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Abstract

We propose a score-based method that extends the framework of the linear non-
Gaussian acyclic model (LiNGAM) to address the problem of causal structure
estimation in the presence of unmeasured variables. Building on the method pro-
posed by Bhattacharya et al. (2021), we develop a method called ABIC LiNGAM,
which assumes that error terms follow a multivariate generalized normal distribu-
tion and employs continuous optimization techniques to recover acyclic directed
mixed graphs (ADMGs). We demonstrate that the proposed method can estimate
causal structures, including their orientations, rather than only Markov equivalence
classes, under the assumption that the data are linear and follow a multivariate gen-
eralized normal distribution. Additionally, we provide proofs of the identifiability
of the parameters in ADMGs when the error terms follow a multivariate gener-
alized normal distribution. The effectiveness of the proposed method is validated
through simulations and experiments using real-world data.

1 Introduction

Uncovering the causal relationships among factors is a fundamental objective in many domains.
Although randomized controlled trials (RCTs) are the most effective method for identifying causal
relationships, their implementation is often infeasible due to high costs or ethical concerns. Con-
sequently, it is crucial to develop methods for estimating causal relationships from observational
data, when experimental studies are not feasible.

Many algorithms have been developed to uncover causal structures assuming the absence of un-
measured variables ((Spirtes et al., 2000), (Chickering, 2002), (Shimizu et al., 2006), among others).
This assumption implies that all information relevant to the observed phenomena is fully observed
and retained. For instance, the linear non-Gaussian acyclic model (LiNGAM) ((Shimizu et al.,
2006)) demonstrates that causal structures can be identified under the assumptions of continuous
variables, linear functional forms, non-Gaussian distributions for exogenous variables, the indepen-
dence of error terms (i.e., no unmeasured variables), and acyclicity.

However, the assumption of no unmeasured variables is restrictive. The absence of unmeasured vari-
ables is often unrealistic in practical applications. For example, when analyzing factors influencing
customer purchasing behavior, factors such as income, occupation, and address can significantly
impact behavior but are challenging to capture. When this assumption is violated, it becomes dif-
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ficult to identify causal structures using methods that assume no unmeasured variables. Therefore,
relaxing this assumption is critical for broadly applying causal discovery frameworks.

The issue of unmeasured variables can be addressed from the perspective of graph representations of
variable relationships. The use of directed acyclic graphs (DAGs) is a standard approach for mod-
eling causal relationships among observed variables; however, they cannot account for the influence
of unmeasured variables. To overcome this limitation, acyclic directed mixed graphs (ADMGs)
were introduced. ADMGs include both directed and bidirectional edges, enabling the representa-
tion of latent variable-induced covariation and confounding effects, thus capturing more complex
causal structures and constraints beyond what DAGs can handle. This capability also allows for the
handling of nonparametric equality constraints such as Verma constraints ((Verma & Pearl, 1990)),
making ADMGs a more flexible and powerful tool for causal analysis.

Maeda & Shimizu (2020) introduced repetitive causal discovery (RCD), which estimates causal
structures in LiNGAM by iteratively testing the independence of residuals between observed vari-
ables using regression analysis. This method distinguishes between variable pairs influenced by
unmeasured variables (represented by bidirectional arrows) and those not influenced (represented
by unidirectional arrows), thereby estimating causal graphs while accounting for unmeasured vari-
ables.

Wang & Drton (2024) proposed the bow-free acyclic non-Gaussian (BANG) method, which esti-
mates causal structures by performing regression, calculating residuals, and iteratively conducting
independence tests using higher-order moments of residuals. Assuming non-Gaussian data, this
method consistently recovers bow-free ADMGs (referred to as bow-free acyclic path diagrams, or
BAPs in their study), going beyond Markov equivalence classes to identify accurate causal struc-
tures.

Bhattacharya et al. (2021) proposed ABIC, a method that frames causal discovery as a continuous
optimization problem. Using differentiable constraints, ABIC estimates various types of graphs,
such as ancestral ADMGs, arid ADMGs, and bow-free ADMGs, from observational data, recovering
causal structures up to Markov equivalence classes for linear Gaussian structural equation models.

Hoyer et al. (2008) proposed a method for estimating causal directions among variables with un-
measured variables in LiNGAM. By explicitly incorporating unmeasured variables into the model
and employing independent component analysis (ICA), this approach estimates causal directions
and demonstrates its effectiveness in identifying causal structures in small datasets.

We build on the method proposed by Bhattacharya et al. (2021) and introduce ABIC LiNGAM,
a novel approach for estimating causal structures, including orientations, rather than just Markov
equivalence classes, in the presence of unmeasured variables. Specifically, this method assumes that
the error terms follow a common non-Gaussian distribution known as the multivariate generalized
normal distribution and employs continuous optimization to recover ADMGs.

The contributions of this study are as follows: (1) it demonstrates that bow-free ADMGs can be
recovered, rather than only Markov equivalence classes, when data are linear and follow a multi-
variate generalized normal distribution; (2) it shows that Markov equivalence classes can still be
estimated when data follow a normal distribution, thereby providing a more general framework
applicable to various distributions; and (3) it proves the identifiability of parameters in ADMGs
under the assumption of multivariate generalized normality of error terms. Causal discovery meth-
ods can be broadly categorized into constraint-based approaches, which estimate graph structures

2



Under review as submission to TMLR

based on statistical conditional independence tests of variables in the data-generating probability
distribution, and score-based approaches, which maximize the scores (e.g., log-likelihood) of graphs
given the data to estimate causal structures. The proposed method is the first score-based ap-
proach within the LiNGAM framework to estimate causal structures in the presence of unmeasured
variables.

2 Problem Definition

2.1 Representation by Linear SEM

In this section, we review linear SEMs and their graphical representations. We use uppercase letters
(e.g., X) to denote variables or nodes in the graph and indexed uppercase letters (e.g., Xi) to denote
specific variables or nodes. We also use the following standard matrix notation: Aij denotes the
element in the ith row and jth column of matrix A, A−i,−j denotes the submatrix of A obtained
by removing the ith row and jth column, and A:,i denotes the ith column of A.

Additionally, for each vertex i belonging to set V , let {pa(i) | i ∈ V } and {sp(i) | i ∈ V } be two
families of index sets. The vertex set of G is the index set V , and G contains the edge j → i if
and only if j ∈ Pa(i) and the edge j ↔ i if and only if j ∈ Sp(i) (or equivalently, i ∈ Sp(j)).
Furthermore, {sp(i) | i ∈ V } satisfies the following symmetry condition: for any j ∈ V , j ∈ sp(i)
holds if and only if i ∈ sp(j). These two families of sets {pa(i) | i ∈ V } and {sp(i) | i ∈ V } define
the system of structural equations.

2.1.1 Linear SEM

We consider linear SEMs for d variables, parameterized by a weight matrix θ ∈ Rd×d. For each
variable Xi ∈ X, the structural equation is

Xi =
∑

j∈pa(i)

θijXj + ϵi, i ∈ V (1)

Here, the noise terms ϵi are mutually independent. In this case, sp(i) = ∅ for all i, since no
unmeasured variables exist. The graph G and corresponding binary adjacency matrix D ∈ {0, 1}d×d

are defined as follows: An edge Xj → Xi exists in G if and only if θij ̸= 0, in which case Dij = 1. The
graph G is acyclic if and only if θ can be created as an upper triangular matrix by the permutation
of vertex labeling.

2.1.2 Linear SEM with unmeasured variables

An observed set of variables is causally insufficient if there exist unmeasured variables that are the
ancestors of two or more observed variables in the system. In a linear structural equation model
(SEM), these unmeasured variables often manifest as dependencies among the error terms Pearl
(2009). Consider a d-dimensional random vector X = (X1, . . . , Xd) represented by real-valued
matrices δ, Ω ∈ Rd×d. For each Xi, the structural equation takes the following form:

Xi =
∑

j∈pa(i)

δijXj + ϵi, i ∈ V. (2)
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Here, ϵ = (ϵ1, . . . , ϵd) is a vector of error terms with zero mean without loss of generality and
is not necessarily Gaussian. Allowing non-Gaussian noise terms accommodates a wider class of
underlying distributions and may improve identifiability via higher-order moments or nonsymmetric
distributional features Shimizu et al. (2006); Wang & Drton (2024).

In the special case where a given variable Xi has no unmeasured variables, its error term ϵi may
be independent of all the others. However, if unmeasured variables influence multiple observed
variables, their corresponding error terms become dependent on each other. These dependencies
are captured by the matrix Ω = E[ϵϵ⊤], which does not need to be diagonal. For the Gaussian noise,
the marginalized distribution of X is a zero-mean multivariate normal with a covariance matrix as
follows:

Σ = (I − δ)−1Ω(I − δ)−⊤, (3)

And the same covariance structure can be considered for non-Gaussian errors, at least at the level of
second moments. In a non-Gaussian setting, higher-order moments and distributional asymmetries
can be exploited to identify causal directions and latent structures.

The induced graph G is an ADMG that includes both directed (→) and bidirected (↔) edges. The
graph G and associated binary adjacency matrices D ∈ {0, 1}d×d and B ∈ {0, 1}d×d are defined
as follows: a directed edge Xj → Xi exists in G if and only if δij ̸= 0, in which case Dij = 1. A
bidirected edge Xj ↔ Xi exists in G if and only if Ωij ̸= 0 (symmetry ensures Ωji ̸= 0), in which
case Bij = Bji = 1. In the special case where there are no unmeasured variables, the ADMG
reduces to a DAG, and the B matrix is a zero matrix.

In summary, this framework does not restrict the noise terms to be Gaussian, allowing a broader
class of SEMs that can represent latent variable-induced dependencies through non-Gaussian dis-
tributions. By leveraging non-Gaussianity, one can potentially achieve stronger identifiability and
more robust causal inferences than would be possible under Gaussian assumptions alone.

2.2 Motivation Example

As discussed in Section 2.1.1, when there are no unmeasured variables, the observed variables
can be represented as a DAG. Thus, the problem reduces to estimating the structure of a DAG.
However, when unmeasured variables are present, a DAG cannot adequately represent the rela-
tionships between variables while accounting for such unmeasured variables. Therefore, we use an
ADMG, which can represent latent variable-induced covariation and confounding through directed
and bidirected edges. Consequently, in the presence of unmeasured variables, the problem reduces
to estimating the structure of an ADMG. This section builds on the work of Bhattacharya et al.
(2021).

Figure 1(a) depicts a DAG, which represents the relationships among the variables in the absence
of unmeasured variables. Figures (b), (c), and (d) illustrate examples of ADMGs that we aim to
estimate in this study. Figure (b) shows an ancestral ADMG, where no directed path Xi → · · · → Xj

and bidirected edges Xi ↔ Xj exist simultaneously in G for any pair of vertices Xi, Xj ∈ X. Figure
(c) shows an arid ADMG that does not contain any c-trees. A c-tree is a subgraph of G where its
directed edges form a directed tree, and its bidirected edges form a single bidirectional connected
component within the subgraph. For details on c-trees, see Shpitser & Pearl (2006). Figure (d)
shows a bow-free ADMGs, where no pair of vertices Xi → Xj and Xi ↔ Xj both exist in G. These
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Figure 1: (a) DAG without unmeasured variables. (b) Ancestral ADMGs. (c) Arid ADMGs. (d)
bow-free ADMGs.

three types of ADMGs exhibit an inclusion relationship, with bow-free ADMGs being the most
general type of ADMGs.

Ancestral ⊂ Arid ⊂ Bow-free

In Bhattacharya et al. (2021), these ADMGs are expressed as differentiable constraints, allowing
the selection of the appropriate ADMGs type to be estimated based on the data. This study
adopts the differentiable constraints proposed by Bhattacharya et al. (2021), enabling the selection
of suitable ADMGs types according to the data.

2.3 Identifiability in the Model

This section discusses the identifiability of the parameters in bow-free ADMGs where the error
terms follow a multivariate generalized normal distribution. Brito and Pearl (2002) proved that
given a bow-free ADMG model, the parameters are almost everywhere identifiable from the observed
covariance matrix. Since this fact is often utilized under the assumption that the error terms are
Gaussian, we show in this study that it also applies to bow-free ADMG models when the error terms
follow a multivariate generalized normal distribution. Furthermore, we discuss Wang & Drton
(2024), who demonstrated that the model can identify causal directions, and not only Markov
equivalence classes, using the non-Gaussianity of error terms. This study also provides evidence
that causal directions can be estimated.

2.3.1 On the Identifiability of Parameters in bow-Free ADMGs with Multivariate
Generalized Normal Distributions

Brito & Pearl (2002) demonstrated that a bow-free ADMG model is almost always identifiable
from the observed covariance matrix. As the argument in Brito & Pearl (2002) primarily assumes
that the error terms are Gaussian, we follow Brito & Pearl (2002) to demonstrate that when the
error terms have a multivariate generalized normal distribution, a bow-free ADMG model is almost
always identifiable from the observed covariance matrix. (See the Appendix for the proof.)

Theorem 1
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Let G be a bow-free ADMGs with error terms following a multivariate generalized normal distri-
bution, and let the set of parameters of G be θ = {δ, Ω}. Then, for almost all θ, the following
holds:

Σ(θ) = Σ(θ′)

implies θ = θ′.

In other words, if two parameter sets θ and θ′ yield the same covariance matrix Σ, then θ and θ′

must be identical, except possibly when θ belongs to a set of Lebesgue measure zero.

2.3.2 Identifiability of the structure in bow-Free ADMGs Using Non-Gaussianity

Wang & Drton (2024) demonstrated that when the data are non-Gaussian and correspond to a
bow-free ADMG, the bow-free ADMG can be consistently recovered, including both the Markov
equivalence class and causal directions. The multivariate generalized normal distribution assumed
for the observed data in this study is non-Gaussian except in the special case. Therefore, un-
like Bhattacharya et al. (2021), who were limited to recovering the Markov equivalence class, it is
expected that the causal directions can also be estimated.

3 Decomposition of the Log-Likelihood Function of the Multivariate
Generalized Normal Distribution

3.1 Probability Density Function of the Multivariate Generalized Normal Distribution

As defined by Gómez et al. (1998), the probability density function of the multivariate generalized
Gaussian distribution (MGGD) is given by:

f(X | µ, Σ, β) =
Γ
(

p
2
)

π
p
2 Γ
(

p
2β

) · β

2
p

2β |Σ|
1
2

exp
(
− 1

2
(
(X − µ)⊤Σ−1(X − µ)

)β
)

, (4)

where X is a p-dimensional random vector (p ≥ 1) that follows a power-exponential distribution
with parameters µ, Σ, and β. Specifically, µ ∈ Rp, Σ is a (p×p) positive-definite symmetric matrix,
and β ∈ (0,∞). Γ(·) denotes the gamma function. Notably, the MGGD reduces to a multivariate
normal distribution when β = 1. In this distribution, if Σ is a diagonal matrix, then the correlation
coefficients between the components become zero. However, because the multivariate generalized
normal distribution belongs to the elliptical family, a zero correlation does not imply independence.
Nonetheless, if the components are assumed to be generated independently, they can be considered
truly independent rather than merely uncorrelated.

Gómez et al. (1998) show that the MGGD is invariant under affine transformations. More precisely,
if f(X | µX , ΣX , β) is the probability density function, then for the affine transformation

Y = CX + b, (5)

where C is a nonsingular matrix, b is a vector in Rp, and the transformed variable Y follows
f(Y | CµX + b, C ΣX C⊤, β). This indicates that the family of distributions remains within the
same class under any nonsingular linear transformation and translation.
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This affine transformation property is particularly useful in linear structural equation models (es-
pecially (2)). In such models, the relationships among the observed variables and the covariance
structure of the error terms are modeled, leading to the covariance matrix Σ of the observed vari-
ables in the form

Σ = (I − δ)−1 Ω (I − δ)−⊤.

Furthermore, as discussed in Section 3.2.1, one can estimate the parameters δ and Ω from the
observed covariance matrix. In other words, if the data follow an MGGD, then in principle δ and
Ω can be estimated from an observed covariance matrix of the form Σ = (I − δ)−1 Ω (I − δ)−⊤.

3.2 Log-Likelihood Function

Assuming that in the ADMG graph G = (V, E) of the linear model (2), N observations are drawn,
where all the components of µ are zero (the mean vector is zero). The reason for setting all the
components of µ to zero is to prevent notational clutter without loss of generality. In this case, the
log-likelihood function is given by (4) as follows:

ℓ(µ, Σ, β|X) = N log Γ
(p

2

)
+ N log β − p

2
N log π

−N log Γ
(

p

2β

)
− p

2β
N log 2− N

2
log |Σ|

− 1
2

N∑
l=1

(
X(l)⊤Σ−1X(l)

)β

(6)

3.3 Decomposition of the Log-Likelihood Function

The main component of the proposed algorithm is the decomposition of the log-likelihood function of
the multivariate generalized normal distribution, inspired by Dorton et al. (2009), who decomposed
the log-likelihood function of the multivariate normal distribution.

Let Xi ∈ RN denote the ith row of the observation matrix X and X−i = XV/i be the (V \ {i})×N
submatrix of X. We adopt the abbreviated notation XC to represent the C ×N submatrix of the
D ×N matrix X, where C ≤ D.

Theorem 2

Let i ∈ X be a variable node in the ADMG graph G = (V, E) of the linear model (2). Let
∥x∥2 = x⊤x and define Ωii.−i as the conditional variance of εi given ε−i as follows:

Ωii.−i = Ωii − Ωi,−iΩ−1
−i,−iΩ−i,i (7)

Here, Ωi,−i is the row vector obtained by removing the ith element from the ith row, Ω−i,i is the
column vector obtained by removing the ith element from the ith column, and Ω−i,−i denotes the
submatrix obtained by removing the ith row and ith column from Ω. Additionally, let Ω−1

−i,−i =
(Ω−i,−i)−1. Then, the log-likelihood function ℓ(B, Ω, β) of the graph G = (V, E) can be decomposed
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as
ℓ(µ, Σ, β|X) =

− N

2
log Ωii.−i −

N

2
log det(Ω−i,−i)

− 1
2

N∑
l=1

(
Ω−1

ii.−i

(
(X(l)

i − δi,pa(i)X
(l)
pa(i) − Ωi,sp(i)

(
Ω−1

−i,−iε
(l)
−i

)
sp(i)

)2 + ε
(l)⊤
−i Ω−1

−i,−iε
(l)
−i

))β

(8)

Proof.

By rearranging the log-likelihood function described in equation (6), considering the constant parts
unrelated to the coefficient matrices δ and Ω, noting that the determinant det(I − δ) = 1 since δ is
acyclic, and that (I−δ)X = ε, and considering that the covariance matrix Σ can be expressed using
the adjacency matrix B and Ω as Σ = Var(X) := (I − δ)−1Ω(I − δ)−⊤, we obtain the following:

ℓ(µ, Σ, β|X) = −N

2
log |Σ| − 1

2

N∑
l=1

(
X(l)⊤Σ−1X(l)

)β

= N

2
log |(I − δ)Ω(I − δ)⊤| − 1

2

N∑
l=1

(
X(l)⊤(I − δ)⊤Ω−1(I − δ)X(l)

)β

= −N

2
log |Ω| − 1

2

N∑
l=1

(
ε(l)⊤Ω−1ε(l)

)β

(9)

We can partition Ω as a block matrix:

Ω =
(

Ωii Ωi,−i

Ω−i,i Ω−i,−i

)
(10)

Based on equations (7) and (10), we can rearrange log |Ω| as shown in equation (11):

log |Ω| = log
(
Ωii − Ωi,−iΩ−1

−i,−iΩ−i,i

)
+ log |Ω−i,−i|

= log Ωii.−i + log |Ω−i,−i|
(11)

Next, we rearrange the term ε(l)⊤Ω−1ε(l) in 1
2
∑N

l=1
(
ε(l)⊤Ω−1ε(l))β . We partition Ω−1 as a block

matrix:

Ω−1 =
(

Ωii Ωi,−i

Ω−i,i Ω−i,−i

)−1

=
(

Ω−1
ii.−i −Ω−1

ii.−iΩi,−iΩ−1
−i,−i

−Ω−1
−i,−iΩ−i,iΩ−1

ii.−i Ω−1
−i,−i + Ω−1

−i,−iΩ−i,iΩ−1
ii.−iΩi,−iΩ−1

−i,−i

)
.

(12)

Considering that Ω−1 is a block matrix, we can rearrange ε(l)⊤Ω−1ε(l) as follows:

ε(l)⊤Ω−1ε(l) =
(

ε
(l)
i ε

(l)⊤
−i

)( Ω−1
ii.−i −Ω−1

ii.−iΩi,−iΩ−1
−i,−i

−Ω−1
−i,−iΩ−i,iΩ−1

ii.−i Ω−1
−i,−i + Ω−1

−i,−iΩ−i,iΩ−1
ii.−iΩi,−iΩ−1

−i,−i

)(
ε

(l)
i

ε
(l)
−i

)
= Ω−1

ii.−i(ε
(l)
i − Ωi,−iΩ−1

−i,−iε
(l)
−i)

2 + ε
(l)⊤
−i Ω−1

−i,−iε
(l)
−i

(13)
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From this rearrangement, the log-likelihood function becomes equation (14):

ℓ(µ, Σ, β|X) = −N

2
log Ωii.−i−

N

2
log det(Ω−i,−i)+

1
2

N∑
l=1

(
Ω−1

ii.−i

(
(ε(l)

i − Ωi,−iΩ−1
−i,−iε

(l)
−i)

2 + ε
(l)⊤
−i Ω−1

−i,−iε
(l)
−i

))β

(14)

By definition, the error term ε
(l)
i = X

(l)
i − δi,pa(i)X

(l)
pa(i). Moreover, since we are dealing with

bow-free ADMGs, we have Ωi,−iΩ−1
−i,−iε

(l)
−i = Ωi,sp(i)

(
Ω−1

−i,−iε
(l)
−i

)
sp(i)

. This yields the claimed
decomposition.

□
The decomposition of the log-likelihood function is based on decomposing the joint distribution of ε
into the marginal distribution of ε−i and conditional distribution (εi | ε−i). In particular, as shown
in (14), the squared term (ε(l)

i −Ωi,−iΩ−1
−i,−iε

(l)
−i)2 represents the deviation of εi from its conditional

expectation given ε−i, which plays a key role in deriving the likelihood decomposition. This idea
leads to an approach similar to that of Dorton et al. (2009), who decomposed the log-likelihood
function of the multivariate normal distribution and proposed an iterative algorithm. The steps of
this algorithm are based on fixing the marginal distribution of ε−i and estimating the conditional
distribution. To fix the marginal distribution of ε−i, we must fix the submatrix of Ω−i,−i excluding
the ith row and ith column and the submatrix of δ−i,V excluding the ith row. This is because ε−i

is determined depending on Ω−i,−i and δ−i,V . When Ω−i,−i and δ−i,V are fixed, not only can ϵ−i

be computed but also the pseudo-variable is defined as

Z−i = Ω−1ϵ−i. (15)

From Z−i = Ω−1
−i,−iε−i, it becomes clear that when Ω−i,−i and δ−i,V are fixed, the maximization of

the log-likelihood function ℓ(δ, Ω, β) can be solved by maximizing the following function to estimate
δ and Ω:

ℓ(µ, Σ, β|X)

= −N

2
log Ωii.−i −

1
2

N∑
l=1

(
Ω−1

ii.−i

(
X

(l)
i − δi,pa(i)X

(l)
pa(i) − Ωi,sp(i)

(
Ω−1

−i,−iε
(l)
−i

)
sp(i)

)2
)β

= −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

N∑
l=1


X

(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2


β

(16)

Assuming β ≥ 1, we rearrange equation (16) using Hölder’s inequality(for details on the application
of Hölder’s inequality, see the APPENDIX).
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ℓ(µ, Σ, β|X)

= −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

N∑
l=1


X

(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2


β

= −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

Nβ−1

Nβ−1

N∑
l=1


X

(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2


β

≥ −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

1
Nβ−1

 N∑
l=1

X
(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2


β

= −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

1
Nβ−1

∥∥∥∥∥∥Xi −
∑

j∈pa(i)

δi,jXj −
∑

k∈sp(i)

Ωi,kZk

∥∥∥∥∥∥
2β

(17)

Maximizing equation (17) to estimate δ and Ω is equivalent to performing a regression of Xi (as
the target variable) on Xj (the parent variable of Xi) and the pseudo-variables Zk, considering the
shape parameter β.

Utilizing these observations, in the next section, we propose a method for causal structure estimation
using continuous optimization, considering the presence of unmeasured variables and assuming that
the error variables follow a multivariate generalized normal distribution, using the decomposition
results of the log-likelihood function organized in this section to estimate δ̂, Ω̂.

4 Proposed Method

4.1 Causal Discovery Based on Differentiable Scores

Score-based methods aim to estimate causal structures by maximizing a graph’s score (e.g., log-
likelihood) given the data. Learning DAGs from data is an NP-hard problem because it is chal-
lenging to efficiently enforce combinatorial acyclicity constraints ((Chickering, 1996)).

Zheng et al. (2018) proposed a new approach for score-based DAG learning by converting the
traditional combinatorial optimization problem (18) into a continuous optimization problem (19).

min
θ∈Θ

F (θ) subject to G(θ) ∈ DAGs (18)

min
θ∈Θ

F (θ) subject to h(θ) = 0, (19)

where G(θ) is a d-node graph induced by the weight matrix θ ∈ Rd×d, and F : Rd×d → R is a
score function. h : Rd×d → R is a smooth function over real matrices, and the constraint h(θ) = 0

10
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can precisely characterize the acyclicity of the graph. Causal structure estimation via continuous
optimization eliminates the need for specialized algorithms to explore the combinatorial space of
DAGs and instead allows the use of standard numerical algorithms for constrained problems, making
implementation particularly straightforward, as mentioned in Zheng et al. (2018).

The acyclicity constraint is defined as follows:

h(θ) = trace
(
eθ◦θ

)
− d = 0 (20)

Here, θ ◦ θ denotes the Hadamard product (element-wise multiplication), trace
(
eθ◦θ

)
is the trace

(sum of the diagonal elements) of the matrix exponential, and d is the number of variables. This
constraint ensures that the matrix θ forms a DAG.

Zheng et al. (2018) used the augmented Lagrangian method as a continuous optimization technique.
This method solves constrained optimization problems using an objective function that includes
penalty terms and is formulated as

min
θ∈Θ

L(θ) + λ∥θ∥1 + αh(θ) + ρ

2
h(θ)2 subject to h(θ) = 0. (21)

Here, λ is the weight of the regularization term, α is the Lagrange multiplier, and ρ is the penalty
coefficient.

4.2 ABIC

Although the differentiable score-based causal discovery method using continuous optimization pro-
posed by Zheng et al. (2018) has been successful in estimating causal structures in DAGs, it cannot
be directly applied to ADMGs. This is because ADMGs require two adjacency matrices, D and B,
to represent the directed and bidirected edges, respectively. To extend the differentiable algebraic
characterization to ADMGs, Bhattacharya et al. (2021) proposed differentiable constraints for each
causal graph. In Bhattacharya et al. (2021), three differentiable constraints (i.e., ancestral, arid,
and bow-free)are proposed for ADMGs , as shown in Table 1.

ADMGs Algebraic Constraint
Ancestral trace(eD)− d + sum(eD ◦B) = 0
Arid trace(eD)− d + Greenery(D, B) = 0
Bow-free trace(eD)− d + sum(D ◦B) = 0

Table 1: Differentiable constraints for each causal graph in ADMGs ((Bhattacharya et al., 2021))

For example, to estimate the causal structure of bow-free ADMGs, the constraint equation becomes
(22).

h(θ) = tr(eD)− d + sum(D ◦B) (22)

11
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Here, sum(·) denotes the sum of all the elements in a matrix. It has been proven that when h(θ) = 0,
the estimated graph corresponds to an ADMG ((Bhattacharya et al., 2021)). Essentially, tr(eD)−d
signifies the standard acyclicity constraint for directed edges, and the latter term sum(D◦B) ensures
that bidirected edges are not introduced when a directed edge exists (i.e., it enforces the bow-free
ADMGs property).

Bhattacharya et al. (2021) used the augmented Lagrangian method, similar to Zheng et al. (2018),
to convert the problem into an optimization problem with a quadratic penalty term, and proposed
ABIC, which solves the following primal equation at each iteration:

min
θ∈Θ

ABICλ(X; θ) + ρ

2
|h(θ)|2 + αh(θ), (23)

where ρ is the weight of the penalty term, and α is the Lagrange multiplier. Then, the Lagrange
multiplier is updated as α← α + ρh(θ). Intuitively, by optimizing the primal equation with a large
ρ, we force h(θ) to be very close to zero, thus satisfying the equality constraint.

Algorithm 1: ABIC
Input: X, Ω, tol, max_iterations, h, ρ, α, λ
Output: Estimates δt and Ωt

Initialize the estimates δt and Ωt and set c = ln(n);
Define LS(θ) as 1

2n

∑d
i=1 ||X·,i −Xδ·,i − Z(i)Ω·,i||2;

for t = 1 to max_iterations do
for i = 1 to d do

Compute ϵi ← X·,i −Xδt
·,i;

Compute Z(i) ∈ Rn×d as Z
(i)
·,i = 0 and Z

(i)
·,−i ← ϵ−i(Ωt

−i,−i)−T ;

δt+1, Ωt+1 ← arg minθ∈Θ{LS(θ) + ρ
2 |h(θ)|2 + αh(θ) + λ

∑dim(θ)
i=1 tanh(c|θi|)};

for i = 1 to d do
Compute ϵi ← X·,i −Xδt+1

·,i ;
Set Ωt+1

ii ← var(ϵi);
if ||δt+1 − δt + Ωt+1 − Ωt|| < tol then

break;

return δt, Ωt;

Inspired by Dorton et al. (2009), Bhattacharya et al. (2021) proposed a method for estimating the
Markov equivalence class when the error terms are normally distributed within the framework of
continuous optimization. Specifically, in the case of an ADMG model where the error terms are
normally distributed, maximizing the likelihood corresponds to minimizing a least squares regression
problem where each variable i is regressed on its direct parents Xj → Xi and pseudo-variables Z
(formed from residual noise terms and the bidirected coefficients of their siblings). At each step,
Z is computed using the current parameter estimates, and the primal equation is solved. This
procedure is repeated until convergence or a prespecified maximum number of iterations is reached.
When the penalty is small (resulting in non-arid graphs), they expect that ABIC will not converge
during the initial iterations of the augmented Lagrangian method. Therefore, they initially set
the maximum number of iterations to be small and increase this number at each dual step. The

12
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penalty ρ is increased according to a fixed schedule (multiplied by 10) to a maximum value of 1016

if the inequality in line 4 of algorithm1 is not satisfied. Simulations have shown that this method
is effective in practice, and the convergence of algorithm1 within 10 to 15 steps of the augmented
Lagrangian method is achieved ((Bhattacharya et al., 2021)).

4.3 ABIC LiNGAM

In this study, we extend the method proposed by Bhattacharya et al. (2021) and present algorithm2
that can estimate causal structures when the error terms follow a multivariate generalized normal
distribution. The basic framework is the same as that in Bhattacharya et al. (2021), but we consider
that the error terms follow a multivariate generalized normal distribution and incorporate the shape
parameter β into the loss function. The shape parameter must be estimated from the observed data
in advance. We use the estimated shape parameter β̂. In addition, since the multivariate normal
distribution corresponds to β = 1, the proposed method can handle the normal distribution case,
thereby generalizing the method of Bhattacharya et al. (2021). Depending on the data, it is possible
to switch between non-Gaussianity and Gaussianity.

Algorithm 2: ABIC LiNGAM
Input: X, Ω, tol, max_iterations, h, ρ, α, λ
Output: Estimates δt and Ωt

Initialize the estimates δt and Ωt and set c = ln(n);
Define LS(θ) as 1

2n

∑d
i=1 ||X·,i −Xδ·,i − Z(i)Ω·,i||2β ;

for t = 1 to max_iterations do
for i = 1 to d do

Compute ϵi ← X·,i −Xδt
·,i;

Compute Z(i) ∈ Rn×d as Z
(i)
·,i = 0 and Z

(i)
·,−i ← ϵ−i(Ωt

−i,−i)−T ;

δt+1, Ωt+1 ← arg minθ∈Θ{LS(θ) + ρ
2 |h(θ)|2 + αh(θ) + λ

∑dim(θ)
i=1 tanh(c|θi|)};

for i = 1 to d do
Compute ϵi ← X·,i −Xδt+1

·,i ;
Set Ωt+1

ii ← var(ϵi);
if ||δt+1 − δt + Ωt+1 − Ωt|| < tol then

break;

return δt, Ωt;

5 Experiments

5.1 Simulation

In this study, we conducted simulations inspired by the experimental setup in Bhattacharya et al.
(2021). We verified whether the proposed method could identify ADMGs, particularly the most
common bowel-free causal structures. The data generation process was as follows:

The causal relationships for each pair (i, j) (i < j) were determined using a two-step process
involving random sampling. First, a value was uniformly sampled from the range [0, 1] to determine
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whether the pair (i, j) was assigned a directional (Xi → Xj) or a bidirectional relationship (Xi ↔
Xj). If the sampled value was below a predefined threshold for inclusion in the coefficient matrix, a
directional relationship was assigned, and δij was sampled uniformly from the interval [−2.0,−0.5]∪
[0.5, 2.0], with the value placed in the coefficient matrix δij .

A bidirectional relationship was assigned if the sampled value was within the range corresponding
to the threshold of the adjacency matrix. In this case, a value was uniformly sampled from the
interval [−0.7,−0.4]∪ [0.4, 0.7] and symmetrically assigned to Ωij and Ωji. No causal relationships
were assigned to pairs that did not meet either threshold.

The diagonal entries Ωii were determined separately. These values were sampled from the interval
±[0.4, 0.7]. To ensure the positive definiteness of Ω, an adjustment was made by adding

∑
(|Ωi,−i|)

and an offset sampled from the interval [0.1, 0.5].

The thresholds for inclusion in the coefficient and adjacency matrices controlled for the probability
of assigning each type of relationship, and consequently, the number of relationships assigned. This
probabilistic framework ensured that the structures of δ and Ω aligned with the desired causal
model.

In this study, to compare our proposed method, we considered bow-free ABIC ((Bhattacharya et al.,
2021)), which was the basis of our research; FCI ((Spirtes et al., 2000)), a constraint-based
method that can estimate causal structures in the presence of unmeasured variables; and BANG
((Wang & Drton, 2024)), which can identify bow-free ADMGs (at the 5% significance level), and
compared their accuracies. In this experiment, since we tested on bow-free data, the most com-
mon in ADMGs, our proposed method, ABIC LiNGAM, was evaluated with bow-free constraints.
We examined two patterns: one where the true value of the shape parameter β of the multivari-
ate generalized normal distribution was known, and one where it was unknown and needed to be
estimated.

The simulations were conducted under three patterns for sample size n ({100, 500, 1000}), two
patterns for the dimension k of the observed variables ({5, 10}), and three patterns for the shape
parameter β of the multivariate generalized normal distribution ({1, 3, 5}) (when β = 1, it became
a multivariate normal distribution), resulting in 3× 2× 3 = 18 scenarios. In this study, the number
of simulations for each scenario was set to 50. The simulations were conducted using Python 3.8
and the NumPy and SciPy libraries.

Using non-Gaussianity, the structure of bow-free ADMGs could be identified. We evaluated whether
the direction could be estimated in this verification. Therefore, for ABIC, which originally assumes
a linear Gaussian SCM and reconstructs up to the Markov equivalence class, we evaluated the
output. Since FCI outputs a partial ancestral graph (PAG), we treated A◦→ B, indicating that
B was not an ancestor of A, as A → B, and treated ◦−◦, indicating that there was no set that
d-separated A and B, as A ↔ B. Consequently, we evaluated the precision, recall, and F1-score
for skeletons, arrowheads, and tails.

We evaluated the performance of the proposed method, ABIC LiNGAM, using the metrics "recall,"
"precision," and "F1-score," and compared it with that of existing methods such as BANG. The
simulation results (see Figures 1-6) showed that ABIC LiNGAM could estimate causal structures,
including directions, even in the presence of unmeasured variables.
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Figure 2: The precision results for each method with five variables.

Figure 3: The recall results for each method with five variables.
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Figure 4: The F1-score results for each method with five variables.

Figure 5: The precision results for each method with ten variables.
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Figure 6: The recall results for each method with ten variables.

Figure 7: The F1-score results for each method with ten variables.
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First, in the case of β = 1, ABIC LiNGAM exhibited a performance comparable to that of ABIC
in SKELETON, accurately estimating structures without considering directions. This is consistent
with the fact that ABIC can estimate up to the Markov equivalence class in linear Gaussian systems.
When β = 1, the distribution becomes normal; thus, ABIC LiNGAM cannot estimate the direction.

Further, in the non-Gaussian distribution cases with β ̸= 1, ABIC LiNGAM showed high accuracy
in ARROWHEAD and TAIL, confirming that it can estimate directions. For example, under the
conditions of five variables, a sample size of 500, and β = 3, the recall of ARROWHEAD for ABIC
LiNGAM (beta true) was 0.760, precision was 0.733, and F1-score was 0.735, which outperformed
BANG’s recall of 0.651, precision of 0.898, and F1-score of 0.745. Additionally, ABIC’s TAIL had
a recall of 0.055, a precision of 0.103, and F1-score of 0.050, indicating that it could hardly infer
directions as it assumes a normal distribution. We also confirmed that the estimation accuracy
remained stable even when β increased. Specifically, under the conditions of ten variables, a sample
size of 500, and β = 5, the recall of ARROWHEAD for ABIC LiNGAM (beta est) was 0.719,
precision was 0.705, and F1-score was 0.707, which was not significantly different from those under
β = 3.

Moreover, it was confirmed that the accuracy of ABIC LiNGAM does not change significantly, even
when the number of variables increased. When the number of variables was ten, for a sample size
of 500 and β = 3, the recall of ARROWHEAD for ABIC LiNGAM (beta est) was 0.726, precision
was 0.736, and F1-score was 0.727, similar to the case when the number of variables was five. 　
In terms of method comparison, there was a tendency for the performance difference between ABIC
LiNGAM and BANG to be narrow. When the number of variables was ten, under the conditions
of a sample size of 500 and β = 3, ABIC LiNGAM (beta est) showed a recall of 0.726, a precision
of 0.736, and F1-score of 0.727 for ARROWHEAD, outperforming BANG’s recall of 0.590 and
F1-score of 0.692. This suggests that the proposed method is effective for high-dimensional data
analysis.

Overall, BANG showed the highest accuracy in inferring directions. However, as the number of
variables increased, the accuracies of BANG and ABIC LiNGAM (beta est) became closer. For
instance, when the number of variables was five, under the condition of a sample size of 500 and
β = 3, the recall of TAIL for ABIC LiNGAM (beta est) was 0.684, precision was 0.436, and F1-score
was 0.502, while BANG’s TAIL had a recall of 0.945, a precision of 0.526, and F1-score of 0.644,
indicating that BANG inferred directions better than ABIC LiNGAM (beta est). However, when
the number of variables was ten, the difference in accuracy between the two methods decreased.

These results were based on the numerical values obtained from the simulations. In particular,
since it was important to estimate the directions in this study, we focused on ARROWHEAD
and TAIL. The results showed that the proposed method, ABIC LiNGAM, could estimate causal
structures including directions with high accuracy, even when unmeasured variables exist and the
data follow a non-Gaussian distribution, while accurately estimating SKELETON when the data
follow a normal distribution. A score-based method is considered more suitable when the overall
and unified quantitative evaluation criterion is used to measure the consistency between the data
and the model structure, rather than relying solely on conditional independence tests to determine
the model structure as in constraint-based methods. The proposed method achieved an accuracy
comparable to that of the state-of-the-art BANG method.
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5.2 Performance Evaluation on Real-world Data

We analyzed the General Social Survey dataset obtained from a sociological data repository
(https://gss.norc.org/). This dataset was also used in the evaluation of DirectLiNGAM by Shimizu
et al. (2011). The sample size was 1380. The variables and their possible directions are shown
in Figure 8. These directions were determined based on domain knowledge and time order from
Duncan & Featherman (1972).

For performance evaluation, we compared the methods in the same manner as in the simulations.
Specifically, to compare with our proposed method, bow-free ABIC LiNGAM, we considered bow-
free ABIC ((Bhattacharya et al., 2021)), which was the basis of our research; FCI ((Spirtes et al.,
2000)), a constraint-based method that can estimate causal structures in the presence of unmea-
sured variables; BANG ((Wang & Drton, 2024)), which can identify bow-free ADMGs (at the 5%
significance level ). In this case, since we estimated the causal structures by assuming that the error
terms of the data followed a multivariate generalized normal distribution, we inferred the shape
parameter β of the multivariate generalized normal distribution, as in the simulation, and estimated
the causal structures using the inferred parameter. In addition, since estimating β using the whole
dataset resulted in an estimate less than 1 and unstable estimation when using that parameter(the
estimation itself was feasible, but δ had all elements equal to 0, and Ω had only diagonal elements
equal to 1), we estimated β using each variable individually and used the highest β value for causal
structure identification.

Figure 8: Variables and causal relations in the General Social Survey dataset used for the evaluation.

Table 2: Experimental Results on Bollen Data
Method SKELETON ARROWHEAD TAIL

Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score
FCI 0.727 1.000 0.842 0.643 0.692 0.666 0.250 0.667 0.363
BANG 0.727 0.889 0.800 0.643 0.643 0.643 0.250 0.500 0.333
ABIC 0.455 1.000 0.625 0.429 0.600 0.500 0.000 0.000 0.000
ABIC LiNGAM

beta est 0.818 1.000 0.900 0.714 0.800 0.740 0.500 0.800 0.615

19



Under review as submission to TMLR

Figure 9: Causal graph produced by ABIC LiNGAM: The dashed lines represent predicted arrows
that differ from the true arrows.

The proposed method, ABIC LiNGAM beta est, showed superior performance in SKELETON
compared with the other methods, with a recall of 0.818, a precision of 1.000, and F1-score of 0.900
(see Table 2). This indicates that the proposed method can estimate SKELETON with higher
accuracy than ABIC. While ABIC had a recall of 0.455, a precision of 1.000, and F1-score of 0.625,
the proposed method was superior in terms of both recall and F1-score.

Furthermore, the proposed method showed excellent performance for ARROWHEAD and TAIL,
which considered the causal directions. In ARROWHEAD, the recall was 0.714, precision was
0.800, and F1-score was 0.740, surpassing BANG’s recall of 0.643, precision of 0.643, and F1-
score of 0.643. In TAIL, the proposed method had a recall of 0.500, a precision of 0.800, and
F1-score of 0.615, which were higher than BANG’s recall (0.250), precision (0.500), and F1-score
(0.333). Furthermore, as shown in Figure 9, the true causal structure is estimated to some extent.
These results demonstrate that the proposed method can estimate the causal structures, including
directions, more accurately.

5.3 Performance Evaluation on Real Data Using Prior Knowledge

In ABIC LiNGAM, prior knowledge can be incorporated into the inference process following the
code implementation of ABIC available at https://gitlab.com/rbhatta8/dcd. Specifically, by defin-
ing hierarchical causal orders (tiers) and incorporating prior knowledge that certain variables are
unconfounded, we can restrict the parameter ranges (bounds) considered during the estimation.
Consequently, edges that contradict the causal order, as well as bidirectional edges among uncon-
founded variables, are represented with predetermined constraints in the parameter space (e.g.,
fixed to zero) and are thus automatically excluded during the inference process. Thereby, explicitly
reflecting prior knowledge in the model ensures that assumptions regarding causal directionality
and the absence of confounding factors are maintained, enabling an efficient structural estimation.

For example, the General Social Survey dataset obtained from a sociological data repository
(https://gss.norc.org/) includes variables pertaining to parents and children. If a causal path exists
from the parents to the children, a causal path from the children to the parents is not possible. In
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the following section, we consider the inferences with a hierarchical causal structure. Specifically,
we divided the variables into two groups with a two-tiered structure―Father’s Occupation, Father’
s Education and Number of Siblings, Son ’s Education, Son ’s Occupation, Son ’s Income―and
prohibited the existence of directed edges from children ’s variables to parents ’variables.

Figure 10: Causal graph produced by ABIC LiNGAM incorporating prior knowledge: The dashed
lines represent predicted arrows that differ from the true arrows.

Table 3: Experimental Results for Bollen Data incorporating prior knowledge
Method SKELETON ARROWHEAD TAIL

Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score
ABIC LiNGAM

beta est 0.818 1.000 0.900 0.714 0.800 0.740 0.500 0.800 0.615

ABIC LiNGAM
beta est

prior knowledge
0.818 1.000 0.900 0.692 0.900 0.782 0.857 0.750 0.800

As demonstrated by the results shown in Figure 10 and Table 3, incorporating prior information
into ABIC LiNGAM leads to a higher estimation accuracy compared to the approach without such
information. The estimated graph aligns closely with the presumed true causal structure. This
suggests that incorporating prior knowledge into ABIC LiNGAM is feasible and that leveraging
such information can yield improved accuracy in practical applications.

6 Conclusion

In this study, based on the method proposed by Bhattacharya et al. (2021), we introduced ABIC
LiNGAM, which extends the LiNGAM method for causal structure estimation in the presence of
unmeasured variables. By assuming that the error terms follow a multivariate generalized normal
distribution, we showed that we can estimate not only up to the Markov equivalence class but also
the directions in the causal structure. Additionally, since ABIC LiNGAM can accurately estimate
the SKELETON when the data follow a normal distribution, it can be considered a more generalized
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approach than the ABIC LiNGAM proposed in the previous study by Bhattacharya et al. (2021).
We also proved the identifiability of the parameters in ADMGs when the error terms follow a
multivariate generalized normal distribution. Through simulations and experiments using real-
world data, we confirmed that the proposed method can estimate causal structures with an accuracy
comparable to that of existing methods. The proposed method is expected to provide a useful
framework for causal discovery in real-world situations with unmeasured variables. In future work,
we will explore methods to reduce the estimation time, extending the proposed method to nonlinear
data structures, and applying it to mixed data, including discrete variables.
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A Appendix

A.1 Proof of the Identifiability of Parameters in Bow-Free ADMGs with Multivariate
Generalized Normal Distributions

Theorem 1

Let G be a bow-free ADMGs with error terms following a multivariate generalized normal distri-
bution, and let the set of parameters of G be θ = {δ, Ω}. Then, for almost all θ, the following
holds:

Σ(θ) = Σ(θ′)

implies θ = θ′.

In other words, if two parameter sets θ and θ′ give the same covariance matrix Σ, then θ and θ′ must
be identical, except possibly when θ belongs to a set of Lebesgue measure zero. If the two lemmas
described later can be proven for the case where the error terms follow a multivariate generalized
normal distribution, this theorem can be demonstrated using the same proof as in Brito & Pearl
(2002).

Definition 1

A path in a graph is a sequence of edges (directed or bidirectional), where each edge starts from the
node where the previous edge ends. A directed path consists only of directed edges all pointing in
the same direction. A node X is called an ancestor of a node Y if there is a directed path from X
to Y . A path is said to be blocked if there is a node Z on the path such that there are consecutive
edges pointing toward Z (e.g., · · · → Z ← . . . ). In this case, Z is called a collider.

Definition 2

In a DAG, the depth of a node is defined as the length (number of edges) of the longest path directed
from its ancestors to that node.

Lemma 1
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Let X and Y be the nodes in a bow-free ADMG with depth(X) ≥ depth(Y ). Then, all paths
between X and Y that include a node Z satisfying depth(Z) ≥ depth(X) are blocked by colliders.
This lemma is based on graph theory and does not depend on the distribution of the error terms.
It is quoted from Brito & Pearl (2002).

Definition 3

For each node Y , the set of edges directed to Y , denoted by I(Y ), is defined as the union of the
following two sets: (a) the set of all directed edges pointing to Y , (b) the set of all bidirectional
edges between X and Y , where depth(X) < depth(Y ).

Lemma 2

Let Y be a variable at depth k in a bow-free ADMG. Assume that the parameters of all edges
connecting variables of a depth less than k are identifiable. Then, in almost all cases, the parameters
of each edge in the set I(Y ) are identifiable.

Proof

In Brito & Pearl (2002), the identifiability of bow-free models was established under the assumption
that the error terms follow a multivariate normal distribution. In this study, we extend this identi-
fiability result to the case where the error terms follow the aforementioned multivariate generalized
normal distribution. The proof itself draws heavily from Brito & Pearl (2002).

Wright’s method Wright (1960) relies on linear relationships between variables and covari-
ance structures. Since the multivariate generalized normal distribution is closed under linear
transformations((Gómez et al., 1998)), Wright’s method is applicable beyond the normal distri-
bution as long as the necessary linear conditions are satisfied. Indeed, Wright (1960) also mentions
that Wright’s method can be applied to distributions other than the normal distribution.

Let X = {X1, X2, . . . , Xm} be the set of variables with a depth less than k, and suppose that
these variables are connected to Y by directed or undirected edges. By the properties of bow-free
ADMGs, a one-to-one correspondence exists between each variable in X and the edges in I(Y ).
Therefore, I(Y ) can be expressed as

I(Y ) = {(X1, Y ), (X2, Y ), . . . , (Xm, Y )}.

Applying Wright’s method to each pair (Xi, Y ) yields the following equations:

σXiY =
∑
pi

T (pi), i = 1, . . . , m

where σXiY represents the covariance between Xi and Y , the sum is over all paths pi between
Xi and Y that have direct or indirect effects or associations, and T (pi) represents the product of
parameters along the path pi.

For each i, let λi be the parameter corresponding to the edge (Xi, Y ). The equation can be rewritten
as

σXiY = λi +
∑
j ̸=i

λjaij , i = 1, . . . , m
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where the coefficients aij are functions of identifiable parameters corresponding to edges connecting
variables of a depth less than k. These coefficients reflect contributions from direct or indirect
effects or associations involving known parameters, excluding the direct edge (Xi, Y ).

Under the assumption, by the induction hypothesis, that all parameters of edges connecting vari-
ables of a depth less than k are identifiable, the coefficients aij are known quantities. Therefore,
we obtain a system of m linear equations with m unknowns λ1, . . . , λm, which can be written in a
matrix form as

σ = Aλ (24)

where

σ =


σX1Y

σX2Y

...
σXmY

 , λ =


λ1
λ2
...

λm

 , A =


1 a12 . . . a1m

a21 1 . . . a2m

...
...

. . .
...

am1 am2 . . . 1

 .

To establish the identifiability of the parameters λi, it suffices to show that matrix A is invertible in
almost all cases, that is, det(A) ̸= 0 except on a set of measure zero, considering that the left-hand
side σ is observable. The matrix A has all diagonal elements equal to 1, and off-diagonal elements
depending on the model parameters. The determinant can be expressed in terms of the diagonal
and off-diagonal elements, as shown in (25).

det(A) = 1 + T, (25)

where T is either zero or a polynomial in the model parameters that do not contain any constant
term.

According to a well-known result in algebraic geometry Okamoto (1973), the set of parameter values
where det(A) = 0 has Lebesgue measure zero in the parameter space. This is because det(A) = 0
defines an algebraic variety of a lower dimension within the parameter space. Therefore, the matrix
A is invertible in almost all cases, and the system of linear equations has a unique solution.

Thus, under the given assumptions, each parameter λi is identifiable in almost all cases.

□

A.2 Hölder’s Inequality

Hölder’s inequality is a fundamental result in analysis that provides estimates for sequences (or more
generally, measurable functions on a measure space (Ω, µ)) in terms of their Lp-norms. Specifically,
for p, q ≥ 1 satisfying 1

p + 1
q = 1, Hölder’s inequality states that for any two sequences (ak) and

(bk):

∞∑
k=1

|akbk| ≤

( ∞∑
k=1

|ak|p
)1/p( ∞∑

k=1

|bk|q
)1/q

. (26)
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Furthermore, by taking bk = 1, we obtain a useful inequality for finite sums as follows:

(
n∑

k=1

|ak|

)p

≤ np−1
n∑

k=1

|ak|p. (27)

This special case reflects how the Lp-norm behaves in a finite setting and is central to understanding
the interplay between norms and summation.

In our specific problem, we use Hölder’s inequality to handle the terms involving βth powers of
squared residuals. Considering the log-likelihood expression after rearrangement,

ℓ(µ, Σ, β|X)

= −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

N∑
l=1


X

(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2


β

= −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

Nβ−1

Nβ−1

N∑
l=1


X

(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2


β

.

(28)

We introduce the factor Nβ−1

Nβ−1 to rewrite the sum in a form amenable to Hölder’s inequality. Define
the sequence as

al =

∣∣∣∣∣∣∣
X

(l)
i −

∑
j∈pa(i)

δi,jX
(l)
j −

∑
k∈sp(i)

Ωi,kZ
(l)
k

2
∣∣∣∣∣∣∣
β

,

and let bl = 1. If we choose p = β, and hence q = β
β−1 (so that 1

p + 1
q = 1), Hölder’s inequality

gives us

N∑
l=1

|albl| ≤

(
N∑

l=1

|al|
β
β

) 1
β
(

N∑
l=1

|bl|
β

β−1

) β−1
β

=

(
N∑

l=1

al

) 1
β

N
β−1

β .

Rearranging this inequality, we obtain a lower bound on
∑N

l=1 al in terms of Nβ−1 and the Lβ-norm
of the residuals

N∑
l=1

((
X

(l)
i − · · ·

)2
)β

≥

(∑N
l=1 |X

(l)
i − · · · |

)β

Nβ−1 .

Substituting this bound back into the expression for ℓ(µ, Σ, β|X), we have

26



Under review as submission to TMLR

ℓ(µ, Σ, β|X) ≥ −N

2
log Ωii.−i −

1
2Ωβ

ii.−i

1
Nβ−1

∥∥∥∥∥∥Xi −
∑

j∈pa(i)

δi,jXj −
∑

k∈sp(i)

Ωi,kZk

∥∥∥∥∥∥
2β

. (29)

Thereby, Hölder’s inequality is employed to provide a nontrivial lower bound on the log-likelihood by
relating sums of βth powers of squared terms to the βth power of their L1-norm, scaled appropriately
by Nβ−1. This facilitates a more tractable analysis of the growth behavior and bounding properties
of the likelihood function.
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