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Abstract
Pretrained language models (PLMs), such as001
BERT and GPT-3, have dominated the ma-002
jority of NLP tasks. However, relatively003
little work has been conducted on system-004
atically evaluating the language abilities of005
PLMs. In this paper, we present a large-006
scale empirical study on genEral language007
ability evaluation of PLMs (ElitePLM). We008
first design four evaluation dimensions in009
ElitePLM, including memory, comprehension,010
reasoning, and composition, and further mea-011
sure ten widely-used PLMs within five cat-012
egories. Our empirical results demonstrate013
that: (1) the pretraining objectives and strate-014
gies have significant impacts on PLMs perfor-015
mance in downstream tasks; (2) fine-tuning016
PLMs in downstream tasks is usually sensi-017
tive to the data size and distribution; (3) PLMs018
have excellent transferability between similar019
tasks. Our experimental results summarize020
several important findings, which can guide021
the future work to choose, apply, and design022
PLMs for specific tasks. We have made all023
the details of experiments publicly available024
at https://anonymous.4open.science/025
r/Paper-for-ACL-4FD1.026

1 Introduction027

Recent years have featured a trend towards Trans-028

former (Vaswani et al., 2017) based pretrained lan-029

guage models (PLMs) in natural language process-030

ing (NLP) systems. By first pretrained on massive031

unlabeled text, PLMs can be directly fine-tuned on032

downstream tasks, entirely removing the needs to033

task-specific architectures (Radford et al., 2018).034

This paradigm has led to significant progress on035

many challenging NLP tasks such as BERT (De-036

vlin et al., 2019) on reading comprehension and037

GPT-3 (Brown et al., 2020) on text generation.038

Giving new state-of-the-art results that approach039

or surpass human performance on several tasks, it040

is an interesting question about how to systemati-041

cally evaluate the language abilities of PLMs from042

a wide range of perspectives. Given the increasing 043

number of publicly released PLMs, it is particularly 044

useful to derive principles or guidelines of select- 045

ing suitable PLMs for specific downstream tasks. 046

However, existing works either target at some sin- 047

gle ability (Talmor et al., 2020; Zhou et al., 2020), 048

or consider a simple mixture of multiple (small- 049

scale) tasks that lack a comprehensive design and 050

test (Wang et al., 2019b; Liang Xu, 2020). There 051

has been no detailed and systematic analysis char- 052

acterizing the abilities of PLMs in large-scale NLP 053

tasks. To fill the gap of PLMs evaluation, we in- 054

troduce the genEral language ability evaluation 055

(ElitePLM) for empirically and systematically as- 056

sessing the general language abilities of PLMs. 057

The motivation behind PLMs is to create a ma- 058

chine learner equivalent to human being which can 059

understand the language and then be asked to per- 060

form any specific task related to language. In cogni- 061

tive science, the Wechsler Adult Intelligence Scale 062

(WAIS) (Kaufman and Lichtenberger, 2005) is the 063

most commonly used intelligence quotient (IQ) test 064

for measuring the intelligence and cognitive ability 065

of human being. This test would assess the level 066

of individuals on verbal comprehension, percep- 067

tual reasoning, working memory, and processing 068

speed. Thus, by imitating the intelligence test on 069

human, we design four evaluation dimensions in 070

ElitePLM for measuring the abilities of PLMs, in- 071

cluding memory, comprehension, reasoning, and 072

composition. Following previous works (Zhou 073

et al., 2020; Wang et al., 2019b), for each ability in 074

ElitePLM, we elaborate and choose multiple rep- 075

resentative tasks (e.g., question answering for the 076

comprehension ability) and commonly-used bench- 077

marks (e.g., GLUE and SQuAD) to quantitatively 078

evaluate the performance of PLMs. These results 079

can serve as numerical explanations of PLMs at a 080

certain ability. 081

In human intelligence tests, the background of 082

participants (e.g., gender, race, and occupation) 083
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should be as much as diverse. Thus, in ElitePLM,084

we also select a diversity of PLMs to conduct gener-085

alized and meaningful comparisons. According to086

training objectives, pretrained language models can087

be divided into three categories: unidirectional lan-088

guage models (e.g., GPT (Radford et al., 2019)) for089

natural language generation (NLG), bidirectional090

language models (e.g., BERT (Devlin et al., 2019))091

for natural language understanding (NLU), and hy-092

brid language models (e.g., UniLM (Dong et al.,093

2019)) for combining the first two paradigms. Be-094

sides, knowledge-enhanced language models (e.g.,095

ERNIE (Zhang et al., 2019)) and text-to-text lan-096

guage models (e.g., T5 (Raffel et al., 2020)) also097

emerge as important branches of PLMs. Consider-098

ing the variety, we finally choose ten widely-used099

PLMs within the above five categories and evaluate100

their abilities on the four dimensions. The compar-101

isons of these PLMs in configuration and pretrain-102

ing setting have been shown in Appendix A.103

From the experimental results we have three104

salient findings. First, the pretraining objectives105

and strategies have significant impacts on PLMs106

performance in downstream tasks. We observe that107

the bidirectional training objective like BERT and108

pretraining strategies like larger training batches in109

RoBERTa are helpful for memorizing large-scale110

pretraining corpus; pretraining objectives like per-111

mutation language modeling in XLNet are highly112

useful for modeling the bidirectional context in113

text; left-to-right prediction in GPT-2 for generat-114

ing long text. Second, when fine-tuning PLMs in115

downstream tasks, their performances are usually116

sensitive to the data size and distribution, which117

can be addressed by designing task-specific objec-118

tives like inter-sentence coherence loss in ALBERT119

for sentence-level reasoning tasks. Third, PLMs120

have excellent transferability between similar tasks.121

This finding can be utilized to fine-tune PLMs in122

the zero-shot and few-shot tasks. For example, we123

can first fine-tune PLMs on a data-rich source task124

with massive data, and then transfer the fine-tuned125

PLMs to a similar data-scarce target task. We il-126

lustrate the effect extent of each factor for PLMs127

abilities in Appendix A.128

We hope that this paper will help establish good129

principles on choosing, applying, interpreting and130

designing PLMs for NLP tasks in practical settings.131

We will also release the code for all experiments132

and tested results, providing the community with133

off-the-shelf tools to evaluate their PLMs.134

2 ElitePLM 135

In ElitePLM, we empirically study four kinds of 136

language abilities of PLMs, namely memory, com- 137

prehension, reasoning, and composition. Next, we 138

will describe each ability in detail. 139

Memory Ability. For humanity, memory is the 140

most fundamental ability, which is involved in how 141

much information has been remembered in our life 142

experience (Miyake and Shah, 1999). By analogy, 143

it is similar to measure how much text PLMs have 144

remembered in pretraining, as assessed by tests of 145

recall of words conditioned on some contexts. 146

On the other hand, efficiency is also an important 147

aspect of memory ability for PLMs learning from 148

new data distribution in the fine-tuning stage. Thus, 149

besides recalling words, we also compare the mem- 150

ory efficiency of PLMs with different model archi- 151

tectures and training objectives in terms of mem- 152

orizing the given new information in fine-tuning. 153

Based on the memorized information, PLMs can 154

generalize such knowledge and language patterns 155

into downstream tasks for understanding the simi- 156

lar context in text. 157

Comprehension Ability. Comprehension ability 158

is complex and multifaceted. It is usually com- 159

prised of understanding a text’s vocabulary, back- 160

ground knowledge of a particular topic, and com- 161

prehension of its language structures like gram- 162

mar (Cain and Oakhill, 2008). In particular, back- 163

ground knowledge is used to comprehend a special 164

situation, lesson, or text (also called prior knowl- 165

edge). For instance, when reading a text about dog 166

training, readers are going to use their background 167

knowledge of dog behavior, vocabulary related to 168

dogs, aspects of training a dog, to comprehend the 169

given text. 170

Our ElitePLM contains several well-focused 171

tasks to evaluate the comprehension ability of 172

PLMs from three views, i.e., vocabulary, back- 173

ground knowledge, and language structures. First, 174

the word sense disambiguation task requires PLMs 175

to understand the meaning of vocabulary words 176

and determine whether the words are used with 177

the same sense in sentences (Wang et al., 2019a). 178

Furthermore, the reading comprehension task may 179

need some particular background knowledge about 180

the passages to answer questions under a special 181

topic (Lai et al., 2017). Besides, the language struc- 182

ture is concerned with the relationships between 183

words such as knowledge of grammar, which can 184
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be quantified by some syntactic tasks like corefer-185

ence resolution (Wang et al., 2019b).186

Reasoning Ability. Based on the comprehension187

of a text, reasoning ability refers to the power and188

effectiveness of the processes and strategies used in189

drawing inferences, reaching conclusions, arriving190

at solutions, and making decisions (Kyllonen and191

Christal, 1990). There are several distinct forms192

of reasoning, implicating different reasoning abili-193

ties. In ElitePLM, we mainly focus on three kinds194

of reasoning ability, i.e., commonsense reasoning,195

deductive reasoning, and abductive reasoning.196

Specifically, commonsense reasoning requires197

PLMs to make mundane inferences using common-198

sense knowledge about the world, like the fact that199

“matches” plus “logs” usually equals “fire” (Sap200

et al., 2020). Note that, subtle differences exist be-201

tween commonsense knowledge and background202

knowledge in comprehension ability. Common-203

sense knowledge is broadly defined as the total204

accumulation of facts and information that a per-205

son has gained from previous experiences. Besides,206

deductive reasoning involves PLMs drawing con-207

clusions from a set of given premises in the form208

of categorical syllogisms (e.g., all x are y) or sym-209

bolic logic (e.g., if p then q) (Johnson-Laird, 1999),210

and abductive reasoning involves arriving at the211

most likely explanation for a set of facts, such as a212

scientific theory to explain a set of empirical find-213

ings (Walton, 2014).214

Composition Ability. Unlike previous abilities to215

memorize, comprehend, and reason on the given216

content, the composition ability is a highly intel-217

ligent and synthetic ability that requires PLMs to218

create new content from scratch. In the literary219

sense, composition is the way that a writer assem-220

bles words and sentences to create a coherent and221

meaningful work (e.g., poem, music, and narra-222

tion), which is closely resemble to the text genera-223

tion task in NLP research (Berninger, 1999).224

Therefore, in ElitePLM, we introduce several225

text generation tasks for evaluating the composi-226

tion ability of PLMs including story generation,227

text summarization, and question generation. Note228

that, story generation is a representative composi-229

tion task which needs PLMs to not only compre-230

hend the given story background, but also reason231

about and create reasonable and coherent story end-232

ings (Fan et al., 2018). During the composition233

process, PLMs should include a good vocabulary,234

grammar, spelling, and punctuation knowledge, 235

and need to deliberate the structure of text. 236

3 Experiments 237

In this section, we first set up baselines, and then 238

report the results and analysis on four ability tests. 239

3.1 Models 240

As mentioned before, we compare the performance 241

of ten publicly released PLMs from five categories: 242

• Bidirectional Language Model: BERT (Devlin 243

et al., 2019), RoBERTa (Liu et al., 2019b), and 244

ALBERT (Lan et al., 2020); 245

• Unidirectional Language Model: GPT-2 (Rad- 246

ford et al., 2019); 247

• Hybrid Language Model: XLNet (Yang et al., 248

2019) and UniLM (Dong et al., 2019); 249

• Knowledge-enhanced Language Model: 250

ERNIE (Zhang et al., 2019); 251

• Text-to-Text Language Model: BART (Lewis 252

et al., 2020), T5 (Raffel et al., 2020), and Prophet- 253

Net (Qi et al., 2020). 254

We implement all the models and tests mostly 255

on huggingface (Wolf et al., 2020), fairseq (Ott 256

et al., 2019), and jiant (Phang et al., 2020). For fair 257

comparison, all PLMs are conducted with the same 258

training setting such as batch size and learning rate. 259

3.2 Memory Tests 260

Datasets. The goal of memory tests is to answer 261

two questions: (1) how much information PLMs 262

have remembered in pretraining, and (2) how effi- 263

ciently PLMs remember new information. For this 264

purpose, we adopt two datasets for evaluation, i.e., 265

LAMA (F. Petroni and Riedel, 2019) and English 266

Wikipedia (2,500M words). 267

Specifically, LAMA is a knowledge probe cor- 268

pus containing a set of knowledge facts, where 269

facts are either subject-relation-object triples or 270

question-answer pairs. Each fact is converted into 271

a cloze statement where the subject or object entity 272

is masked. Wikipedia is one of the widely-used 273

pretraining corpus for our selected PLMs (except 274

GPT-2 and T5). Thus, to conduct fair comparison, 275

we also pretrain GPT-2 and T5 on Wikipedia ac- 276

cording to their pretraining objectives. Similar to 277

LAMA, we randomly sample 100,000 text from 278

Wikipedia and then mask a proportion of 15% to- 279

kens following BERT. By querying PLMs with the 280

missing tokens on Wikipedia and LAMA, we can 281

test the language pattern and factual knowledge in 282
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Models
Bidirectional Uni. Hybrid KE Text-to-Text

BERT RoBERTa ALBERT GPT-2 XLNet UniLM ERNIE T5 BART ProphetNet

Vocab Size 28996 50265 30000 50257 32000 28996 28996 32100 50295 30522

LAMA
Google-RE 11.0 7.1 3.3 3.9 10.0 9.6 1.3 4.0 9.4 0.1

T-REx 29.2 23.9 21.0 12.0 28.9 28.4 13.4 21.7 15.8 1.1
ConceptNet 19.1 21.6 20.0 6.4 19.5 18.3 13.0 17.1 7.7 0.3

SQuAD 17.0 21.0 20.6 5.6 20.8 17.4 8.1 11.7 3.1 0.7

Wikipedia 70.9 71.1 63.9 42.7 68.7 71.5 45.7 65.0 47.8 31.3

Average 45.0 44.8 40.1 24.8 44.3 45.0 3.9 39.3 28.4 15.9

Table 1: Memory test results on LAMA and Wikipedia datasets (test set). We report the accuracy score for the
large version of each model in this table and more results can be found in the Appendix C. Bold and underlined
fonts denote the best and the second best performance of a PLM (the same as below).
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Figure 1: Memory efficiency (P@1) of five PLMs on
Google-RE and T-REx datasets.

PLMs’ memory. Since the missing tokens might ap-283

pear in the middle of a sentence, for auto-regressive284

PLM such as GPT-2, we only evaluate PLMs on285

those at the end. For efficiency, we measure it286

as the performance w.r.t. the number of training287

epochs: the more efficient a model is, the fewer288

epochs to achieve a reference performance.289

Results and Analysis. We first directly test PLMs290

using Wikipedia and LAMA without fine-tuning,291

which is similar to the zero-shot learning. The re-292

sults on mean precision at one (P@1) metric are293

summarized in Table 1. Compared with bidirec-294

tional and hybrid language models (e.g., BERT295

and XLNet), GPT-2 uses constrained self-attention296

where every token can only attend to context to297

its left. This unidirectional training objective nat-298

urally limits the performance of GPT-2 in terms299

of memory ability. It has been previously reported300

that PLMs can remember more information by scal-301

ing up the model size (Brown et al., 2020). How-302

ever, in our tests, BART-large (400M) achieves303

worse results than RoBERTa-base (125M) with the304

same training corpus and similar vocabulary sizes305

(50295 vs 50265). During pretraining, RoBERTa 306

incorporates a series of training strategies, using 307

more pretraining data, larger batches, longer se- 308

quence, and dynamic masking, etc. Compared with 309

model size, training objectives and strategies re- 310

flect the way of PLMs memorizing information, 311

which seems to have more significant impacts 312

on the memory ability of PLMs. Besides, we can 313

clearly observe that all PLMs achieve their best 314

results in T-REx, a subset of Wikipedia triples, and 315

show relatively good performance on Wikipedia. 316

This indicates that the training corpus determine 317

the knowledge scale of PLMs’ memory, which in- 318

fluences the performance of PLMs in downstream 319

tasks, especially for zero-shot learning. This is the 320

reason why previous studies choose to train PLMs 321

on a very large corpus. 322

To test the memory efficiency, we fine-tune five 323

models, BERT, ALBERT, GPT-2, BART, and XL- 324

Net, for several epochs with the same training set- 325

tings (e.g., learning rate). As shown in Figure 1, 326

to achieve a reference performance, the bidirec- 327

tional training objective like BERT needs fewer 328

epochs than other kinds of objectives. This further 329

implies that besides memory capacity, the bidirec- 330

tional training objective is also useful to facil- 331

itate the memory efficiency of PLMs, because 332

bidirectional language modeling can effectively 333

capture the bidirectional context. 334

3.3 Comprehension Tests 335

Datasets. As discussed in Section 2, comprehen- 336

sion ability mainly refers to the understanding of 337

a text’s vocabulary, background knowledge, and 338

language structure. Considering these aspects, we 339

1https://gluebenchmark.com/
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Models WNLI CoLA MNLI RTE QNLI SST-2 QQP STS-B MRPC Avg.
Acc. Matt. M./MM. Acc. Acc. Acc. F1/Acc. P/S Corr. F1/Acc.

BERTBASE 65.1 52.1 84.6/83.4 66.4 90.5 93.5 69.9/88.2 77.4/73.7 79.0/85.1 76.5
BERTLARGE 65.1 60.5 86.7/85.9 70.1 92.7 94.9 72.1/89.3 87.6/86.5 85.4/89.3 80.5
RoBERTaBASE 65.1 61.4 87.4/87.2 75.1 92.9 95.7 72.5/89.4 89.2/88.5 87.5/90.7 81.8
RoBERTaLARGE 89.0 67.8 90.8/90.2 88.2 98.9 96.7 74.3/90.2 92.2/91.9 89.9/92.4 88.5
ALBERTXLARGE 65.8 58.2 35.6/36.5 62.5 94.2 95.1 71.7/88.9 87.6/86.6 69.8/80.3 72.7
ALBERTXXLARGE 64.4 64.7 89.7/89.6 70.4 95.3 96.0 70.7/88.4 91.3/90.6 68.1/80.4 80.6
GPT-2SMALL 54.8 33.8 81.1/81.4 62.1 86.7 91.2 69.8/87.9 79.0/76.5 76.9/83.6 71.9
GPT-2MEDIUM 54.1 50.5 84.8/84.5 63.6 91.2 92.1 71.4/88.6 84.3/82.7 80.0/85.5 75.8
XLNetBASE 58.9 26.2 86.1/85.3 59.9 91.3 94.0 71.5/88.9 83.9/82.9 84.3/88.3 74.0
XLNetLARGE 92.5 70.2 90.9/90.9 88.5 99.0 97.1 74.7/90.4 93.0/92.6 90.5/92.9 89.5
UniLMBASE 65.1 49.0 83.0/82.2 60.3 88.7 92.3 70.7/88.4 82.3/81.4 84.3/88.7 76.2
UniLMLARGE 65.1 61.1 87.0/85.9 70.9 92.7 94.5 71.5/89.2 86.6/85.3 85.2/89.1 80.5
ERNIEBASE 65.1 52.3 84.0/83.2 68.8 91.3 93.5 70.5/88.4 85.1/83.8 80.3/85.9 70.7
T5BASE 78.8 51.1 87.1/86.2 80.1 93.7 95.2 72.6/89.4 89.4/88.6 87.5/90.7 82.7
T5LARGE 85.6 61.2 89.9/89.6 87.2 94.8 96.3 73.9/89.9 89.9/89.2 89.8/92.4 86.4
BARTBASE 65.1 52.8 85.1/84.3 69.5 92.6 94.4 72.5/89.7 87.6/86.6 86.1/89.5 79.5
BARTLARGE 58.9 62.4 90.2/89.3 83.5 94.8 96.3 73.6/90.1 91.1/90.4 87.8/91.1 83.1
ProphetNetLARGE 52.1 24.2 81.3/80.8 51.3 93.2 93.6 70.6/88.1 73.5/72.3 69.7/80.8 69.2

Table 2: Comprehension tests results on GLUE (test set). All results are scored by the GLUE evaluation server1.
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Figure 2: Few-shot results of four PLMs on CoLA and
QNLI tasks.

employ five datasets for comprehension tests, i.e.,340

GLUE (Wang et al., 2019b), SuperGLUE (Wang341

et al., 2019a), SQuAD v1.1 (Rajpurkar et al.,342

2016), SQuAD v2.0 (Rajpurkar et al., 2018), and343

RACE (Lai et al., 2017).344

Among these datasets, GLUE and SuperGLUE345

are two widely-used reading comprehension bench-346

marks. Several tasks, such as semantic text simi-347

larity, and coreference resolution, can be adopted348

to test the understanding of PLMs about seman-349

tic meaning and syntactic structure of text. By350

contrast, SQuAD v1.1&v2.0, and RACE are three351

popular question answering datasets. To answer the352

natural language questions, PLMs should be aware353

of the background knowledge about some partic-354

ular topic. For example, to answer the question355

“what can be used as rewards for dog training?”,356

the background knowledge “dogs like bones” will357

be helpful for PLMs to answer “bones”.358

Results and Analysis. Table 2 presents the results 359

of comprehension test in GLUE dataset (results in 360

other four datasets can be found in Appendix D). 361

The last column in this table indicates the average 362

overall performance across all tasks. 363

Interestingly, the models behaving well in mem- 364

ory tests (e.g., RoBERTa and XLNet) also present 365

good results in many comprehension tasks. These 366

results indicate that the improvement on mem- 367

ory ability is likely to be helpful for the perfor- 368

mance of comprehension ability, which is in line 369

with our intuition. Compared with the bidirec- 370

tional language modeling like BERT (relying on 371

corrupted input with masks), the permutation lan- 372

guage modeling used in XLNet enables PLMs to 373

learn more kinds of context for enhancing PLMs’ 374

understanding of the text, which seems to be effec- 375

tive for good comprehension ability. 376

Among these tasks, we observe a significant per- 377

formance drop in the linguistic acceptability task 378

(CoLA), which is because the PLMs saw different 379

data distributions during pretraining (Wang et al., 380

2021). This kind of sensitiveness to unfamiliar 381

tasks is also reflected in Figure 2, where the model 382

performance on CoLA show a more volatile fluc- 383

tuation (ranging from 10 to 35) than QNLI (rang- 384

ing from 15 to 20). It indicates that the perfor- 385

mance of PLMs is closely related to the similar- 386

ity of data distributions in pretraining and fine- 387

tuning. To solve this challenge, it will be better 388

to adopt intermediate fine-tuning, which involves 389

first fine-tuning PLMs on an intermediate similar 390

dataset and then transfering to the final dataset. 391
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Datasets
Bidirectional Uni. Hybrid KE Text-to-Text

BERT RoBERTa ALBERT GPT-2 XLNet UniLM ERNIE T5 BART ProphetNet

CQA 55.9 72.2 80.0 60.8 62.9 62.3 54.1 69.8 75.8 21.3
ROCStories 90.2 97.4 97.1 59.9 93.8 86.9 84.7 91.4 91.7 82.2
SWAG 86.3 89.9 90.7 79.7 86.8 83.1 80.2 73.7 87.9 70.1
HellaSwag 47.3 85.2 90.1 60.4 79.7 46.7 44.5 79.1 76.6 26.4
SM-A 89.4 93.0 92.5 88.7 83.7 89.3 88.7 92.7 82.9 85.5
SM-B 85.8 92.3 92.3 73.4 88.7 86.4 87.7 88.2 67.9 78.0
ARCT 71.2 57.9 79.5 66.7 83.1 72.3 73.7 69.4 84.2 65.5

Table 3: Reasoning tests results on seven datasets (test set). We report accuracy score for each dataset. CQA is
short for CommonsenseQA. SM-A and SM-B denote the Task A and Task B of Sense Making, respectively. We
report the results of large version for each model in this table and more results can be found in the Appendix E.

ROCS SM-A ARCT
Target Task

R
O

C
S

SM
-A

A
R

C
TSo

ur
ce

 T
as

k

90.2 69.9 72.1

82.2 89.4 70.7

76.1 57.9 71.2
50

60

70

80

90

(a) BERTLARGE

ROCS SM-A ARCT
Target Task

R
O

C
S

SM
-A

A
R

C
TSo

ur
ce

 T
as

k

91.4 69.7 65.3

70.7 92.7 54.1

72.3 54.2 69.4
50

60

70

80

90

(b) T5LARGE

Figure 3: Heatmap of two-stage transfer learning for
BERT and T5.

3.4 Reasoning Tests392

Datasets. In reasoning tests, we mainly take into393

account three forms of reasoning ability, i.e., com-394

monsense reasoning, deductive reasoning, and ab-395

ductive reasoning, which focus on commonsense396

utilization, conclusion induction, and reason deriva-397

tion, respectively. For evaluation, we select six398

reasoning datasets, namely CommonsenseQA (Tal-399

mor et al., 2019), ROCStories (Mostafazadeh400

et al., 2016), SWAG (Zellers et al., 2018), Hel-401

laSwag (Zellers et al., 2019), Sense Making (Wang402

et al., 2019c), and ARCT (Habernal et al., 2018).403

Different from the background knowledge, com-404

monsense knowledge in CommonsenseQA spans405

a large portion of human experience of everyday406

life (Liu and Singh, 2004). ROCStories, SWAG,407

HellaSwag, and Sense Making Task A are con-408

cerned with deriving the conclusions of stories and409

events, while Sense Making Task B and ARCT410

focus on identifying the reason behind a statement.411

Results and Analysis. Table 3 shows the model412

performances in reasoning ability. We can clearly413

observe that, besides performing well in compre-414

hension tasks, ALBERT and RoBERTa demon-415

strate stronger performance in almost all reasoning416

tasks. In pretraining, ALBERT introduces an inter- 417

sentence coherence objective to capture the corre- 418

lation among sentences, which can be more helpful 419

for the sentence-level reasoning ability of PLMs. 420

It has been found that the next sentence prediction 421

(NSP) loss in BERT might hurt the performance 422

of PLMs in sentence-level tasks of downstream 423

datasets, thus RoBERTa removes this objective in 424

pretraining (Liu et al., 2019b). 425

Interestingly, though performing the best in com- 426

prehension tests, XLNet does not perform as well 427

as we expected in reasoning tests. We specu- 428

late that the permutation operation in XLNet dis- 429

turbs the semantic correlation between sentences 430

and thus leads to poor reasoning ability. To im- 431

prove the reasoning ability, it would be use- 432

ful to design sentence-level reasoning objectives 433

like inter-sentence coherence loss in ALBERT 434

and then pretrain PLMs with these objectives. 435

Moreover, despite incorporating knowledge into 436

language models, ERNIE still shows mediocre 437

performance in knowledge-oriented datasets such 438

as CommonsenseQA. A possible reason might be 439

ERNIE only utilizes the trained KB embeddings 440

to enhance the semantic representations, while the 441

the reasoning structure on KBs are ignored. 442

To test the transfer learning between different 443

reasoning abilities, we conduct a two-stage experi- 444

ment across three kinds of tasks, ROCStories, SM- 445

A, and ARCT, shown in Figure 3. We first train 446

PLMs on source task with full data, and then fine- 447

tune PLMs with ten instances on target task. It 448

can be observed that PLMs have better reason- 449

ing transferability between similar tasks such as 450

deductive reasoning tasks (ROCStories and Sense 451

Making Task A). This shows that the model per- 452

formance on data-scarce tasks can be improved 453

by incorporating additional training on data-rich 454

similar tasks (Wang et al., 2021). 455
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Models
CNN/DailyMail GigaWord SQuAD WritingPrompts

R-1 R-2 R-L R-1 R-2 R-L B-4 R-L ME B-4 R-L ME

GPT-2 27.00 8.00 23.08 23.72 8.12 21.56 8.48 18.82 26.77 14.47 3.23 7.29
UniLm 43.44 20.21 40.51 38.45 19.45 35.75 4.42 17.43 20.13 26.88 1.84 5.01
T5 42.50 20.68 39.75 34.75 16.26 31.49 11.19 22.35 30.53 8.61 4.19 9.51
BART 44.16 21.28 40.90 39.41 20.21 36.42 15.87 25.47 38.42 14.72 3.14 7.08
ProphetNet 44.20 21.17 41.30 39.51 20.42 36.69 14.20 23.97 35.99 19.31 2.59 7.19

Table 4: Composition tests results on four datasets. R-1, R-2, R-L are short for ROUGE-1, ROUGE-2, ROUGE-L
respectively. B-4 and MT denote BLEU-4 and METEOR, respectively. We report the result of large version for
each model in this table and more results can be found in the Appendix F.

Models
GigaWord

TT (%) Flu. Info. Acc. Overall

GPT-2 26.09 3.11 2.79 2.64 4.87
UniLM 50.34 4.02 3.49 3.45 6.73
T5 53.67 3.95 3.45 3.46 6.68
BART 51.10 4.01 3.46 3.49 6.73
ProphetNet 53.02 3.99 3.52 3.45 6.74

Gold 40.77 3.61 3.29 3.15 6.05

Models
WritingPrompts

TT (%) Flu. Info. Rel. Overall

GPT-2 45.70 3.42 3.17 3.20 5.87
UniLM 1.20 1.32 1.88 2.03 2.74
T5 34.40 3.01 2.80 3.09 5.18
BART 45.20 3.37 3.16 3.39 5.96
ProphetNet 29.60 2.95 2.91 3.10 5.18

Gold 71.30 3.79 4.07 3.87 7.37

Table 5: Turing test (TT) and human scores on the test
set of GigaWord and WritingPrompts. Flu., Info., Acc.
and Rel. denote fluency, informativeness, accuracy and
relevance respectively. We report the result of large ver-
sion for each model in this table and more results can
be found in the Appendix F.

3.5 Composition Tests456

Datasets. Composition is closely related to the457

text generation task, which is also aimed at gen-458

erating new content from scratch. Therefore, we459

utilize four text generation benchmarks for compo-460

sition tests, i.e., WritingPrompts (Fan et al., 2018)461

on story generation, CNN/Daily Mail (Hermann462

et al., 2015) and GigaWord (Rush et al., 2015) on463

text summarization, and SQuAD v1.1 (Rajpurkar464

et al., 2016) on question generation. Specifically,465

according to the length of generated text, text sum-466

marization and question generation belong to short467

text generation, while story generation belongs to468

long text generation.469

For performance comparison, we adopt three au-470

tomatic metrics, i.e., BLEU (Papineni et al., 2002),471

ROUGE (Lin, 2004), and METEOR (Banerjee and472

Lavie, 2005). BLEU and ROUGE compute the 473

ratios of overlapping n-grams between generated 474

and real text, while METEOR measures word-to- 475

word matches based on WordNet between gener- 476

ated and real text. Besides, we conduct human 477

evaluation from these aspects following (Zou et al., 478

2021): Fluency evaluates whether the text is well- 479

formed and logical to read; Informativeness mea- 480

sures whether the text contains useful information; 481

Accuracy tests whether the text describes the given 482

content accurately; Relevance measures whether 483

the text is relevant to the given context; Overall 484

evaluates the overall quality of the text. The overall 485

quality is rated from 1 to 10, while the others are 486

rated from 1 to 5. 487

Inspired by (Turing, 2009), we design a Turing 488

test to further evaluate the generated text quality. 489

In turing test, a human interrogator is requested to 490

distinguish whether the given text is generated by 491

human. For each model and gold text, we randomly 492

select 500 text and each text is scored by judges. 493

Results and Analysis. Table 4 and Table 5 present 494

the automatic evaluation and human evaluation re- 495

sults on composition ability, respectively. We can 496

observe that, ProphetNet and BART achieve great 497

performance on short text generation, while GPT-2 498

and T5 show better results on long text generation. 499

Specifically, BART employs denoising objectives 500

for reconstructing the corrupted original text and 501

ProphetNet adopts future n-gram prediction, which 502

are flexible for modeling the semantic relations be- 503

tween tokens and phrases in short texts. However, 504

in long texts, a small ratio of masked tokens (i.e., 505

15%) might be not effective to capture the complex 506

long-range dependency. By comparison, the left- 507

to-right prediction objective in GPT-2 can be more 508

suitable to model the long-range semantic continu- 509

ity in long text, and T5 has the largest model size 510

to achieve a strong composition ability. For com- 511

position ability, we conclude that the denoising 512
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objective is helpful for short text composition,513

while the left-to-right objective is more power-514

ful for long text composition. Besides, the model515

size is also an important factor for the improvement516

of PLMs’ composition ability.517

4 Discussion518

Based on the above four ability tests, we provide519

a guideline for helping researchers choose, apply,520

interpret and design PLMs for NLP tasks.521

In section 3.3, we know that the improvement522

on memory ability is likely to be helpful for the523

performance of comprehension ability. Hence, de-524

signing PLMs with special training objectives such525

as permutation language modeling in XLNet for526

larger memory capacity will further benefit PLMs527

in the downstream comprehension tasks such as528

question answering. Besides, when applying PLMs529

to downstream comprehension tasks, it must be530

paid attention to the similarity of data distribution531

in pretraining and fine-tuning. Possible solutions532

such as intermediate fine-tuning can alleviate this533

problem to some extent.534

Compared with comprehension, reasoning in535

section 3.4 is more complex and usually involves536

multiple sentences. Therefore, PLMs such as AL-537

BERT trained with sentence-level objectives can538

be more suitable to conduct reasoning tasks. In-539

tuitively, incorporating sentence-level objectives540

during pretraining will encourage PLMs to learn541

the correlation among different sentences. Note542

that, PLMs have better reasoning transferability be-543

tween similar tasks, thus data-scarce tasks can be544

improved by first training on data-rich tasks.545

For composition tasks, PLMs with denoising546

training objective performs well enough on short547

text composition, while PLMs with left-to-right ob-548

jective or larger model size are more suitable for549

long text composition. The reason behind might550

be that PLMs with different training objectives can551

finally capture different ranges of semantic depen-552

dency between tokens and phrases.553

5 Related Work554

Pretrained Language Models. Owing to the great555

achievements Transformer (Vaswani et al., 2017)556

has made, the paradigm of pretrained language557

models (PLMs) is thriving (Radford et al., 2019;558

Devlin et al., 2019; Liu et al., 2019b; Lewis et al.,559

2020; Raffel et al., 2020). It is widely recognized560

that PLMs can learn massive knowledge from cor- 561

pus, leading to significant progress in various lan- 562

guage tasks. Giving such results in extensive NLP 563

tasks, now it has come to the point to systematically 564

evaluate the abilities of PLMs, which can further 565

deepen our understanding of PLMs and facilitate 566

their application to more fields. 567

Language Model Evaluation. Many efforts have 568

studied the evaluation on language model perfor- 569

mance. Liu et al. (2019a) evaluate BERT (De- 570

vlin et al., 2019), GPT (Radford et al., 2018), and 571

ELMo (Peters et al., 2018) on a variety of linguis- 572

tics tasks. Their results suggest that the features 573

generated by PLMs are sufficient for high perfor- 574

mance on a board set of tasks but fail on tasks re- 575

quiring fine-grained linguistics knowledge. Tenney 576

et al. (2019) evaluate similar models on a variety 577

of sub-sentence linguistic analysis tasks, showing 578

that PLMs encode both syntax and semantics into 579

parameters. Zhou et al. (2020) is in line in the sense 580

that PLMs can learn rich knowledge but focus on 581

evaluating the commonsense. However, these work 582

just focus on one dimension of PLMs ability evalu- 583

ation. Other work such GLUE (Wang et al., 2019b) 584

and CLUE (Liang Xu, 2020) just consider a simple 585

mixture of multiple tasks lacking comprehensive 586

evaluation. To the best of our knowledge, this is 587

the first work to systematically evaluate PLMs by 588

defining various kinds of ability and performing 589

extensive comparison. 590

6 Conclusion 591

This paper investigates the general language ability 592

evaluation of pretrained language models. We first 593

design four evaluation dimensions, including mem- 594

ory, comprehension, reasoning, and composition, 595

and further measure ten widely-used PLMs within 596

five categories. Our experimental results demon- 597

strate that the pretraining objectives and strategies 598

have significant impacts on PLMs performance 599

in downstream tasks. Besides, when fine-tuning 600

PLMs in downstream tasks, their performances are 601

usually sensitive to the data size and distribution, 602

which can be addressed by designing some task- 603

specific objectives. Furthermore, PLMs have great 604

transferability between similar tasks. This charac- 605

teristic can be utilized to solve the zero-shot and 606

few-shot tasks. As a result, it is believed that this 607

study will benefit future work about choosing or 608

designing suitable PLMs for the target NLP tasks 609

based on their properties. 610
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Appendix946

We give some experiment-related information as947

supplementary materials. The appendix is orga-948

nized into six sections:949

• Configurations and pretraining setting com-950

parisons for selected models are presented in951

Appendix A;952

• Data statistics of each test are presented in953

Appendix B;954

• Full results for memory tests are presented in955

Appendix C;956

• Full results for comprehension tests are pre-957

sented in Appendix D;958

• Full results for reasoning tests are presented959

in Appendix E; and960

• Full results for composition tests are presented961

in Appendix F.962

A Configurations of Pretrained963

Language Models964

The selected ten PLMs within five categories and965

the comparisons of these PLMs in configuration966

and pretraining setting have been shown in Table 6.967

The effect extent of each factor for PLMs abilities968

in Table 7.969

B Data Statistics970

Memory Tests. The data statistics of LAMA and971

Wikipedia of each model are presented in Table 8.972

Due to the differences of each PLM, we drop the973

data that are not in the vocabulary.974

Comprehension Tests. The data statistics of975

GLUE, SuperGLUE, SQuAD and RACE are pre-976

sented in Table 9.977

Reasoning Tests. The data statistics for common-978

sense reasoning, deductive reasoning and abductive979

reasoning are presented in Table 10.980

Composition Tests. The data statistics for text981

summarization, question generation and story gen-982

eration are presented in Table 11. For the first three983

datasets, we truncate the source text considering984

the input length of PLMs during training. And985

for WritingPrompts, we reconstruct the original986

dataset and discard examples where text contains987

more than 512 tokens.988

C Memory Tests 989

Full results on LAMA and Wikipedia datasets are 990

presented in Table 12. 991

D Comprehension Tests 992

Full results on SuperGLUE, SQuAD and RACE 993

are presented in Table 13 and Table 14. 994

E Reasoning Tests 995

Full results on CommonsenseQA, ROCStories, 996

SWAG, HellaSwag, Sense Making, and ARCT are 997

presented in Table 15. 998

F Composition Tests 999

Full results on CNN/Daily-Mail, GigaWord, 1000

SQuAD, and WritingPrompts are presented in Ta- 1001

ble 16. Turing test results are presented in Table 5. 1002

We also show some summaries and stories gener- 1003

ated by different PLMs in Table 18, Table 19, and 1004

Table 20. 1005
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Type Models
Configurations Pretraining Setting

Size #Parameter Corpus Size

Bidirectional

BERT base/large 110M/340M BooksCorpus, English Wikipedia 16GB

RoBERTa base/large 125M/355M
BooksCorpus, CC-News,

WebText, Stories 160GB

ALBERT xlarge/xxlarge 60M/235M BERT Corpus 16GB

Unidirectional GPT-2 small/medium 117M/345M WebText (removing Wikipedia) 40GB

Hybrid XLNet base/large 110M/340M
BooksCorpus, English Wikipedia,
Giga5, ClueWeb, Common Crawl 158GB

UniLM base/large 110M/340M BERT Corpus 16GB

Knowledge-
Enhanced ERNIE base 114M English Wikipedia, Wikipedia 17GB

Text-to-Text
T5 base/large 220M/770M Colossal Clean Crawled Corpus 745GB

BART base/large 140M/400M RoBERTa Corpus 160GB
ProphetNet large 373M RoBERTa Corpus 160GB

Table 6: Configurations and pretraining setting comparisons for our selected models.

Ability MA DD MS PO PS
Mem. ⭒⭒ ⭒ ⭒ ⭒⭒⭒ ⭒⭒⭒

Compre. ⭒⭒ ⭒⭒ ⭒ ⭒⭒⭒ ⭒⭒⭒
Reason. ⭒ ⭒⭒⭒ ⭒ ⭒⭒⭒ ⭒⭒
Compo. ⭒ ⭒⭒ ⭒⭒⭒ ⭒⭒⭒ ⭒

Table 7: The impact extent of each factor for PLMs abilities. MA, DD, MS, PO, and PS are short for model
architecture, data distribution, model size, pretraining objective, and pretraining strategy, respectively

G-RE T-REx ConceptNet SQuAD Wikipedia

#Origin 6,106 34,014 14,878 305 100,000

BERT / UniLM 5,527 34,014 11,658 305 85,836
RoBERTa 4,618 29,500 12,505 286 85,862
ALBERT 5,469 33,636 12,389 291 86,533
ERNIE 1,900 9,071 11,649 173 —
BART 4,618 29,500 12,505 286 85,862
T5 4,256 25,850 10,905 230 78,069
GPT-2 4,618 29,500 7,477 196 1,184
XLNet 5,202 32,293 12,080 279 85,228
ProphetNet 5,527 34,014 12,506 305 87,516

Table 8: Statistics of datasets in memory tests, including LAMA and Wikipedia. #Origin denotes the number of
examples in original dataset, and the number of each model denotes the number of examples after selected.
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Corpus #Train #Valid #Test

GLUE

WNLI 635 71 146
CoLA 8,551 1,043 1,063

MNLI-M.
392,702

9,815 9,796
MNLI-MM. 9,832 9,847

RTE 2,490 277 3,000
QNLI 104,743 5,463 5,463
SST-2 67,349 872 1,821
QQP 363,846 40,430 390,965

STS-B 5,749 1,500 1,379
MRPC 3,668 408 1,725

SuperGLUE

CB 250 57 250
WNLI 635 71 146
WSC 554 104 146

COPA 400 100 500
Wic 6,000 638 1,400

BoolQ 9,427 3,270 3,245
MultiRC 5,100 953 1,800

SQuAD v1.1 88,567 10,790 -
v2.0 131,924 12,165 -

RACE

all 25,137 1,389 1,407
87,866 4,887 4,934

middle 6,409 368 362
25,421 1,436 1,436

high 18,728 1,021 1,045
62,445 3,451 3,498

Table 9: Statistics of datasets in comprehension tests including GLUE, SuperGLUE, SQuAD and RACE. #Train,
#Valid and #Test denote the number of instances in train, valid and test set, respectively (the same as below).
MNLI-M. and MNLI-MM. denote MNLI-match and MNLI-mismatch, respectively. SQuAD doesn’t have test set,
and we utilize the valid set as the test set.

Task Corpus #Train #Valid #Test

Commonsense reasoning CommonsenseQA 9,741 1,221 1,140

Deductive reasoning

ROCStories 1,257 314 1,571
SWAG 73,546 20,006 20,005
HellaSwag 39,905 10,042 10,003
Sense Making Task A 10,000 1,000 1,000

Abductive reasoning Sense Making Task B 10,000 1,000 1,000
ARCT 1,210 316 444

Table 10: Statistics of datasets in reasoning tests, including commonsense reasoning, deductive reasoning and
abductive reasoning.
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Task Corpus #Train #Valid #Test #Input #Output

Text summarization CNN/Daily Mail 287,113 13,368 11,490 822.3 57.9
Gigaword 3,803,957 189,651 1,951 33.7 8.7

Question generation SQuAD 75,722 10,570 11,877 149.4 11.5

Story generation WritingPrompts 67,765 3,952 3,784 30.2 281.2

Table 11: Statistics of datasets in composition tests, including text summarization, question generation and story
generation. #Input and #Output denote the average number of tokens in the input text and output text.

Models Vocab Size LAMA-G LAMA-T LAMA-C LAMA-S Wikipedia Average

BERTBASE 28996 10.3 27.5 15.3 12.8 66.8 41.6
BERTLARGE 28996 11.0 29.2 19.1 17.0 70.9 45.0
RoBERTaBASE 50265 7.5 19.9 17.9 13.3 66.9 40.8
RoBERTaLARGE 50265 7.1 23.9 21.6 21.0 71.1 44.8
ALBERTXLARGE 30000 2.9 19.6 16.8 14.4 64.3 38.9
ALBERTXXLARGE 30000 3.3 21.0 20.0 20.6 63.9 40.1
GPT-2SMALL 50257 1.3 6.8 4.0 3.0 36.0 19.9
GPT-2MEDIUM 50257 3.9 12.0 6.4 5.6 42.7 24.8
XLNetBASE 32000 0.0 0.0 2.8 0.0 64.6 32.7
XLNetLARGE 32000 0.0 0.0 5.5 0.4 68.7 35.1
UniLMBASE 28996 8.5 27.6 15.4 11.8 66.9 41.4
UniLMLARGE 28996 9.6 28.4 18.3 17.4 71.5 46.4
ERNIEBASE 28996 1.3 13.4 13.0 8.1 - -
T5BASE 32100 5.5 20.0 13.2 9.6 60.5 36.3
T5LARGE 32100 4.0 21.7 17.1 11.7 65.0 39.3
BARTBASE 50295 5.7 11.7 9.5 4.2 47.9 27.8
BARTLARGE 50295 9.4 15.8 7.7 3.1 47.8 28.4
ProphetNetLARGE 30522 0.1 1.1 0.3 0.7 31.3 15.9

Table 12: Memory tests results on LAMA and Wikipedia datasets (test set). We report accuracy score for each
dataset. Average is computed by averaging the scores of LAMA and Wikipedia (the score of LAMA is averaged
among four dataset first). LAMA-G, LAMA-T, LAMA-C and LAMA-S denote the LAMA corpus Google-RE,
T-REx, ConceptNet and SQuAD, respectively.
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Model WSC CB RTE COPA Wic BoolQ MultiRC Avg
Acc. F1/Acc. Acc. Acc. Acc. Acc. F1/EM

BERTBASE 60.6 78.7/80.4 66.4 65.0 69.9 74.6 68.1/16.9 65.5
BERTLARGE 63.5 89.0/92.9 70.1 73.0 72.7 75.6 69.4/22.6 70.3
RoBERTaBASE 71.1 89.1/91.1 75.1 78.0 67.2 81.1 72.6/31.9 73.6
RoBERTaLARGE 75.0 95.0/96.4 88.2 84.0 72.7 85.4 81.7/47.2 80.8
ALBERTXLARGE 63.5 81.1/85.7 62.5 75.0 66.5 62.2 63.6/12.4 64.4
ALBERTXXLARGE 64.4 87.6/92.9 70.4 91.0 74.3 62.2 85.1/54.0 74.6
GPT-2SMALL 54.8 64.0/76.8 62.1 62.0 64.1 68.2 67.3/19.5 60.7
GPT-2MEDIUM 61.5 84.4/82.1 63.6 63.0 67.2 73.9 71.5/29.2 66.1
XLNetBASE 64.4 91.0/91.1 59.9 65.0 67.9 76.9 72.5/29.6 68.0
XLNetLARGE 65.3 87.6/92.9 88.5 82.0 69.7 84.7 79.0/41.6 77.3
UniLMBASE 63.5 74.7/82.1 60.3 67.0 68.5 73.3 67.9/20.5 65.0
UniLMLARGE 65.4 86.5/87.5 70.9 76.0 72.3 82.3 75.7/36.3 72.8
ERNIEBASE 65.4 81.6/82.1 68.8 64.0 70.8 74.4 68.7/21.3 67.2
T5BASE 79.8 86.2/94.0 80.1 71.2 68.3 81.4 79.7/43.1 76.0
T5LARGE 84.6 91.6/94.8 87.2 83.4 69.3 85.4 83.3/50.7 81.4
BARTBASE 64.4 86.6/85.7 69.5 70.0 65.7 75.7 74.2/31.7 69.2
BARTLARGE 65.4 97.4/96.4 83.5 86.0 70.4 85.1 82.9/50.6 79.2
ProphetNetLARGE 63.5 94.7/92.9 51.3 61.0 60.7 67.4 64.7/17.2 62.7

Table 13: Comprehension tests results on SuperGLUE (valid set). Avg column is computed by averaging the scores
of tasks to its left (the scores for CB and MultiRC are first averaged).

Models
SQuAD v1.1 SQuAD v2.0 RACE

EM F1 EM F1 RACE RACE-M RACE-H

BERTBASE 80.8 88.5 72.8 76.0 65.0 71.7 62.3
BERTLARGE 84.1 90.9 78.7 81.9 72.0 76.6 70.1
RoBERTaBASE 86.1 92.3 80.3 83.4 72.8 72.6 26.6
RoBERTaLARGE 88.9 94.6 86.5 89.4 83.2 86.5 81.3
ALBERTXLARGE 86.1 92.5 83.1 86.1 78.1 76.7 79.8
ALBERTXXLARGE 88.3 94.1 85.1 88.1 87.4 85.9 87.1
GPT-2SMALL 63.6 75.1 57.1 61.5 61.2 62.9 58.2
GPT-2MEDIUM 70.3 80.8 61.5 66.0 62.2 65.0 61.4
XLNetBASE 12.8 14.7 78.5 81.3 71.3 72.8 67.5
XLNetLARGE 89.7 95.1 87.9 90.6 85.4 88.6 84.0
UniLMBASE 82.8 89.9 74.9 78.0 59.0 64.1 50.3
UniLMLARGE 86.5 92.7 80.5 83.4 70.3 70.0 66.4
ERNIEBASE - - - - - 67.8 -
T5BASE 85.4 92.1 77.6 81.3 70.6 74.4 68.4
T5LARGE 86.7 93.8 - - 80.4 82.6 77.8
BARTBASE 84.6 91.0 76.0 79.2 70.1 72.4 63.2
BARTLARGE 88.8 94.6 86.1 89.2 82.2 82.5 79.6
ProphetNetLARGE - - - - - 74.1 -

Table 14: Comprehension tests results on SQuAD and RACE (test set).
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Model CQA ROCStories SWAG HellaSwag SM-A SM-B ARCT

BERTBASE 53.0 88.1 81.6 40.5 87.3 80.1 65.1
BERTLARGE 55.9 90.2 86.3 47.3 89.4 85.8 71.2
RoBERTaBASE 72.1 93.3 82.6 61.0 89.3 87.5 46.1
RoBERTaLARGE 72.2 97.4 89.9 85.2 93.0 92.3 57.9
ALBERTXLARGE 66.2 90.4 84.6 75.9 87.9 89.4 56.1
ALBERTXXLARGE 80.0 97.1 90.7 90.1 92.5 92.3 79.5
GPT-2SMALL 47.8 58.8 48.1 39.9 84.2 74.7 66.0
GPT-2MEDIUM 60.8 59.9 79.7 60.4 88.7 73.4 66.7
XLNetBASE 53.8 92.0 80.4 55.1 81.6 85.4 80.2
XLNetLARGE 62.9 93.8 86.8 79.7 83.7 88.7 83.1
UniLMBASE 47.6 80.6 77.0 36.3 86.2 83.6 48.4
UniLMLARGE 62.3 86.9 83.1 46.7 89.3 86.4 72.3
ERNIEBASE 54.1 84.7 - - 88.7 - 73.7
T5BASE 61.9 88.2 65.8 55.2 89.2 82.9 63.3
T5LARGE 69.8 91.4 73.7 79.1 92.7 88.2 69.4
BARTBASE 61.0 88.9 81.2 53.4 72.0 67.9 71.8
BARTLARGE 75.8 91.7 87.9 76.6 82.9 67.9 84.2
ProphetNetLARGE 21.3 82.2 70.1 26.4 85.5 78.0 65.5

Table 15: Reasoning tests results on seven datasets (test set). We report accuracy score for each dataset. CQA is
short for CommonsenseQA. SM-A and SM-B denote the Task A and Task B of Sense Making, respectively.

Models
CNN-DailyMail GigaWord SQuAD WritingPrompts

R-1 R-2 R-L R-1 R-2 R-L B-4 R-L ME B-4 R-L ME

GPT-2SMALL 24.60 7.21 21.06 25.25 9.03 23.20 5.13 14.83 21.06 11.58 3.80 8.18
GPT-2MEDIUM 22.95 5.99 22.08 23.72 8.12 21.56 8.48 18.82 26.77 14.47 3.23 7.29
UniLMBASE 17.83 0.11 5.50 16.64 6.11 15.12 4.47 17.65 20.30 27.71 2.35 5.47
UniLMLARGE 43.44 20.21 40.51 38.45 19.45 35.75 4.42 17.43 20.13 26.88 1.84 5.01
T5BASE 42.05 20.34 39.40 33.13 15.60 30.18 11.18 21.82 29.93 6.04 4.61 9.81
T5LARGE 42.50 20.68 39.75 34.75 16.26 31.49 11.19 22.35 30.53 8.61 4.19 9.51
BARTBASE 36.36 20.87 33.32 38.65 19.43 35.82 14.44 24.11 36.92 11.91 3.57 7.69
BARTLARGE 44.16 21.28 40.90 39.41 20.21 36.42 15.87 25.47 38.42 14.72 3.14 7.08
ProphetNetLARGE 44.20 21.17 41.30 39.51 20.42 36.69 14.20 23.97 35.99 19.31 2.59 7.19

Table 16: Composition tests results on four datasets. R-1, R-2, R-L are short for ROUGE-1, ROUGE-2, ROUGE-L
respectively. B-4 and MT denote BLEU-4 and METEOR, respectively.

Models TT (%) Fluency Informativeness Accuracy Coherence Overall

GPT-2MEDIUM 45.7 3.42 3.17 3.20 3.23 5.87
UniLMLARGE 1.2 1.32 1.88 2.03 1.71 2.74
T5LARGE 34.4 3.01 2.80 3.09 2.87 5.18
BARTLARGE 45.2 3.37 3.16 3.39 3.22 5.96
ProphetNetLARGE 29.6 2.95 2.91 3.10 2.89 5.18

Gold 71.3 3.79 4.07 3.87 3.80 7.37

Table 17: Turing test and human scores on the test set of WritingPrompts. TT is short for Turing Test and represents
the percentage of makers who believe the text is written by human. Coherence evaluates how content is coherent
considering both intra- and inter-sentence correlation of a paragraph. Rated from 1 to 5.
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Passage japan ’s nec corp. and UNK computer corp. of the united states said wednesday they had agreed to join
forces in supercomputer sales .

GPT-2MEDIUM unk computer to jointly sell supercomputers
UniLMLARGE nec [UNK] to join forces in supercomputer sales
T5LARGE nc and unk computer to join forces in supercomputer sales
BARTLARGE nec and unk computer to join forces in supercomputer sales
ProphetNetLARGE nec unk computer to join forces in supercomputer sales

Gold nec UNK in computer sales tie-up

Passage the sri lankan government on wednesday announced the closure of government schools with immediate
effect as a military campaign against tamil separatists escalated in the north of the country .

GPT-2MEDIUM closed as military campaign escalates
UniLMLARGE sri lankan gov t shuts down schools in north
T5LARGE sri lanka closes schools as fighting escalates
BARTLARGE sri lanka closes government schools
ProphetNetLARGE sri lanka closes schools as military escalates

Gold sri lanka closes schools as war escalates

Table 18: Test set examples of GigaWord dataset for each model.
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Prompts [ WP ] You have a very shitty type of precognition .

GPT-2MEDIUM <newline>“ I’m sorry, ” I said. “ I don’t know what you’re talking about. ” I looked around the
room, trying to find the source of the noise. “ What do you mean? ” I asked. “ It’s not like I’ve never
heard it before. ” He looked at me, confused. “ No, ” he said, “ it’s never happened to me before.
I ’d be surprised if it ever did. ” “ What’s that supposed to mean? You’re telling me that I can’t
remember anything before? ” “ No. ” he replied. “ That’s exactly what it means. You’ve always been
precognitions, and you ’ll never be able to remember anything. ”

UniLMLARGE i’m not sure what i’ve done wrong. i’d rather not be able to do it. i don’t know what i have done wrong,
i don’t know what it has done. i have been told that i have n’ve been wrong. <newline ><new york.
<york ><yoline >i’ll never forget that day. «new >«line >the day i was born. the day that i was raised.
the one that i never forget. the time that i first met her. the moment that i met her, the time when i first
saw her. <nowline >my life is a blur. the blur is the blur. i am not sure if i have ever been wrong, or
if i had ever been right. i ca n’re sure if it was the blur or the blur, but i do know it was. <tim. <the
blur <new newline. <i am a blur, the blur and the blur are the same. the same, the same is the same
thing. the difference is the difference between the two. the two are the difference. the differences are
the differences. the different things. the things... the changes. the change. the changing. the thing.. is
the change, the change is the thing that is the different. the new thing. <.. <this is the story of a man
who was born in the blur of the two, the one where i was n’s. the other where i am. the first time i met.
the second time i saw her, and the first where i never forgot. the story is the one in the middle of the
blur where i met the woman i loved. the woman who i loved, the woman that i loved the woman. the
man who i love the woman with the most. the person who i hate the most, the person that i hate most.
<cline >* * * <new story ><nbsp >i am the blur ; i am i. <pline »<bsp. i was a blur ; <new line ><i was
the one who was the first to be born. <first time. <np ><do nbs. <do ibs. i did n’i do it, i did not know
it had happened. <line i woman i <i i i ve, the <blur ve

T5LARGE <newline>It’s been a long time since I’ve been able to use my powers. I haven’t had a chance to use
them in a while, but I do have a few things I can do to help. The first thing I do is go to the bathroom,
and I have to wash my hands. It is a pain, I know it. But I do it anyways, because I have the ability to
see things. And I can see them. They can see me in the mirror, they can see my eyes, their eyes. My
hands, my feet, the way they move, how they feel. How I feel, what they do to me. What I do to them?
How do they know I am? I can hear them in my ears, a scream, or a cry. A sigh of relief, as I look at
the mirror and see them in front of me, like a mirror. You’re gon na see me? ”

BARTLARGE I’ve always been a bit of a weirdo. <newline>I’m not sure why, but I always knew I was going to die at
some point in my life. I don’t know if it’s because I was born in the wrong year, or if it was because my
parents died when I was very young. I just knew that I would die. I’ve never been able to explain it
to anyone, but it was always there in the back of my mind. It’s not like I could do anything about it.
I couldn’t even do anything to stop it. It was just always there. I never knew what it was, or what it
would do to me. I didn’t want to know. I wanted it to be over. But it never was. It just kept getting
worse and worse. I can’t explain it, I just know that I ’ll die.

ProphetNetLARGE it’s been a long time since i’ve had a precognition, but i don’t think i’ll ever be able to get rid of it.
<newline >it started when i was a kid. i was told that i had a very shitty type of pre - lucid dreaming. i
had no idea what it was until i was in my late teens. it was like i could see the future in front of me. i
knew exactly what i was going to do when i saw the future. i could feel it in my bones. i can feel it. i
know exactly what’s going to happen when i look at the future, and i know it will be the best thing
that’s ever happened to me. the future is going to be better than i ever thought it would be. i’m not
going to let it happen again.

Gold Just looking at the guy I already knew it . He was in for a seven on the Bristol scale and it was only
hours away . <newline><newline>Looking at his carefree face from below as he was slowly transported
towards me on the escalator , I wondered , not for the first time , if I should warn him . But as always I
asked myself : How could I tell him ? How could I tell anyone ? <newline><newline>Tell people that I
could see the future . That I could see their fate ? That I could feel the forces that were at work , often
without their knowledge and beyond their control , inside their own bodies ? That I could see shape of
things to come ? That I was a coproscognitive ? <newline><newline>Nobody would believe me . Not
until after a few predictions had been proven to be correct at least and few humored me for long enough
to realize the truth of my predictions . <newline><newline>And this guy did n’t have a few predictions
to confirm the authenticy of my gift . He needed to know and believe me about the very next event I
could foresee and there was no way to convince him in time . <newline><newline>And thus I stayed
silent again as the escalator carried us past one another leaving him to his fate . I was going up and
he was going down . <newline><newline>I could only hope for him that he would be close to the
right place two hours and thirteen minutes from now , because I could tell it would be a fast and quite
explosive one and without my word he would not have much advanced warning telling him to run for
salvation . <newline><newline>I put him out of my mind I had my own future to worry about and I did
n’t need my gift to tell me about it . I started looking for the signs pointing the way to closest lavatory .

Table 19: Test set examples of WritingPrompts dataset for each model.
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Prompts [ WP ] “ Before we allow humankind to live among us in the stars , tell us the faults of your kind . ”

GPT-2MEDIUM <newline>“ I’m sorry, sir, but I don’t think we’re ready for this. ” I said. “ We’ve been here for
thousands of years, and we’ve never seen anything like this before. ” He looked at me with a look of
horror on his face. “ What do you mean? ” I asked. He looked down at his hands, and then back up at
me. “ It’s like this, ” he said, “ You can’t see it, but it’s there. It ’ll be here for a long time, and it ’ll kill
us all. ” <newline>I looked at him, and he looked back at me, and both of us looked at the stars.

UniLMLARGE ‘ ‘ we allow humanskind to be among us, tell them the faults.’<newline ><new new >‘ ‘ humanskind,” i
said, ‘ ‘ you are the one who has been chosen to be our leader.’‘ ‘ humankind, you are our leader,’‘ i said.
<new york. <york ><yoline >‘’humanskind.’* <newrk >* <yo >«new ><>humanskind : <new name
><nowline >humans : <now name >humans. <now names ><the name of the universe. <the names of
the stars. «line >* humanskind * <now named ><first name >the universe, <new names >the stars and
the stars <new stars. the names <new planets. <first names >* * humans * <firstline >the name <new
species ><humanline »<humans ><last name >* humankind *. <last names >humans * * <lastline
>humankind. <name »* humanity * <name <><* humans. * <* human * «»humans, <now known as
humans. the name. <.. <* humanity. <human name >... * * * humanity <new humans >*.. humans *. *.
humans.. ’. <line. <humans.’s.. human.’the humans. they were the humans, the humans of the galaxy.
<: «<humans : humans. humans. humans, humans. humankind <new galaxy ><: / / www. reddit. com /
r / writingprompts / comments / 2jclq / comments _ 2jflq _ comments / 1xxxfxxgxxcxxbxxdxxkxxqxx
<new _ ><_ _ <new i am humankind : the humankind of the galactic system. <_ «_ >i am the human
race. <tv ><tline >i was the human. <pline >it was a long time since i was human. i was a human.. i
am a human race,..kind <. <’humans human «race humans <* <human of * <the «* i humans. new..

T5LARGE Before we allow humankind to live amongst the stars, tell us the faults of your kind. ” newline>I don’t
know, I’m not a scientist, but I do have a degree in astronomy, and I do know a thing or two about
science. I know that a lot of people think that science is a good thing, that it’s a great thing. But, if you
think about it, you’re a fucking shithole. You’ve got a bunch of crazies, all of them. So, what do you
think?? Do you know what? I mean, they ’ll tell you. And, of course, we ’d like to know what you
think of us.

BARTLARGE “ Before we allow humankind to live among us in the stars, tell us the faults of your kind. ” <new-
line><newlines>“ Well, first of all, they aren’t very smart. They don’t know how to read. They’re not
very good at math. They haven’t learned how to write yet. They are also very lazy. They spend most of
their time staring at their screens. They can’t even get up to go to the bathroom. They just sit there and
stare at the screen. They also have a tendency to stare at their phones for hours at a time. I’m not sure
why they do that, but I guess it’s because they’re bored. ”

ProphetNetLARGE ‘ ‘ before we allow humankind to live among us in the stars, tell us the faults of our kind.” <newline >‘
‘ i’m sorry, sir, but we don’t have the technology to do that. we’re too afraid of the consequences of our
actions, and we’ve spent too much time trying to find a way to stop them.’cause they’re just too stupid
to do anything about it. we have to do something about it, or we’ll never be able to get out of here. we
need to find some way to get them out of there, and if they do, then we’d have to go back to earth and
start all over again. and if that’s the case, then i’d like to thank you for your time, and i hope to see you
again soon,”

Gold Tell us your faults ? Really ? This was the question - the shibboleth - that unlocked the cosmos ?
<newline><newline>The Masters could have picked a scientist to answer but they feared she might
mask ignorance . They could have picked from our global leaders bit they feared that they would mask
deceit . They could have picked a holy man but feared he would mask violence , oppression , hate ,
intolerance ... the list of disqualifying sins was almost too long to enumerate . <newline><newline>So
they picked Josh Thornton , a 45 year old MBA in human resources . <newline><newline>“ Our
greatest weakness ? Well , I think we work a little too hard and , as a race , we might be a bit of a
perfectionist .

Table 20: Test set examples of WritingPrompts dataset for each model.
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