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ABSTRACT

The surge of explainable artificial intelligence methods seeks to enhance trans-
parency and explainability in machine learning models. At the same time, there
is a growing demand for explaining decisions taken through complex algorithms
used in mathematical optimization. However, current explanation methods do not
take into account the structure of the underlying optimization problem, leading
to unreliable outcomes. In response to this need, we introduce Coherent Local
Explanations for Mathematical Optimization (CLEMO). CLEMO provides ex-
planations for multiple components of optimization models, the objective value
and decision variables, which are coherent with the underlying model structure.
Our sampling-based procedure can provide explanations for the behavior of exact
and heuristic solution algorithms. The effectiveness of CLEMO is illustrated by
experiments for the shortest path problem, the knapsack problem, and the vehicle
routing problem.

1 INTRODUCTION

The field of mathematical optimization plays a crucial role in various domains such as transportation,
healthcare, communication, and disaster management (Petropoulos et al., 2024). Since 1940s,
significant advancements have been made in this field, leading to the development of complex and
effective algorithms like the simplex method and the gradient descent algorithm (Nocedal & Wright,
2006). More recently, the integration of artificial intelligence (AI) and machine learning (ML)
techniques has further enhanced optimization methods (Bengio et al., 2021; Scavuzzo et al., 2024).

When using mathematical optimization in practical applications, decision makers must come to a
consensus on the main components of the optimization model such as decision variables, objective
function, and constraints. Afterwards, they need to employ an exact or heuristic algorithm to solve
the resulting problem. For setting up the model, the decision maker has to accurately estimate all
necessary parameters for the model and algorithm, e.g., future customer demands or warehouse
capacities. However, the solution algorithm can be highly sensitive to even small deviations in these
parameters and inaccurate parameter estimations can result in sub-optimal decisions being made.

The analysis of the behavior of an optimization model regarding (small) changes in its problem
parameters is widely known as sensitivity analysis (Borgonovo & Plischke, 2016) or parametric
optimization (Still, 2018). In both areas, many methods were developed to analyze the model behavior
locally and globally, e.g., by one-at-a-time methods, differentiation-based methods or variance-based
methods (Borgonovo & Plischke, 2016; Iooss & Lemaı̂tre, 2015; Razavi et al., 2021). One of the
promising directions mentioned in (Razavi et al., 2021) is the use of ML models to develop sensitivity
analysis methods. The main idea of such an approach is to fit an explainable ML model which locally
approximates the behavior of the component of the optimization problem to be analyzed (like the
optimal objective function value); see e.g., (Wagner, 1995). Usually, linear regression models are
fitted because the standardized regression coefficient becomes a natural sensitivity measure. This
approach is similar to the LIME method, which is widely used to explain trained ML models (Ribeiro
et al., 2016).

Although ML-based sensitivity analysis is effective and model-agnostic, it falls short in providing
clear explanations to users when analyzing various components of a model at the same time. Decision
makers often need to analyze the main components of an optimization model, such as the objective
function value and the values of the decision variables, which are closely intertwined due to the
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problem’s structure. However, fitting separate linear models to predict the outcome of each component
disregards this correlation and leads to incoherent explanations. This can result in situations where
either (i) the predicted optimal value does not align with the objective value of the predicted solution,
or (ii) the predicted solution violates the constraints of the problem. Inconsistent predictions that do
not align with the model’s structure do not enhance understanding of the optimization model; instead,
they can cause confusion for the decision makers. To illustrate this, consider the following simple
optimization model

max{x1 + x2 : 4x1 + 4.1x2 ≤ 10, x1 ≥ 0, x2 ≥ 0}.

Suppose that the coefficient a12 = 4.1 is the sensitive parameter to analyze. The decision maker
is seeking to understand the impact that small changes in this parameter will have on the optimal
decision values x∗

1, x
∗
2. Fitting two separate linear models on a small number of samples for a12

leads to the approximations x∗
1 ≈ 0.11a12 and x∗

2 ≈ 0.59a12. If we apply the latter predictions to
our nominal parameter value of a12 = 4.1, then the constraint value becomes

4 · 0.11a12 + 4.1 · 0.59a12 ≈ 11.7 > 10,

which has a constraint violation of more than 17%. While the fitted linear models are explainable
approximations of our problem components, they are not coherent and hence do not provide reliable
explanations to the user.

Contributions. In this work, we present a new sampling-based approach called Coherent Local
Explanations for Mathematical Optimization (CLEMO). This approach extends the concept of local
explanations to multiple components of an optimization model that are coherent with the structure of
the model. To incorporate a measure of coherence, we design regularizers evaluating the coherence
of the explanation models. We argue that CLEMO is method-agnostic, and hence, it can be used
to explain arbitrary exact and heuristic algorithms for solving optimization problems. Lastly, we
empirically validate CLEMO on a collection of well-known optimization problems including the
shortest path problem, the knapsack problem, and the vehicle routing problem. Our evaluation focuses
on fidelity, interpretability, coherence, and stability when subjected to resampling.

Related literature. Recently, there has been a significant amount of research focused on improving
the explainability of ML models (Adadi & Berrada, 2018; Bodria et al., 2023; Dwivedi et al., 2023;
Linardatos et al., 2021; Minh et al., 2022; Das & Rad, 2020). Common XAI methods include
feature-based explanation methods, such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee,
2017), and example-based explanations, such as counterfactual explanations, see e.g., the survey by
Guidotti (2024). LIME was analyzed and extended in several works regarding its stability (Zhang
et al., 2019; Zafar & Khan, 2021) or its use of advanced sampling techniques (Zhou et al., 2021; Saito
et al., 2021). In (Dieber & Kirrane, 2020), interviews were conducted with individuals that never
worked with LIME before. The research shows that LIME increases model interpretability although
the user experience could be improved.

Recently, the notion of explainable and interpretable mathematical optimization attained increasing
popularity. Example-based explanation methods such as counterfactuals were introduced to explain
optimization models. Korikov et al. (2021) and Korikov & Beck (2023) examine counterfactual
explanations for integer problems using inverse optimization. Generalizations of the concept have
also been investigated theoretically and experimentally for linear optimization problems (Kurtz et al.,
2025). Furthermore, counterfactuals for data-driven optimization were studied in (Forel et al., 2023).

A different approach is incorporating interpretability into the optimization process resulting in
intrinsic explainable decision making contrary to the post-hoc explanation method. In Aigner et al.
(2024), for example, the authors study optimization models with an explainability metric added
to the objective resulting in a optimization model that makes a trade-off between optimality and
explainability. Similarly in Goerigk & Hartisch (2023), the authors ensure an interpretable model by
using decision trees that resemble the optimization process and hence explain the model by providing
optimization rules based on the model parameters.

While -to the best of our knowledge- feature-based explanation methods are scarce for mathematical
optimization, parametric optimization and sensitivity analysis are strongly related to these methods.
In both fields, the effect of the problem parameters on the model’s output is analyzed where the
model’s output can be the optimal value, optimal decision values or even the runtime of the algorithm;
see Still (2018); Borgonovo & Plischke (2016); Iooss & Lemaı̂tre (2015); Razavi et al. (2021). Three
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decades ago, Wagner (1995) already presented a global sensitivity method in which he approximated
the optimal objective value of linear programming problems like the knapsack problem with a linear
regression model. For this, he used normal perturbations of the model parameters as an input,
somewhat a global predecessor of LIME.

2 PRELIMINARIES

We write vectors in boldface font and use the shorthand notation [n]0 := {0, . . . , n} and [n]1 :=
{1, . . . , n} for the index sets.

LIME. Local Interpretable Model-agnostic Explanations (LIME) is an XAI method to produce an
explanation for black-box ML models h̄ : Z → R, which map any data point z in the data space Z to
a real value. Given a data point z0, LIME approximates h̄ locally around this point with a surrogate
model ḡ from a set of explainable models G (e.g., linear models). To this end, LIME samples a set of
points z1, . . . ,zN in proximity to z0 and calculates an optimizer of the problem

argmin
ḡ∈G

∑N

i=0
wiℓ

(
ḡ(zi), h̄(zi)

)
+Ω(ḡ), (1)

where ℓ is a fidelity loss function, Ω is a complexity measure and wi weighs data points according to
their proximity to z0. LIME uses an indicator function as a complexity measure returning 0 when the
number of non-zero features used by ḡ is at most K, and∞, otherwise. For the weights, LIME uses
wi = exp(−d(zi, z0)2/ν2) with distance function d and hyperparameter ν.

Mathematical Optimization. In mathematical optimization, the aim is to optimize an objective
function over a set of feasible solutions. Formally, an optimization problem is given as

min f(x;θ)
s.t. x ∈ X(θ), (2)

where x ∈ Rp are the decision variables, f is an objective function which is parameterized by
parameter vector θ ∈ Θ and X(θ) ⊆ Rp is the feasible region, again parameterized by θ. We
call θ the optimization parameters. As an example, one popular class of problems belongs linear
optimization, where the problem is defined as min{c⊺x : Ax = b,x ≥ 0}. In this case, we have
θ = (c,A, b), f(x;θ) = c⊺x, and X(θ) = {x ≥ 0 : Ax ≥ b}. The most popular methods to
solve linear optimization problems are the simplex method or the interior point method (Bertsimas &
Tsitsiklis, 1997).

Many real-world applications from operations research involve integer decision variables. In this
case the feasible region is given as X(θ) = {x ∈ Zp : Ax ≥ b}. Such so called linear integer
optimization problems are widely used, for example for routing problems, scheduling problems and
many others (Petropoulos et al., 2024). The most effective exact solution methods are based on
branch & bound type algorithms (Wolsey, 2020). However, due to the NP-hardness of this class
of problems often large-sized integer problems cannot be solved to optimality in reasonable time.
Hence, often problem-specific or general purpose heuristic algorithm are used to quickly calculate
possibly non-optimal feasible solutions.

3 METHODOLOGY

In this section, we present CLEMO, a novel method to provide coherent local explanations for
multiple components of mathematical optimization problems Eq. (2). Consider a given instance of
Problem, Eq. (2) which is parametrized by θ0, and we call it the present problem. Additionally, we
have a solution algorithm h that we want to explain. The algorithm calculates feasible solutions for
every problem instance of Problem Eq. (2). Note that this algorithm does not necessarily have to
return an optimal solution, since our method also works for heuristic or approximation algorithms.
The two components we aim to explain in this work are (i) the optimal objective value, and (ii)
the values of the decision variables. To this end, we fit p + 1 explainable models combined in
the vector-valued function g : Θ → Rp+1 where g(θ) = (gf (θ), gx1

(θ), . . . , gxp
(θ)). Here, Θ

is the parameter space containing all possible parameter vectors θ for Eq. (2). For example, the
model gxi ideally maps every parameter vector θ to the corresponding solution value of the i-th
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decision variable xi returned by the solution algorithm h. For notational convenience, we denote
g(θ) = (gf (θ), gx(θ)).

The main goal of this work is to generate explanations that are coherent regarding the structure of the
underlying optimization problem Eq. (2). More precisely, we say the model g is coherent for instance
θ if

f(gx(θ);θ) = gf (θ), (3)
gx(θ) ∈ X(θ). (4)

That is, the predictions are aligned with the underlying problem structure. Condition Eq. (3) ensures
that the predictions for the decision variables x, when applied to f , lead to the same objective value
as the corresponding prediction for the objective value itself. Condition Eq. (4) ensures that the
predictions of the decision variables are feasible for the corresponding problem.

To find an explanation, we first generate a training data set D by sampling vectors θi ∈ Θ, i ∈ [N ]1
which are close to θ0. For each problem, we apply algorithm h which returns a feasible solution
xi and the corresponding objective function value f(xi,θi) for i ∈ [N ]0. We denote the returned
components of the optimization model by h(θi) := (f(xi;θi),xi) for i ∈ [N ]0. We aim for
local fidelity, i.e., we want to find models locally faithful to the optimization model such that
gf (θ

i) ≈ f(xi;θi) and gx(θ
i) ≈ xi for all i ∈ [N ]0.

Generating Explanations with LIME. In principle, LIME as in Eq. (1) can be applied to any black
box function, hence it can be used to explain our solution algorithm h. To this end, all explainable
predictors in g are fitted by solving the following problem

argmin
g∈G

∑N

i=0
wi

(
ℓF (g(θ

i), h(θi)) + Ω(g), (5)

where G contains all p+ 1-dimensional vectors of explainable functions, e.g., linear functions, the
scalars wi ≥ 0 denote the sample weights, ℓF denotes the fidelity loss, and Ω is a complexity measure.
If we use linear models for g, then the corresponding functions gf and gx provide explainable
predictors for components of the model; i.e., objective value and decision variables. However, this
model does not account for the coherence of the calculated predictors with the underlying problem
structure Eq. (2). As our experiments in Section 4 show, indeed the corresponding predictors in g are
usually not coherent, i.e., they violate Conditions 3 and 4 significantly. We use the latter approach as
a benchmark method.

Coherent Explanations with CLEMO. To generate coherent explanations we solve the problem

argmin
g∈G

∑N

i=0
wi

(
ℓF (g(θ

i), h(θi)) +RC(g(θ
i))

)
, (6)

where G contains all p+ 1-dimensional vectors of interpretable functions, the scalars wi ≥ 0 denote
the sample weights, ℓF denotes the fidelity loss, and RC corresponds to the coherence regularizer
that punishes predictors which do not admit the coherence conditions Eq. (3) and Eq. (4).

We note that theoretically, the coherence conditions could be added as constraints to the minimization
problem Eq. (5). However, there is no guarantee that a feasible solution g exists, hence we enforce
coherence via a regularizer. Similar to LIME, a complexity measure Ω could be added to the loss
function if, for example, linear models with sparse weights are desired. For ease of notation, we omit
this term. Note that ℓF and RC can contain hyperparameters to balance all components of the loss
function.

In principle, any appropriate function can be used for the fidelity and the coherence regularizer. We
propose to use the squared loss

ℓF (g(θ
i), h(θi)) = ∥g(θi)− h(θi)∥2 (7)

as fidelity loss, and for the coherence regularizer, we use

RC(g(θ
i)) = λC1(gf (θ

i)− f(gx(θ
i);θi))2 + λC2δ

(
gx(θ

i),X(θi)
)
, (8)

where δ(x,X(θ)) denotes a distance measure between a point x and the feasible set X(θ). The values
λC1 , λC2 are hyperparameters to balance the losses. The RC-regularizer measures incoherence,
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the first term punishes the violation of the coherence condition Eq. (3), while the second term
punishes the violation of the coherence condition Eq. (4). Note that a mathematical formulation
of the optimization problem is needed to formulate RC . However, independent of the solution
algorithm h, any valid formulation can be used as long it contains all decisions xi which have
to be explained. Given a formulation, a natural choice for the distance measure is the sum of
constraint violations of a solution. For example, if the feasible region is given by a set of constraints
X(θi) = {x : γt(x,θ

i) ≤ 0, t = 1, . . . , T}, then we define

δ
(
x,X(θi)

)
=

∑T

t=1
max{0, γt(x,θi)}. (9)

While problem Eq. (6) can be applied to different classes of hypothesis sets G, we restrict G to
linear models in this work. In this case we have coefficient vectors βf ,βx1

, . . . ,βxp
, such that

gf (θ
i;β) := β⊺

fθ
i and gx(θ

i;β) := (β⊺
x1
θi, . . . ,β⊺

xp
θi). For β ≡ (βf ,βx1 , . . . ,βxp)

⊺, Problem
Eq. (6) then becomes

argmin
β

∑N

i=0
wi

(
ℓF (β

⊺θi, h(θi)) +RC(β
⊺θi)

)
. (10)

Note that CLEMO can easily be adjusted if only a subset of components has to be explained. In
this case, we replace gc(θ

i;β) by the true value hc(θ
i) in the above model for all components

c ∈ {f, x1, . . . , xp} which do not have to be explained. This is especially useful if the optimization
problem Eq. (2) contains auxiliary variables (e.g., slack variables) that do not need to be explained.

Since we use the squared loss Eq. (7) in Problem Eq. (10), the first term corresponding to the fidelity
loss becomes a convex function of β. For the coherence regularizer, the following holds.
Proposition 3.1. Suppose that g(θ) = β⊺θ in Eq. (8). If the following conditions hold, then the
coherence regularizer term in Eq. (10) is a convex function of β:
. (1) The function x 7→ f(x;θ) is affine. (2) The function x 7→ δ(x,X(θ)) is convex.

The proof of this proposition follows from applying composition rules of convex functions (Boyd &
Vandenberghe, 2004). When the conditions in this proposition are satisfied, every local minimum
of the optimization problem Eq. (10) is a global minimum. We can use first-order methods to find
such a minimum if the functions are differentiable. We note that for δ as defined in Eq. (9), we
have that Eq. (8) is convex in β if the functions x 7→ γt(x,θ

i) are convex in x for t ∈ [T ]1 since
x 7→ max{0, x} is convex and nondecreasing in x. Assuming that β comes from a bounded space, we
can then use the subgradient algorithm with constant step size and step length and ensure convergence
to an ϵ-optimal point within a finite number of steps in O(1/ϵ2) (Boyd et al., 2003).

Weights. We define the weights (similarly to LIME) as the radial basis function kernel with kernel
parameter ν and distance function d,

wi = exp(−d(θi,θ0)2/ν2), i ∈ [N ]0. (11)

Sampling. We recall that contrary to ML models, optimization models do not require model
training per se. Therefore, θi cannot be sampled according to the train data distribution. Depending
on the context, θi can be sampled from relevant distributions, or with pre-determined rules, e.g.,
discretization. Besides, we note that for some values of θi the optimization problem might be
infeasible or unbounded. We therefore ensure the generated dataset D contains only feasible,
bounded instances of the optimization problem.

Binary Decision Variables. We opt for logistic regression to obtain interpretable surrogate models
for the output components of the optimization problem that are restricted to binary values. Let
B ⊆ {f, x1, . . . , xp} be the set of binary components. Then, for a binary component c ∈ B, we
consider predictors of the form gc(θ) = σ(β⊺

c θ) with σ : R → [0, 1] the sigmoid function. The
relative values of vector βc then tell the user the feature importance for the probability of the
component being 0 or 1. For the binary components, we measure the fidelity using the log-loss. The
total fidelity loss then becomes

λF1

∑
c∈B
∥β⊺

c θ
i − hc(θ

i)∥2 − λF2

∑
c∈B

hc(θ
i) ln(σ(β⊺

c θ
i)) + (1− hc(θ

i)) ln(1− σ(β⊺
c θ

i)),

where B = {f, x1, . . . , xp} \ B and λF1
, λF2

≥ 0 are hyperparameters to balance the different losses.
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Algorithm 1 CLEMO

Input: Optimization problem with parameter θ0, solution algorithm h, family of functions G
θi ← sample around(θ0) for i ∈ [N ]1
(f(xi;θi),xi)← h applied to Eq. (2) with θi for i ∈ [N ]0
wi ← weight function Eq. (11) for i ∈ [N ]0
D ← {(θi, (f(xi;θi),xi)) : i ∈ [N ]0}
g∗ ← solution of Problem Eq. (6) over G
Return: Explainable function g∗

The whole procedure of CLEMO is shown in Algorithm 1. For more details regarding the substeps
we refer to Algorithms 2 and 3 in the appendix.

Guaranteed Objective Coherence in the Linear Case. Assume our present problem Eq. (2) has a
linear objective function, i.e., the objective is of the form f(x;θ) = ĉ⊺x, and assume that only the
feasible region is sensitive, i.e., ĉ remains fixed. In this case, we can fit p + 1 independent linear
models for each component in c ∈ {f, x1, . . . , xp} by solving the classical weighted mean-square
problem

min
βc

∑N

i=0
wi∥β⊺

c θ
i − hc(θ

i)∥2.

If the minimizers are unique, the corresponding linear predictors provably fulfill the coherence
condition Eq. (3), i.e., in this case we do not need to apply the regularizer RC to achieve coherence
condition Eq. (3). However, it may happen that condition Eq. (4) is violated as the example from
the introduction shows. A proof of the latter coherence statement can be found in Appendix A.3
(Theorem A.1).

4 EXPERIMENTS

In this section, we present three experiments. Each experiment considers a distinct optimization
model and solver. The first experiment is used as a proof of concept, where we will show that
CLEMO approximates the optimal decision and objective value function well for an instance of
the Shortest Path Problem (SPP) with a single sensitive parameter. Next, in an extensive study, we
consider exact solutions of various instances of the Knapsack Problem (KP). We compare the quality
of explanations found by CLEMO to benchmarks by analyzing local fidelity, coherence, and stability
of the found explanations when subjected to resampling. Lastly, we generate explanations for the
Google OR-Tools heuristic (Furnon & Perron) applied to an instance of the Capacitated Vehicle
Routing Problem (CVRP). The code of our experiments can be found at https://anonymous.
4open.science/r/CLEMO-899F. All experiments are done on a computer with a 13th Gen
Intel(R) Core(TM) i7-1355U 1.70 GHz processor and 64 GB of installed RAM.

Setup. Unless stated otherwise, all upcoming experiments use the following setup. Given an
optimization problem for a given parameter vector θ0, we create a training data set D of size 1000
by sampling θi ∼ N (θ0, 0.2θ0). The sample’s proximity weights wi are determined using Eq. (11)
with Euclidean distance and parameter ν equal to the mean distance to θ0 over the data set D.

As a benchmark for CLEMO, we consider generating explanations with the LIME-type method
described in Section 3. We solve problem Eq. (5) where we fit logistic regression models for all
binary output components and linear models for all other output components without any complexity
regularization. We refer to this benchmark as LR.

For CLEMO we use the loss function stated in Eq. (10), where ℓF is given as in Eq. (12) and RC is
given as in Eq. (8) with δ defined as in Eq. (9). This way we can compare CLEMO to the benchmark
on local fidelity Eq. (12) and incoherence Eq. (8). In CLEMO, each term of the total loss function is
weighted with hyperparameters λF1 , λF2 , λC1 , and λC2 as

λF1
ℓF1

(g(θi), h(θi)) + λF2
ℓF2

(g(θi), h(θi)) + λC1
RC1

(g(θi)) + λC2
RC2

(g(θi)).

To determine the hyperparameters, we calculate the weights using the LR benchmark solution to
ensure that each loss term contributes to the total loss with similar order of magnitude. To this end, let
Lj be the value of loss term j for j ∈ {F1, F2, C1, C2} when the LR benchmark solution is evaluated,
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(a) Instance of SPP-θ, with in blue the op-
timal s, t-route.

(b) CLEMO prediction of objec-
tive value.

(c) CLEMO prediction of deci-
sion variable x(s,a).

Figure 1: Solution of shortest path of SPP-θ instance as determined by Dijkstra’s Algorithm and as
predicted by CLEMO.

and let Lmax denote the largest of the four loss terms. For our experiments, we set λj = 1 when
Lj = Lmax or when Lj = 0, and set λj = 0.5Lmax/Lj otherwise. We solve Problem Eq. (10) using
the SLSQP solver of the scipy package. We set a maximum of 1000 iterations and warm-start the
method with the LR benchmark solution. In Tables 5 and 6 in the Appendix, we compare different
initializations and optimization methods, indicating that our setup below is the best choice in terms
of runtime and solution quality.

4.1 SHORTEST PATH PROBLEM

As a first experiment, we explain an instance of the Shortest Path where possible cost-changes depend
on a single parameter. An instance of the SPP is given by a connected graph G = (V,E, c), with
nodes V , edges E and edge-costs c, and specified start and terminal nodes s, t ∈ V . The objective
is to find a path between s and t of minimum cost. Several methods exist for solving the SPP in
polynomial time (Gallo & Pallottino, 1988). Here, we use Dijkstra’s algorithm.

We study the parametric version of the shortest path problem (SPP-θ), denoted by G = (V,E, c+θc̃).
The edge costs are parametrized by the value θ and are given as the original edge costs (c) plus
θ times a perturbation cost vector (c̃). The decision variables are denoted by xjk and equal 1,
if edge (vj , vk) is used in the solution and 0, otherwise. The parametrized SPP is then given as
min{(c+ θc̃)⊺x : x ∈ XSPP }, where XSPP denotes the set of incidence vectors of all paths in the
graph. The full formulation can be found in Eq. (12) in the appendix. We examine how the objective
value and decision variable values of the original instance are affected by parameter θ. We consider
the instance of SPP-θ as displayed in Fig. 1(a) with θ0 = 0 as the present problem. By varying θ, the
optimal shortest (s, t)-path and its optimal value changes.

We sample θ uniformly on the interval [−1, 1] and run CLEMO on the sampled data. In Fig. 1(b),
we show the true dependency of the optimal value of SPP-θ and θ and the prediction of CLEMO.
Fig. 1(c) shows the same for the dependency of three selected decision variable values. For the
predictions of all decision variables, see Fig. 4 in the appendix. Both results show that CLEMO
manages to be locally faithful. In Table 1, we show the fidelity and the incoherence of CLEMO and
the LR benchmark. We can conclude that our method finds significantly more coherent explanations
without considerably conceding fidelity.

Table 1: Weighted fidelity loss and incoherence of explaining Dijkstra’s algorithm applied to SPP-θ
using the LR benchmark and using CLEMO.

Infidelity (ℓF ) Incoherence (RC )
Objective value Decision vector Objective Feasible region

LR 32.03 648.06 112.52 54.55
CLEMO 32.12 646.28 6.91 21.08

4.2 KNAPSACK PROBLEM

Next, we present an extensive study on the Knapsack problem (KP). In this problem, we are given
a set of items each with a corresponding value vj and weight wj . The goal is to decide how much
of each item should be chosen to maximize the total value while not exceeding the capacity, which
w.l.o.g. we set to 1. Formulated as a linear problem this becomes max{v⊺x : w⊺x ≤ 1,x ∈ [0, 1]p}.
We consider the parametrized KP, by setting θ = (v,w) and use Gurobi (Gurobi Optimization, LLC,
2024) to solve to optimality. This experiment compares CLEMO with two benchmark explanation
methods: independently fitting the components using (i) a linear regression model (LR), and (ii) a
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Table 2: Mean (µ) and standard deviation (σ) of weighted fidelity loss and incoherence for the KP
solved optimally. On the right, the mean stability measures over 10 instances per type of KP.

Incoherence (RC )
Infidelity (ℓF ) Objective Feasible region Stability

Method µ σ µ σ µ σ Std. Normalized Std. FSI
Ty

pe
1 DTR 405 97.4 6.48 2.55 22.50 4.99 0.18 5.36 2.02

LR 437 140 0.24 0.15 5.49 1.51 0.22 1.70 2.44
CLEMO 479 157 0.08 0.06 0.01 0.004 0.18 1.75 2.26

Ty
pe

2 DTR 868 67.4 20.09 2.27 38.55 2.03 0.14 2.74 3.00
LR 1076 99.4 1.01 0.12 9.49 0.68 0.19 0.74 3.40

CLEMO 1203 113 0.38 0.06 0.03 0.01 0.16 0.81 3.34

Ty
pe

3 DTR 865 66.8 28.45 3.36 39.41 2.02 0.14 2.77 2.91
LR 1061 97.8 1.39 0.16 9.90 0.64 0.20 0.71 3.22

CLEMO 1189 113 0.58 0.07 0.04 0.01 0.16 0.79 3.23

Ty
pe

4 DTR 893 56.5 13.80 2.16 37.74 2.35 0.14 2.52 2.99
LR 1111 77.6 0.70 0.11 8.94 0.74 0.18 0.66 3.31

CLEMO 1241 87.56 0.27 0.06 0.03 0.01 0.16 0.77 3.38

Table 3: Runtime of different explanation ap-
proaches for various sizes of KP.

KP Runtime (s)
#items #features DTR LR CLEMO

5 10 0.0189 0.0031 8.54
10 20 0.0396 0.0790 50.0
20 40 0.183 0.0830 413
40 80 0.683 0.316 > 1000

Figure 2: Convergence of CLEMO over
SLSQP iterations for different sizes of KP.

decision tree regressor (DTR) with a maximum depth of 5, and minimum samples per leaf of 50.
Here, we consider 40 instances of the KP each with p = 25 items. The 40 instances are divided
over four instance types as described by (Pisinger, 2005): 1) uncorrelated, 2) weakly correlated, 3)
strongly correlated, 4) inversely strongly correlated.

In Table 2, we see that compared to a linear regression approach the linear model found by CLEMO
reduces the weighted incoherence in the objective and the constraint by more than 50% and 99%
respectively, while the weighted fidelity loss increased only by roughly 20%. In Figs. 5 to 8 in the
appendix, we plotted the fidelity loss and incoherence of each instance to strengthen our conclusion.

Besides, as datasets are randomly generated, we measure the stability of explanations over resampling.
For the KP, we analyze the stability of CLEMO by using 10 different randomly generated datasets,
resulting in 10 surrogate models. To quantify stability we use the (normalized) standard deviation of
the feature contributions of g which is also used to examine the stability of LIME (Shankaranarayana
& Runje, 2019). In Table 2, we consider the (normalized) standard deviation of the contribution of
the top-5 most contributing, nonzero features for each component of h(θ). Besides, we examine the
feature stability index (FSI), which is based on the variables stability index as presented in Visani
et al. (2022). The FSI measures how much the order in feature contribution over the resamples on
average coincides. Here, it takes values between 0 and 5, where a higher FSI indicates more stable
explanations. An extensive description of the FSI can be found in Appendix A.5.2 in the appendix.
From Table 2, we can conclude that the stability of CLEMO is comparable to the benchmark
approaches.

Runtime. To compare the runtime of CLEMO to benchmark methods, we analyze the runtime on
Knapsack problems with 5, 10, 20, and 40 items. In Table 3, we see CLEMO takes longer to find an
explanation. Looking at Fig. 2, we observe that CLEMO efficiently converges to a solution. Hence,
early stopping could reduce runtimes while still ensuring more coherent explanations.

4.3 VEHICLE ROUTING PROBLEM

An instance of CVRP is given by a complete graph G = (V,A), where V consists of a depot node v0
and n client nodes each with a corresponding demand dj . Moreover, each arc (vj , vk) has associated
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Table 4: Weighted fidelity loss and incoherence of explaining Google OR-Tools applied to the CVRP
instance using the LR benchmark and using CLEMO.

Infidelity (ℓF ) Incoherence (RC )
Objective value Decision vector Objective Feasible region

LR 4.24 1207 12.35 802.55
CLEMO 4.24 1198 11.77 780.26

costs cjk. Lastly, there are m vehicles, each with a capacity of M . The goal of the problem is to find
at most m routes of minimum costs such that each route starts and ends at the depot, each client is
visited exactly once, and the total demand on each route does not exceed the vehicle capacity. To
formulate RC , we use the Miller-Tucker-Zemlin formulation for the CVRP, which can be found in
Eq. (13) in the appendix. The decision variables are then denoted by xjk and equal 1 if arc (vj , vk)
is used in the solution, and 0, otherwise. For this experiment, we consider the parameter vector
consisting of the demands d and the costs of the arcs from the clients to the depot c0, i.e., θ = (d, c0).
The present problem has symmetric costs and consists of 16 clients and 4 vehicles. As a solver for
this NP-hard problem, we let the Google OR-Tools heuristic search for a solution for 5 seconds
(Furnon & Perron). We aim for explanations for the objective value, and which clients are visited
before returning to the depot, i.e., the decision variables xj0 for j ∈ [n]1.

As shown in Table 4, the explanation found by CLEMO is significantly more coherent without a
considerable loss in fidelity compared to the LR benchmark. We visualize the explanations found by
CLEMO in Fig. 3, where we first see the solution to the present problem found by Google OR-Tools
in gray. Next, the feature contribution of the demands and costs are visualized via node and edge
colors respectively. Combined with an overview of the top 10 most contributing features, this shows
which features are the key components influencing the objective value as found by the solver. Thus,
Fig. 3 tells us that the objective value is mainly affected by the distance towards the nodes far from
the depot. In Fig. 9 in the appendix, we present an additional explanation for the decision variable
x20.

Figure 3: Explanation as found by CLEMO for the objective value visualized in the present problem
network structure. Also, the top 10 relative feature contributions is depicted on the right.

5 CONCLUSION & LIMITATIONS

In this paper, we propose CLEMO, a sampling-based method that can be used to explain arbitrary exact
or heuristic solution algorithms for optimization problems. Our method provides local explanations
for the objective value and decision variables of mathematical optimization models. Contrary
to existing methods, CLEMO enforces explanations that are coherent with the underlying model
structure which enhances transparent decision-making. By applying CLEMO to various optimization
problems we have shown that we can find explanations that are significantly more coherent than
benchmark explanations generated using LIME without substantially compromising fidelity. At the
same time, including coherence losses to CLEMO leads to longer runtimes.

This work focuses on explaining the objective value and decision variables. However, one could
easily extend the concept to explanations of other components such as constraint slacks, runtime,
optimality gap, etc. For now, CLEMO uses parametric regression models for explanations. Another
extension of our work could be to consider other types of interpretable functions such as decision
trees. Lastly, CLEMO could be a useful method to explain synergies between ML and optimization
models, e.g., in predict-then-optimize models.
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A APPENDIX

A.1 MATHEMATICAL MODELS OF THE OPTIMIZATION PROBLEMS

In this section, we present the formulation of the Shortest Path problem Eq. (12) and the Capacitated
Vehicle Routing problem Eq. (13). For the latter, we use the Miller-Tucker-Zemlin formulation as
described in Kara et al. (2004).

Shortest Path Problem

min (c+ θĉ)⊺x (12)

s.t.
∑

(s,j)∈E

xs,j −
∑

(j,s)∈E

xj,s = 1,

∑
(j,t)∈E

xj,t −
∑

(t,j)∈E

xt,j = 1,

∑
(j,k)∈E

xj,k −
∑

(k,l)∈E

xk,l = 0, ∀k ̸= s, t,

xe ∈ {0, 1}, ∀e ∈ E.

Capacitated Vehicle Routing Problem

min

n∑
j=0

n∑
k=0,k ̸=j

cjkxjk (13)

s.t.
n∑

k=1

x1k ≤ m,

n∑
j=1

xj1 ≤ m,

n∑
k=1

x1k ≥ 1,

n∑
j=1

xj1 ≥ 1,

n∑
k=0,k ̸=j

xjk = 1, j ∈ [n]1,

n∑
j=0,j ̸=k

xjk = 1, k ∈ [n]1,

uj − uj +Mxjk ≤M − dk, j, k ∈ [n]1, j ̸= k

dj ≤ uj ≤M, j ∈ [n]1,

xjk ∈ {0, 1}, j, k ∈ [n]0, j ̸= k.
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A.2 DETAILED ALGORITHM

Here, we present an extensive description of our explanation method CLEMO as used in the ex-
periments. It consists of two parts, (i) creating a training dataset (Algorithm 2), and (ii) finding a
surrogate model (Algorithm 3).

Algorithm 2 CLEMO - Creating a dataset

Input: Optimization problem with parameter θ0 and solver algorithm h
Initialize samples = {θ0}, targets = {(f(x0;θ0),x0)}, weights = ∅, distances = {0}
while #samples < 1000 do
θi ∼ N (θ0, 0.2θ0)
if Optimization model is feasible and bounded for θi then

samples← samples ∪{θi}
(f(xi;θi),xi)← h applied to θi-problem
targets← targets ∪{(f(xi;θi),xi)}
distances← distances ∪{Euclidean distance(θ0,θi)}

end if
end while
d =← average(distances)
for θi in samples do

weights← weights ∪{rbf(θ0,θi, d)}
end for
Return: D ← (samples, targets, weights)

Algorithm 3 CLEMO - Finding surrogate model

Input: Optimization problem, dataset D, loss function consisting of components
{ℓF1 , ℓF2 , RC1 , RC2}
for output component c ∈ {f, x1, . . . , xp} do

if h(θ)c is a binary value then
(βBM )c ← Logistic Regression fit(samples, h(θ)c, weights)

else
(βBM )c ← Linear Regression fit(samples, h(θ)c, weights)

end if
end for
Lj ← {lossj(βBM ,D) | for lossj ∈ {ℓF1

, ℓF2
, RC1

, RC2
}}

Lmax ← maximum(LF1
,LF2

,LC1
,LC2

)
for loss function component index j in {F1, F2, C1, C2} do

if Lj ∈ {Lmax, 0} then
λj ← 1

else
λj ← 0.5Lmax/Lj

end if
end for
total loss function ← λF1

ℓF1
+ λF2

ℓF2
+ λC1

RC1
+ λC2

RC2

βCL ← argminβ total loss function(β,D) using βBM as a warm start
Return: Interpretable function βCL

14
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A.3 COHERENCE FOR LINEAR OPTIMIZATION PROBLEMS

In this section we prove the statement that independent fitting of linear predictors leads to objective
coherence under certain assumptions.
Theorem A.1. The minimizers of the weighted least-square problems

min
βf

N∑
i=0

wi∥f(xi;θi)− β⊺
fθ

i∥2

and

min
βxj

N∑
i=0

wi∥xi
j − β⊺

xj
θi∥2 j = 1, . . . , p

fulfill the coherence condition in Eq. (3).

Proof. Since the objective function ĉ⊺x is fixed and linear we have

f(xi;θi) =

p∑
j=1

ĉjx
i
j .

The weighted least-squares problem has the unique optimal solution

β∗
xj

= (Θ⊺WΘ)−1Θ⊺Wyj j = 1, . . . , p

and
β∗
f = (Θ⊺WΘ)−1Θ⊺Wyf ,

where Θ is the matrix whose i-th row is the vector θi, W is the matrix with weight wi on the
diagonal and zeroes elsewhere, yj is the vector where the i-th entry is the value xi

j and yf is the
vector where the i-th entry is the value f(xi;θi). We assume here that (Θ⊺WΘ) is invertible. Then
for any new parameter vector θ the predicted optimal value of our model is

θ⊺βf = θ⊺(Θ⊺WΘ)−1Θ⊺Wyf

= θ⊺(Θ⊺WΘ)−1Θ⊺W

 p∑
j=1

ĉjy
j


=

p∑
j=1

ĉjθ
⊺(Θ⊺WΘ)−1Θ⊺Wyj

=

p∑
j=1

ĉjθ
⊺βxj

,

which means that the predictors are coherent regarding condition Eq. (3).

15
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A.4 MODELING CHOICES

Iterative methods We compared runtimes of different iterative methods within the SciPy minimize
package for a Knapsack problem with 5 items. The results show that the runtime of our chosen
iterative method, SLSQP, is in the same order of magnitude as the most efficient iterative methods
we checked.

Table 5: Total training Loss and time to completion for various iterative methods available for SciPy.

Method Time to completion Training Loss
COBYLA 7.52E+00 seconds 1.38E+02
SLSQP 9.63E+00 seconds 1.23E+02
Nelder-Mead 1.10E+01 seconds 1.36E+02
BFGS 4.35E+01 seconds 1.23E+02
COBYQA 5.03E+01 seconds 1.35E+02
TNC 7.53E+01 seconds 1.23E+02
L-BFGS-B 8.38E+01 seconds 1.23E+02
trust-constr 1.01E+02 seconds 1.23E+02
CG 2.16E+02 seconds 1.24E+02
Powell 3.64E+02 seconds 1.25E+02
Newton-CG 7.71E+02 seconds 1.24E+02

Initialization of solution For the Shortest Path problem, we additionally ran CLEMO with (i) 0
initialization, (ii) 1 initialization, and (iii) 10 randomly generated initializations (U [−10, 10]). Note
that due to the use of logistic regression, this experiment is solving a non-convex problem. The
results in Table 6 show that we can still obtain good results for a non-convex problem with different
initialization, but it takes more time.

Table 6: Results of the Shortest Path Problem for the benchmark (LR) and CLEMO with various
initializations.

Method Infidelity:
Objective value

Infidelity:
Decision vector

Incoherence:
Objective

Incoherence:
Feasible Region Time (s)

LR
Benchmark 32.03 648.06 112.52 54.55 0.019

CLEMO (SLSQP)
with warmstart 32.12 646.28 6.91 27.08 3.11

CLEMO (L-BFGS-B)
with 0 initialization 32.15 658.85 9.12 21.66 92.3

CLEMO (L-BFGS-B)
with 1 initialization 32.15 658.89 9.10 21.66 110.1

CLEMO (L-BFGS-B) with
random initialization 1 32.08 662.62 5.64 21.82 118.67

CLEMO (L-BFGS-B) with
random initialization 2 32.04 650.39 2.93 27.08 122.52

CLEMO (L-BFGS-B) with
random initialization 3 32.05 650.20 3.38 27.21 85.61

CLEMO (L-BFGS-B) with
random initialization 4 32.15 658.59 9.14 21.70 101.18

CLEMO (L-BFGS-B) with
random initialization 5 32.11 661.49 7.27 21.83 72.23

CLEMO (L-BFGS-B) with
random initialization 6 32.05 650.40 3.36 27.19 70.79

CLEMO (L-BFGS-B) with
random initialization 7 32.04 650.10 2.94 27.13 104.33

CLEMO (L-BFGS-B) with
random initialization 8 32.08 662.54 5.65 21.83 86.67

CLEMO (L-BFGS-B) with
random initialization 9 32.04 649.80 2.94 27.18 94.54

CLEMO (L-BFGS-B) with
random initialization 10 32.04 650.10 3.00 27.12 73.37
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A.5 ADDITIONAL RESULTS EXPERIMENTS

A.5.1 SHORTEST PATH PROBLEM

For the SPP-θ considered in the experiments, we additionally present the prediction found by CLEMO
for the decision vector compared to the values found by Dijkstra’s Algorithm in Fig. 4. In concordance
with the results presented in the experiment section, we see CLEMO approximates the actual values
relatively well.

Figure 4: Decision variables of the shortest path of the SPP-θ instance as determined by Dijkstra’s
Algorithm and as predicted by CLEMO.

A.5.2 KNAPSACK PROBLEM

For the knapsack problem, we applied our method on 10 instances of each of the 4 types of problems
we considered. For each instance and for each method we used 10 different datasets to compare
our CLEMO with benchmark methods linear regression (LR) and decision tree regressor (DTR). In
Figs. 5 to 8 we present scatter plots of the total fidelity loss and total incoherence (both conditions
Eq. (3) and Eq. (4)) per instance and type of knapsack problem. Similar to the results presented in the
experiment section, we find that CLEMO significantly reduces incoherence while the faithfulness is
compromised relatively less.

Next to the standard deviation of feature contribution, we consider an additional measure for stability,
the feature stability index (FSI). This is an adaptation of the variables stability index (VSI) as
presented in Visani et al. (2022). The higher this measure, the more the non-zero features found by
the different models due to resampling overlap. For a consistent explanation, the overlap should
be large. As we apply CLEMO on 10 different datasets for each instance of each type of knapsack
problem, we obtain 10 surrogate models given by β1

CL, . . . ,β
10
CL. We denote F i

k,j for the set of
the top-k most contributing, non-zero features of the j-th component of βi

CL. We define the (k, j)-
concordance of two models βi1 and βi2 as the size of the intersection between F i1

k,j and F i2
k,j divided

by the maximum potential overlap, i.e.,

(k, j)-concordance(i1, i2) = F i1
k,j ∩ F

i2
k,j/k.

Let us consider the k-feature stability index (k-FSI), which is the average (k, j)-concordance over all
pairs β1

CL, . . .β
10
CL and all components j. Similar to VSI, k-FSI is bounded by 1 and the higher this

measure k-FSI, the more the different models agree on the top-k non-zero features of the different
components and hence the more stable the method is. Lastly, we define the FSI as the sum over k-FSI
for k = 1, . . . 5 resulting in a stability measure bounded by 5. When examining the FSI for CLEMO

17
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and the benchmark methods in Table 2, we conclude that CLEMO has stability similar to the general
linear regression approach.

Figure 5: Scatter plot of the total incoherence (i.e., coherence loss) and total fidelity losses as found
by the different methods on 10 distinct sample sets per instance of the knapsack problem of type 1.

Figure 6: Scatter plot of the total incoherence (i.e., coherence loss) and total fidelity losses as found
by the different methods on 10 distinct sample sets per instance of the knapsack problem of type 2.
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Figure 7: Scatter plot of the total incoherence (i.e., coherence loss) and total fidelity losses as found
by the different methods on 10 distinct sample sets per instance of the knapsack problem of type 3.

Figure 8: Scatter plot of the total incoherence (i.e., coherence loss) and total fidelity losses as found
by the different methods on 10 distinct sample sets per instance of the knapsack problem of type 4.
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A.5.3 VEHICLE ROUTING PROBLEM

Similar to Fig. 3 as presented in Section 4, we display an additional explanation for the CVRP
instance solved by Google OR-Tools. In Fig. 9, we see the explanation found by CLEMO for the
decision variable x20 of the considered CVRP instance solved by Google OR-Tools. From this figure,
a stakeholder can deduce that arc (2, 0) is less likely used by Google OR-Tools when c02 increases,
but more likely when c08 increases.

Figure 9: Explanation as found by CLEMO for the decision variable x20 visualized in the present
problem network structure. Also, the top 10 relative feature contributions is depicted on the right.

A.6 STATEMENTS

A.6.1 REPRODUCIBILITY STATEMENT

In this work, we tried to achieve full reproducibility of the described methods and experiments by
providing a link to our experiments on an anonymized GitHub: https://anonymous.4open.
science/r/CLEMO-899F.

A.6.2 LLM STATEMENT

In this work, Large Language Models were used solely to aid or polish writing. Concretely, we used
these models to correct grammar and punctuation mistakes and to reformulate our original content to
be more structured and clear.
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