
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COHERENT LOCAL EXPLANATIONS FOR
MATHEMATICAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The surge of explainable artificial intelligence methods seeks to enhance trans-
parency and explainability in machine learning models. At the same time, there
is a growing demand for explaining decisions taken through complex algorithms
used in mathematical optimization. However, current explanation methods do not
take into account the structure of the underlying optimization problem, leading
to unreliable outcomes. In response to this need, we introduce Coherent Local
Explanations for Mathematical Optimization (CLEMO). CLEMO provides ex-
planations for multiple components of optimization models, the objective value
and decision variables, which are coherent with the underlying model structure.
Our sampling-based procedure can provide explanations for the behavior of exact
and heuristic solution algorithms. The effectiveness of CLEMO is illustrated by
experiments for the shortest path problem, the knapsack problem, and the vehicle
routing problem.

1 INTRODUCTION

The field of mathematical optimization plays a crucial role in various domains such as transportation,
healthcare, communication, and disaster management (Petropoulos et al., 2024). Since 1940s,
significant advancements have been made in this field, leading to the development of complex and
effective algorithms like the simplex method and the gradient descent algorithm (Nocedal & Wright,
2006). More recently, the integration of artificial intelligence (AI) and machine learning (ML)
techniques has further enhanced optimization methods (Bengio et al., 2021; Scavuzzo et al., 2024).

When using mathematical optimization in practical applications, decision makers must come to a
consensus on the main components of the optimization model such as decision variables, objective
function, and constraints. Afterwards, they need to employ an exact or heuristic algorithm to solve
the resulting problem. For setting up the model, the decision maker has to accurately estimate all
necessary parameters for the model and algorithm, e.g., future customer demands or warehouse
capacities. However, the solution algorithm can be highly sensitive to even small deviations in these
parameters and inaccurate parameter estimations can result in sub-optimal decisions being made.

The analysis of the behavior of an optimization model regarding (small) changes in its problem
parameters is widely known as sensitivity analysis (Borgonovo & Plischke, 2016) or parametric
optimization (Still, 2018). In both areas, many methods were developed to analyze the model behavior
locally and globally, e.g., by one-at-a-time methods, differentiation-based methods or variance-based
methods (Borgonovo & Plischke, 2016; Iooss & Lemaı̂tre, 2015; Razavi et al., 2021). One of the
promising directions mentioned in (Razavi et al., 2021) is the use of ML models to develop sensitivity
analysis methods. The main idea of such an approach is to fit an explainable ML model which locally
approximates the behavior of the component of the optimization problem to be analyzed (like the
optimal objective function value); see e.g., (Wagner, 1995). Usually, linear regression models are
fitted because the standardized regression coefficient becomes a natural sensitivity measure. This
approach is similar to the LIME method, which is widely used to explain trained ML models (Ribeiro
et al., 2016).

Although ML-based sensitivity analysis is effective and model-agnostic, it falls short in providing
clear explanations to users when analyzing various components of a model at the same time. Decision
makers often need to analyze the main components of an optimization model, such as the objective
function value and the values of the decision variables, which are closely intertwined due to the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

problem’s structure. However, fitting separate linear models to predict the outcome of each component
disregards this correlation and leads to incoherent explanations. This can result in situations where
either (i) the predicted optimal value does not align with the objective value of the predicted solution,
or (ii) the predicted solution violates the constraints of the problem. Inconsistent predictions that do
not align with the model’s structure do not enhance understanding of the optimization model; instead,
they can cause confusion for the decision makers. To illustrate this, consider the following simple
optimization model

max{x1 + x2 : 4x1 + 4.1x2 ≤ 10, x1 ≥ 0, x2 ≥ 0}.

Suppose that the coefficient a12 = 4.1 is the sensitive parameter to analyze. The decision maker
is seeking to understand the impact that small changes in this parameter will have on the optimal
decision values x∗

1, x
∗
2. Fitting two separate linear models on a small number of samples for a12

leads to the approximations x∗
1 ≈ 0.11a12 and x∗

2 ≈ 0.59a12. If we apply the latter predictions to
our nominal parameter value of a12 = 4.1, then the constraint value becomes

4 · 0.11a12 + 4.1 · 0.59a12 ≈ 11.7 > 10,

which has a constraint violation of more than 17%. While the fitted linear models are explainable
approximations of our problem components, they are not coherent and hence do not provide reliable
explanations to the user.

Contributions. In this work, we present a new sampling-based approach called Coherent Local
Explanations for Mathematical Optimization (CLEMO). This approach extends the concept of local
explanations to multiple components of an optimization model that are coherent with the structure of
the model. To incorporate a measure of coherence, we design regularizers evaluating the coherence
of the explanation models. We argue that CLEMO is method-agnostic, and hence, it can be used
to explain arbitrary exact and heuristic algorithms for solving optimization problems. Lastly, we
empirically validate CLEMO on a collection of well-known optimization problems including the
shortest path problem, the knapsack problem, and the vehicle routing problem. Our evaluation focuses
on fidelity, interpretability, coherence, and stability when subjected to resampling.

Related literature. Recently, there has been a significant amount of research focused on improving
the explainability of ML models (Adadi & Berrada, 2018; Bodria et al., 2023; Dwivedi et al., 2023;
Linardatos et al., 2021; Minh et al., 2022; Das & Rad, 2020). Common XAI methods include
feature-based explanation methods, such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee,
2017), and example-based explanations, such as counterfactual explanations, see e.g., the survey by
Guidotti (2024). LIME was analyzed and extended in several works regarding its stability (Zhang
et al., 2019; Zafar & Khan, 2021) or its use of advanced sampling techniques (Zhou et al., 2021; Saito
et al., 2021). In (Dieber & Kirrane, 2020), interviews were conducted with individuals that never
worked with LIME before. The research shows that LIME increases model interpretability although
the user experience could be improved.

Recently, the notion of explainable and interpretable mathematical optimization attained increasing
popularity. Example-based explanation methods such as counterfactuals were introduced to explain
optimization models. Korikov et al. (2021) and Korikov & Beck (2023) examine counterfactual
explanations for integer problems using inverse optimization. Generalizations of the concept have
also been investigated theoretically and experimentally for linear optimization problems (Kurtz et al.,
2025). Furthermore, counterfactuals for data-driven optimization were studied in (Forel et al., 2023).

A different approach is incorporating interpretability into the optimization process resulting in
intrinsic explainable decision making contrary to the post-hoc explanation method. In Aigner et al.
(2024), for example, the authors study optimization models with an explainability metric added
to the objective resulting in a optimization model that makes a trade-off between optimality and
explainability. Similarly in Goerigk & Hartisch (2023), the authors ensure an interpretable model by
using decision trees that resemble the optimization process and hence explain the model by providing
optimization rules based on the model parameters.

While -to the best of our knowledge- feature-based explanation methods are scarce for mathematical
optimization, parametric optimization and sensitivity analysis are strongly related to these methods.
In both fields, the effect of the problem parameters on the model’s output is analyzed where the
model’s output can be the optimal value, optimal decision values or even the runtime of the algorithm;
see Still (2018); Borgonovo & Plischke (2016); Iooss & Lemaı̂tre (2015); Razavi et al. (2021). Three

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

decades ago, Wagner (1995) already presented a global sensitivity method in which he approximated
the optimal objective value of linear programming problems like the knapsack problem with a linear
regression model. For this, he used normal perturbations of the model parameters as an input,
somewhat a global predecessor of LIME.

2 PRELIMINARIES

We write vectors in boldface font and use the shorthand notation [n]0 := {0, . . . , n} and [n]1 :=
{1, . . . , n} for the index sets.

LIME. Local Interpretable Model-agnostic Explanations (LIME) is an XAI method to produce an
explanation for black-box ML models h̄ : Z → R, which map any data point z in the data space Z to
a real value. Given a data point z0, LIME approximates h̄ locally around this point with a surrogate
model ḡ from a set of explainable models G (e.g., linear models). To this end, LIME samples a set of
points z1, . . . ,zN in proximity to z0 and calculates an optimizer of the problem

argmin
ḡ∈G

∑N

i=0
wiℓ

(
ḡ(zi), h̄(zi)

)
+Ω(ḡ), (1)

where ℓ is a fidelity loss function, Ω is a complexity measure and wi weighs data points according to
their proximity to z0. LIME uses an indicator function as a complexity measure returning 0 when the
number of non-zero features used by ḡ is at most K, and∞, otherwise. For the weights, LIME uses
wi = exp(−d(zi, z0)2/ν2) with distance function d and hyperparameter ν.

Mathematical Optimization. In mathematical optimization, the aim is to optimize an objective
function over a set of feasible solutions. Formally, an optimization problem is given as

min f(x;θ)
s.t. x ∈ X(θ), (2)

where x ∈ Rp are the decision variables, f is an objective function which is parameterized by
parameter vector θ ∈ Θ and X(θ) ⊆ Rp is the feasible region, again parameterized by θ. We
call θ the optimization parameters. As an example, one popular class of problems belongs linear
optimization, where the problem is defined as min{c⊺x : Ax = b,x ≥ 0}. In this case, we have
θ = (c,A, b), f(x;θ) = c⊺x, and X(θ) = {x ≥ 0 : Ax ≥ b}. The most popular methods to
solve linear optimization problems are the simplex method or the interior point method (Bertsimas &
Tsitsiklis, 1997).

Many real-world applications from operations research involve integer decision variables. In this
case the feasible region is given as X(θ) = {x ∈ Zp : Ax ≥ b}. Such so called linear integer
optimization problems are widely used, for example for routing problems, scheduling problems and
many others (Petropoulos et al., 2024). The most effective exact solution methods are based on
branch & bound type algorithms (Wolsey, 2020). However, due to the NP-hardness of this class
of problems often large-sized integer problems cannot be solved to optimality in reasonable time.
Hence, often problem-specific or general purpose heuristic algorithm are used to quickly calculate
possibly non-optimal feasible solutions.

3 METHODOLOGY

In this section, we present CLEMO, a novel method to provide coherent local explanations for
multiple components of mathematical optimization problems Eq. (2). Consider a given instance of
Problem, Eq. (2) which is parametrized by θ0, and we call it the present problem. Additionally, we
have a solution algorithm h that we want to explain. The algorithm calculates feasible solutions for
every problem instance of Problem Eq. (2). Note that this algorithm does not necessarily have to
return an optimal solution, since our method also works for heuristic or approximation algorithms.
The two components we aim to explain in this work are (i) the optimal objective value, and (ii)
the values of the decision variables. To this end, we fit p + 1 explainable models combined in
the vector-valued function g : Θ → Rp+1 where g(θ) = (gf (θ), gx1

(θ), . . . , gxp
(θ)). Here, Θ

is the parameter space containing all possible parameter vectors θ for Eq. (2). For example, the
model gxi ideally maps every parameter vector θ to the corresponding solution value of the i-th

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

decision variable xi returned by the solution algorithm h. For notational convenience, we denote
g(θ) = (gf (θ), gx(θ)).

The main goal of this work is to generate explanations that are coherent regarding the structure of the
underlying optimization problem Eq. (2). More precisely, we say the model g is coherent for instance
θ if

f(gx(θ);θ) = gf (θ), (3)
gx(θ) ∈ X(θ). (4)

That is, the predictions are aligned with the underlying problem structure. Condition Eq. (3) ensures
that the predictions for the decision variables x, when applied to f , lead to the same objective value
as the corresponding prediction for the objective value itself. Condition Eq. (4) ensures that the
predictions of the decision variables are feasible for the corresponding problem.

To find an explanation, we first generate a training data set D by sampling vectors θi ∈ Θ, i ∈ [N ]1
which are close to θ0. For each problem, we apply algorithm h which returns a feasible solution
xi and the corresponding objective function value f(xi,θi) for i ∈ [N ]0. We denote the returned
components of the optimization model by h(θi) := (f(xi;θi),xi) for i ∈ [N ]0. We aim for
local fidelity, i.e., we want to find models locally faithful to the optimization model such that
gf (θ

i) ≈ f(xi;θi) and gx(θ
i) ≈ xi for all i ∈ [N ]0.

Generating Explanations with LIME. In principle, LIME as in Eq. (1) can be applied to any black
box function, hence it can be used to explain our solution algorithm h. To this end, all explainable
predictors in g are fitted by solving the following problem

argmin
g∈G

∑N

i=0
wi

(
ℓF (g(θ

i), h(θi)) + Ω(g), (5)

where G contains all p+ 1-dimensional vectors of explainable functions, e.g., linear functions, the
scalars wi ≥ 0 denote the sample weights, ℓF denotes the fidelity loss, and Ω is a complexity measure.
If we use linear models for g, then the corresponding functions gf and gx provide explainable
predictors for components of the model; i.e., objective value and decision variables. However, this
model does not account for the coherence of the calculated predictors with the underlying problem
structure Eq. (2). As our experiments in Section 4 show, indeed the corresponding predictors in g are
usually not coherent, i.e., they violate Conditions 3 and 4 significantly. We use the latter approach as
a benchmark method.

Coherent Explanations with CLEMO. To generate coherent explanations we solve the problem

argmin
g∈G

∑N

i=0
wi

(
ℓF (g(θ

i), h(θi)) +RC(g(θ
i))

)
, (6)

where G contains all p+ 1-dimensional vectors of interpretable functions, the scalars wi ≥ 0 denote
the sample weights, ℓF denotes the fidelity loss, and RC corresponds to the coherence regularizer
that punishes predictors which do not admit the coherence conditions Eq. (3) and Eq. (4).

We note that theoretically, the coherence conditions could be added as constraints to the minimization
problem Eq. (5). However, there is no guarantee that a feasible solution g exists, hence we enforce
coherence via a regularizer. Similar to LIME, a complexity measure Ω could be added to the loss
function if, for example, linear models with sparse weights are desired. For ease of notation, we omit
this term. Note that ℓF and RC can contain hyperparameters to balance all components of the loss
function.

In principle, any appropriate function can be used for the fidelity and the coherence regularizer. We
propose to use the squared loss

ℓF (g(θ
i), h(θi)) = ∥g(θi)− h(θi)∥2 (7)

as fidelity loss, and for the coherence regularizer, we use

RC(g(θ
i)) = λC1(gf (θ

i)− f(gx(θ
i);θi))2 + λC2δ

(
gx(θ

i),X(θi)
)
, (8)

where δ(x,X(θ)) denotes a distance measure between a point x and the feasible set X(θ). The values
λC1 , λC2 are hyperparameters to balance the losses. The RC-regularizer measures incoherence,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the first term punishes the violation of the coherence condition Eq. (3), while the second term
punishes the violation of the coherence condition Eq. (4). Note that a mathematical formulation
of the optimization problem is needed to formulate RC . However, independent of the solution
algorithm h, any valid formulation can be used as long it contains all decisions xi which have
to be explained. Given a formulation, a natural choice for the distance measure is the sum of
constraint violations of a solution. For example, if the feasible region is given by a set of constraints
X(θi) = {x : γt(x,θ

i) ≤ 0, t = 1, . . . , T}, then we define

δ
(
x,X(θi)

)
=

∑T

t=1
max{0, γt(x,θi)}. (9)

While problem Eq. (6) can be applied to different classes of hypothesis sets G, we restrict G to
linear models in this work. In this case we have coefficient vectors βf ,βx1

, . . . ,βxp
, such that

gf (θ
i;β) := β⊺

fθ
i and gx(θ

i;β) := (β⊺
x1
θi, . . . ,β⊺

xp
θi). For β ≡ (βf ,βx1 , . . . ,βxp)

⊺, Problem
Eq. (6) then becomes

argmin
β

∑N

i=0
wi

(
ℓF (β

⊺θi, h(θi)) +RC(β
⊺θi)

)
. (10)

Note that CLEMO can easily be adjusted if only a subset of components has to be explained. In
this case, we replace gc(θ

i;β) by the true value hc(θ
i) in the above model for all components

c ∈ {f, x1, . . . , xp} which do not have to be explained. This is especially useful if the optimization
problem Eq. (2) contains auxiliary variables (e.g., slack variables) that do not need to be explained.

Since we use the squared loss Eq. (7) in Problem Eq. (10), the first term corresponding to the fidelity
loss becomes a convex function of β. For the coherence regularizer, the following holds.
Proposition 3.1. Suppose that g(θ) = β⊺θ in Eq. (8). If the following conditions hold, then the
coherence regularizer term in Eq. (10) is a convex function of β:
. (1) The function x 7→ f(x;θ) is affine. (2) The function x 7→ δ(x,X(θ)) is convex.

The proof of this proposition follows from applying composition rules of convex functions (Boyd &
Vandenberghe, 2004). When the conditions in this proposition are satisfied, every local minimum
of the optimization problem Eq. (10) is a global minimum. We can use first-order methods to find
such a minimum if the functions are differentiable. We note that for δ as defined in Eq. (9), we
have that Eq. (8) is convex in β if the functions x 7→ γt(x,θ

i) are convex in x for t ∈ [T ]1 since
x 7→ max{0, x} is convex and nondecreasing in x. Assuming that β comes from a bounded space, we
can then use the subgradient algorithm with constant step size and step length and ensure convergence
to an ϵ-optimal point within a finite number of steps in O(1/ϵ2) (Boyd et al., 2003).

Weights. We define the weights (similarly to LIME) as the radial basis function kernel with kernel
parameter ν and distance function d,

wi = exp(−d(θi,θ0)2/ν2), i ∈ [N ]0. (11)

Sampling. We recall that contrary to ML models, optimization models do not require model
training per se. Therefore, θi cannot be sampled according to the train data distribution. Depending
on the context, θi can be sampled from relevant distributions, or with pre-determined rules, e.g.,
discretization. Besides, we note that for some values of θi the optimization problem might be
infeasible or unbounded. We therefore ensure the generated dataset D contains only feasible,
bounded instances of the optimization problem.

Binary Decision Variables. We opt for logistic regression to obtain interpretable surrogate models
for the output components of the optimization problem that are restricted to binary values. Let
B ⊆ {f, x1, . . . , xp} be the set of binary components. Then, for a binary component c ∈ B, we
consider predictors of the form gc(θ) = σ(β⊺

c θ) with σ : R → [0, 1] the sigmoid function. The
relative values of vector βc then tell the user the feature importance for the probability of the
component being 0 or 1. For the binary components, we measure the fidelity using the log-loss. The
total fidelity loss then becomes

λF1

∑
c∈B
∥β⊺

c θ
i − hc(θ

i)∥2 − λF2

∑
c∈B

hc(θ
i) ln(σ(β⊺

c θ
i)) + (1− hc(θ

i)) ln(1− σ(β⊺
c θ

i)),

where B = {f, x1, . . . , xp} \ B and λF1
, λF2

≥ 0 are hyperparameters to balance the different losses.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 CLEMO

Input: Optimization problem with parameter θ0, solution algorithm h, family of functions G
θi ← sample around(θ0) for i ∈ [N ]1
(f(xi;θi),xi)← h applied to Eq. (2) with θi for i ∈ [N ]0
wi ← weight function Eq. (11) for i ∈ [N ]0
D ← {(θi, (f(xi;θi),xi)) : i ∈ [N ]0}
g∗ ← solution of Problem Eq. (6) over G
Return: Explainable function g∗

The whole procedure of CLEMO is shown in Algorithm 1. For more details regarding the substeps
we refer to Algorithms 2 and 3 in the appendix.

Guaranteed Objective Coherence in the Linear Case. Assume our present problem Eq. (2) has a
linear objective function, i.e., the objective is of the form f(x;θ) = ĉ⊺x, and assume that only the
feasible region is sensitive, i.e., ĉ remains fixed. In this case, we can fit p + 1 independent linear
models for each component in c ∈ {f, x1, . . . , xp} by solving the classical weighted mean-square
problem

min
βc

∑N

i=0
wi∥β⊺

c θ
i − hc(θ

i)∥2.

If the minimizers are unique, the corresponding linear predictors provably fulfill the coherence
condition Eq. (3), i.e., in this case we do not need to apply the regularizer RC to achieve coherence
condition Eq. (3). However, it may happen that condition Eq. (4) is violated as the example from
the introduction shows. A proof of the latter coherence statement can be found in Appendix A.3
(Theorem A.1).

4 EXPERIMENTS

In this section, we present three experiments. Each experiment considers a distinct optimization
model and solver. The first experiment is used as a proof of concept, where we will show that
CLEMO approximates the optimal decision and objective value function well for an instance of
the Shortest Path Problem (SPP) with a single sensitive parameter. Next, in an extensive study, we
consider exact solutions of various instances of the Knapsack Problem (KP). We compare the quality
of explanations found by CLEMO to benchmarks by analyzing local fidelity, coherence, and stability
of the found explanations when subjected to resampling. Lastly, we generate explanations for the
Google OR-Tools heuristic (Furnon & Perron) applied to an instance of the Capacitated Vehicle
Routing Problem (CVRP). The code of our experiments can be found at https://anonymous.
4open.science/r/CLEMO-899F. All experiments are done on a computer with a 13th Gen
Intel(R) Core(TM) i7-1355U 1.70 GHz processor and 64 GB of installed RAM.

Setup. Unless stated otherwise, all upcoming experiments use the following setup. Given an
optimization problem for a given parameter vector θ0, we create a training data set D of size 1000
by sampling θi ∼ N (θ0, 0.2θ0). The sample’s proximity weights wi are determined using Eq. (11)
with Euclidean distance and parameter ν equal to the mean distance to θ0 over the data set D.

As a benchmark for CLEMO, we consider generating explanations with the LIME-type method
described in Section 3. We solve problem Eq. (5) where we fit logistic regression models for all
binary output components and linear models for all other output components without any complexity
regularization. We refer to this benchmark as LR.

For CLEMO we use the loss function stated in Eq. (10), where ℓF is given as in Eq. (12) and RC is
given as in Eq. (8) with δ defined as in Eq. (9). This way we can compare CLEMO to the benchmark
on local fidelity Eq. (12) and incoherence Eq. (8). In CLEMO, each term of the total loss function is
weighted with hyperparameters λF1 , λF2 , λC1 , and λC2 as

λF1
ℓF1

(g(θi), h(θi)) + λF2
ℓF2

(g(θi), h(θi)) + λC1
RC1

(g(θi)) + λC2
RC2

(g(θi)).

To determine the hyperparameters, we calculate the weights using the LR benchmark solution to
ensure that each loss term contributes to the total loss with similar order of magnitude. To this end, let
Lj be the value of loss term j for j ∈ {F1, F2, C1, C2} when the LR benchmark solution is evaluated,

6

https://anonymous.4open.science/r/CLEMO-899F
https://anonymous.4open.science/r/CLEMO-899F


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Instance of SPP-θ, with in blue the op-
timal s, t-route.

(b) CLEMO prediction of objec-
tive value.

(c) CLEMO prediction of deci-
sion variable x(s,a).

Figure 1: Solution of shortest path of SPP-θ instance as determined by Dijkstra’s Algorithm and as
predicted by CLEMO.

and let Lmax denote the largest of the four loss terms. For our experiments, we set λj = 1 when
Lj = Lmax or when Lj = 0, and set λj = 0.5Lmax/Lj otherwise. We solve Problem Eq. (10) using
the SLSQP solver of the scipy package. We set a maximum of 1000 iterations and warm-start the
method with the LR benchmark solution. In Tables 5 and 6 in the Appendix, we compare different
initializations and optimization methods, indicating that our setup below is the best choice in terms
of runtime and solution quality.

4.1 SHORTEST PATH PROBLEM

As a first experiment, we explain an instance of the Shortest Path where possible cost-changes depend
on a single parameter. An instance of the SPP is given by a connected graph G = (V,E, c), with
nodes V , edges E and edge-costs c, and specified start and terminal nodes s, t ∈ V . The objective
is to find a path between s and t of minimum cost. Several methods exist for solving the SPP in
polynomial time (Gallo & Pallottino, 1988). Here, we use Dijkstra’s algorithm.

We study the parametric version of the shortest path problem (SPP-θ), denoted by G = (V,E, c+θc̃).
The edge costs are parametrized by the value θ and are given as the original edge costs (c) plus
θ times a perturbation cost vector (c̃). The decision variables are denoted by xjk and equal 1,
if edge (vj , vk) is used in the solution and 0, otherwise. The parametrized SPP is then given as
min{(c+ θc̃)⊺x : x ∈ XSPP }, where XSPP denotes the set of incidence vectors of all paths in the
graph. The full formulation can be found in Eq. (12) in the appendix. We examine how the objective
value and decision variable values of the original instance are affected by parameter θ. We consider
the instance of SPP-θ as displayed in Fig. 1(a) with θ0 = 0 as the present problem. By varying θ, the
optimal shortest (s, t)-path and its optimal value changes.

We sample θ uniformly on the interval [−1, 1] and run CLEMO on the sampled data. In Fig. 1(b),
we show the true dependency of the optimal value of SPP-θ and θ and the prediction of CLEMO.
Fig. 1(c) shows the same for the dependency of three selected decision variable values. For the
predictions of all decision variables, see Fig. 4 in the appendix. Both results show that CLEMO
manages to be locally faithful. In Table 1, we show the fidelity and the incoherence of CLEMO and
the LR benchmark. We can conclude that our method finds significantly more coherent explanations
without considerably conceding fidelity.

Table 1: Weighted fidelity loss and incoherence of explaining Dijkstra’s algorithm applied to SPP-θ
using the LR benchmark and using CLEMO.

Infidelity (ℓF ) Incoherence (RC )
Objective value Decision vector Objective Feasible region

LR 32.03 648.06 112.52 54.55
CLEMO 32.12 646.28 6.91 21.08

4.2 KNAPSACK PROBLEM

Next, we present an extensive study on the Knapsack problem (KP). In this problem, we are given
a set of items each with a corresponding value vj and weight wj . The goal is to decide how much
of each item should be chosen to maximize the total value while not exceeding the capacity, which
w.l.o.g. we set to 1. Formulated as a linear problem this becomes max{v⊺x : w⊺x ≤ 1,x ∈ [0, 1]p}.
We consider the parametrized KP, by setting θ = (v,w) and use Gurobi (Gurobi Optimization, LLC,
2024) to solve to optimality. This experiment compares CLEMO with two benchmark explanation
methods: independently fitting the components using (i) a linear regression model (LR), and (ii) a

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Mean (µ) and standard deviation (σ) of weighted fidelity loss and incoherence for the KP
solved optimally. On the right, the mean stability measures over 10 instances per type of KP.

Incoherence (RC )
Infidelity (ℓF ) Objective Feasible region Stability

Method µ σ µ σ µ σ Std. Normalized Std. FSI
Ty

pe
1 DTR 405 97.4 6.48 2.55 22.50 4.99 0.18 5.36 2.02

LR 437 140 0.24 0.15 5.49 1.51 0.22 1.70 2.44
CLEMO 479 157 0.08 0.06 0.01 0.004 0.18 1.75 2.26

Ty
pe

2 DTR 868 67.4 20.09 2.27 38.55 2.03 0.14 2.74 3.00
LR 1076 99.4 1.01 0.12 9.49 0.68 0.19 0.74 3.40

CLEMO 1203 113 0.38 0.06 0.03 0.01 0.16 0.81 3.34

Ty
pe

3 DTR 865 66.8 28.45 3.36 39.41 2.02 0.14 2.77 2.91
LR 1061 97.8 1.39 0.16 9.90 0.64 0.20 0.71 3.22

CLEMO 1189 113 0.58 0.07 0.04 0.01 0.16 0.79 3.23

Ty
pe

4 DTR 893 56.5 13.80 2.16 37.74 2.35 0.14 2.52 2.99
LR 1111 77.6 0.70 0.11 8.94 0.74 0.18 0.66 3.31

CLEMO 1241 87.56 0.27 0.06 0.03 0.01 0.16 0.77 3.38

Table 3: Runtime of different explanation ap-
proaches for various sizes of KP.

KP Runtime (s)
#items #features DTR LR CLEMO

5 10 0.0189 0.0031 8.54
10 20 0.0396 0.0790 50.0
20 40 0.183 0.0830 413
40 80 0.683 0.316 > 1000

Figure 2: Convergence of CLEMO over
SLSQP iterations for different sizes of KP.

decision tree regressor (DTR) with a maximum depth of 5, and minimum samples per leaf of 50.
Here, we consider 40 instances of the KP each with p = 25 items. The 40 instances are divided
over four instance types as described by (Pisinger, 2005): 1) uncorrelated, 2) weakly correlated, 3)
strongly correlated, 4) inversely strongly correlated.

In Table 2, we see that compared to a linear regression approach the linear model found by CLEMO
reduces the weighted incoherence in the objective and the constraint by more than 50% and 99%
respectively, while the weighted fidelity loss increased only by roughly 20%. In Figs. 5 to 8 in the
appendix, we plotted the fidelity loss and incoherence of each instance to strengthen our conclusion.

Besides, as datasets are randomly generated, we measure the stability of explanations over resampling.
For the KP, we analyze the stability of CLEMO by using 10 different randomly generated datasets,
resulting in 10 surrogate models. To quantify stability we use the (normalized) standard deviation of
the feature contributions of g which is also used to examine the stability of LIME (Shankaranarayana
& Runje, 2019). In Table 2, we consider the (normalized) standard deviation of the contribution of
the top-5 most contributing, nonzero features for each component of h(θ). Besides, we examine the
feature stability index (FSI), which is based on the variables stability index as presented in Visani
et al. (2022). The FSI measures how much the order in feature contribution over the resamples on
average coincides. Here, it takes values between 0 and 5, where a higher FSI indicates more stable
explanations. An extensive description of the FSI can be found in Appendix A.5.2 in the appendix.
From Table 2, we can conclude that the stability of CLEMO is comparable to the benchmark
approaches.

Runtime. To compare the runtime of CLEMO to benchmark methods, we analyze the runtime on
Knapsack problems with 5, 10, 20, and 40 items. In Table 3, we see CLEMO takes longer to find an
explanation. Looking at Fig. 2, we observe that CLEMO efficiently converges to a solution. Hence,
early stopping could reduce runtimes while still ensuring more coherent explanations.

4.3 VEHICLE ROUTING PROBLEM

An instance of CVRP is given by a complete graph G = (V,A), where V consists of a depot node v0
and n client nodes each with a corresponding demand dj . Moreover, each arc (vj , vk) has associated

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Weighted fidelity loss and incoherence of explaining Google OR-Tools applied to the CVRP
instance using the LR benchmark and using CLEMO.

Infidelity (ℓF ) Incoherence (RC )
Objective value Decision vector Objective Feasible region

LR 4.24 1207 12.35 802.55
CLEMO 4.24 1198 11.77 780.26

costs cjk. Lastly, there are m vehicles, each with a capacity of M . The goal of the problem is to find
at most m routes of minimum costs such that each route starts and ends at the depot, each client is
visited exactly once, and the total demand on each route does not exceed the vehicle capacity. To
formulate RC , we use the Miller-Tucker-Zemlin formulation for the CVRP, which can be found in
Eq. (13) in the appendix. The decision variables are then denoted by xjk and equal 1 if arc (vj , vk)
is used in the solution, and 0, otherwise. For this experiment, we consider the parameter vector
consisting of the demands d and the costs of the arcs from the clients to the depot c0, i.e., θ = (d, c0).
The present problem has symmetric costs and consists of 16 clients and 4 vehicles. As a solver for
this NP-hard problem, we let the Google OR-Tools heuristic search for a solution for 5 seconds
(Furnon & Perron). We aim for explanations for the objective value, and which clients are visited
before returning to the depot, i.e., the decision variables xj0 for j ∈ [n]1.

As shown in Table 4, the explanation found by CLEMO is significantly more coherent without a
considerable loss in fidelity compared to the LR benchmark. We visualize the explanations found by
CLEMO in Fig. 3, where we first see the solution to the present problem found by Google OR-Tools
in gray. Next, the feature contribution of the demands and costs are visualized via node and edge
colors respectively. Combined with an overview of the top 10 most contributing features, this shows
which features are the key components influencing the objective value as found by the solver. Thus,
Fig. 3 tells us that the objective value is mainly affected by the distance towards the nodes far from
the depot. In Fig. 9 in the appendix, we present an additional explanation for the decision variable
x20.

Figure 3: Explanation as found by CLEMO for the objective value visualized in the present problem
network structure. Also, the top 10 relative feature contributions is depicted on the right.

5 CONCLUSION & LIMITATIONS

In this paper, we propose CLEMO, a sampling-based method that can be used to explain arbitrary exact
or heuristic solution algorithms for optimization problems. Our method provides local explanations
for the objective value and decision variables of mathematical optimization models. Contrary
to existing methods, CLEMO enforces explanations that are coherent with the underlying model
structure which enhances transparent decision-making. By applying CLEMO to various optimization
problems we have shown that we can find explanations that are significantly more coherent than
benchmark explanations generated using LIME without substantially compromising fidelity. At the
same time, including coherence losses to CLEMO leads to longer runtimes.

This work focuses on explaining the objective value and decision variables. However, one could
easily extend the concept to explanations of other components such as constraint slacks, runtime,
optimality gap, etc. For now, CLEMO uses parametric regression models for explanations. Another
extension of our work could be to consider other types of interpretable functions such as decision
trees. Lastly, CLEMO could be a useful method to explain synergies between ML and optimization
models, e.g., in predict-then-optimize models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Amina Adadi and Mohammed Berrada. Peeking Inside the Black-Box: A Survey on Explain-
able Artificial Intelligence (XAI). IEEE Access, 6:52138–52160, 2018. ISSN 2169-3536. doi:
10.1109/ACCESS.2018.2870052. URL https://ieeexplore.ieee.org/document/
8466590/?arnumber=8466590. Conference Name: IEEE Access.

Kevin-Martin Aigner, Marc Goerigk, Michael Hartisch, Frauke Liers, and Arthur Miehlich. A
Framework for Data-Driven Explainability in Mathematical Optimization. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(19):20912–20920, March 2024. ISSN 2374-3468. doi: 10.
1609/aaai.v38i19.30081. URL https://ojs.aaai.org/index.php/AAAI/article/
view/30081. Number: 19.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to Linear Optimization, volume 6. Athena
scientific Belmont, MA, 1997.

Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pedreschi, and
Salvatore Rinzivillo. Benchmarking and survey of explanation methods for black box models. Data
Mining and Knowledge Discovery, 37(5):1719–1778, September 2023. ISSN 1573-756X. doi: 10.
1007/s10618-023-00933-9. URL https://doi.org/10.1007/s10618-023-00933-9.

Emanuele Borgonovo and Elmar Plischke. Sensitivity analysis: A review of recent advances.
European Journal of Operational Research, 248(3):869–887, February 2016. ISSN 0377-2217.
doi: 10.1016/j.ejor.2015.06.032. URL https://www.sciencedirect.com/science/
article/pii/S0377221715005469.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. lecture notes of EE392o,
Stanford University, Autumn Quarter, 2004(01), 2003.

Arun Das and Paul Rad. Opportunities and Challenges in Explainable Artificial Intelligence (XAI):
A Survey, June 2020. URL http://arxiv.org/abs/2006.11371. arXiv:2006.11371.

Jürgen Dieber and Sabrina Kirrane. Why model why? Assessing the strengths and limitations of
LIME, November 2020. URL http://arxiv.org/abs/2012.00093. arXiv:2012.00093
[cs].

Rudresh Dwivedi, Devam Dave, Het Naik, Smiti Singhal, Rana Omer, Pankesh Patel, Bin Qian,
Zhenyu Wen, Tejal Shah, Graham Morgan, and Rajiv Ranjan. Explainable AI (XAI): Core
Ideas, Techniques, and Solutions. ACM Computing Surveys, 55(9):194:1–194:33, January 2023.
ISSN 0360-0300. doi: 10.1145/3561048. URL https://dl.acm.org/doi/10.1145/
3561048.

Alexandre Forel, Axel Parmentier, and Thibaut Vidal. Explainable Data-Driven Optimization: From
Context to Decision and Back Again. In Proceedings of the 40th International Conference on
Machine Learning, pp. 10170–10187. PMLR, July 2023. URL https://proceedings.mlr.
press/v202/forel23a.html. ISSN: 2640-3498.

Vincent Furnon and Laurent Perron. OR-Tools Routing Library. URL https://developers.
google.com/optimization/routing/.

Giorgio Gallo and Stefano Pallottino. Shortest path algorithms. Annals of Operations Research,
13(1):1–79, December 1988. ISSN 1572-9338. doi: 10.1007/BF02288320. URL https:
//doi.org/10.1007/BF02288320.

Marc Goerigk and Michael Hartisch. A framework for inherently interpretable optimization models.
European Journal of Operational Research, 310(3):1312–1324, November 2023. ISSN 0377-2217.
doi: 10.1016/j.ejor.2023.04.013. URL https://www.sciencedirect.com/science/
article/pii/S0377221723002953.

10

https://ieeexplore.ieee.org/document/8466590/?arnumber=8466590
https://ieeexplore.ieee.org/document/8466590/?arnumber=8466590
https://ojs.aaai.org/index.php/AAAI/article/view/30081
https://ojs.aaai.org/index.php/AAAI/article/view/30081
https://doi.org/10.1007/s10618-023-00933-9
https://www.sciencedirect.com/science/article/pii/S0377221715005469
https://www.sciencedirect.com/science/article/pii/S0377221715005469
http://arxiv.org/abs/2006.11371
http://arxiv.org/abs/2012.00093
https://dl.acm.org/doi/10.1145/3561048
https://dl.acm.org/doi/10.1145/3561048
https://proceedings.mlr.press/v202/forel23a.html
https://proceedings.mlr.press/v202/forel23a.html
https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/
https://doi.org/10.1007/BF02288320
https://doi.org/10.1007/BF02288320
https://www.sciencedirect.com/science/article/pii/S0377221723002953
https://www.sciencedirect.com/science/article/pii/S0377221723002953


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Riccardo Guidotti. Counterfactual explanations and how to find them: literature review and
benchmarking. Data Mining and Knowledge Discovery, 38(5):2770–2824, September 2024.
ISSN 1573-756X. doi: 10.1007/s10618-022-00831-6. URL https://doi.org/10.1007/
s10618-022-00831-6.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

Bertrand Iooss and Paul Lemaı̂tre. A review on global sensitivity analysis methods. Uncertainty
management in simulation-optimization of complex systems: algorithms and applications, pp.
101–122, 2015.

Imdat Kara, Gilbert Laporte, and Tolga Bektas. A note on the lifted Miller–Tucker–Zemlin
subtour elimination constraints for the capacitated vehicle routing problem. European Jour-
nal of Operational Research, 158(3):793–795, November 2004. ISSN 0377-2217. doi:
10.1016/S0377-2217(03)00377-1. URL https://www.sciencedirect.com/science/
article/pii/S0377221703003771.

Anton Korikov and J. Christopher Beck. Objective-Based Counterfactual Explanations for Linear
Discrete Optimization. In Andre A. Cire (ed.), Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, pp. 18–34, Cham, 2023. Springer Nature Switzerland.
ISBN 978-3-031-33271-5. doi: 10.1007/978-3-031-33271-5 2.

Anton Korikov, Alexander Shleyfman, and J. Christopher Beck. Counterfactual Explanations for
Optimization-Based Decisions in the Context of the GDPR. In Proceedings of the Thirtieth Interna-
tional Joint Conference on Artificial Intelligence, pp. 4097–4103, Montreal, Canada, August 2021.
International Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-9-
6. doi: 10.24963/ijcai.2021/564. URL https://www.ijcai.org/proceedings/2021/
564.

Jannis Kurtz, Ş İlker Birbil, and Dick den Hertog. Counterfactual explanations for linear optimization.
European Journal of Operational Research, 2025.

Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Explainable AI: A Review
of Machine Learning Interpretability Methods. Entropy, 23(1):18, January 2021. ISSN 1099-
4300. doi: 10.3390/e23010018. URL https://www.mdpi.com/1099-4300/23/1/18.
Number: 1 Publisher: Multidisciplinary Digital Publishing Institute.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in
neural information processing systems, 30, 2017.

Dang Minh, H. Xiang Wang, Y. Fen Li, and Tan N. Nguyen. Explainable artificial intelli-
gence: a comprehensive review. Artificial Intelligence Review, 55(5):3503–3568, June 2022.
ISSN 1573-7462. doi: 10.1007/s10462-021-10088-y. URL https://doi.org/10.1007/
s10462-021-10088-y.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer series in Operations
Research and Financial Engineering. Springer, New York, NY, 2. ed. edition, 2006.

Fotios Petropoulos, Gilbert Laporte, Emel Aktas, Sibel A Alumur, Claudia Archetti, Hayriye Ayhan,
Maria Battarra, Julia A Bennell, Jean-Marie Bourjolly, John E Boylan, et al. Operational Research:
methods and applications. Journal of the Operational Research Society, 75(3):423–617, 2024.

David Pisinger. Where are the hard knapsack problems? Computers & Operations Research, 32(9):
2271–2284, September 2005. ISSN 0305-0548. doi: 10.1016/j.cor.2004.03.002. URL https:
//www.sciencedirect.com/science/article/pii/S030505480400036X.

Saman Razavi, Anthony Jakeman, Andrea Saltelli, Clémentine Prieur, Bertrand Iooss, Emanuele
Borgonovo, Elmar Plischke, Samuele Lo Piano, Takuya Iwanaga, William Becker, Stefano
Tarantola, Joseph H. A. Guillaume, John Jakeman, Hoshin Gupta, Nicola Melillo, Giovanni
Rabitti, Vincent Chabridon, Qingyun Duan, Xifu Sun, Stefán Smith, Razi Sheikholeslami, Nasim
Hosseini, Masoud Asadzadeh, Arnald Puy, Sergei Kucherenko, and Holger R. Maier. The

11

https://doi.org/10.1007/s10618-022-00831-6
https://doi.org/10.1007/s10618-022-00831-6
https://www.gurobi.com
https://www.gurobi.com
https://www.sciencedirect.com/science/article/pii/S0377221703003771
https://www.sciencedirect.com/science/article/pii/S0377221703003771
https://www.ijcai.org/proceedings/2021/564
https://www.ijcai.org/proceedings/2021/564
https://www.mdpi.com/1099-4300/23/1/18
https://doi.org/10.1007/s10462-021-10088-y
https://doi.org/10.1007/s10462-021-10088-y
https://www.sciencedirect.com/science/article/pii/S030505480400036X
https://www.sciencedirect.com/science/article/pii/S030505480400036X


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Future of Sensitivity Analysis: An essential discipline for systems modeling and policy sup-
port. Environmental Modelling & Software, 137:104954, March 2021. ISSN 1364-8152. doi:
10.1016/j.envsoft.2020.104954. URL https://www.sciencedirect.com/science/
article/pii/S1364815220310112.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why Should I Trust You?”: Explaining
the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1135–1144, San Francisco California
USA, August 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/2939672.2939778. URL
https://dl.acm.org/doi/10.1145/2939672.2939778.

Sean Saito, Eugene Chua, Nicholas Capel, and Rocco Hu. Improving LIME Robustness with
Smarter Locality Sampling, March 2021. URL http://arxiv.org/abs/2006.12302.
arXiv:2006.12302 [cs, stat].

Lara Scavuzzo, Karen Aardal, Andrea Lodi, and Neil Yorke-Smith. Machine learning augmented
branch and bound for mixed integer linear programming. Mathematical Programming, pp. 1–44,
2024.

Sharath M Shankaranarayana and Davor Runje. Alime: Autoencoder based approach for local
interpretability. In International conference on intelligent data engineering and automated learning,
pp. 454–463. Springer, 2019.

Georg Still. Lectures on parametric optimization: An introduction. Optimization Online, pp. 2, 2018.

Giorgio Visani, Enrico Bagli, Federico Chesani, Alessandro Poluzzi, and Davide Capuzzo. Statistical
stability indices for LIME: obtaining reliable explanations for Machine Learning models. Journal
of the Operational Research Society, 73(1):91–101, January 2022. ISSN 0160-5682, 1476-9360.
doi: 10.1080/01605682.2020.1865846. URL http://arxiv.org/abs/2001.11757.
arXiv:2001.11757 [cs, stat].

Harvey M. Wagner. Global Sensitivity Analysis. Operations Research, 43(6):948–969, 1995. ISSN
0030-364X. URL https://www.jstor.org/stable/171637. Publisher: INFORMS.

Laurence A Wolsey. Integer Programming. John Wiley & Sons, 2020.

Muhammad Rehman Zafar and Naimul Khan. Deterministic Local Interpretable Model-Agnostic
Explanations for Stable Explainability. Machine Learning and Knowledge Extraction, 3(3):525–
541, September 2021. ISSN 2504-4990. doi: 10.3390/make3030027. URL https://www.
mdpi.com/2504-4990/3/3/27. Number: 3 Publisher: Multidisciplinary Digital Publishing
Institute.

Yujia Zhang, Kuangyan Song, Yiming Sun, Sarah Tan, and Madeleine Udell. ”Why Should You
Trust My Explanation?” Understanding Uncertainty in LIME Explanations, June 2019. URL
http://arxiv.org/abs/1904.12991. arXiv:1904.12991.

Zhengze Zhou, Giles Hooker, and Fei Wang. S-LIME: Stabilized-LIME for Model Explanation. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
2429–2438, Virtual Event Singapore, August 2021. ACM. ISBN 978-1-4503-8332-5. doi: 10.1145/
3447548.3467274. URL https://dl.acm.org/doi/10.1145/3447548.3467274.

12

https://www.sciencedirect.com/science/article/pii/S1364815220310112
https://www.sciencedirect.com/science/article/pii/S1364815220310112
https://dl.acm.org/doi/10.1145/2939672.2939778
http://arxiv.org/abs/2006.12302
http://arxiv.org/abs/2001.11757
https://www.jstor.org/stable/171637
https://www.mdpi.com/2504-4990/3/3/27
https://www.mdpi.com/2504-4990/3/3/27
http://arxiv.org/abs/1904.12991
https://dl.acm.org/doi/10.1145/3447548.3467274


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 MATHEMATICAL MODELS OF THE OPTIMIZATION PROBLEMS

In this section, we present the formulation of the Shortest Path problem Eq. (12) and the Capacitated
Vehicle Routing problem Eq. (13). For the latter, we use the Miller-Tucker-Zemlin formulation as
described in Kara et al. (2004).

Shortest Path Problem

min (c+ θĉ)⊺x (12)

s.t.
∑

(s,j)∈E

xs,j −
∑

(j,s)∈E

xj,s = 1,

∑
(j,t)∈E

xj,t −
∑

(t,j)∈E

xt,j = 1,

∑
(j,k)∈E

xj,k −
∑

(k,l)∈E

xk,l = 0, ∀k ̸= s, t,

xe ∈ {0, 1}, ∀e ∈ E.

Capacitated Vehicle Routing Problem

min

n∑
j=0

n∑
k=0,k ̸=j

cjkxjk (13)

s.t.
n∑

k=1

x1k ≤ m,

n∑
j=1

xj1 ≤ m,

n∑
k=1

x1k ≥ 1,

n∑
j=1

xj1 ≥ 1,

n∑
k=0,k ̸=j

xjk = 1, j ∈ [n]1,

n∑
j=0,j ̸=k

xjk = 1, k ∈ [n]1,

uj − uj +Mxjk ≤M − dk, j, k ∈ [n]1, j ̸= k

dj ≤ uj ≤M, j ∈ [n]1,

xjk ∈ {0, 1}, j, k ∈ [n]0, j ̸= k.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 DETAILED ALGORITHM

Here, we present an extensive description of our explanation method CLEMO as used in the ex-
periments. It consists of two parts, (i) creating a training dataset (Algorithm 2), and (ii) finding a
surrogate model (Algorithm 3).

Algorithm 2 CLEMO - Creating a dataset

Input: Optimization problem with parameter θ0 and solver algorithm h
Initialize samples = {θ0}, targets = {(f(x0;θ0),x0)}, weights = ∅, distances = {0}
while #samples < 1000 do
θi ∼ N (θ0, 0.2θ0)
if Optimization model is feasible and bounded for θi then

samples← samples ∪{θi}
(f(xi;θi),xi)← h applied to θi-problem
targets← targets ∪{(f(xi;θi),xi)}
distances← distances ∪{Euclidean distance(θ0,θi)}

end if
end while
d =← average(distances)
for θi in samples do

weights← weights ∪{rbf(θ0,θi, d)}
end for
Return: D ← (samples, targets, weights)

Algorithm 3 CLEMO - Finding surrogate model

Input: Optimization problem, dataset D, loss function consisting of components
{ℓF1 , ℓF2 , RC1 , RC2}
for output component c ∈ {f, x1, . . . , xp} do

if h(θ)c is a binary value then
(βBM )c ← Logistic Regression fit(samples, h(θ)c, weights)

else
(βBM )c ← Linear Regression fit(samples, h(θ)c, weights)

end if
end for
Lj ← {lossj(βBM ,D) | for lossj ∈ {ℓF1

, ℓF2
, RC1

, RC2
}}

Lmax ← maximum(LF1
,LF2

,LC1
,LC2

)
for loss function component index j in {F1, F2, C1, C2} do

if Lj ∈ {Lmax, 0} then
λj ← 1

else
λj ← 0.5Lmax/Lj

end if
end for
total loss function ← λF1

ℓF1
+ λF2

ℓF2
+ λC1

RC1
+ λC2

RC2

βCL ← argminβ total loss function(β,D) using βBM as a warm start
Return: Interpretable function βCL

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 COHERENCE FOR LINEAR OPTIMIZATION PROBLEMS

In this section we prove the statement that independent fitting of linear predictors leads to objective
coherence under certain assumptions.
Theorem A.1. The minimizers of the weighted least-square problems

min
βf

N∑
i=0

wi∥f(xi;θi)− β⊺
fθ

i∥2

and

min
βxj

N∑
i=0

wi∥xi
j − β⊺

xj
θi∥2 j = 1, . . . , p

fulfill the coherence condition in Eq. (3).

Proof. Since the objective function ĉ⊺x is fixed and linear we have

f(xi;θi) =

p∑
j=1

ĉjx
i
j .

The weighted least-squares problem has the unique optimal solution

β∗
xj

= (Θ⊺WΘ)−1Θ⊺Wyj j = 1, . . . , p

and
β∗
f = (Θ⊺WΘ)−1Θ⊺Wyf ,

where Θ is the matrix whose i-th row is the vector θi, W is the matrix with weight wi on the
diagonal and zeroes elsewhere, yj is the vector where the i-th entry is the value xi

j and yf is the
vector where the i-th entry is the value f(xi;θi). We assume here that (Θ⊺WΘ) is invertible. Then
for any new parameter vector θ the predicted optimal value of our model is

θ⊺βf = θ⊺(Θ⊺WΘ)−1Θ⊺Wyf

= θ⊺(Θ⊺WΘ)−1Θ⊺W

 p∑
j=1

ĉjy
j


=

p∑
j=1

ĉjθ
⊺(Θ⊺WΘ)−1Θ⊺Wyj

=

p∑
j=1

ĉjθ
⊺βxj

,

which means that the predictors are coherent regarding condition Eq. (3).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 MODELING CHOICES

Iterative methods We compared runtimes of different iterative methods within the SciPy minimize
package for a Knapsack problem with 5 items. The results show that the runtime of our chosen
iterative method, SLSQP, is in the same order of magnitude as the most efficient iterative methods
we checked.

Table 5: Total training Loss and time to completion for various iterative methods available for SciPy.

Method Time to completion Training Loss
COBYLA 7.52E+00 seconds 1.38E+02
SLSQP 9.63E+00 seconds 1.23E+02
Nelder-Mead 1.10E+01 seconds 1.36E+02
BFGS 4.35E+01 seconds 1.23E+02
COBYQA 5.03E+01 seconds 1.35E+02
TNC 7.53E+01 seconds 1.23E+02
L-BFGS-B 8.38E+01 seconds 1.23E+02
trust-constr 1.01E+02 seconds 1.23E+02
CG 2.16E+02 seconds 1.24E+02
Powell 3.64E+02 seconds 1.25E+02
Newton-CG 7.71E+02 seconds 1.24E+02

Initialization of solution For the Shortest Path problem, we additionally ran CLEMO with (i) 0
initialization, (ii) 1 initialization, and (iii) 10 randomly generated initializations (U [−10, 10]). Note
that due to the use of logistic regression, this experiment is solving a non-convex problem. The
results in Table 6 show that we can still obtain good results for a non-convex problem with different
initialization, but it takes more time.

Table 6: Results of the Shortest Path Problem for the benchmark (LR) and CLEMO with various
initializations.

Method Infidelity:
Objective value

Infidelity:
Decision vector

Incoherence:
Objective

Incoherence:
Feasible Region Time (s)

LR
Benchmark 32.03 648.06 112.52 54.55 0.019

CLEMO (SLSQP)
with warmstart 32.12 646.28 6.91 27.08 3.11

CLEMO (L-BFGS-B)
with 0 initialization 32.15 658.85 9.12 21.66 92.3

CLEMO (L-BFGS-B)
with 1 initialization 32.15 658.89 9.10 21.66 110.1

CLEMO (L-BFGS-B) with
random initialization 1 32.08 662.62 5.64 21.82 118.67

CLEMO (L-BFGS-B) with
random initialization 2 32.04 650.39 2.93 27.08 122.52

CLEMO (L-BFGS-B) with
random initialization 3 32.05 650.20 3.38 27.21 85.61

CLEMO (L-BFGS-B) with
random initialization 4 32.15 658.59 9.14 21.70 101.18

CLEMO (L-BFGS-B) with
random initialization 5 32.11 661.49 7.27 21.83 72.23

CLEMO (L-BFGS-B) with
random initialization 6 32.05 650.40 3.36 27.19 70.79

CLEMO (L-BFGS-B) with
random initialization 7 32.04 650.10 2.94 27.13 104.33

CLEMO (L-BFGS-B) with
random initialization 8 32.08 662.54 5.65 21.83 86.67

CLEMO (L-BFGS-B) with
random initialization 9 32.04 649.80 2.94 27.18 94.54

CLEMO (L-BFGS-B) with
random initialization 10 32.04 650.10 3.00 27.12 73.37

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.5 ADDITIONAL RESULTS EXPERIMENTS

A.5.1 SHORTEST PATH PROBLEM

For the SPP-θ considered in the experiments, we additionally present the prediction found by CLEMO
for the decision vector compared to the values found by Dijkstra’s Algorithm in Fig. 4. In concordance
with the results presented in the experiment section, we see CLEMO approximates the actual values
relatively well.

Figure 4: Decision variables of the shortest path of the SPP-θ instance as determined by Dijkstra’s
Algorithm and as predicted by CLEMO.

A.5.2 KNAPSACK PROBLEM

For the knapsack problem, we applied our method on 10 instances of each of the 4 types of problems
we considered. For each instance and for each method we used 10 different datasets to compare
our CLEMO with benchmark methods linear regression (LR) and decision tree regressor (DTR). In
Figs. 5 to 8 we present scatter plots of the total fidelity loss and total incoherence (both conditions
Eq. (3) and Eq. (4)) per instance and type of knapsack problem. Similar to the results presented in the
experiment section, we find that CLEMO significantly reduces incoherence while the faithfulness is
compromised relatively less.

Next to the standard deviation of feature contribution, we consider an additional measure for stability,
the feature stability index (FSI). This is an adaptation of the variables stability index (VSI) as
presented in Visani et al. (2022). The higher this measure, the more the non-zero features found by
the different models due to resampling overlap. For a consistent explanation, the overlap should
be large. As we apply CLEMO on 10 different datasets for each instance of each type of knapsack
problem, we obtain 10 surrogate models given by β1

CL, . . . ,β
10
CL. We denote F i

k,j for the set of
the top-k most contributing, non-zero features of the j-th component of βi

CL. We define the (k, j)-
concordance of two models βi1 and βi2 as the size of the intersection between F i1

k,j and F i2
k,j divided

by the maximum potential overlap, i.e.,

(k, j)-concordance(i1, i2) = F i1
k,j ∩ F

i2
k,j/k.

Let us consider the k-feature stability index (k-FSI), which is the average (k, j)-concordance over all
pairs β1

CL, . . .β
10
CL and all components j. Similar to VSI, k-FSI is bounded by 1 and the higher this

measure k-FSI, the more the different models agree on the top-k non-zero features of the different
components and hence the more stable the method is. Lastly, we define the FSI as the sum over k-FSI
for k = 1, . . . 5 resulting in a stability measure bounded by 5. When examining the FSI for CLEMO

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

and the benchmark methods in Table 2, we conclude that CLEMO has stability similar to the general
linear regression approach.

Figure 5: Scatter plot of the total incoherence (i.e., coherence loss) and total fidelity losses as found
by the different methods on 10 distinct sample sets per instance of the knapsack problem of type 1.

Figure 6: Scatter plot of the total incoherence (i.e., coherence loss) and total fidelity losses as found
by the different methods on 10 distinct sample sets per instance of the knapsack problem of type 2.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 7: Scatter plot of the total incoherence (i.e., coherence loss) and total fidelity losses as found
by the different methods on 10 distinct sample sets per instance of the knapsack problem of type 3.

Figure 8: Scatter plot of the total incoherence (i.e., coherence loss) and total fidelity losses as found
by the different methods on 10 distinct sample sets per instance of the knapsack problem of type 4.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.5.3 VEHICLE ROUTING PROBLEM

Similar to Fig. 3 as presented in Section 4, we display an additional explanation for the CVRP
instance solved by Google OR-Tools. In Fig. 9, we see the explanation found by CLEMO for the
decision variable x20 of the considered CVRP instance solved by Google OR-Tools. From this figure,
a stakeholder can deduce that arc (2, 0) is less likely used by Google OR-Tools when c02 increases,
but more likely when c08 increases.

Figure 9: Explanation as found by CLEMO for the decision variable x20 visualized in the present
problem network structure. Also, the top 10 relative feature contributions is depicted on the right.

A.6 STATEMENTS

A.6.1 REPRODUCIBILITY STATEMENT

In this work, we tried to achieve full reproducibility of the described methods and experiments by
providing a link to our experiments on an anonymized GitHub: https://anonymous.4open.
science/r/CLEMO-899F.

A.6.2 LLM STATEMENT

In this work, Large Language Models were used solely to aid or polish writing. Concretely, we used
these models to correct grammar and punctuation mistakes and to reformulate our original content to
be more structured and clear.

20

https://anonymous.4open.science/r/CLEMO-899F
https://anonymous.4open.science/r/CLEMO-899F

	Introduction
	Preliminaries
	Methodology
	Experiments
	Shortest Path Problem
	Knapsack Problem
	Vehicle Routing Problem

	Conclusion & Limitations
	Appendix
	Mathematical Models of The Optimization Problems
	Detailed Algorithm
	Coherence for Linear Optimization Problems
	Modeling choices
	Additional Results Experiments
	Shortest Path Problem
	Knapsack Problem
	Vehicle Routing Problem

	Statements
	Reproducibility statement
	LLM statement



