69%. Since the compute-matched setting preserves token budget and training FLOPs, these
results suggest that increased sequence length alone does not fully explain the improvements and
that the distilled conclusions in <outcome> blocks may be providing additional, structure-specific
benefits.

5 LIMITATIONS & FUTURE WORK

Our study has several limitations. First, inference-time pruning results are available only for a single
model, Llama-Nemotron-8B. Limited compute resources prevented us from running systematic
pruning experiments on other models. Second, even for the models where we tested pruning, our
current runtime approach is not practical. Since vLLM does not support dynamic KV-cache eviction,
we fall back to HuggingFace Transformers with which introduces a large overhead, making pruning
quite slow.

Additionally, while structured SFT improves performance, pruning currently incurs a non-trivial
accuracy drop. On Llama-Nemotron-8B, pruning leads to an average 8.76% relative degradation
compared to the unpruned structured model. To mitigate this degradation under pruning, an addi-
tional RL phase could be introduced. Here, the model would learn to compress its own scratch work
into minimal but sufficient outcomes, with pruning performed during RL training itself. This could
reduce reliance on heuristic segmentation and allow the model to internalize pruning decisions.

6 CONCLUSION

We introduced Structured Reasoning, a method to organize reasoning traces into alternating <try>
(scratch work) and <outcome> (distilled conclusion) blocks. By fine-tuning models on reformat-
ted datasets, we showed that structured supervision improves reasoning accuracy across multiple
math benchmarks (relative improvement of 3.66% for Llama-Nemotron-8B and 8.08% for Qwen2.5-
7B-Instruct (s1)). Building on this structure, we further explored pruning, where scratch work for
reasoning steps is masked after their outcomes are produced. Our experiments demonstrate that
pruning is feasible and significantly reduces context length. Pruning yields 85% savings in context
and memory compared to the structured reasoning variant although this comes at the cost of an
average performance degradation of 8.76% on benchmark scores.

7 ETHICS

This work focuses on methods for improving the reasoning efficiency and structure of large language
models through supervised fine-tuning and pruning. We do not introduce new datasets and the
models and datasets used in this paper are already publicly publicly available. As such, this work

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

does not raise novel ethical or societal risks beyond those already associated with large language
models.

8 REPRODUCIBILITY

We have made significant efforts to ensure the reproducibility of our results.

• Dataset construction: Section 3.2 details the preprocessing pipeline, including segmentation,
summarization, and formatting of the structured traces.

• Training setup: Section 4.3 describes our hardware environment, frameworks, hyperparameters,
and context length settings. We use publicly available training frameworks highlighted in Sec-
tion 4.3

• Masking and pruning: Section 3.3 provides technical details of our masking implementation and
inference-time pruning procedure.

• Evaluation: Section 4 outlines SFT datasets, benchmark datasets and experimental details.
• Code Release: Upon acceptance, we plan on open-sourcing our entire codebase.

REFERENCES

Maa invitational competitions – mathematical association of america. URL https://maa.org/
maa-invitational-competitions/.

American invitational mathematics examination – mathematical association of america. URL
https://maa.org/student-programs/amc/.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
Zach Moshe, Tomer Ronen, Najeeb Nabwani, et al. Llama-nemotron: Efficient reasoning models.
arXiv preprint arXiv:2505.00949, 2025.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang,
and Tony Xia. Theoremqa: A theorem-driven question answering dataset. arXiv preprint
arXiv:2305.12524, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
programming model for generating optimized attention kernels. arXiv preprint arXiv:2412.05496,
2024.

Tingchen Fu, Jiawei Gu, Yafu Li, Xiaoye Qu, and Yu Cheng. Scaling reasoning, losing control:
Evaluating instruction following in large reasoning models. arXiv preprint arXiv:2505.14810,
2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

10

https://maa.org/maa-invitational-competitions/
https://maa.org/maa-invitational-competitions/
https://maa.org/student-programs/amc/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

Xiaomin Li, Zhou Yu, Zhiwei Zhang, Xupeng Chen, Ziji Zhang, Yingying Zhuang, Narayanan
Sadagopan, and Anurag Beniwal. When thinking fails: The pitfalls of reasoning for instruction-
following in llms. arXiv preprint arXiv:2505.11423, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
Min Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https://arxiv.
org/abs/2503.20783.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

OpenAI. Learning to reason with llms | openai, 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

OpenAI, 2025. URL https://openai.com/index/
introducing-o3-and-o4-mini/.

Yuxiao Qu, Matthew YR Yang, Amrith Setlur, Lewis Tunstall, Edward Emanuel Beeching, Ruslan
Salakhutdinov, and Aviral Kumar. Optimizing test-time compute via meta reinforcement fine-
tuning. arXiv preprint arXiv:2503.07572, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

11

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute
optimally can be more effective than scaling model parameters, 2024. URL https://arxiv.
org/abs/2408.03314, 20, 2024.

Swapna Somasundaran et al. Two-level transformer and auxiliary coherence modeling for improved
text segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 7797–7804, 2020.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Yuyang Wu, Yifei Wang, Ziyu Ye, Tianqi Du, Stefanie Jegelka, and Yisen Wang. When more is
less: Understanding chain-of-thought length in llms. arXiv preprint arXiv:2502.07266, 2025.

Chenxiao Yang, Nathan Srebro, David McAllester, and Zhiyuan Li. Pencil: Long thoughts with
short memory. arXiv preprint arXiv:2503.14337, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372, 2024.

A USE OF LLMS

We used LLMs for plotting code, latex formatting, finding relevant work and writing edits.

B SUMMARIZATION PROMPT

We use the following instruction prompt to generate summaries for each try block.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

ORIGINAL TEXT STRING

Key Idea

You are an expert in analyzing and distilling complex reasoning processes. You will receive
ONE segment of a larger, multi-step reasoning trace. This segment is enclosed within
< try >< /try > tags.
Your task is to process **ONLY THIS SINGLE** < try > block and identify and provide its
most important conclusion or core logical outcome. This outcome **MUST include any
relevant mathematical equations, numerical results, or specific values** if they represent the
main finding of the block.

CRITICAL RULES FOR YOUR OUTPUT:
1. Your summary **MUST** directly state the outcome of *this specific block*. It should be
concise, but may span multiple sentences if a mathematical formulation or detailed numerical
result is the core outcome.
2. Your summary **MUST NOT** contain introductory phrases like "The main finding is...",
"This block concludes...", "The result of this call is...", etc. Go straight to the point.
3. Your summary **MUST** be enclosed within < outcome >< /outcome > tags.
4. Your entire output should be **ONLY** this single < outcome >< /outcome > block,
with absolutely no other text, comments, or conversational filler.
5. **If the main outcome is a mathematical expression or numerical result, represent it clearly
within the summary, using LaTeX formatting (e.g., E = mc2) for equations.**

13

	Introduction
	Related Work
	Method
	Motivation: Explicit Structure for Better Reasoning
	Stage 1: Structured Supervised Fine-Tuning (SFT)
	Stage 2: SFT with Pruning-Aware Masking
	Stage 3: Inference-Time Pruning

	Evaluation
	Datasets
	Models
	Training Details
	Structured SFT Improves Reasoning Performance
	Pruning Experiments
	Overhead and Efficiency Analysis
	Why does Structured SFT help?

	Limitations & Future Work
	Conclusion
	Ethics
	Reproducibility
	Use of LLMs
	Summarization Prompt

