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Abstract

We consider constrained policy optimization in Reinforcement Learning, where the con-
straints are in form of marginals on state visitations and global action executions. Given
these distributions, we formulate policy optimization as unbalanced optimal transport over
the space of occupancy measures. We propose a general purpose RL objective based on
Bregman divergence and optimize it using Dykstra’s algorithm when the transition model
is known. The approach admits an actor-critic algorithm for when the state or action space
is large, and only samples from the marginals are available. We discuss applications of our
approach and provide demonstrations to show the effectiveness of our algorithm.

1 Introduction

In reinforcement learning (RL), policy optimization seeks an optimal decision making strategy, known as a
policy (Bertsekas, 1995; Williams, 1992; Sutton et al., 2000). Policies are typically optimized in terms of
accumulated rewards with or without constraints on actions and/or states associated with an environment
(Altman, 1999).

Policy optimization has many challenges; perhaps the most basic is the constraint on flow of state-action
visitations called occupancy measures. Indeed, formulating RL as a linear programming problem, occupancy
measures appear as an explicit constraint on the optimal policy (Puterman, 2014). The constraint-based
formulation suggests the possibility of implementing a broader set of objectives and constraints, such as
entropy regularization (Peters et al., 2010; Neu et al., 2017; Nachum & Dai, 2020) and cost-constrained
MDPs (Altman, 1999).

Considering the reward function as negative cost of assigning an action to a state, we view RL as a stochastic
assignment problem. We formulate policy optimization as an unbalanced optimal transport on the set
of occupancy measures. Where Optimal Transport (OT) (Villani, 2008) is the problem of adapting two
distributions on possibly different spaces via a cost function, unbalanced OT relaxes the marginal constraints
on OT to arbitrary measures through penalty functions (Liero et al., 2017; Chizat et al., 2017).

We therefore define distributionally-constrained reinforcement learning as a problem of optimal transport.
Given baseline marginals over states and actions, policy optimization is unbalanced optimal transport adapt-
ing the state marginal to action marginal via the reward function. Built upon mathematical tools of OT,
we generalize the RL objective to the summation of a Bregman divergence DΓ and any number of arbitrary
lower-semicontinuous convex functions φ′is and an initial distribution ξ as

min
µ∈∆

DΓ(µ|ξ) +
N∑
i

φi(µ),

where ∆ is the set of occupancy measures (joint distributions on states and actions generated from policies).
We optimize this objective with Dykstra’s algorithm (Dykstra, 1983) which is a method of iterative projections
onto general closed convex constraint sets. Under Fenchel duality, this algorithm allows decomposition of
the objective into Bregman projections on the subsets corresponding to each function.
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As particular case, we can regularize over the state space distribution and/or the global action execution
distribution of the desired occupancy measures. Given the reward function r and divergence functions Dψ1

and Dψ2 , our formulation allows constraints on the policy optimization problem in terms of distributions on
state visitations ρ′ and/or action executions η′ as:

max
µ∈∆

Eµ[r]− ε1Dψ1 (µ1 | ρ′)− ε2Dψ2

(
µT1 | η′

)
.

Marginal constraints of ρ′ and η′ can arise in various settings in policy optimization: problem constraints of
budget on actions or safety constraints on state visitations (Altman, 1999; Zhang et al., 2020a), empirical
state and action distributions from an expert demonstrations or for regularization purposes in an iterative
policy optimization algorithm (Neu et al., 2017)
We also propose an actor-critic algorithm with function approximation for large scale RL, for when we have
access to samples from a baseline policy (off-policy sampling or imitation learning) and samples from the
constraint marginals.

The structure of the paper is as follows: In the Section 2 we briefly present the preliminaries on (unbalanced)
optimal transport and policy optimization in reinforcement learning. In Section 3 we introduce a general
objective with Bregman divergence for policy optimization and provide Dykstra iterations as a general primal
algorithm for optimizing this objective. Section 4 discusses distributionally constrained policy optimization
with unbalanced OT and its applications. In this section, we also provide an actor critic algorithm for large
scale RL. We conclude with demonstrations of the distributional constraints in Section 5 and discussion on
related works in Section 6.

2 Notation and Preliminaries

For any finite set X , let M(X ) be the set of probability distributions on X . We denote the indicator

function on set X by δX (x) =
{

0 if x ∈ X
∞ otherwise

. For p ∈ M(X ), we define the entropy map H(p) =

Ex∼p[log p(x) − 1], and denote the Kullback-Leibler (KL) divergence between two positive functions p, q by
KL(p|q) =

∑
x∈X p(x) log

(
p(x)
q(x)

)
− p(x) + q(x). If p, q ∈ M(X ), for a given convex function ψ : X → R

with ψ(1) = 0, we define ψ-divergence: Dψ(p|q) =
∑
x ψ
(
p(x)
q(x)

)
q(x). In particular, for ψ(x) = x log(x),

Dψ(p|q) = KL(p|q). We also use 〈·, ·〉 as the natural inner product on X . Through out the paper by 1X we
denote a vector with elements one over set X or just 1 if the context is clear.

2.1 Optimal Transport

Given measures a ∈M(X ), b ∈M(Y) on two sets X and Y, with a cost function C : X×Y → R, Kantorovich
Optimal Transportation is the problem of finding stochastic optimal plan µ ∈M(X × Y):

min
µ

Eµ[C(x, y)] + δ{a} (µ1Y) + δ{b}
(
µT1X

)
.

When X = Y and C is derived from a metric on X , this optimization defines a distance function on measure
spaceM(X ), called Wasserstein distance (Villani, 2008).

Unbalanced Optimal Transport replaces hard constraints δ{a} and δ{b}, with penalty functions

min
µ

Eµ[C(x, y)] + ε1Dψ1(µ1|a) + ε2Dψ2(µT1|b),

where ε1, ε2 are positive scalars. This formulation also extends OT to measures of arbitrary mass. As
ε1, ε2 →∞, the unbalanced OT approaches Kantorovich OT problem (Liero et al., 2017; Chizat et al., 2017).

To speed up the daunting computational costs of standard algorithms, an entropy term H(µ) is usually
added to the (U)OT objective to apply scaling algorithms (Cuturi, 2013; Chizat et al., 2017). When X and
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Y are large or continuous spaces, we usually have access to samples from a, b instead of the actual measures.
Stochastic approaches usually add a relative entropy KL(µ | a⊗b), instead of H(µ) in order to take advantage
of the Fenchel dual of the (U)OT optimization and estimate the objective from samples out of a, b (Aude
et al., 2016; Seguy et al., 2018).

2.2 Reinforcement Learning

Consider a discounted MDP (S,A, P, r, γ, p0), with finite state space S, finite action space A, transition
model P : S × A → M(S), initial distribution p0 ∈ M(S), deterministic reward function r : S × A → R
and discount factor γ ∈ [0, 1). Letting Π be the set of stationary policies on the MDP, for any policy
π : S → M(A), we denote Pπ : S → M(S) to be the induced Markov chain on S. In policy optimization,
the objective is

max
π∈Π

∑
s,a

ρπ(s)π(a|s)r(s, a), (1)

where ρπ(s) = (1 − γ)
∑∞
t=0 γ

tPr(st = s|π) is the discounted stationary distribution of Pπ. For a policy π,
we define its occupancy measure µπ ∈ M(S × A), as µπ(s, a) = ρπ(s)π(a|s). Let ∆ := {µπ : π ∈ Π} be the
set of occupancy measures of Π, the following lemma bridges the two sets Π and ∆:
Lemma 2.1. (Syed et al., 2008)[Theorem 2, Lemma2]

(i) ∆ = {µ ∈M(S ×A) :
∑
a µ(s, a) = (1− γ)p0(s) + γ

∑
s′,a′ P (s|s′, a′)µ(s′, a′) ∀s}

(ii) πµ(a|s) := µ(s, a)/
∑
a µ(s, a) is a bijection from ∆ to Π.

By multiplying π = πµ to both sides of the equation in (i), one can obtain ∆ = {µ : µ ≥ 0 , Aµµ = bµ}
where Aµ = I − γPµT and bµ = (1 − γ)πp0. In the rest of paper, we may drop the superscripts µ and π,
when the context is clear. Rewriting the policy optimization objective equation 1 in terms of µ, we get

max
µ∈∆

Eµ[r] = max
µ

Eµ[r]− δ{bµ}(Aµµ). (2)

The entropy-regularized version of objective equation 2, relative to a given baseline µ′ ∈ ∆, is also studied
(Peters et al., 2010; Neu et al., 2017):

max
µ∈∆

Eµ[r]− εKL(µ|µ′) ≡ min
µ∈∆

KL
(
µ|µ′er/ε

)
, (3)

where ε is the regularization coefficient.

By lemma 2.1, one can decompose the regularization term in equation 3 as

KL(µ|µ′) = KL
(∑

a

µ|
∑
a

µ′

)
+ Eρµ [KL (π|π′)] , (4)

with the first term penalizing the shift on state distributions and the second penalty is over average shift of
policies for every state. Since the goal is to optimize for the best policy, one might consider only regularizing
relative to π′ as in (Schulman et al., 2015; Neu et al., 2017)

max
µ∈∆

Eµ[r]− εEρµ [KL(π|π′)] . (5)

One can also regularize objective equation 2 by H(µ) as

max
µ∈∆

Eµ[r]− εH(µ) ≡ min
µ∈∆

KL(µ|er/ε), (6)

which encourages exploration and avoids premature convergence (Haarnoja et al., 2017; Schulman et al.,
2018; Ahmed et al., 2019).
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3 A General RL Objective with Bregman Divergence

In this section, we propose a general RL objective based on Bregman divergence and optimize using Dykstra’s
algorithm when the transition model is known. Let Γ be a strictly convex, smooth function on relint(dom(Γ)),
the relative interior of its domain, with convex conjugate Γ∗. For any (µ, ξ) ∈ dom(Γ) × int(dom(Γ)), we
define the Bregman divergence

DΓ(µ|ξ) = Γ(µ)− Γ(ξ)− 〈∇Γ(ξ), µ− ξ〉.

Given ξ, we consider the optimization

min
µ
DΓ(µ|ξ) +

N∑
i

φi(µ), (7)

where φ′is are proper, lower-semicontinuous convex functions satisfying

∩Ni relint(dom(φi)) ∩ relint(dom(Γ)) 6= ∅. (8)

Let dom(Γ) be the simplex on S ×A, regularized RL algorithms in Section 2.2 can be observed as instances
of optimization equation 7:

• Given a baseline µ′, setting Γ = H, φ1(µ) = δ{bµ}(Aµµ), ξ = µ′er/ε, recovers objective equation 3.

• Similarly, as discussed in (Neu et al., 2017),Γ(µ) =
∑
s,a µ(s, a) logµ(s, a)/

∑
a µ(s, a), φ1 = Eµ[r/ε],

φ2(µ) = δ{bµ}(Aµµ), and ξ = µ′ recovers obj. equation 5.

• Further, Γ = H, φ1(µ) = δ{bµ}(Aµµ), and ξ = er/ε, entropy-regularizes the occupancy measure in objective
equation 6.

The motivation behind using Bregman divergence is to generalize the KL divergence regularization usually
used in RL algorithms. Moreover, one may replace the Bregman divergence term in equation 7 with a
ψ-Divergence and attempt deriving similar arguments for the rest of the paper.

3.1 Dykstra’s Algorithm

In this section, we use Dykstra’s algorithm (Dykstra, 1983) optimize objective equation 7. Dykstra is a
method of iterative projections onto general closed convex constraint sets, which is well suited because the
occupancy measure constraint is on a compact convex polytope ∆.

Defining the Proximal map of a convex function φ, with respect to DΓ, as

ProxDΓ
φ (µ) = arg min

µ̃
DΓ(µ̃|µ) + φ(µ̃),

for any µ ∈ dom(Γ), we present the following proposition which is the generalization of Dykstra algorithm
in (Peyré, 2015):
Proposition 3.1 (Dykstra’s algorithm). 1 For iteration l > 0,

µ(l) = ProxDΓ
φ[l]N

(
∇Γ∗

(
∇Γ(µ(l−1))

)
+ ν(l−N)

)
(9)

ν(l) = ν(l−N) +∇Γ(µ(l−1))−∇Γ(µ(l)), (10)

with [l]N =
{
N if lmodN = 0
lmodN otherwise

, converges to the solution of optimization equation 7, with µ(0) = ξ

and ν(i) = 0 for −N + 1 ≤ i ≤ 0.
1proofs and derivations are in supplementary material.
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Intuitively, at step l, algorithm equation 9 projects µ(l−1) into the convex constraint set corresponding to
the function φ[l]N .
Corollary 3.2. Taking Γ = H, the iteration equation 9 is

µ(l) = ProxKL
φ[l]N

(
µ(l−1) � z(l−N)) , z(l) = z(l−N) � µ(l−1)

µ(l) , (11)

where �, ·· are the element-wise product and division, µ(0) = ξ and z(i) = 1, for −N + 1 ≤ i ≤ 0.

Given probability measures a, b, for Γ = H, N = 2, φ1(µ) = δ{a}(µ1), φ2(µ) = δ{b}(µT1), optimization
equation 7 is entropic regularized OT problem and algorithm 11, is the well known Sinkhorn-Knopp algorithm
(Cuturi, 2013). Similarly one can apply equation 11 to solve the regularized UOT problem (Chizat et al.,
2017; 2019).

As aforementioned RL objectives in Section 2.2 can be viewed as instances of optimization equation 7,
Dykstra’s algorithm can be used to optimize the objectives. In particular, as the constraint φN (µ) =
δ{bµ}(Aµµ) occurs in each objective, each iteration of Dykstra requires

ProxDΓ
φN

(µ) = arg min
µ̃∈∆

DΓ(µ̃|µ), (12)

which is the Bregman projection of µ onto the set of occupancy measures ∆.

Although µ (the measure from the previous step of Dykstra) does not necessarily lie inside ∆, step equation 12
of Dykstra could be seen as a Bregman divergence policy optimization resulting in dual formulation over
value functions. (See details of dual optimization in Supplementary Material.) This dual formulation is
similar to REPS algorithm (Peters et al., 2010).

In the next section we apply Dykstra to solve unbalanced optimal transport on ∆.

4 Distributionally-Constrained Policy Optimization

A natural constraint in policy optimization is to enforce a global action execution allotment and/or state
visitation frequency. In particular, given a positive baseline measure η′, with η′(a) being a rough execution
allotment of action a over whole state space, for a ∈ A, we can consider Dψ1 (Eρπ [π] | η′) as a global penalty
constraint of policy π under its natural state distribution ρπ. Similarly, the penalty Dψ2 (ρπ | ρ′) enforces
a cautious or exploratory constraint on the policy behavior by avoiding or encouraging visitation of some
states according to a given positive baseline measure ρ′ on S.

So, given baseline measures ρ′ on S and η′ on A, we define distributionally-constrained policy optimization:

max
µ∈∆

Eµ[r]− ε1Dψ1 (µ1 | ρ′)− ε2Dψ2

(
µT1 | η′

)
. (13)

When Dψ1 = Dψ2 = KL, objective equation 13 looks similar to equation 3 (considering expansion in
equation 4), but they are different. In equation 13, if ρ′ = µ′1 and η′ = µ′T1, for some baseline µ′ ∈ ∆, then
the third term is KL

(
Eρπ [π] | Eρπ′ [π′]

)
which is a global constraint on center of mass of π over the whole

state space, whereas Eρπ [KL(π | π′)] in equation 4 is a stronger constraint on closeness of policies on every
single state. The bottom line is that equation 13 generally constrains the projected marginals of µ over S
and A, and equation 3 constrains µ element wise.

For regularization purposes in iterative policy optimization algorithm (e.g., using mirror descent), one natural
choice of the state and action marginals is to take ρ′ =

∑
a µk−1, η′ =

∑
s µk−1 at the k’th iteration. In the

Supplementary Material, we discuss the policy improvement and convergence of such an algorithm. Another
source for the marginals ρ′, η′ is the empirical visitation of states and actions sampled out of an expert policy
in imitation learning.
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Formulation of Objective equation 13 is in form of UOT on the set of occupancy measures. So, for applying
Dykstra algorithm, we can add an entropy term εH(µ) to transform equation 13 into

max
µ∈∆

− KL(µ | ξ)−ε1Dψ1 (µ1 | ρ′)− ε2Dψ2

(
µT1 | η′

)
, (14)

which means setting N = 3, φ1 = ε1Dψ1 , φ2 = ε2Dψ2 , φ3(µ) = δbµ(Aµµ), ξ = er/ε in Objective equation 7 2.
Hence, the algorithm equation 11 can be applied with following proximal functions:

ProxKL
φ1

(µ) = diag
(
ProxKL

ε1Dψ1
(µ1)

µ1

)
µ, (15)

ProxKL
φ2

(µ) = µdiag
(
ProxKL

ε2Dψ2
(µT1)

µT1

)
, (16)

ProxKL
φ3

(µ) = arg min
µ̃∈∆

KL(µ̃|µ). (17)

In general, for appropriate choices of φ1, φ2 (e.g., Dψ1 = Dψ2 = KL) the proximal operators in equation 15
have closed form solutions. However, as discussed, φ3 in equation 17 has no closed form solution (see
Supplementary Material). We can also consider other functions for φ1, φ2 in this scenario, for example, setting
φ2(µ) = δ{η′}(µT1), changes the problem into finding a policy π which globally matches the distribution η′
under its natural state distribution ρπ, i.e., Es∼ρπ [π(a|s)] = η(a) for any a ∈ A3.

In the next section we propose an actor-critic algorithm for large scale reinforcement learning.

4.1 Large Scale RL

When S,A are large, policy optimization via Dykstra is challenging because tabular updating of µ(s, a) is
time consuming or sometimes even impossible. In addition, it requires knowledge of reward function r for
the initial distribution ξ and transition model P for projection onto ∆ in equation 17. Model estimation
usually requires large number of state-action samples. Also, we might only have off-policy samples or in
imitation learning scenarios, only access the marginals ρ′, η′ through observed samples by the expert. In this
section, we derive an off-policy optimization scheme with function approximation to address these problems.

Replacing the last two terms of obj. equation 13 with their convex conjugates by dual variables u, v,Q, we
get

max
µ

min
u,v,Q

Eµ
[
r −Aµ∗Q− ε1u1TA − ε21Sv

T
]

+ Ebµ [Q(s, a)] + ε1Eρ′ [ψ∗1(u(s))] + ε2Eη′ [ψ∗2(v(a))], (18)

where Aµ∗ is the convex conjugate (transpose) of Aµ.

Having access to samples from a baseline µ′ ∈ ∆, both helps regularize the objective equation 18 into an
easier problem to solve, and allows off-policy policy optimization or imitation learning (Nachum & Dai,
2020). Yet, by the discussion in Section 4, regularizing with the term Dψ(µ|µ′) in equation 18 might make
marginal penalties redundant, in particular when ρ′ =

∑
a µ
′ and η′ =

∑
s µ
′.

Here, we discuss the case where ρ′ 6=
∑
a µ
′ or η′ 6=

∑
s µ
′. See the supplemental for ρ′ =

∑
a µ
′ and

η′ =
∑
s µ
′. Without the loss of generality, assume marginals ρ′ 6=

∑
a µ
′ and η′ 6=

∑
s µ
′. In this case,

regularizing equation 18 withDψ(µ|µ′) and under Fenchel duality, we get the off-policy optimization objective

max
π

min
u,v,Q

Eµ′ [ψ∗ (r + γPπQ−Q− ε1u− ε2v) (s, a)]

+ (1− γ)Eπ,p0 [Q(s, a)] + ε1Eρ′ [ψ∗1(u(s))] + ε2Eη′ [ψ∗2(v(a))],
(19)

where u(s, a) := u(s) and v(s, a) := v(a). Now, the first term is based on expectation of baseline µ′ and can
be estimated from offline samples. In a special case, when Dψ1 = Dψ2 = KL in objective equation 13 and

2Coefficients ε1 and ε2 in equation equation 14 are different from those in equation equation 13.
3As a constraint, πρπ would be a feasible solution, when π(a|s) = η′(a).
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we take Dψ = KL as well, similar derivations yield

max
π

min
u,v,Q

L(π, u, v, ,Q) := logEµ′ [exp (r + γPπQ−Q− ε1u− ε2v) (s, a)] +

(1− γ)Ep0,π[Q(s, a)] + ε1logEρ′ [exp(u(s))] + ε2 logEη′ [exp(v(a))].
(20)

In this objective note how the ε1u and ε2v are subtracted in the first term under distribution µ′ and the
last two term are added in the objective with respect to distributions ρ′ and η′ to adapt the distribution of
baseline samples µ′ to the constraint distributions ρ′ and η′.
Also, the policy evaluation problem for a fixed policy π corresponding to this objective 20 (i.e.,
minu,v,Q L(u, v, , Q;π) ) corresponds to the dual form update of the Dykstra’s algorithm when Γ = H.
This connects the Dykstra’s algorithm in U(OT) literature to the minimax optimization of Reinforcement
Learning here and work of (Nachum & Dai, 2020). Please see the equation 25 in proof of Dykstra’s in the
appendix A.

Now, gradients of L can be computed with respect to u, v,Q:

∇uL = −ε1E(s,a)∼µ′ [Fµ′ ◦ hπu,v,Q(s, a)∇u(s)] + ε1Es∼ρ′ [Fρ′ ◦ u(s)∇u(s)], (21)

∇vL = −ε2E(s,a)∼µ′ [Fµ′ ◦ hπu,v,Q(s, a)∇v(a)] + ε2Ea∼η′ [Fη′ ◦ v(a)∇v(a)], (22)

∇QL = E(s,a)∼µ′ [Fµ′ ◦ hπu,v,Q(s, a) (γPπ∇Q−∇Q) (s, a)] + (1− γ)E s∼p0
a∼π(·|s)

[∇Q(s, a)]. (23)

And, the gradient with respect to policy π is

∇πL = γEa′∼π(·|s′)
(s,a,s′)∼µ′

[Fµ′ ◦ hπu,v,Q(s, a)Q(s′, a′) · ∇ log π(a′ | s′)] + (1− γ)E s∼p0
a∼π(·|s)

[Q(s, a)∇ log π(a | s)], (24)

where, hπu,v,Q(s, a) := r(s, a) + γPπQ(s, a) − Q(s, a) − ε1u(s) − ε2v(a) and Fp ◦ h(z) := Fp(h)(z) =
exp(h(z))/Ez̃∼p[exp(h(z̃))] is the softmax operator for any h, z, p. Note that as in the first term in ob-
jective equation 20, hπu,v,Q(s, a) could be viewed as the adjusted temporal difference error with respect to the
adjusted reward function r(s, a) − ε1u(s) − ε2v(a), seeing u(s) and v(a) as the cost functions associated to
states and actions respectively and equation 24 is similar to regular policy gradient update for this adjusted
reward function.
Finally, u, v,Q, π can be approximated by some functions (e.g., Neural networks) and one can apply primal-
dual stochastic gradient algorithm on π and u, v,Q. Treating Q as a vector of size S ×A, algorithm 1 shows
the pseudo-code for optimizing 20.

Algorithm 1: Large Scale RL when ρ′ 6=
∑
a µ
′ or η′ 6=

∑
s µ
′

Input: samples {(si, ai, ri)}ni=1 ∼ µ′ ∈ ∆, {s′j}nj=1 ∼ ρ′, {a′j}nj=1 ∼ η′, ε1, ε2, learning rates β1, β2

Replace Expectations in equation 21,equation 22,equation 23 and equation 24 by empirical
averages over samples.

[u, v,Q]T ← [u, v,Q]T − β1[∇uL,∇vL,∇QL]T

π ← π + β2∇πL
Output: π

See the supplemental text for the gradient derivations. Also, note that setting u and v to 0, in our updates, we
can recover the dice-method optimization in Nachum & Dai (2020) with similar update for Q in equation 23,
for which the gradient calculation suffers from double sampling because of multiplication of two expectations
with respect to Pπ.

5 Demonstrations

In this section, we demonstrate the effectiveness of distributionally-constrained policy optimization with
Dykstra. The purpose of our experiments is to answer how distributional penalization on ρ′ and η′ affect
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the behavior of the policy and study the Dykstra’s empirical rate of convergence. We test these questions
at a granular level for a grid-world example first and next we test it for the cart-pole problem as a large RL
task.

5.1 Grid-world example

We look into these questions on a grid world with its optimal policy out of equation 6 shown in Fig. 1.
Due to the simplicity, this environment is suitable for studying the effect of distributional constraints on the
policy behavior. For the sake of focusing on the effects of distributional constraints, we set the coefficient of
the entropy term fairly low (ε = .01) in optimizations equation 6 and equation 14. 4

Figure 1: Left: The grid world MDP. The reward entering each state is shown on the grid. There is a block
at state (1, 1) and A = {up, down, left, right}. Every action succeeds to its intended effect with probability
0.8 and fails to each perpendicular direction with probability 0.1. Hitting the walls means stay and γ = .95.
An episode starts in (2, 0) (bottom left corner) and any action in (0, 3) or (1, 3) transitions into (2, 0). Right:
Optimal Policy out of optimization equation 6 for ε = .01.

1) 2) 3) 4)

5) 6) 7) 8)

Figure 2: (1-7): Optimal policy out of Dykstra’s algorithm, with η′i = [α, .5 − α, .5 − α, α] for αi ∈
{e−10, .1, .2, .25, .3, .4, .5 − e−10} for i ∈ {1, . . . , 7}. (8): corresponding convergence of the Dykstra in (1-7),
horizontal axis is the number of iterations t and the vertical axis is ‖

∑
s µt − η′i‖.

We first observe the independent effect of η′ on the policy, by setting ε1 = 0. We use, δη′(µT1) instead of
Dψ1(µT1 | η′) as an extreme case when ε2 → ∞ to focus on the role η′. Figure 2(1-7), shows differences
among policies when the marginal on actions shifts from a distribution where only equiprobable actions down
and left are allowed (η′1 = (0, 0.5, 0.5, 0)) towards the case where only up and right are permitted with equal
probability (η′7 = (0.5, 0, 0, 0.5)). 5

In Figure 2(1), under η′1, down is the optimal action in state (0, 2) because, this is the only way to get +1
reward (with luck). In 2(2), which changes to a .1 probability on right, the policy eliminates the reliance on
change by switching state (0, 2) to right.

4Supplementary Material provides the numerical settings in implementation of Dykstra.
5The optimal policies in this section aren’t necessarily deterministic (even though ε is set to be very small), because of the

constraint δη′ (µ(a)). In general, the policies out of equation 14 are not necessarily deterministic either because of the nonlinear
objective.
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Note that the optimal policy in Figure 1(left) does not include a down move. When down is forced to have
non-zero probability, Figures 2(1-6), the policy assigns it to state (2, 3), towards the case where only up and
right are permitted with equal probability (η′7 = (0.5, 0, 0, 0.5)).

Figures 2(7) shows the case where only up and right are allowed. In state (2, 3), this creates a quandary.
Right is unlikely to incur the −1 penalty, but will never allow escape from this state. For this reason, the
policy selects up, which with high probability will incur to the −1 penalty, but has some probability of escape
toward the +1 reward.

Figure 2(8), depicts the convergence of Dykstra towards various η′. Notably, in all cases the algorithm
converges, and the rate of convergence increases following the order of the subfigures.

Next, we test the extreme effect of constraints on the state marginals on the policy via various ρ′, by setting
ε2 = 0 and ε1 very high. We study the policy when ρ′(s) = .9 for a single state s, and uniform distribution of
.1 on the rest of states other than s. Figure 3(1-3) shows the policies when s ∈ {(0, 2), (1, 2), (2, 3)}. Hitting
the wall seems to be viable strategy to stay and increase the visitation frequency of each of these states.
Figure 3(4) depicts the the convergence of Dykstra’s algorithm towards various ρ′. As shown, the error never
gets to zero. This is because by setting ε1 → ∞, the objective is just to find an occupancy measure with
closest state marginal to ρ′ and Dψ1(µ1 | ρ′) can never be zero if ρ′ is not from a valid occupancy measure.

1) 2) 3) 4)

Figure 3: (1-3): Optimal policy out Dykstra, when ρ′i (s) = .9 for s ∈ {(0, 2), (1, 2), (2, 3)} and uniform
distribution of .1 on the rest of states other than si for i ∈ {1, 2, 3}. (4): corresponding convergence of the
Dykstra in (1-3), horizontal axis is the number of iterations t and the vertical axis is ‖

∑
a µt − ρ′i‖.

We also test how imitating a policy with distributional constraints affects the learned policy. For this purpose,
we create a new environment with reward −10 at state (1, 3). The optimal risk-averse policy π1 out of this
environment is shown in Figure 4(1). Let η′1 =

∑
s µ

π1 be the action marginal corresponding to π1. Now
consider the RL problem with reward of −1 in state (1, 3) constrained by η′1. Figure 4(2) shows the resulting
policy π2. Notice that µπ2 achieves the action marginal distribution η′1, however, π2 is quite different from
π1, since the unconstrained optimal policy for the environment with reward of −1 at state (1, 3) is more
risk neutral. In contrast, distributionally constraining ρπ1 =

∑
a µ

π1 (as in previous experiments) results in
the same policy of π1 as in Figure 4(1). The differences are mostly in states (0, 3) and (1, 3), where actions
can be freely chosen (but not their visitation frequency) and contribution of state (2, 3) which has a lower
visitation probability. Consider constraints on both η′ and ρ′. As explained earlier, the policy will then get as

1) 2) 3) 4)

Figure 4: (1): Risk averse optimal policy learned by changing −1 to −10 in state (1, 3). (2): Optimal policy
using η′ out of risk-averse policy as a distributional constraint. (3): Optimal policy with η′ = [e−10, α, α, α],
α = (1− e−10)/3. (4): Policy with the same η′ and ρ′1.

close as possible to ρ′ while satisfying the action distribution η′. Figure 4-(3) shows the optimal policy for η′
with no constraint on ρ′. η′ is a distribution where no up is allowed and the other three actions equiprobable.

9
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Figure 4-(4) depicts the policy under constraints on both η′ and ρ′ when ρ′ is the same distribution in Figure
3(1). The leftmost column and top row of this policy leads to (0,2) but in an attempt to satisfy ρ′, the policy
goes back to the left.

5.2 Cart-pole example

Figure 5: (Top row-left to right):Action distribution of expert policy, desired distribution η′, accumulated
reward during learning. (bottom row) Evolution of action distribution in Algorithm 1.

We also perform an ablation study on the Algorithm 1 (see Appendix) in an imitation learning scenario on the
cart-pole problem. In this test, the expert policy is learned by the policy gradient algorithm and we imitate
the learned policy (assuming r(s, a) = 0) with Algorithm 1 enforcing a given global action distribution η′

post-learning. In this setting the expert global action distribution out of a random run is shown in the
top-left corner of Figure 5 and η′ is bimodal distribution forcing the cart to choose values around −1 and
+1 (Top-middle figure). The top-right figure shows the average return of the learned policy (under 3 seeds).
The second row of figure shows the shaping and splitting of the action marginal under primal-dual iterations
of Algorithm 1.

6 Related Works

•Objectives and Constraints in Reinforcement Learning. Posing policy optimization as a constrained
linear programming on the set of occupancy measures has been long studied (Puterman, 2014). Recent
works have expanded linear programming view through a more general convex optimization framework.
For example, (Neu et al., 2017) unifies policy optimization algorithms in literature for entropy regularized
average reward objectives. (Nachum et al., 2019b;a; Nachum & Dai, 2020) propose entropy-regularized policy
optimizations under Fenchel duality to incorporate the occupancy measure constraint. Unlike these works,
we looked at policy optimization from an OT point of view. To do so, we proposed a structured general
objective based on Bregman divergence that allows considering relaxations of entropy regularization using
marginals. (Zhang et al., 2020b) studies a general concave objective in RL and proposes a variational Monte
Carlo algorithm using the Fenchel dual of the objective function. Similar to these works we take advantage
of Fenchel duality. However, other than different view point and structured objective, our work differs in
solving the optimization by breaking the objective using Dykstra’s algorithm. (Zhang et al., 2020a) proposes
various caution penalty functions as the RL objective and a primal-dual approach to solve the optimization.
One of these objectives is a penalty on KL(·|ρ′), which is a part of our proposed unbalanced formulation.
Other than the formulation, in this work, we focused on distributional penalty on global action execution
which, to the best our knowledge, has not been studied before.

In constrained MDPs, a second reward c(s, a) < 0 is used to define a constrained value function Cπ (Altman,
1999; Geibel, 2006). Here Cπ(s) = Eπ [

∑∞
t=0 γ

tc(s, a)] and the constraint is in form of Eπ [Cπ(s)] > A (∗),
where A is a constant. Thus considering c(s, a) as the cost for taking action a at state s, constrained MDP
optimizes the policy with a fixed upper bound for the expected cost. Rather than introducing a fixed scalar

10
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restriction (A), our formulation allows distributional constraints over both the action and state spaces (i.e. ρ′
and η′). The source of these distributional constraints may vary from an expert policy to the environmental
costs and we can apply them via penalty functions. In special cases, when an action can be identified by its
individual cost, constraint (∗) on expected cost can be viewed as a special case of marginal constraint on η′.
For instance, in the grid world of Fig. 1, if the cost for up and right is significantly higher than down and
left, then limited budget (small expected cost) is essentially equivalent to having a marginal constraint η′1
supported on down and left. However, in general, when c(s, a) varies for state per action, the expected cost
does not provide much guidance over global usage of actions or visitation of states as our formulation does.

• Reinforcement Learning and Optimal Transport OT in terms of Wasserstein distance has been
proposed in the RL literarture. (Zhang et al., 2018) views policy optimization as Wasserstein gradient
flow on the space of policies. (Pacchiano et al., 2020) defines behavioral embedding maps on the space
of trajectories and uses an approximation of Wasserstein distance between measures on embedding space
as regularization for policy optimization. Marginals of occupancy measures can be viewed as embeddings
via state/action distribution extracting maps. Our work defines an additive structure on these embedding
functionals which is broken into Bregman projections using Dykstra.

• Imitation Learning and Optimal Transport In the imitation learning literature, (Xiao et al., 2019)
proposed an adversarial inverse reinforcement learning method which minimizes the Wasserstein distance to
the occupancy measure of the expert policy using the dual formulation of optimal transport. (Dadashi et al.,
2020) minimized the primal problem of Wasserstein minimization and (Papagiannis & Li, 2020) minimize
the Sinkhorn Divergence to the expert’s occupancy measure. These works are fundamentally different from
our approach as we are not solving the inverse RL problem and we view RL itself as a problem of stochastic
assignment of actions to states. The type of distributional constraints via unbalanced optimal transport
proposed in our work can be considered as relaxation of the idea of matching expert policy occupancy
measures. We consider matching the distribution of global action executions and state visitations of the
expert policy.

• Related works in Optimal Transport It is not the first time (U) OT is considered constrained.
Martingale optimal transport imposes an extra constraint on the mean of the coupling (Beiglböck et al.,
2013) and using entropic regularization, Dykstra can be applied (Henry-Labordère, 2013).

• Other Settings In UOT formulation of equation 13 we used penalty Dψ. One can apply other functions
like the indicator function to enforce constraints on marginals like δη′(µT1) as discussed in Sec. 4. However,
using the constraint δρ′(µ1) in equation 13 could be problematic as it can easily be incompatible with the
occupancy measure constraint. If ρ′ is not coming form a policy, then the optimization is infeasible. Despite
this, setting ε2 = 0, ρ′ = ρπk−1 in equation 13 for the k’th iteration of an iterative policy optimization
algorithm, equation 13 results in objective similar to TRPO (Schulman et al., 2015).

7 Conclusion

We have introduced distributionally-constrained policy optimization via unbalanced optimal transport. Ex-
tending prior work, we recast RL as a problem of unbalanced optimal transport via minimization of an
objective with a Bregman divergence which is optimized through Dykstra’s algorithm. We illustrate the the-
oretical approach through the convergence and policies resulting from marginal constraints on η′ and ρ′ both
individually and together. The result unifies different perspectives on RL and naturally allows incorporation
of a wide array of realistic constraints on policies. As discussed, we developed the general objectives using
Bregman divergence DΓ and ψ-divergence Dψ and experimented on the case with DΓ = Dψ = KL, in this
paper. It is an interesting direction for future work to test for other various Γ’s and ψ’s.
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A Fenchel Dual and Proofs in Section 3

For any function f : Dom(f) → R, its convex conjugate (or Fenchel dual) f∗ is defined as f∗(y) =
maxx〈x, y〉 − f(x). If f is proper, convex and lower-semi continuous then f∗ has the same properties
and one can write f(x) = maxy〈x, y〉− f∗(y). If f is strictly convex and smooth on int(domf), then ∇f and
∇f∗ are bijective maps between int(domf∗) and int(domf), i.e., ∇f∗ = ∇f−1. It is easy to verify that

• For f(x) = δa(x), f∗(y) = 〈a, y〉 .

• Consider f with Dom(f) = M(Z), where Z is an underlying space. For a fixed p ∈ M(Z), if
f(x) = Dψ(x|p), f∗(y) = Ep(ψ∗(y)). Also, if ψ(z) = z log z, then f(x) = KL(x|p) and f∗(y) =
logEp(exp(y)).

Proof of Proposition 3.1. Under condition equation 8, the Fenchel-Legendre duality holds and the solution
of optimization equation 7 can be recovered via

max
u1,··· ,uN

−
N∑
i=1

φ∗i (ui)−D∗Γ

(
−

N∑
i=1

ui|ξ

)
= max
u1,··· ,uN

−
N∑
i=1

φ∗i (ui)− Γ∗
(
∇Γ(ξ)−

N∑
i=1

ui

)
− 〈∇Γ(ξ), ξ〉+ Γ(ξ)

(25)

13
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with the primal-dual relationship

µ = ∇Γ∗
(
−

N∑
i=1

ui

)
.

Applying coordinate descent on equation 25, with initial condition (u(0)
1 , · · · , u(0)

N ) = (0, · · · , 0), and setting
i = [l]N , J = {1, · · · , N} \ {i}, at l > 0 we get the iteration

u
(l)
i = arg max

ui

− φ∗i (ui)− Γ∗(q − ui),

u
(l)
j = u

(l−1)
j ,∀j ∈ J,

(26)

where q = ∇Γ(ξ)−
∑J
j=1 u

(l−1)
j . The primal problem of optimization in equation 26 is

arg min
µi

Γ(µi)− 〈q, µi〉+ φi(πi) = arg min
µi

DΓ (µi|∇Γ∗(q)) + φi(µi) + const = ProxDΓ
φi

(∇Γ∗(q)).

Hence, under the relation µi = ∇Γ∗(q − ui), we can rewrite equation 26 as

u
(l)
i = q −∇Γ

(
ProxDΓ

φi
(∇Γ∗(q))

)
.

Hence, for i = [l]N , we have µ(l)
i = ∇Γ∗(q − u(l)

i )

µ(l) = ∇Γ∗ ◦ ∇Γ
(
ProxDΓ

φi
(∇Γ∗(q))

)
= ProxDΓ

φi
(∇Γ∗(q)) = ProxDΓ

φi

(
∇Γ∗

(
q − u(l−N)

i + u
(l−N)
i

))
= ProxDΓ

φi

(
∇Γ∗

(
∇Γ(µ(l−1)) + u

(l−N)
i

))
.

Calculating the difference ∇Γ(µ(l−1))−∇Γ(µ(l)) and change of variable ν(l) = −u(l)
[l]N , ends the proof.

Proof of Corollary 3.2. Peyré (2015) Setting Γ = H, then ∇Γ = log and ∇Γ∗ = exp. Also, DΓ = KL and
by change of variable z(l) = ∇Γ(v(l)), the corollary follows.

B Derivations in Section 4

Here we derive the Proximal operators in section equation 4.

B.1 Proximal Operator Calculations when DΓ = KL

When DΓ = KL (i.e., Γ = H), for φ3(µ) = δbµ(Aµµ) we have:

ProxKL
φ3

(µ) = arg min
µ̃∈∆

KL(µ̃|µ), (27)

letting V, λ to be dual variables, by the definition of ∆ in lemma 2.1, the Lagrangian of equation 27 is

KL(µ̃|µ)− γ
∑
s,s′,a′

P (s|s′, a′)µ(s′, a′)V (s)− (1− γ)
∑
s

p0(s)V (s) +
∑
s,a

µ(s, a)V (s) + λ

(∑
s,a

µ(s, a)− 1
)
.

The derivative of the Lagrangian with respect to µ̃(s, a) for equation 27 is

log(µ̃(s, a)/µ(s, a))− γ
∑
s′

P (s′|s, a)V (s′) + V (s) + λ = 0.

So, the optimal solution is

µ̃(s, a) = e−λµ(s, a) exp(γ
∑
s′

P (s′|s, a)V (s′)− V (s)).
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Since
∑
s,a µ̃(s, a) = 1, we have

λ = log
∑
s,a

µ(s, a) exp
(
γ
∑
s′

P (s′|s, a)V (s′)− V (s)
)
,

then
µ̃(s, a) =

µ(s, a) exp (γ
∑
s′ P (s′|s, a)V (s′)− V (s))∑

s,a µ(s, a) exp(γ
∑
s′ P (s′|s, a)V (s′)− V (s)) , (28)

where V is the solution of the dual problem

min
λ,V

λ+ (1− γ)
∑
s

p0(s)V (s) =

min
V

log
∑
s,a

µ(s, a) exp(γ
∑
s′

P (s′|s, a)V (s′)− V (s)) + (1− γ)
∑
s

p0(s)V (s).
(29)

By solving optimization equation 29, we can recover optimal µ̃ by equation equation 28.

For other proximal operators we need the following lemma:
Lemma B.1. Peyré (2015) For any convex function h:

(i) For any φ(µ) = h(µ1)

ProxKL
φ (µ) = diag

(
ProxKL

h (µ1)
µ1

)
µ,

(ii) and, if φ(µ) = h(µT1)

ProxKL
φ (µ) = µdiag

(
ProxKL

h (µT1)
µT1

)
.

Proof. Let
µ̃ := ProxKL

φ (µ) = arg min
µ̃

KL(µ̃|µ) + h(µ̃1),

hence, by the first order condition, at the optimal µ̃, there exists Z ∈ ∂h(µ̃1) such that we have log µ̃
µ+Z = 0.

Therefore,
µ̃ = diag

(
e−Z

)
µ. (30)

Similarly, considering the first order condition corresponding to ũ := ProxKL
h (µ1), we get ũ = diag(e−Z)µ1,

and combining this with equation 30 proves part (i). Transposing (i), results in (ii).

Using this lemma, we calculate some of the proximal operators we used in Section 4 and 5.

• Let ρ := µ1. Given ρ′ ∈M(S), when φ1(µ) = ε1Dψ1(ρ|ρ′) = ε1KL(ρ|ρ′) ,

ProxKL
ε1KL(ρ) = arg min

ρ̃
KL(ρ̃|ρ) + ε1KL(ρ̃|ρ′),

then, by the first order condition, we have

log ρ̃
ρ

+ ε1 log ρ̃

ρ′
= 0,

and ProxKL
ε1KL(µ1) = (ρρ′ε1)1/(1+ε1). Applying lemma B.1(i), gives the proximal operator for φ1(µ).

• When φ1(µ) = δρ′(ρ), then ProxKL
φ1

(ρ) = ρ′ and by applying lemma B.1(i), we get

ProxKL
φ1

(µ) = diag
(
ρ′

µ1

)
µ.
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• Similarly, given η′ ∈M(A). If η := µT1 and φ2 = ε2Dψ2(η|η′) = ε2KL(η|η′),

ProxKL
ε2KL(η) = arg min

η̃
KL(η̃|η) + ε2KL(η̃|η′),

and ProxKL
ε2KL(µT1) = (ηη′ε2)1/(1+ε2). Applying lemma B.1(ii) results in the proximal operator for

φ2.

• Also, when φ2(µ) = δη′(µT1), by lemma B.1(ii), we get

ProxKL
φ2

(µ) = µdiag
(

η′

µT1

)
.

B.2 Convergence of the iterative policy optimization for problems equation 13 and equation 14

We now show the convergence and policy improvement of optimization equation 13, and equation 14 in an
iterative policy optimization scenario.
Proposition B.2. Let (µk)k∈N be a sequence of occupancy measures such that for each k ≥ 1, µk is the
solution to the optimization equation 13 with µ′ = µk−1, then lim

k→∞
µk = µ∗ is the solution to max

µ∈∆
Eµ[r].

Proof. Let µ0 ∈ ∆ such that µ0(s, a) > 0 for all (s, a). Let µk = Ψ(µk−1) for all k > 0 where Ψ(µ′) is the
solution to equation 14. Let Θ(µ) = Eµ[r], since µk−1 is a feasible point for optimization equation 13, we
have monotonic improvement on the discounted accumulated rewards as

Θ(µk−1) ≤ max
µ∈∆

Θ(µ)− ε1Dψ1(µ1|µk−11)− ε2Dψ2(µT1|µTk−11) ≤ Θ(µk), (31)

with equality achieved only if µk−1 = µk = µ∗.

Θ(µ)− ε1Dψ1(
∑
a µ|

∑
a µ
′)− ε2Dψ2(

∑
s µ|

∑
s µ
′) is strictly concave on µ and smooth on µ′. Thus Ψ(µ′) is

continuous and so is Θ(Ψ(µ′)).

Since we assumed S,A are finite, from monotone convergence theorem, we can conclude that
limk→∞Θ(µk) =: θ∞ exists. Then we prove the theorem by contradiction. Suppose that θ∞ < Θ(µ∗) =
max∆η

Θ, then Θ−1(θ∞) is closed and bounded, thus compact in ∆, therefore there exists a c > 0 such that
Θ(Ψ(µ)) − Θ(µ) ≥ c on Θ−1(θ∞). By continuity and compactness we may choose a δ < c/2 small enough
such that Θ(Ψ(µ))−Θ(µ) > c/2 on Θ−1([θ∞− δ, θ∞]). There is such a δ(µ) > 0 for every µ ∈ Θ−1(θ∞) and
we can choose δ = min δ(µ) > 0 by compactness.

Since limk→∞Θ(µk) = θ∞, there exists an n > 0 such that Θ(µn) ∈ [θ∞−δ, θ∞], thus Θ(µn+1) = Θ(Ψ(µn)) >
Θ(µn) + c/2 ≥ θ∞ − δ + c/2 > θ∞. This is an contradiction to the assumption that Θ(µk) converges to θ∞
increasingly.

Therefore, θ∞ = Θ(µ∗), and from strict convexity of Θ, we have Θ−1(θ∞) = {µ∗}. So limk→∞ µk = µ∗.

Similarly, for the optimization equation 14:

max
µ∈∆

−KL(µ | ξ)−ε1Dψ1 (µ1 | ρ′)− ε2Dψ2

(
µT1 | η′

)
,

we can have the following proposition:
Proposition B.3. Let (µk)k∈N be a sequence of occupancy measures such that for each k ≥ 1, µk is the
solution to the optimization problem equation 14 with µ′ = µk−1, then lim

k→∞
µk = µ∗ is the solution to

max
µ∈∆

−KL(µ | ξ).
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C Large Scale Algorithm

C.1 ρ′ =
∑
a µ
′ and η′ =

∑
s µ
′

Following the approach in Sutton et al. (2016); Nachum & Dai (2020), assuming π is known, with the change
of variable ζ(s, a) := µ

µ′ (s, a), we can rewrite equation 18 with importance sampling weights as a policy
evaluation problem

min
u,v,Q

max
ζ
L(u, v,Q, ζ;π) : = Eµ′ [ζ(s, a) (r + γPπQ−Q− ε1u− ε2v) (s, a)]

+ (1− γ)Ep0,π[Q(s, a)] + ε1Eρ′ [ψ∗1(u(s))] + ε2Eη′ [ψ∗2(v(a))].
(32)

Given the optimized Q, ζ, the gradient with respect to π is

∇πL(u, v,Q, ζ, π) = E(s,a)∼µ′ [ζ(s, a)Q(s, a)∇ log π(a|s)] . (33)

The gradients with respect to u, v,Q, ζ are as follows:

∇uL(u, v,Q, ζ;π) =− ε1Eµ′ [ζ(s, a)∇u(s)] + ε1Eρ′ [∇uψ∗1(u(s))], (34)

∇vL(u, v,Q, ζ;π) =− ε2Eµ′ [ζ(s, a)∇v(a)] + ε2Eη′ [∇vψ∗2(v(a))], (35)

∇QL(u, v,Q, ζ;π) = Eµ′ [(ζ + γPπ∇Q−∇Q) (s, a)] + (1− γ)Ep0,π[∇Q(s, a)], (36)

∇ζL(u, v,Q, ζ;π) = Eµ′
[
∇ζ(s, a)hπu,v,Q(s, a)

]
. (37)

Wrapping maxπ around equation 32 gives the off-policy optimization. Given optimized Q, ζ, the gradient
with respect to π is

∇πL(u, v,Q, ζ, π) = E(s,a)∼µ′ [ζ(s, a)Q(s, a)∇ log π(a|s)] (38)

D Gradient Derivations

Here we derive optimization equation 18. Let’s fix policy π, then following the policy optimization approach
in Nachum & Dai (2020), one might define the policy evaluation problem for π as maxµ h(µ)− δbπ (Aπµ) for
any arbitrary concave function h as the problem is over-constrained and µ is the unique solution of Aπµ = bπ.
So we define the policy evaluation problem for a fixed π corresponding to equation 13 as

max
µ

Eµ [r]− ε1Dψ1(µ1 | ρ′)− ε2Dψ2(µT1 | η′)− δbπ (Aπµ)

(a)= max
µ

min
u,v,Q

〈µ, r〉 − ε1〈µ1, u〉+ ε1Eρ′ [ψ∗1(u(s))]− ε2〈µT1, v〉+ ε2Eη′ [ψ∗2(v(a))]− 〈Aπµ,Q〉+ Ebπ [Q(s, a)]

= max
µ

min
u,v,Q

〈µ, r −Aπ∗Q− ε1u1TA − ε21Sv
T 〉+ Ebπ [Q(s, a)] + ε1Eρ′ [ψ∗1(u(s))] + ε2Eη′ [ψ∗2(v(a))],

(39)

where (a) is obtained by replacing the last three terms by their convex conjugates and Aπ∗ is transpose of Aπ.
This gives optimization equation 18. If we regularize objective equation 18 with Dψ(µ | µ′) regularization,
under Fenchel duality we get

max
µ

min
u,v,Q

〈µ, r −Aπ∗Q− ε1u1TA − ε21Sv
T 〉 −Dψ(µ | µ′) + Ebπ [Q(s, a)] + ε1Eρ′ [ψ∗1(u(s))] + ε2Eη′ [ψ∗2(v(a))]

= min
u,v,Q

{
−min

µ
〈−µ,r−Aπ∗Q−ε1u1TA − ε21Sv

T 〉+Dψ(µ |µ′)
}

+ Ebπ [Q(s, a)]+ε1Eρ′ [ψ∗1(u(s))] + ε2Eη′ [ψ∗2(v(a))]

= min
u,v,Q

Eµ′ [ψ∗ (r(s, a)−Aπ∗Q(s, a)− ε1u(s)− ε2v(a))] + Ebπ [Q(s, a)] + ε1Eρ′ [ψ∗1(u(s))] + ε2Eη′ [ψ∗2(v(a))],

(40)
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and wrapping equation 40 with maxπ results in equation 19. The gradient in equations equation 21,
equation 22 and equation 23 are basic calculus. Assuming Q∗, u∗, v∗ are optimal functions out of the
policy evaluation in equation 40 for the given fixed π, then using Danskin’s theorem Bertsekas (1999)
we have ∂π minu,v,Q L(u, v,Q;π) = ∂πL(u∗, v∗, Q∗;π) and gradient in equation 24 is derived using the
facts: (A) PπQ(s, a) = Es′∼P (·|s,a),a′∼π(·|s′)[Q(s′, a′)] and (B) for any distribution z ∼ p, ∂pEp[h(z)] =
Ep[h(z)∇ log p(z)].

In order to derive the objective of equation 32, first we interchange minµ and maxu,v,Q in equation 39 by
minimax theorem. Fixing policy π, we rewrite the first term in equation 39 as

〈µ, r −Aπ∗Q− ε1u1TA − ε21Sv
T 〉 = Eµ [r(s, a)−Aπ∗Q(s, a)− ε1u(s)− ε2v(a)]

= Eµ′ [ζ(s, a) (r(s, a)−Aπ∗Q(s, a)− ε1u(s)− ε2v(a))] ,

where ζ(s, a) = µ(s,a)
µ′(s,a) .

Equations equation 34–equation 37 are basic calculus derivations. For equation 38, given optimized Q, u, v
and ζ, using (A) and (B), we can take the gradient of the first two terms in equation 39, i.e.,

Eµ′ [ζ(s, a) (r(s, a)−Aπ∗Q(s, a)− ε1u(s)− ε2v(a))] + Ebπ [Q(s, a)],

with respect to π and combine them under the relation µ(s, a) = (1 − γ)p0(s)π(a|s) +
γπ(a|s)

∑
s′,a′ P (s|s′, a′)µ(s′, a′) to get equation 38.

These two approaches in Section 4, are similar to policy gradient derivations in Nachum & Dai (2020), with
corrective terms on u(s) and v(a) in the softmax operator defined in the main text.

E Demonstrations

E.1 GridWorld Setup

In Section 5, we set Dψ1 = Dψ2 = KL and we applied Dykstra in the gridworld. We used the Frobenius
norm on the difference of two consecutive matrices out of Dykstra until the error is less than 10−5.

In order to see the extreme effect of ρ′ independently (setting ε2 = 0), we can enforce it as δρ′(µ1), even though
it might not be possible to find a µ such µ1 = ρ′ as discussed in Section 5. In this setting, we observed
Dykstra gets stuck switching back and forth between projection onto ρ′ and projection onto occupancy
measures ∆ and we get division by zero exception. In our experiments we observed similar outcome when
using the penalty function KL(µ1|ρ′) with high coefficient ε1 (close to 20).

E.2 Cart-Pole setup

For this test we set γ = .99, with β1 = 0.005 and β2 = 0.001, to compute the expectation with respect to
policy, we averaged Q values over 10 randomly sampled actions drawn from the policy at each state. To
better see the effect of η′, we set a high value of ε2 = 1000. Policy in this example is a gaussian MLP network
of two hidden layers of 8 units and Q and v have two hidden layers of 32 units.
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