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ABSTRACT

Temporal grounding in long, untrimmed videos is critical for real-world video
understanding, yet it remains a challenging task owing to complex temporal struc-
tures and pervasive visual redundancy. Existing methods rely heavily on super-
vised training with task-specific annotations, which inherently limits their scal-
ability and adaptability due to the substantial cost of data collection and model
retraining. Although a few recent works have explored training-free or zero-shot
grounding, they seldom address the unique challenges posed by long videos. In
this paper, we propose HiTeA (Hierarchical Temporal Alignment), a novel,
training-free framework explicitly designed for long-video temporal grounding.
HiTeA introduces a hierarchical temporal decomposition mechanism that struc-
tures videos into events, scenes, and actions, thereby aligning natural language
queries with the most appropriate temporal granularity. Candidate segments are
then matched with queries by leveraging pre-trained vision-language models
(VLMs) to directly compute segment—text similarity, thereby obviating the need
for any task-specific training or fine-tuning. Extensive experiments on both short-
and long-video benchmarks show that HiTeA not only substantially outperforms
all existing training-free methods (e.g., achieving 44.94% R@0.1 on TACoS, rep-
resenting an absolute gain of 12.4%) but also achieves competitive performance
against state-of-the-art supervised baselines under stricter metrics. The code is
available at https://anonymous.4open.science/r/HiTeA_code.

1 INTRODUCTION

Video Temporal Grounding (VTG) (Gao et al |[2017) aims to locate the start and end timestamps
of a video segment that semantically corresponds to a natural language query. This task has broad
applications in video surveillance (Tellex & Roy, [2009), sports analytics for event and tactic local-
ization (Kong et al.,|2022), and egocentric video understanding (Grauman et al.,2022). However, in
contrast to the short, trimmed clips that are predominantly studied in prior work, real-world videos
are typically long and untrimmed, characterized by complex temporal structures and significant
redundant content. These characteristics render uniform sampling strategies, a mainstay of many
existing methods, ineffective at capturing salient moments, thereby constraining their practical scal-
ability.

Current high-performing VTG methods usually rely on fully supervised training with dense temporal
labels (Lei et al.,2021;|Lin et al.,2023;|Huang et al., 2024; Ren et al.,[2024). However, the collection
of dense temporal annotations is not only costly and subjective but also scales poorly with increasing
video length, while the training of large models is computationally intensive. In addition, supervised
models are prone to learning dataset-specific biases, leading to limited generalization capability
across diverse datasets (Guo et al.l [2023). These limitations collectively motivate exploration of
training-free approaches under the zero-shot video grounding (ZSVG) setting.

Existing ZSVG methods are primarily designed and evaluated for short video clips. Some rely
on pseudo-labels to train lightweight models (Nam et al., [2021; [Lu et al, [2024; |Li et al., [2025),
whereas others directly apply pre-trained models without task-specific training (Zheng et al.| 2024;
Luo et al., 2024), as illustrated in Fig. a). However, such approaches often fail to explicitly model
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long-range temporal structure, consequently struggling to capture complex temporal dependencies
or brief yet critical events in long, untrimmed videos. A promising alternative is to leverage the pow-
erful general-purpose capabilities of large pre-trained video-language models (VLMs)
[2023], [Wang et al., 2024b)), which excel at video-text alignment. Although VLMs lack the inherent
capability to temporally localize events (i.e., when they occur), their strength in recognizing seman-
tic content (i.e., what happens) provides a crucial prior for grounding, thereby enabling our method
to operate in a fully training-free manner.
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Figure 1: Comparison of different paradigms for zero-shot video temporal grounding. (a) Training-

free methods directly use pre-trained models on uniformly sampled frames. (b-c) Our HiTeA frame-
work pipeline and Hierarchical Temporal Decomposition (HTD) module.

These observations motivate a central research question: How can we equip lightweight, off-the-
shelf VLMs with explicit temporal structure to achieve accurate grounding in long videos, while
entirely foregoing any task-specific training? The core challenge lies in bridging the gap between
the VLM’s powerful semantic understanding and the need for nuanced temporal reasoning in long-
video grounding.

To address this challenge, we propose HiTeA, a fully training-free framework inspired by the hi-
erarchical search strategies employed by humans, as shown in Fig. [[(b-c). Instead of processing
videos uniformly, HiTeA introduces a Hierarchical Temporal Decomposition (HTD) module, which
adaptively partitions a video into multi-scale units, ranging from coarse events to fine-grained ac-
tions, using off-the-shelf feature extractors. This constructs a temporal scaffold that emulates hu-
man search strategies, making the framework first establish broad contextual understanding before
focusing on more informative segments. To enable the efficient application of a frozen VLM to long
videos, a pre-filtering step identifies a concise set of candidate segments for subsequent detailed
evaluation. Finally, unlike common practices that employ off-the-shelf post-processing like Non-
Maximum Suppression (NMS), we design a dedicated Candidate Refinement module that adaptively
integrates multi-scale cues from the scored candidates to produce the final, optimal prediction.

Crucially, HiTeA is entirely training-free, eliminating the necessity for any task-specific data collec-
tion or model fine-tuning. Experiments show that HiTeA consistently outperforms existing training-
free methods on both short- and long-video benchmarks, underscoring that the explicit temporal
structure is the key to unlocking the potential of VLMs for precise temporal grounding.

Our main contributions are threefold:
* We propose HiTeA, a pioneering, fully training-free framework that effectively ad-
dresses temporal grounding in long videos.

* HiTeA introduces a Hierarchical Temporal Decomposition (HTD) strategy that equips
off-the-shelf VLMs with explicit temporal reasoning without any task-specific training.

» Extensive experiments on both short- and long-video benchmarks demonstrate that our ap-
proach achieves state-of-the-art performance under the zero-shot setting, with strong gen-
eralization.
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2 RELATED WORK

2.1 TRAINING-BASED TEMPORAL GROUNDING IN VIDEOS

The development of video temporal grounding (VTG) has long been dominated by training-based
paradigms. Early fully-supervised methods (Zhang et al., 2020; [Lin et al., 2023) achieve strong
performance but rely on expensive, fine-grained temporal annotations. To reduce labeling costs,
subsequent weakly-supervised (Zheng et al.l 2022b; [Huang et al.l 2023) and unsupervised ap-
proaches (Wang et al., [2022; |[Zheng et al.|[2023) attempt to learn from weaker signals. Despite alle-
viating annotation burdens, they still require in-domain training, making them vulnerable to dataset
bias and imposing heavy computational costs, particularly when scaling to long-form videos.

Efficiency-oriented designs such as hierarchical or coarse-to-fine architectures (Hou et al.| 2022}
Pan et al.| |2023) have been proposed to mitigate computation, but they remain tied to task-specific
training pipelines, limiting their generalizability.

2.2  ZERO-SHOT TEMPORAL GROUNDING IN VIDEOS

To overcome annotation and retraining requirements, recent work has explored zero-shot temporal
grounding. Existing approaches can be grouped into two streams.

Pseudo-supervised zero-shot methods generate automatic pseudo-labels to train grounding mod-
els. For example, PSVL (Lu et al.| |2024) synthesizes supervisory signals from text corpora and
object detectors, attaining accuracy comparable to supervised baselines. However, because they still
involve model training, these methods inherit the computational overhead and biases of training-
based paradigms.

Training-free methods eliminate training altogether, instead leveraging frozen pre-trained models
with clever inference strategies, such as query decomposition (Zheng et al.l [2024) or boundary-
aware proposals (Luo et al.l[2024)). While computationally lighter, they often lack explicit temporal
modeling. Most rely on uniform sampling, which struggles to capture long-range dependencies and
can easily miss short but salient events. This leads to inefficiency and performance degradation on
complex, long-duration videos.

2.3 VIDEO UNDERSTANDING WITH VLMSs

The rapid progress of large vision—language models (VLMs) (Bai et al.l 2023} Wang et al.| 2024b)
has further expanded video—text research. VLMs excel at high-level semantic understanding, pow-
ering applications like video captioning and question answering. However, they are notably weak
at fine-grained temporal localization: VLMs can often tell what happens but struggle to determine
when. To address this gap, recent work augments VLMs with temporal awareness via positional
encodings (Guo et al.l 2025), timestamp markers (Meinardus et al., [2024b; |Chen et al.| [2024), or
temporal embeddings (Zeng et al., 2024} Ren et al., [2024). These strategies improve short-clip
grounding but scale poorly to long videos due to limited context length and rising computation.

3 METHODS

3.1 OVERVIEW

We propose HiTeA, a training-free framework for temporal grounding in long videos that oper-
ates through hierarchical temporal decomposition and query-conditioned matching. As illustrated
in Fig. 2] our approach begins with the extraction of multi-scale visual features using pre-trained
models such as ViT (Dosovitskiy et al., 2020), DINO (Caron et al., 2021), and RAFT (Teed &
Deng|, 2020) to capture complementary cues at different levels of abstraction. These features are fed
into a Hierarchical Temporal Decomposition (HTD) module to construct a set of candidate seg-
ments spanning various temporal granularities. The resulting candidates are subsequently filtered
and scored against the text query using a frozen, pre-trained vision—language model (VLM). Finally,
a Candidate Refinement module merges and ranks these candidates to produce the final temporal
predictions, preserving the fully training-free nature of the entire framework.
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Figure 2: Overview of the HiTeA framework. The Hierarchical Temporal Decomposition(HTD)
module decomposes the input video into multi-scale temporal units. Candidate segments are filtered
and scored by a pre-trained VLM in a query-conditioned manner. Final moments are generated
through Candidate Refinement module without any training.

3.2 TEMPORAL SIGNAL CONSTRUCTION

3.2.1 FEATURE EXTRACTION.

Given an untrimmed video V' = {fi,..., fr}, which consists of T frames, we extract multi-level
features from various encoders: ViT for semantic context, DINO for structural transitions, and
RAFT for motion dynamics. For frame f;, the extracted features are:

Vit = dvir(fr), Vi =dpmo(fe), Vi = drarr(fi fis1) s @

where ¢viT, dpiNo, and ¢rapT are frozen, pre-trained encoders, and v;’it, V?ino, V?OW are their

corresponding event-aware, scene-aware, and action-aware features at time ¢.

3.2.2 SIMILARITY CURVES.

To detect potential segment boundaries from extracted multi-level features, we construct three com-
plementary temporal signals, each tailored to capture transitions at a specific temporal granularity.

Event-level Similarity (s°V°"): Aimed at mitigating the potential instability of frame-wise ViT
features while capturing long-range event transitions, this signal is computed as the cosine similarity
between the current frame’s feature v}'* and the average feature representation of the most recent
video segment. Let S;_1 be the set of frames from the start of the current segment to frame ¢ — 1.

Scene-level Similarity (s°°“*°): This signal is designed to extract the shot-level structure of the
video and is computed as the cosine similarity between consecutive frames’ DINO features.

Action-level Similarity (s*°"°"): Since the optical flow feature v'*" inherently represents the mo-
tion magnitude between frames f; and f;, 1, we derive a motion-aware similarity measure by com-
puting the negative L2 norm of the flow feature. This formulation encourages lower similarity values
during high-motion periods, which often correspond to action boundaries.

We define three complementary similarity metrics to capture event, scene, and action-level cues:

vit | Gvit dino dino
event _ vt ~Vi-1 scene __ Vit “Vie1 action __ 7||vﬂow||2 )
= f ,

N e T [ e [

oVvit 1 vit 3 :
where v}, = I > jes,, vy isthe averaged ViT feature over the current segment ;1. Each
signal is smoothed with a Gaussian kernel to suppress noises.

3.3 HIERARCHICAL TEMPORAL DECOMPOSITION MODULE

For each similarity curve, candidate boundaries are extracted using granularity-specific strategies: at
the event level, boundaries are identified as local minima below a threshold 7, whereas at the scene
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and action levels, the PELT (Killick et al., 2012)) change point detection algorithm is employed
to capture nonlinear distributional shifts and complex temporal patterns. These candidate points
indicate potential temporal transitions.

To enforce the hierarchical containment relation (event D scene D action), we introduce a merg-
ing function M(-) that integrates higher-level boundaries into lower-level ones. As illustrated in
Fig. B|a), for each higher-level boundary (blue), the nearest lower-level point (red) is replaced if
it lies within a temporal tolerance «. Otherwise, the higher-level point is inserted. The resulting
merged boundaries are highlighted in green. This hierarchical merging process operates sequen-
tially through function M (), first combining event-level boundaries into scene-level, then inte-
grating the resulting scene-level boundaries into action-level segments, ultimately yielding the final
multi-granularity set Pfinal,

This hierarchical design guarantees that fine-grained action segments remain aligned with broader
structures. However, strict structural enforcement primarily benefits long videos with complex nest-
ing. For short videos lacking deep hierarchies, such constraints may filter valid candidates. Thus,
we adopt an adaptive strategy: applying M (-) to long videos for coherence, while bypassing it for
short videos to preserve boundary diversity (See in Appendix [A.4.2).
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Figure 3: Key stages of our approach. (a) Hierarchical merging to form candidate segments. (b)
Candidate refinement to achieve accurate localization.

3.4 SCORING CANDIDATES

Directly applying VLM to all candidate segments is computationally expensive, particularly for
long videos with dense proposals. To strike a balance between accuracy and efficiency, we adopt a
two-stage scoring strategy that progressively prioritizes high-quality candidates.

VideoCLIP-based Filtering. We first compute a coarse similarity score s.ji, between each can-
didate segment (¢, t.) and the query ) using a VideoCLIP (Xu et al., 2021; Wang et al., [2024a)),
which is designed for contrastive learning between video clips and text. To reduce fragmentation
and enhance semantic continuity, we merge adjacent segments with similar scores. Specifically, two

neighboring segments ¢ and j are merged if |silip — silip| < f3, where §3 is a threshold. From the
merged set, we retain the top-k segments per hierarchy based on si,. This step significantly prunes
the candidate pool while preserving segments with a high likelihood of matching the query.

VLM-based Scoring. Then, the retained candidates are evaluated using a frozen, off-the-shelf
VLM to obtain fine-grained similarity scores sy € [0, 1]. Although absolute scores may vary with
prompt design, the relative rankings across candidates remain stable, enabling reliable candidate
selection. This stage leverages the strong semantic alignment of VLMs in a fully training-free
manner, combining the efficiency of VideoCLIP-based pre-filtering.

3.5 CANDIDATE REFINEMENT MODULE

We observe that the reliability of VLM-based scoring is sensitive to both segment duration and
prompt formulation. Extremely long or short segments tend to yield unreliable scores due to frame
sampling limitations or uneven content density, while prompt semantics can introduce systematic
biases. To mitigate these issues and explicitly adapt to the HTD-generated candidates, we propose a
refinement module that, distinct from conventional post-processing, integrates cross-modal similar-
ity with intra-video consistency, followed by progressive merging and ranking.
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Score Fusion. FEach candidate segment c; is assigned a unified relevance score by combining the
VLM-based similarity and the VideoCLIP-based temporal consistency. While the VLM provides su-
perior semantic reasoning, its output confidence scores often exhibit discretization, resulting in tied
rankings among candidate segments. To mitigate this, we leverage the continuous nature of s,
to provide fine-grained discrimination. This fusion strategy ensures that the VLM’s semantic align-
ment remains dominant, while s, serves as a critical tie-breaker, resolving scoring ambiguities
without compromising the primary semantic order.

Before fusion, the s, is normalized to the range [0, 1] to ensure scale compatibility. The final
score is computed as:

Sfinal — A Sylm + (]- - )\) * Sclip » (3)

where A balances the two terms. This fusion mitigates the impact of outlier scores and reinforces
segments that are both semantically relevant and structurally coherent.

Progressive Merging. To exploit complementary information across hierarchical levels (e.g., an
action within a relevant scene), we introduce a query-aware, progressive merging strategy that en-
ables cross-level interaction, in Fig. [3(b). Segments at different granularities—actions, scenes, and
events—are considered jointly during merging, guided by their semantic relevance to the query.
Specifically, two candidates from the same or adjacent levels are merged if they are temporally
close and have high query-conditioned similarity. The merging decision accounts for both boundary
proximity and consistency of their VLM scores, ensuring semantic coherence in the merged seg-
ment. This process is applied iteratively, allowing, for example, a high-scoring action segment to
merge with an overlapping scene segment to form a richer candidate that integrates multi-level cues.
The merged segment inherits a refined confidence score computed from its constituents, reinforcing
segments that benefit from cross-hierarchical fusion. Further details are in Appendix

Ranking and Output. The refined set of temporal segments Sgna; = {¢;} is ranked according to

their updated scores sgal, and the top-ranked segment is selected as the final prediction:

(Fs,fe) = arg max sl O

This refinement stage effectively complements HTD module by leveraging cross-level information
and the scores from the previous stage to generate temporal predictions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate HiTeA on two categories of benchmarks. For short-video temporal ground-
ing, we use Charades-STA (Sigurdsson et al.,[2016), originally introduced for videoQA, comprising
1.3K test videos with 3.7K queries of household activities, QVHighlights (Lei et al., 2021)), con-
taining over 1.5K validation and 1.5K test videos with diverse topics that require models to detect all
relevant temporal spans and their saliency scores, and ActivityNet-Captions (Krishna et al., 2017)),
repurposed from dense video captioning, containing 4.9K open-domain videos with 17.0K annotated
descriptions. For long-video temporal grounding, we use Ego4D-NLQ (Grauman et al.,[2022) with
415 egocentric validation videos, and TACoS (Regneri et al., 2013), a compact, densely-annotated
cooking dataset with 25 test videos.

Evaluation Metrics. Following established practices in temporal grounding, we report Recall@ 1
at multiple IoU thresholds and the mean Intersection-over-Union (mloU). The evaluation thresholds
are set to 0.3, 0.5, 0.7 for short videos and 0.1, 0.3, 0.5 for long videos, reflecting the higher com-
plexity of long videos and the difficulty of accurately retrieving very short segments with current
zero-shot methods. The mloU metric complements these by providing an overall accuracy measure,
calculated by averaging the IoU across all predictions.
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Table 1: Performance comparison on long-video temporal grounding benchmarks. ‘Sup’ denotes
the supervision type: FS (Fully-Supervised), ZS (Zero-Shot). T Method requires training.

Method Sup Egod4D-NLQ TACoS

0.1 03 05 mloU| 0.1 0.3 0.5 mloU
2D-TAN (Zhang et al.; 2020) FS - 433 1.83 3.39 |47.59 3729 2532 -
Moment-DETR (Lei et al.,[2021) FS - 434 1.81 3.53 - 2467 1197 25.49
UniVTG (Lin et al.| [2023) FS - 7.28 3.95 4091 - 51.44 3497 33.60
UniVTG (Lin et al.}2023) T ZS - 6.48 3.48 4.63 - 5.17 127 4.40
Mr.BLIP (Meinardus et al., 2024al) t] zs - 6.49 320 5.37 - 24.59 14.32 17.94
TimeSuite (Zeng et al.,[2024) 7S - 0.88 0.43 0.94 - 6.75 2.50 5.71
UniTime-Zero (Li et al.[[2025) ZS - 14.67 7.38 10.18 - 50.06 31.54 33.38
(Luo et al., 2024) | 28 | - - - - 2749 1120 5.57 -
HiTeA (Qwen2.5-VL) \ 7S \ 20.12 10.39 6.04 8.12 \ 44.94 29.08 16.10 19.79

Table 2: Performance comparison on short-video temporal grounding benchmarks. Supervision
(Sup): FS, WS (Weakly-Supervised), US (Unsupervised), ZS. T Method requires training

Method Sup Charades-STA ANet-Captions

03 05 07 mloU| 03 05 07 mloU
2D-TAN (Zhang et al.,[2020) FS | 57.3 458 279 41.0 | 604 434 250 425
Moment-DETR (Lei et al.| [2021) FS | 62.1 482 253 423|526 325 153 378
VTimeLLM (Huang et al.;[2024) FS | 553 343 147 346|448 295 142 314
CPL (Zheng et al.,|[2022b) WS |66.40 49.24 2239 - |55.73 3137 - -
CNM (Zheng et al.;[2022al) WS |60.39 3543 1545 - |55.68 3333 - -
(Huang et al.||2023) WS | 69.16 52.18 23.94 4520|58.07 3691 - 41.02
PSVL (Nam et al.|[2021) US |46.47 31.29 14.17 31.24 |44.74 30.08 14.74 29.62
PZVMR (Wang et al.[|2022) US [46.83 33.21 18.51 32.62|45.73 31.26 17.84 30.35
DSCNet (Liu et al.}[2022) US |44.15 28.73 14.67 - |47.29 28.1 - -
SPL (Zheng et al.| 2023) US |60.73 40.70 19.62 40.47 |50.24 27.24 15.03 35.44
UniVTG (Lin et al,[2023) T ZS [44.09 2522 10.03 27.12| - 11.10 4.06 16.86
VideoChatGPT-7B (Maaz et al,[2023) T | ZS | 200 7.7 1.7 137 | 264 136 6.1 189
VTG-GPT (Xu et al.,[2024) T ZS 159.48 43.68 25.94 39.81|47.13 28.25 12.84 30.49
(Lu et al.,[2024) T ZS [47.74 34.62 20.16 32.97[49.26 31.45 15.27 33.25
UniTime-Zero (Li et al.,[2025) ZS - 59.09 31.88 52.19| - 2277 14.14 2731
(Luo et al.,[2024) ZS |56.77 4293 20.13 37.92|48.28 27.90 11.57 32.37
TFVTG (Zheng et al.,[2024) ZS | 67.04 49.97 24.32 44.51(49.34 27.02 13.39 34.10
(Xu et al.}[2025) ZS | 582 384 216 365 |48.1 31.1 149 308
HiTeA (Qwen2.5-VL) | ZS | 69.62 48.52 25.59 46.29 |54.46 31.1 16.57 37.93

Implementation Details. Our framework is implemented in PyTorch. We use Qwen2.5-VL-
7B (Bai et al.,2023) as the base VLM, and VideoCLIP-XL (Wang et al.,2024a) for pre-filtering. For
feature extraction, we employ ViT-B/32 for event-level features, DINO-v2 for scene-level features,
and RAFT-Large for action-level features. The frame sampling rate is set to 5 FPS for Charades-STA
and 1 FPS for all other datasets. Most hyperparameters remain unchanged across all datasets.

Adaptive Configuration. We adjust the Hierarchical Merging (HM) module based on video du-
ration. HM is enabled for long-video datasets to enforce structural consistency, and disabled for
short-video datasets to maximize candidate diversity from different feature levels. Additional im-
plementation details are provided in Appendix [A-3] while supplementary experiments, including
analyses on model selections and hierarchical merging effects, are in Appendix [A.4]

4.2 COMPARISON WITH THE STATE-OF-THE-ARTS

HiTeA establishes a new state-of-the-art for zero-shot temporal grounding, consistently outperform-
ing prior methods on both long- and short-video benchmarks (Tables[T]and [2).
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Table 3: Performance comparison on QVHighlights temporal grounding benchmarks. Supervision
(Sup): FS, WS (Weakly-Supervised), US (Unsupervised), ZS. T Method requires training

Test Val
R1@0.5 R1@0.7 mAP@0.5 mAP@avg|R1@0.5 R1@0.7 mAP@0.5 mAP@avg

Moment-DETR (Lei et al.,2021) | FS| 529 33.0 54.8 30.7 | 542 334 554 31.1
UniVTG (Lin et al.,[2023) FS| 589 409 - - - - - -
VTimeLLM (Huang et al.,|2024) |FS | 47.2 29.3 473 274 | 488 295 493 26.8
Mr.BLIP (Meinardus et al.,|2024a)| FS | 74.8 60.5 76.1 63.4 - - - -

Method Sup

CNM (Zheng et al., 2022al) WS| 141 4.0 11.8 - - - - -
CPL (Zheng et al.;[2022b)) WS| 30.8 10.8 22.8 - - - - -
CPI (Kong et al.[|[2023)) WS| 323 11.8 23.7 - - - - -
PZVMR (Wang et al.| 2022) US| 142 49 15.7 4.6 12.6 5.1 16.2 5.3
DSCNet (Liu et al.;[2022) us| - - - - 123 3.5 10.4 2.7

TimeSuite (Zeng et al.l[2024) ZS| 123 9.2 - - - - - -
VTimeLLM(Huang et al.,|2024) t1zs|261 112 - - - - - -
UniTime-Zero (Li et al.,[2025) T | ZS | 41.0 31.5 - - - - - -

(Diwan et al.| [2023) VAN - - - 483 31.0 473 28.0
Moment-GPT (Xu et al., [2025) ZS | 583 377 551 350 | 589 386 557 359
HiTeA (Qwen2.5-VL) |ZS| 62.3 422  60.7 370 | 641 432 60.2 37.3

Performance on Long Videos. HiTeA sets a new state-of-the-art for zero-shot temporal ground-
ing on long videos. A groundbreaking achievement is made on the Ego4D-NLQ benchmark: it
achieves an mloU of 8.12%, surpassing all fully-supervised baselines. To our knowledge, this is
the first time a fully training-free method has been successfully applied to this dataset, and it deliv-
ers superior performance. On TACoS, HiTeA also dominates, achieving 44.94% at R@0.1—nearly
doubling the best prior training-free result. These results demonstrate that our hierarchical temporal
decomposition (HTD) strategy effectively captures the complex temporal structures of long videos,
proving that explicit hierarchical reasoning can outperform data-intensive supervised training.

Generalization to Short Videos. Notably, although HiTeA is specifically designed for long
videos, it also generalizes remarkably well to short-video settings. On Charades-STA, it achieves
69.62% at R@0.1 and 25.59% at R@0.5, surpassing all existing zero-shot approaches and even
matching several weakly- and fully-supervised methods. On ActivityNet-Captions, HiTeA also
demonstrates clear superiority, outperforming the strongest zero-shot baseline. Furthermore, in
QVHighlights, HiTeA performs significantly well across both test and validation splits. On the
Test split, HiTeA achieves 60.7% at mAP@0.5 and 37.0% at mAP@avg, which is a strong result,
surpassing many of the state-of-the-art zero-shot methods.

The consistent gains across datasets of varying durations and complexity confirm the efficacy of
HiTeA’s training-free architecture, particularly the synergy between hierarchical candidate gener-
ation and query-aware VLM scoring. Our approach effectively bridges the gap between semantic
understanding and temporal localization without task-specific training.

4.3 ABLATION STUDIES

To evaluate the contribution of each component, we conduct comprehensive ablation studies on the
TACoS and Charades-STA datasets, representing long and short video benchmarks, respectively.

4.3.1 EFFECTIVENESS OF INDIVIDUAL MODULES

Table [d]reports the ablation results for Hierarchical Temporal Decomposition (HTD) and Candidate
Refinement (CR) on TACoS and Charades-STA. The baseline without HTD or CR (first row), which
applies uniform segmentation, achieves the lowest performance, demonstrating that naive temporal
partitioning fails to capture complex temporal dynamics in both long and short videos. For configu-
rations without CR, the model selects the single candidate with the highest fusion score. Conversely,
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Table 4: Ablation Study on Hierarchical Temporal Decomposition and Candidate Refinement.

HTD CR TACoS Charades-STA

Event | Scene | Action 01 03 05 mloU| 03 05 07 mloU
- | - | - | - 4118 2141 825 14.87[55.65 33.17 15.11 35.07

- - 13934 21.29 10.76 15.64|63.92 40.00 20.94 41.28
- 130.21 18.78 10.21 13.01|59.89 38.82 20.75 40.35
- 130.85 19.74 11.90 13.73|60.13 40.03 20.38 39.83

3432 22.11 13.53 15.34|60.81 41.37 22.18 40.76
- 135.52 2225 13.07 15.61]62.82 43.04 21.69 41.40
- 13497 2149 11.37 1498|6331 42.58 23.01 41.85

38.44 2441 1435 16.99|62.69 43.31 22.66 41.61
45.03 23.21 10.32 16.67 | 67.63 39.46 20.00 43.93
44.94 29.08 16.10 19.79 | 69.62 48.52 25.59 46.29

<

\
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enabling CR activates the iterative merging process, allowing adjacent segments to be aggregated
based on semantic similarity to form the final prediction.

Hierarchical Temporal Decomposition. Examining individual HTD layers reveals their com-
plementary strengths. Event-level segmentation achieves high recall at loose thresholds (39.34%
R@0.1 on TACoS, 63.92% R@0.3 on Charades-STA), reflecting the fact that coarse segments are
more likely to overlap with ground-truth intervals. However, its precision decreases at stricter thresh-
olds, indicating limited ability to accurately localize fine-grained boundaries. In contrast, Action-
level segmentation achieves the highest R@0.5 on TACoS (11.90%), highlighting its utility for pre-
cise temporal localization. Scene-level segmentation underperforms on both datasets, likely because
TACoS and Charades-STA focus on cooking or household activities, where scene transitions are rare
and most queries do not correspond to scene changes.

Combining multiple layers consistently improves performance, illustrating the complementarity of
different temporal granularities. Two-level combinations, such as Scene+Action, consistently out-
perform any single layer by capturing both coarse coverage and fine-grained details. Extending the
decomposition to three levels yields further gains on TACoS (mloU: 16.99%), whereas the improve-
ment on Charades-STA is marginal (mloU:41.61%). This indicates that multi-level decomposition
is most beneficial in long videos, where temporal structures are more complex, while short videos
are often simple enough that a single or two-level decomposition suffices.

Candidate Refinement. The CR module, designed to adaptively refine the candidates produced
by HTD, brings consistent and substantial gains across benchmarks. It boosts mloU from 16.99%
to 19.79% on TACoS and from 41.61% to 46.29% on Charades-STA, with gains observed at all
IoU thresholds. Comparing uniform + w/o CR and uniform + w CR, we observe that CR leads to
significant gains. The uniform + w/o CR baseline performs worse due to poor segmentation, while
uniform + w CR improves mloU by refining boundaries. The full all w/CR configuration further
enhances performance, confirming CR’s role in handling ambiguities and providing more accurate
segmentation. These results demonstrate that CR effectively filters noisy segments and sharpens
temporal boundaries, confirming its role as a crucial complement to HTD by exploiting cross-level
interactions and query-aware merging for more robust and precise localization.

4.3.2 EFFICIENCY OF VIDEOCLIP-BASED PRE-FILTERING

We quantitatively evaluate the efficiency of our pre-filtering stage, designed to avoid the computa-
tional cost of exhaustively scoring all candidate segments with VLMs,shown in Table[5} The reduc-
tion ratio correlates with video length and structural complexity. On Ego4D-NLQ, featuring long
egocentric videos with dense content, filtering reduces the average number of segments from 146.68
to 9.0 per video, corresponding to a 93.9% reduction. Similarly, TACoS and ActivityNet-Captions
see reductions of 76.6% and 79.4%, respectively.

These results confirm that our filtering preserves high-quality candidates while pruning irrelevant
ones, reducing the number of VLM score computations from hundreds to single digits per video.
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Table 5: Efficiency Improvement of VideoCLIP-based Filtering

Measure | Charades-STA ANet-Captions TACoS Ego4D-NLQ
Segments (w/o Filter) 9.75 22.26 38.19 146.68
Segments (w/ Filter) 8.17 4.59 8.92 9.0
Reduction (%) 16.2 79.4 76.6 93.9
Effect of B Effect of A
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Figure 4: Parameter sensitivity analysis. Left: the effect of 8 on VideoCLIP-based pre-filtering.
Right: the effect of A on the final scoring function.

This makes training-free temporal grounding computationally tractable and scalable, particularly
for long and complex videos.

4.4 PARAMETER SENSITIVITY

We analyze the sensitivity of our method on the TACoS dataset with respect to two key hyperpa-
rameters: the merging threshold ( in the VideoCLIP-based pre-filtering stage and the weighting
parameter X in the CR module. Figure @reports Recall@ K and mIoU in different parameter values.

For 3 (Figure E], left), performance remains relatively stable in the range [0.2, 0.6], with the best
mloU observed at 5 = 0.5. This indicates that the pre-filtering threshold is not highly sensitive,
since the hierarchical decomposition already provides diverse proposals. However, when 3 exceeds
0.6, semantically distinct moments tend to be merged, which harms localization accuracy.

For )\ (Figure [ right), the highest mIoU is achieved at A = 0.99. This validates that the VLM
score Syl 1S the dominant factor for accurate localization. However, as the VLM tends to output
discrete confidence values, the VideoCLIP score sji;, provides essential complementary cues. By
assigning a minimal weight (1%) to Sclip, We effectively break ties among candidates with equal
VLM scores without disrupting the high-quality semantic alignment provided by the VLM.

4.5 INFERENCE EFFICIENCY

To evaluate scalability, we benchmarked HiTeA against representative baselines on both long-video
and short-video datasets. In our analysis, HiTeA achieves a stable online inference latency (~7-8s)
that is largely insensitive to video length. This significantly outperforms dense scanning or proposal-
based baselines, which often suffer from linear or quadratic complexity scaling on long inputs. The
detailed runtime analysis and full comparison table are provided in Appendix [A.6]

5 CONCLUSION

We have presented HiTeA, a fully training-free framework for temporal grounding in long videos,
designed to tackle the challenges of complex temporal structures and high computational costs. Cen-
tral to our approach is the Hierarchical Temporal Decomposition (HTD) strategy, which structures
videos into a coarse-to-fine hierarchy. This allows off-the-shelf VLMs to localize queries with high
precision, completely without supervision. Extensive experiments validate our approach, showing
state-of-the-art zero-shot performance. HiTeA’s strong results on long-video benchmarks highlight
its scalability and robustness, paving the way for practical, efficient video understanding systems.

10



Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT.

To ensure reproducibility, we have taken several measures. A complete description of the pro-
posed framework is provided in Section (3| and further implementation details, including feature
extraction, hyperparameter settings, and dataset-specific preprocessing, are documented in Ap-
pendix [A.3] The full source code is available at the anonymized link: https://anonymous.
4open.science/r/HiTeA_code. While pre-trained models and raw datasets must be ob-
tained from their official sources due to size constraints, we provide examples of processed data
formats and will release all intermediate files generated during preprocessing to make replication
straightforward. In addition, all pre-trained models used in our work are publicly available, with
their versions and usage explicitly specified in the appendix. These resources are intended to facili-
tate faithful reproduction of our results and foster future research in zero-shot temporal grounding.
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A APPENDIX

A.1 QUALITATIVE RESULTS.

A.1.1 LONG-VIDEO EXAMPLE

>Query: A large plate is removed for the mango. TACoS

>Length
o—@ o—©@
>Event O 7 43 57 165
—0——0—0—0—0—0 00— —©@ O0—O0—0
>Scene 62 111 154159 187 248 309
. 0—0—00—0 00000000 o—©@ *—0—00—0—0>
>Action 30 103 172 340

(57,165)  5,5:0.1344 54,001 (248,309)  5,,:0.1462 Sgeni0.2 (62,103)  5:0.1350 5g,:0.1
> (238,321) 5,,:0.1367 Sgeni0.2 (238,248)  5,,:0.1430 54,,:0.8 (187.238)  s,:0.1334 54,,.,:0.1
(165,238) 5,,:0.1291 Sg,,:0.1 (62,111)  5,;,:0.1341 s,0,:0.1 (103,111)  5,,:0.1332 $4:0.1

> (238,248) 5¢in:0.7934 || (248,309) sfina:0.1995 || (187,321) sfinq:0.1003 Prediction:(238,248)

Figure 5: A qualitative example of the proposed hierarchical temporal decomposition and matching
process for the query.

Figure [3] illustrates the hierarchical reasoning of our framework for the query A large plate
is removed for the mango.” Multi-scale candidate boundaries are first generated by the HTD
module—event-level (blue), scene-level (green), and action-level (yellow) splits. Irrelevant can-
didates are filtered by VideoCLIP, and the remaining segments are scored by a frozen VLM
(Qwen2.5-VL), where scjjp provides coarse semantic alignment and sgyen reflects more precise
query-conditioned relevance. The CR module then integrates and re-ranks these candidates to pro-
duce the final prediction.

In this example, the short but critical interval [238, 248 ]—corresponding to the instantaneous plate
removal—receives the highest confidence score (s = 0.79) after refinement, whereas longer and
more ambiguous segments (e.g., [248, 309]) are assigned lower scores. This demonstrates that
our framework effectively localizes fleeting yet semantically important events in long videos by
combining hierarchical temporal reasoning with coarse-to-fine semantic matching from a general-
purpose VLM, all without any task-specific training.

A.1.2 SHORT-VIDEO EXAMPLES

Figure [6] presents two qualitative examples from short-video datasets (Charades-STA). Since short
videos typically lack significant scene-level changes, we selected two illustrative clips to show-
case different decomposition strategies: single-level action decomposition (top) and two-level ac-
tion+event decomposition (bottom).

The top example demonstrates that action-level decomposition alone can successfully capture fine-
grained temporal transitions. Despite only three action segments and relatively low VideoCLIP
scores, the relevant candidates are retained, and the frozen Qwen VLM accurately matches the
textual query to the corresponding video segments.

In the bottom example, combining event-level and action-level decompositions captures semantic
variations more comprehensively, resulting in precise segment boundaries. Along with Figure [3]
these examples highlight that our framework can flexibly adapt to videos of different lengths, demon-
strating robust localization capability and strong generalizability across both short and long videos.
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>Query:the person looks at a picture on the desk. Charades-STA |

>Length 6T:(8.1, 21.2)
o O @ >
>Action O 9.4 20.4 31.97
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Figure 6: Qualitative examples on short-video datasets. The top case illustrates the result obtained
using only the action-level decomposition, while the bottom case shows a comparison between
event-level and action-level results.

A.2 MAIN ALGORITHMS.

A.2.1 HIERARCHICAL MERGING

Algorithm. We enforce hierarchical consistency among event, scene, and action boundaries
through a top-down merging strategy. The procedure is summarized in Algorithm [T]

Algorithm 1 Hierarchical merging of temporal boundaries

1: Input: Feature similarity curves SVit, §flow §dino yideo duration T, tolerance o
2: Output: Final boundary set Pfinal .
3: Extract candidate boundaries: C®V°" < findminima(SV), C5¢m¢ < pelt(Sfow),
Caction P pelt(sdino)
4: Merge nearby points: P* «+ merge numbers(C¥,T), k € {event, scene, action}
5: Hierarchical merging: PS°°n¢ «— M (Pevent pscene )
fPaction P M(fpscene Paction CY)
6: Return 'Pﬁnal _ {fpevent7 '7Pscene, 'P’action}

Boundary Extraction Functions. The function find_minima selects local minima from a sim-
ilarity curve to generate candidate boundaries, while pelt implements the PELT change point
detection algorithm, which identifies temporal transitions based on curve statistics. The function
merge_numbers enforces a minimum distance between boundary points by merging those that
are overly close. The hierarchical merging function M(+) integrates boundaries across levels: for
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each higher-level boundary, the closest lower-level point is replaced if within a temporal tolerance
a, otherwise the higher-level point is inserted.

Rationale for Multi-Granular Boundary Detection. Different granularity levels correspond to
distinct temporal dynamics. Event-level boundaries reflect long-term semantic shifts and can be
reliably captured using local minima in VideoCLIP-based similarity curves. Scene- and action-
level boundaries represent shorter and more frequent transitions; for these, PELT efficiently detects
multiple change points by modeling curve statistics rather than relying solely on local extrema. This
strategy balances computational efficiency with boundary accuracy.

Hierarchical Merging and Adaptation. Candidate boundaries are initially extracted indepen-
dently from each feature space (CLIP-ViT, RAFT flow, DINOv2). The hierarchical merging func-
tion M(-) then integrates higher-level boundaries into lower levels, ensuring fine-grained action
segments align with broader temporal structures. In long videos, this merging is essential to main-
tain global coherence and prevent error accumulation. In short videos, however, hierarchical merg-
ing is disabled: the smaller number of segments and sufficient diversity across feature spaces make
independent candidates preferable. This design choice, empirically validated in Table |8 allows the
framework to adapt to different video lengths while preserving both precision and robustness in
temporal localization.

A.2.2 CANDIDATE REFINEMENT

Algorithm 2 Candidate refinement via Progressive Merging

1: Input: Initial candidate segments {c; } with scores {s;}, score threshold 6
2: Output: Refined candidate set Sg,,) With updated scores
3: while merging is possible do
4: for each pair (c;, ¢;) not yet merged do
5: if |s; — sj| < 0 and ¢, ¢; are temporally proximate then
6 Compute weights a = s;/(s; + 5;), b = 5;/(s; + 55)
7 Update boundaries of merged segment by score-weighted averaging
8: Assign merged score Spew = a - 8; +b- 55
9: Replace (¢;, ¢;) with new merged segment
10: end if
11: end for
12: end while
13: Rank refined candidates Sgyp,1 by updated scores
14: return Sgpa

The candidate refinement stage addresses two key challenges arising from hierarchical temporal
decomposition (HTD) and the limitations of off-the-shelf VLMs. First, HTD-generated segments
may not align perfectly with every video’s inherent structure, and query-relevant content often spans
multiple hierarchical levels. The initial overlapping candidates from different hierarchical levels
may require consolidation to produce temporally coherent predictions. Second, short segments may
lack sufficient visual context for reliable VLM assessment, leading to under-scoring, while long
segments may dilute salient information with irrelevant content—a known weakness of VLMs in
long-video understanding.

To mitigate these issues, we introduce a merging algorithm, merge_segments_all, which con-
solidates candidates based on score similarity (within a threshold 6) and temporal overlap. The pro-
cess operates similarly to agglomerative clustering: segments satisfying these criteria are merged,
with new boundaries computed as a confidence-weighted average. This design ensures that seg-
ments with higher VLM scores exert greater influence on the final localization, thereby correcting
for sampling bias and reconciling over-segmentation across hierarchical levels. The final candidate
set, Stinal, 18 ranked by a unified score Sgnal = A - Syim + (1 — A) - Saip, balancing cross-modal
relevance and temporal coherence in the top-ranked predictions.
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A.2.3 DISTINCTION BETWEEN MERGING STRATEGIES

Our framework incorporates two distinct merging processes: the Hierarchical Merging in the Tem-
poral Decomposition (HTD) stage and the Progressive Merging in the Candidate Refinement (CR)
stage. The apparent complexity of having two merging steps is necessary because they serve fun-
damentally different purposes—one is video-centric and structural, the other is query-centric and
semantic.

HTD Merging (Structural and Video-Centric). The merging performed in the HTD module (as
detailed in Algorithm[T]) and Appendix is query-agnostic and operates offline. Its primary
goal is to decompose the video based on its intrinsic visual features (derived from ViT, DINO,
RAFT) to mine the inherent temporal hierarchy (actions, scenes, events). The merging process here
ensures that all generated candidate segments are structurally and physically coherent. These
segments act as high-quality, pre-computed building blocks for the entire framework. Since HTD
is query-independent, it cannot predict the final semantic boundary requested by the user.

CR Merging (Semantic and Query-Centric). In contrast, the Progressive Merging in the CR
module (in Algorithm2)) and Appendix[A.2.2) is query-centric and operates online. This step relies
on the VLM and VideoCLIP similarity scores, representing a deep semantic interaction between the
query and the video content. A single natural language query often corresponds to a semantic event
that spans multiple adjacent HTD structural units (e.g., a “cooking” query may cover HTD’s
separate “chopping” and “frying” units). The CR merging step dynamically re-aggregates these
HTD units that share a high semantic relevance to the specific query, ensuring the output segment
captures the complete semantic scope of the user’s intent.

Rationale for Two-Stage Merging. The necessity of the two-stage approach lies in efficiency
and accuracy: HTD provides the highly refined, structurally sound components, which reduces
the search space significantly. CR then utilizes the powerful VLM to ensure that these structural
components are correctly and fully assembled into the semantically accurate boundary required by
the query. Both stages are indispensable for achieving robust temporal grounding performance.

A.3 IMPLEMENTATION DETAILS.

This section provides a comprehensive account of the experimental setup, covering feature extrac-
tion, model configurations, hyperparameter settings, and dataset-specific strategies. We further in-
clude dataset statistics and analysis to contextualize the evaluation and ensure transparency and
reproducibility of our results.

A.3.1 FEATURE EXTRACTION AND SIGNAL CONSTRUCTION

* Frame Sampling: Videos are subsampled at a rate of 5 FPS for Charades-STA and 1
FPS for all other datasets to balance computational efficiency and temporal resolution.

¢ Feature Encoders: We use frozen, off-the-shelf models:

— ViT (CLIP): ViT-B/32 to extract frame-wise semantic features (v}t € R5'2). Its
language-aligned embeddings provide high-level event context when aggregated over
several seconds.

— DINOv2: DINOv2-base (ViT-B/14) to extract structural features that are sensitive to
scene layout and viewpoint changes, serving as a scene-level signal. Each frame is
represented as a 768-dimensional vector (viine ¢ R768),

— RAFT: Optical flow between consecutive frames is extracted using a pre-trained

RAFT model (large variant). The magnitude of the flow field is spatially averaged
to produce a frame-level motion intensity score (v € R).

» Rationale for backbone selection: We deliberately choose three widely used encoders
that emphasize complementary cues at different temporal scales.

— For event-level semantics, we use CLIP ViT-B/32 as it produces image embeddings
aligned with natural language and has strong zero-shot transfer, making the aggregated
features over several seconds a natural descriptor of high-level activity context.

18



Under review as a conference paper at ICLR 2026

— For scene-level structure, we adopt DINO-v2, whose self-supervised ViT features are
sensitive to changes in layout, background, and viewpoint, thus providing a robust
signal for shot- and scene-like transitions.

— For action-level motion, we employ RAFT-Large, a high-accuracy optical-flow model
whose dense flow fields summarize instantaneous motion; the magnitude of the flow
directly reflects short, local movements that correspond to action boundaries. Our
HTD module only relies on these semantic/structural/motion properties, so other en-
coders providing similar cues could be substituted without modifying the overall al-
gorithm.

To empirically justify this selection, we conducted an ablation study in Section[A.4.3] The
results demonstrate that these models are chosen as established representatives with proven
generalization capabilities, thereby maximizing the model’s performance.

This three-stream design makes HiTeA naturally backbone-agnostic: any encoders that
provide comparable event-, scene-, and action-level signals can be plugged into our HTD
module without changing the rest of the framework.

A.3.2 HIERARCHICAL TEMPORAL DECOMPOSITION

* Boundary Detection:

— Event-level (C®¥°"): The video is first partitioned into coarse segments of uniform
duration. Within each segment, local minima in the sV*"* curve are identified as
potential event boundaries, capturing major semantic shifts.

— Scene-level (C5°°"¢) & Action-level (C>“*°"): The PELT change point detection al-
gorithm is applied to the s%°°"¢ and s2°*°" curves, using a radial basis function (RBF)
kernel. The penalty term is empirically set to 5 for both feature types to balance sen-
sitivity and robustness in transition detection.

¢ Parameters in Hierarchical Merging:
— Merge numbers: Ensures a minimum distance of 2 seconds between consecutive
boundaries within the same level.

— Temporal tolerance: In function M, the temporal tolerance « is set to 5 seconds.
A higher-level boundary replaces the nearest lower-level one if their distance is < a,
otherwise it is inserted.

— Activation: The Hierarchical Merging (HM) process is enabled for long-video
datasets (Ego4D-NLQ, TACoS) and disabled for short-video datasets (Charades-
STA, ActivityNet-Captions). This is based on the empirical analysis in Ap-

pendix

A.3.3 CANDIDATE PROPOSAL AND SCORING

* VideoCLIP-based Pre-filtering:

— Model: We use a VideoCLIP model (VideoCLIP-XL (Wang et al.|[2024a))) to compute
the coarse similarity s, between a candidate video segment and the text query.

— Segment Merging: Adjacent segments are merged if their s.j;, scores differ by less
than 5 = 0.1. This threshold was empirically set and applied consistently across
all datasets. A detailed analysis of the merging behavior and its impact on different
datasets is provided in the experimental section [4.4]

— Top-K Selection: The top £ = 3 segments from each hierarchy level (event, scene,
action) are selected for VLM evaluation, resulting in a maximum of 9 segments per
video.

¢ VLM-based Scoring:
— Model: We utilize Qwen2.5-VL (7B) as our primary frozen VLM for its strong video-
language alignment capability.
— Scoring: The model computes a semantic similarity score sy, € [0, 1] for each can-
didate segment. The final score for a candidate is computed as Sfipal = A+ Syim + (1 —

A) - Sclip, With A = 0.99. We set A = 0.99 to ensure that the final ranking is dominated
by the VLM’s semantic score, while still leveraging CLIP as a lightweight tie-breaker.
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Table 6: Dataset statistics and characteristics. Key attributes include the number of videos, number
of language queries, average video length, average moment length, annotation source, and domain.

Benchmark #Videos #Queries Video Len. (s) Moment Len. (s) Domain
Charades-STA 1.3k 3.7k 29 7.8 Activity
ANet-Captions 4.9k 17.1k 118 40.2 Activity
TACoS 25 4.0k 368 31.9 Cooking
Ego4D-NLQ 415 4.6k 472 10.7 Ego-centric

In practice, the VLM often assigns identical or nearly identical scores to multiple can-
didate segments, making it difficult to establish a clear ranking. Incorporating a small
weight from CLIP provides additional discriminative power in such cases, while the
near-unit weight on the VLM score prevents CLIP from interfering with the primary
semantic alignment.

A.3.4 CANDIDATE REFINEMENT

* Merging Criteria: Temporally proximate or overlapping segments are iteratively merged
if they satisfy both conditions: (1) their boundaries are within 1 second of each other, and
(2) their unified confidence scores sgy,) differ by less than 0.14.

* Boundary Update: New boundaries for merged segments are computed as the score-
weighted average of the original boundaries.

A.3.5 DATASET ANALYSIS

We conduct experiments on four widely used benchmarks: Charades-STA, ActivityNet-Captions,
TACoS, and Ego4D-NLQ. As summarized in Table[6} these datasets vary significantly in scale, video
duration, and domain coverage, thereby providing a comprehensive evaluation setting. Charades-
STA and ActivityNet-Captions consist of short-to-medium length activity videos paired with natural
language queries, while TACoS focuses on long cooking videos with fine-grained temporal annota-
tions. Ego4D-NLQ, in contrast, represents an egocentric perspective with long untrimmed videos
and query annotations grounded in first-person interactions. Importantly, all four datasets are an-
notated by human annotators, ensuring high-quality language descriptions and reliable temporal
grounding labels. This diversity in domain, video duration, and query density makes the set of
benchmarks complementary and well-suited for evaluating the scalability and generalization ability
of temporal grounding methods.

Figure [/| further illustrates the distribution of normalized moment lengths across the four datasets.
Charades-STA exhibits relatively short moments, mostly concentrated within 0.1-0.3 of the video
duration, reflecting its focus on fine-grained activity descriptions. ActivityNet-Captions displays a
broader spread, but still biases toward shorter segments, which is consistent with the open-domain
nature of its videos and captions. TACoS, in contrast, shows a significant proportion of long mo-
ments, often covering more than half of the video duration, highlighting the dense and procedural
structure of cooking videos. Ego4D-NLQ presents a more balanced distribution, with moments
spanning a wide range of relative lengths, reflecting the egocentric setting where queries may corre-
spond to both brief interactions and extended activities.

These distinct distributions underscore the heterogeneity of temporal grounding benchmarks.
Datasets with predominantly short moments (e.g., Charades-STA) emphasize precise boundary de-
tection, while those with longer or more varied segments (e.g., TACoS, Ego4D-NLQ) challenge
methods to handle diverse temporal scales. This diversity motivates the need for our hierarchical
decomposition and adaptive scoring framework, which is explicitly designed to cope with the vari-
ability in moment granularity across benchmarks.

Dataset-Specific Configurations. Most hyperparameters remain fixed across datasets. The
dataset-specific adjustments are the frame sampling rate and the activation of the Hierarchical Merg-
ing module, as detailed above. This demonstrates the robustness and generalizability of our frame-
work.
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Figure 7: Distribution of normalized moment lengths across four benchmarks. The x-axis denotes

the ratio of the annotated moment length to the corresponding video duration, while the y-axis shows
the percentage of queries in each bin.

Table 7: Ablation Study on Visual-Language Backbones.

Model ‘ Size ‘ TACoS | Charades-STA
‘ ‘ 0.1 0.3 0.5 mloU ‘ 0.3 0.5 0.7 mloU

Videoclip-XL 0.6B | 22.19 1295 738 950 |55.03 3823 20.27 37.17
+InternVideo2.5 | 7B | 40.94 2450 13.24 17.03 | 69.11 48.39 2524 45.94
+Qwen2.5-VL 3B | 41.85 22.66 11.61 1636 | 62.15 4239 2220 41.50
+Qwen2.5-VL 7B | 4494 29.08 16.10 19.79 | 69.62 48.52 25.59 46.29

A.4 SUPPLEMENTARY EXPERIMENTS.
A.4.1 IMPACT OF VISUAL-LANGUAGE MODEL SELECTION

The results in Table[/|reveal several important insights regarding the role of different VLMs within
the HiTeA framework. When using only Videoclip-XL without a large-scale VLM, performance
on short-video datasets remains reasonable, but results on long videos are significantly lower. This
suggests that effective long-video grounding requires the strong generalization capabilities provided
by large VLMs. Across models, performance generally scales with model capacity: as the number
of parameters increases from 3B to 7B in Qwen2.5-VL, metrics on both TACoS and Charades-
STA improve consistently. This trend indicates that larger VLMs offer stronger visual-language

alignment, enabling more accurate evaluation of the semantic relevance between video segments
and text queries.

Equally notable is that VLMs of similar scale demonstrate comparable performance. For exam-
ple, Qwen2.5-VL and InternVideo2.5, both with 7B parameters, achieve nearly identical results on
Charades-STA. This suggests that, provided the model has sufficiently rich general representations,
HiTeA can leverage different backbone VLMs without any task-specific adjustment or fine-tuning.
Overall, these observations highlight the framework’s robustness and generality, confirming that the
combination of hierarchical temporal decomposition and large pre-trained VLMs can consistently
support effective long-video temporal grounding in a fully training-free setting.
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Table 8: Impact of Hierarchical Merging.

Method | Charades-STA \ ANet-Captions
| 03 05 07 mloU| 03 05 07 mloU

wHM |69.65 4430 22.66 45.09 | 53.65 30.55 16.24 37.30
w/o HM | 69.62 48.52 25.59 46.29 | 5446 31.1 16.57 37.93

A.4.2 IMPACT OF HIERARCHICAL MERGING.

The results in Table [§] reveal a nuanced but consistent pattern: the application of our Hierarchical
Merging (HM) module leads to a slight performance degradation on short-video datasets (Charades-
STA and ANet-Captions), while its benefits are pronounced and essential for long videos (as es-
tablished in our main results). We argue this is not a shortcoming but a critical, intentional design
feature that demonstrates our framework’s adaptive capability.

The core rationale lies in the fundamental structural difference between short and long videos. Short
videos (e.g., Charades-STA) typically contain fewer semantic segments and a less complex hierar-
chical temporal structure. In this setting, the candidate boundaries extracted from the three comple-
mentary feature spaces (event, scene, action) are already sparse and highly informative. Enforcing
hierarchical merging here can be overly restrictive; it risks diluting the valuable diversity of these
independent signals by forcing them into a single hierarchy. The marginally superior performance
without HM (w/o HM) suggests that for short videos, preserving this diversity of boundary hy-
potheses is more beneficial than imposing a rigid top-down structure. The different feature spaces
effectively provide an ensemble of perspectives, leading to richer and more accurate localization.

Conversely, long videos exhibit a deeply nested temporal hierarchy with abundant redundant content.
Without a mechanism to enforce consistency across different levels of granularity, the sheer number
of potential boundaries from various features would lead to temporal clutter, error accumulation, and
a loss of global coherence. The HM module is indispensable here. It acts as a regularizer, pruning
spurious detections and aligning fine-grained action transitions with broader scene and event con-
texts. This creates a clean, coherent, and multi-scale temporal scaffold that is crucial for efficiently
and accurately navigating long durations.

Therefore, our decision to disable HM for short videos and enable it for long videos is a principled
one, grounded in the data’s inherent characteristics. It demonstrates that our framework is not a
one-size-fits-all solution but intelligently adapts its strategy to the input. This adaptive design is
a strength, contributing to robust and state-of-the-art performance across both short and long-form
video benchmarks.

A.4.3 IMPACT OF FEATURE EXTRACTION MODEL SELECTION.

To investigate the impact of specific feature extractors and verify the generalizability of our frame-
work, we conducted ablation studies by replacing the backbone models at the Action and Event
levels.

Specifically, we replaced the RAFT optical flow model with FlowNet (Dosovitskiy et al.,[2015)) for
the Action level, replaced DINOv2 with iBOT (Zhou et al.| 2021) for the Scene level, and replaced
the ViT-CLIP model with a standard Swin-Transformer (Liu et al., [2021) for the Event level. The
results on Charades-STA are reported in Table[9]

As observed in Table[9] while the framework maintains competitive performance using alternative
backbones, our default configuration yields the highest accuracy.

Action Level: Using FlowNet results in a performance drop of 1.27% mloU. This validates our
choice of RAFT, as its dense, pixel-level flow estimation captures fine-grained motion boundaries
more effectively than the coarser features from FlowNet.

Scene Level: Replacing DINOv2 with iBOT leads to a 1.33% decrease in mloU. While iBOT
utilizes Masked Image Modeling (MIM) to effectively capture local structural details—crucial for
detecting scene transitions—DINOV?2 achieves superior results. This justifies our selection of DI-

22



Under review as a conference paper at ICLR 2026

Table 9: Impact of Feature Extraction Model Selection.

Model Level | Charades-STA
| 0.3 0.5 0.7 mloU
Flownet(Dosovitskiy et al,2015) ~ Action | 68.92 46.94 23.41 45.02

iBOT(Zhou et al.,[2021) Scene | 69.14 46.37 23.47 44.96
Swin-Transformer(Liu et al.,[2021) Event | 67.45 45.46 23.76 44.47
Ours 69.62 48.52 25.59 46.29

NOV2, as it inherits the structural awareness of iBOT while benefiting from larger-scale curated data
and optimized training recipes, resulting in more robust generalized features.

Event Level: Replacing ViT with Swin-Transformer leads to a 1.82% drop in mIoU. This confirms
the necessity of Vision-Language alignment at the top level. ViT explicitly aligns visual concepts
with language queries, allowing for more accurate detection of high-level semantic narrative shifts
compared to purely visual features.

These empirical results substantiate that our core contribution lies in the hierarchical processing
strategy itself (Event-Scene-Action), rather than being tied to specific architectures. However, our
default configuration yields the highest accuracy. This demonstrates that while the hierarchical
structure is the primary driver of success, our selection of ViT, DINO, and RAFT—chosen as es-
tablished representatives with proven generalization capabilities—is essential for maximizing the
model’s overall potential, thereby empirically justifying our architectural decisions.

A.5 COMPUTATIONAL COMPLEXITY

HiTeA consists of two major stages: hierarchical candidate generation and VLM-based scoring.

1. Hierarchical Candidate Generation. Given a video with NV frames, we first extract multi-scale
VideoClip features and apply the Hierarchical Temporal Decomposition (HTD) module to generate
candidate segments at multiple temporal granularities. The number of frames NV is typically very
large for long videos. The computation involved in this stage primarily includes feature extraction,
lightweight aggregation, and candidate filtering, which scale approximately linearly with the video
length:

Ontp = O(H - N), (&)

where H = 3 is the number of hierarchical levels. Since these operations do not involve heavy
neural network inference, this stage is computationally efficient even for long videos.

2. VLM-Based Scoring. The computationally expensive component is the scoring of candidate
segments using a frozen vision—language model (VLM). HiTeA applies a top-K filtering strategy at
each hierarchical level, such that only the most promising candidates are evaluated by the VLM. Let
K; denote the number of candidates retained at level ¢, then the total number of VLM evaluations is:

H
NVLM = Z Kz . (6)
i=1
The corresponding complexity is:
H
OVLM =0 <Z K1> ~ O(H . K) ; (7)
i=1

where K' < N ensures that VLM inference is tractable, even for very long videos. This represents a
substantial reduction compared to a brute-force search over all possible start-end pairs, which would
require O(N?) VLM evaluations.
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A.6 SCALABILITY AND RUNTIME ANALYSIS

Clarification on Multi-Model Usage. Although HiTeA leverages five pre-trained components to
ensure robust performance, most of them are used strictly in an offline preprocessing stage. The
pipeline is structurally decoupled as follows:

* Offline preprocessing (executed once per video): (1) a video encoder (e.g., ViT) for
event-level features; (2) a self-supervised backbone (e.g., DINO) for complementary scene-
level cues; (3) a motion model (e.g., RAFT) for optical-flow features. These backbones are
only used for feature extraction and do not participate in online reasoning.

* Online interaction (executed per query): (4) a lightweight retriever (e.g., VideoCLIP) for
candidate selection; (5) a VLM (e.g., Qwen2.5-VL) for high-level reasoning over a small
set of candidates.

During user interaction, only components (4) and (5) are invoked. In typical deployments, video-
level features are pre-computed and cached, so the heavy perceptual cost is amortized across queries
and does not affect per-query latency. Moreover, the three offline backbones (ViT, DINO, RAFT)
are fully parallelizable across GPUs.

Computational Complexity. We compare HiTeA against three representative training-free base-
lines: the dense-scanning TFVTG (Zheng et al, [2024), the compositional proposal method of |Luo
et al.| (2024), the BLIP-based zero-shot VMR (Wattasseril et al., 2023)), and the dense-captioning
approach Moment-GPT (Xu et al., 2025). To rigorously evaluate scalability, we conduct experi-
ments on QVHighlights and TACoS, which are characterized by distinct temporal distributions with
average video lengths of ~150s and ~368s, respectively.

* Baselines (O(L?) or O(L)). TFVTG requires dense proposal enumeration over all tem-
poral pairs, leading to O(L?) complexity in the video length L. |Luo et al. (2024) operate
on a fixed number of video snippets L, (32 in their implementation) and decompose each
query into L¢ simple queries; their online cost therefore scales as O(L, - Lg) and is
effectively insensitive to the raw video length, but the original paper does not report wall-
clock latency. The BLIP-based zero-shot VMR approach (Wattasseril et al.,[2023) performs
sparse per-second BLIP/BLIP-2 scoring followed by watershed-style merging, resulting in
an O(L) online cost in L with a lighter per-frame model than full MLLMs, but again with-
out reported runtime on long-video benchmarks. Moment-GPT performs frame-by-frame
MLLM captioning, which scales linearly with L (O(L)) but with a substantial constant
factor due to the heavy MLLM.

* HiTeA (O(K) online). HiTeA first abstracts each video into a small set of structural events
via Hierarchical Temporal Decomposition (HTD), and then selects a fixed number of can-
didates (Top-K) for VLM reasoning. The online reasoning complexity is thus reduced to
O(K), where K is the number of selected candidates. We set K'=9 by default, making the
online cost effectively insensitive to the raw video length L in our regime of interest.

Practical Runtime Decomposition. To make the computational cost more transparent, we further
decompose HiTeA’s runtime into two stages.

Stage 1: Offline feature extraction (once per video). The first three backbones in HiTeA—ViT,
DINO, and RAFT—are used solely for feature extraction. In practical deployments, video fea-
tures (e.g., RGB embeddings, optical flow, CLIP-style embeddings) are typically pre-computed and
stored. These three models can be executed fully in parallel. On TACOS videos, extracting all
features for a single video takes about 6-7s, dominated by RAFT optical-flow computation. If we
disable optical flow and only keep event/scene features, this offline stage reduces to 1-2s, confirming
that RAFT is the main contributor to offline cost.

Stage 2: Online per-query reasoning (user-perceived latency). This stage determines the latency
observed by the end user. It involves two models (VideoCLIP and the VLM) and two lightweight
algorithms (HTD and CR):
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* Algorithmic overhead is negligible. HTD operates on cached features and runs in approxi-
mately 0.0012s per video on average; CR requires only 0.0001s per query in our measure-
ments. Their contribution to total latency is negligible compared to VLM inference.

* Cascade-filter design reduces VLM calls. A straightforward zero-shot design would apply
a VLM to all (or densely sampled) segments, leading to hundreds of VLM inferences on
long videos. HiTeA instead adopts a two-stage cascade: (i) a very fast VideoCLIP module
scores all HTD candidates (e.g., ~38 on TACOS and ~147 on Ego4D), and (ii) only the
Top-K candidates (K=9) are passed to the heavy VLM. In our implementation, a single
Qwen2.5-VL forward pass takes about 1s with an optimized runtime, so the overall VLM
cost is tightly controlled.

Table 10: Runtime efficiency breakdown. Offline cost is dominated by RAFT (optical flow) but is
amortized over queries. Online latency remains approximately constant because the heavy VLM is
restricted to Top-K candidates, avoiding the length-dependent scaling observed in dense captioning
approaches. Most training-free works do not report time anaylsis, so we primarily list their online
complexity. For Moment-GPT, we report the QVHighlights latency from (Xu et al., 2025) and
provide a coarse extrapolation on TACOS based on average video duration.

Inference Latency (s / query)

Method Mechanism Online Complexity

Short (QVH) Long (TACOS)
BLIP-VMR (Wattasseril et al.}|2023)  Sparse 1s scoring + merging O(L) x BLIP 12.7 25 (est.)
TFVTG (Zheng et al.||2024) Dense scanning O(L?) -
Luo et al.|(2024) Cartesian product O(Ly - Lqg) - -
Moment-GPT (Xu et al.||2025) Dense frame captioning O(L) x MLLM 16.1 32 (est.)
HiTeA (Ours) Cascade reasoning O(K),K=9 See below See below
— HiTeA breakdown: offline vs. online —
1. Offline cost ViT + DINO + RAFT O(L) 3.0-4.0 6.0-7.0"
2. Online latency VideoCLIP filter — VLM O(K) 7.0-8.0 7.0-8.0

T Dominant cost is RAFT (~5-6s). Without flow, offline cost drops to ~1-2s. HTD overhead is negligible (~0.0012s).
For [Luo et al.|(2024), L., denotes the fixed number of video snippets (32 in their implementation) and L, is the number of simple queries.
The inference latencies on TACOS for BLIP-VMR and Moment-GPT are estimated based on average video length.

On TACOS, the average per-query scoring time of HiTeA is 7-8s. Empirically, most of the time is
spent on the Qwen2.5-VL inferences, while VideoCLIP and the HTD/CR computations contribute
only a tiny fraction. In other words, HiTeA introduces just enough structure (HTD + cascade filter-
ing) to eliminate the hundreds of redundant VLM calls that a naive “one-VLM-over-all-segments”
design would incur on long videos.

Summary. Table and the above breakdown show that while offline preprocessing naturally
scales with video length (e.g., 3—4s — 6—7s from QVHighlights to TACOS), HiTeA’s online la-
tency remains stable at approximately 7.5s per query. This confirms that our sparse structural rea-
soning design effectively shields the user experience from the computational heaviness of the five
underlying models, and maintains a practical efficiency—accuracy trade-off even on long videos.

A.7 LIMITATIONS AND FUTURE DIRECTIONS.

The primary limitation of HiTeA stems from its core design: the hierarchical decomposition deliv-
ers maximal benefit for long, untrimmed videos with complex temporal structures. On very short
clips, the advantages of a strict multi-level hierarchy are naturally diminished. Our ablation studies,
however, reveal that comparable performance can be achieved with a simplified one- or two-level
partitioning, indicating that a fixed three-layer hierarchy is not always necessary.

Furthermore, the decomposition need not be strict in practice. The optimal granularity may vary
depending on factors such as video domain, length, and even the specific query, leading to organic
cross-level overlaps and merges. This inherent complexity is precisely what our Candidate Refine-
ment module is designed to handle. The framework’s adaptability points toward promising future
directions. For instance, rather than relying on a fixed hierarchy, a dynamic strategy could be devel-
oped to adaptively determine the optimal decomposition depth based on video properties. More fun-
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damentally, alternative strategies for temporal segmentation itself—beyond the action-scene-event
paradigm we adopted—are worth exploring. The principle of multi-scale temporal analysis could
also be generalized to other video understanding tasks, such as dense video captioning or summa-
rization. This work serves as an initial step in this direction, establishing a foundation for future
research into more flexible and general temporal reasoning models.

A.8 THE USE OF LLM.

We clarify that a large language model (LLM) was used solely as a writing assistant in the prepa-
ration of this paper. Specifically, the LLM was employed to polish the text, improve grammar, and
refine the clarity and flow of exposition. It was not involved in the design of methods, implemen-
tation of algorithms, execution of experiments, or analysis of results. All technical contributions,
experiments, and conclusions presented in this work are entirely the authors’ own.
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