
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MSEARCHER: SELF-REFLECTIVE SEARCH AGENT
EMPOWERED BY MONTE CARLO TREE SEARCH
BASED DATA SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in reinforcement learning (RL) have enabled large language
models (LLMs) to perform multi-turn chain-of-thought (CoT) reasoning with tool
use, where web search serves as the most critical tool for answering complex
questions. However, most existing methods apply RL directly to off-the-shelf
models without a supervised fine-tuning (SFT) cold start, resulting in unstable
training and limited tool invocations. This difficulty is exacerbated by the high
cost of curating long reasoning trajectories, which are expensive to annotate and
prone to factual drift. We propose MSEARCHER, a two-stage trained search agent
that combines reflective thinking with robust tool use for complex reasoning. A
central contribution is an efficient data construction framework based on Monte
Carlo Tree Search (MCTS), which produces self-reflective reasoning trajectories
for the SFT cold start. This framework leverages both correct and flawed rollouts
to generate natural and diverse reasoning data. We adopt a two-stage pipeline, first
applying SFT with our constructed data and then further training the model with
RL, achieving substantial improvements on multi-hop question answering: 67.6%
on HotpotQA and 52.0% on Frames. These results highlight the importance of
high-quality SFT in stabilizing RL and equipping LLMs with robust long-horizon
reasoning capabilities.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable progress across a wide spectrum
of reasoning tasks (Hendrycks et al., 2021; Rein et al., 2023). , but they often suffer from hallu-
cination—confidently producing factually incorrect answers due to outdated, incomplete, or erro-
neous parametric knowledge (Huang et al., 2025; Sardana, 2025). To mitigate this issue, Retrieval-
Augmented Generation (RAG, Lewis et al., 2020) has become a standard practice, grounding model
outputs in external evidence and substantially improving factual reliability (Gao et al., 2023; Cao
et al., 2023; Xin et al., 2024).

Recent studies have begun to regard retrieval as an external tool (Li et al., 2025b), which can be
deliberately triggered by the model whenever needed. This perspective extends the RAG paradigm
into the broader framework of tool-augmented reasoning, where LLMs are trained not only to
consume retrieved evidence but also to decide when and how to call external resources. To strengthen
this ability, reinforcement learning (RL) has been introduced as a key training paradigm (Jin et al.,
2025; Song et al., 2025; Zheng et al., 2025; Gao et al., 2025). By optimizing against task-specific
rewards, RL enables models to improve their decision-making across multi-turn tool-use trajectories.

However, previous works often suffer from several drawbacks: (1) insufficient tool invocation, where
the reasoning agent tends to halt after only one or two search calls, leading to inadequate context
for problem solving; and (2) unstable training dynamics, as models without fine-tuning frequently
produce outputs with invalid formats, leading to collapse in the early stages (Jin et al., 2025).

Inspired by recent advances in post-training (Chu et al., 2025; Ye et al., 2025), we posit that a
moderate fine-tuning phase can serve as an effective cold start, equipping the model with fundamental
tool-use capabilities and a stable reasoning scaffold. In this paper, we propose MSEARCHER, a
two-stage trained search agent that combines reflective thinking with robust tool use for complex

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

reasoning, highlighted by an efficient data construction framework based on Monte Carlo Tree Search
(MCTS) to produces self-reflective reasoning trajectories for SFT cold start. In contrast to prior
works (Lee et al., 2025; Li et al., 2025a) that depends on expert large reasoning models (LRMs) to
directly produce full trajectories, our framework decomposes the question into smaller sub-problems
and solves them step by step. Our key intuition is to take advantage of the structure of MCTS. Rather
than discarding low-quality outputs through rejection sampling, the data constructor leverages both
correct and incorrect rollouts as complementary training signals. By contrasting flawed reasoning
paths with more accurate trajectories, the framework induces natural self-reflection behavior and
strengthens long-horizon reasoning. This property makes the data construction framework not only
resource-efficient but also robust to noise.

To be more specific, the MCTS-based framework takes a multi-hop task as input, and we design the
search tree at the granularity of task decomposition plans. Each node represents a complete plan
containing multiple sub-tasks, and expansion corresponds to refining the plan by further decomposing
one currently divisible sub-task. This unique design reduces the required search depth, while still
enabling exponential growth in the breadth of candidate decompositions. Additionally, when the
simulation ends, we identify and synthesize multiple forms of self-reflection across different branches
and rollouts, focusing on retrieval, planning, and reasoning errors. As a result, our framework
explores the reasoning space more efficiently without sacrificing coverage.

In our experiments, we adopt a two-stage training strategy. We first perform SFT on the our
constructed data, and then apply RL to further enhance performance in real-world environments.
Extensive results show that this two-stage training significantly outperforms previous one-stage
methods, demonstrating the effectiveness of our constructed data. In summary, our contributions
are three-fold: (1) we propose a novel data construction framework that generates self-reflective
long CoT reasoning data; (2) we introduce a two-stage tool-augmented reasoning agent for complex
tasks, equipped with a real-world search environment; and (3) we demonstrate the effectiveness of
cold-start SFT through extensive experiments, achieving 67.6% on HotpotQA and 52.0% on Frames,
while observing explicit self-verification behaviors.

2 PRELIMINARY

In this section, we first outline the task definition and then present the basic idea of Monte Carlo Tree
Search that serves as the foundation of our framework.

2.1 TASK DEFINITION

In this work, we focus on the open-domain multi-hop question answering task, which requires
performing multiple reasoning steps across different documents. A multi-hop question q can be
decomposed into a sequence of sub-questions, q = {q1, q2, · · · , qn}, arranged in topological order. In
the first stage of SFT, our goal is to construct valid reasoning chains augmented with tool invocations
for a given question as training data. Specifically, we adopt ReAct (Yao et al., 2023) as the underlying
reasoning framework. At iteration i of the reasoning chain, the LLM generates a thought τi, executes
an action (e.g., a tool call) ai, and then receives an environmental observation oi. The iteration ends
when the LLM outputs “final answer” as the action. A complete trajectory RT with T iterations can
be represented as:

RT = (τ0, a0, o0, · · · , τi, ai, oi, · · · , τT , aT) (1)

In the RL stage, the thought τi and action ai are sampled from the policy model based on previous
context, i.e., π(τi, ai|Ri−1).

2.2 MONTE CARLO TREE SEARCH(MCTS)

A typical MCTS algorithm builds a search tree T based on a policy model πθ, which is usually
the reasoning backbone LLM for data construction. Each node in T is nt = [st, at, N(nt), V (nt)],
where st stands for the current state, at is the possible next action, N is the number of visits, and V
is the value function - the accuracy. In our case, the state st corresponds to the current complete plan
consisting of multiple sub-questions, while the action at represents performing a single decomposition
step to further refine this plan. For the t-th simulation, our MCTS runs the four standard operations:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Monte-Carlo
Search Tree 𝑄! = 𝑞

𝑃! = 𝜙

𝑄" = 𝑞", 𝑞#
𝑃" = 𝑎"

𝑄# = 𝑞$, 𝑞%
𝑃# = 𝑎#

𝑄$ = 𝑞&, 𝑞'
𝑃$ = 𝑎$

𝑄% = 𝑞", 𝑞(, 𝑞)
𝑃% = 𝑎", 𝑎%

𝑄& = 𝑞*, 𝑞"!, 𝑞#
𝑃& = 𝑎", 𝑎&

𝑎#: 𝑞 ↦ 𝑞$, 𝑞%

𝑎": 𝑞 ↦ 𝑞", 𝑞# 𝑎$: 𝑞 ↦ 𝑞&, 𝑞'

𝑎%: 𝑞" ↦ 𝑞(, 𝑞)

Simulation Rollout

𝑎&: 𝑞# ↦ 𝑞*, 𝑞"!

…

Self-Reflective
Reasoning Trajectory

𝑠!

𝑠" 𝑠# 𝑠$

𝑠% 𝑠&

𝑐!𝑞!

Retrieval Answers of Dependent
Sub-Questions

Answer of 𝑞+
1

2

3

How many of the people who started the great migration of the
Slavs live in the contry who won the 2002 World Cup in Japan? 𝑞 =

Who started the great migration of the Slavs?

Early Slavs began mass migrating
to Southeastern Europe … #1: German

Who won the 2002 World Cup in Japan?

In the 2002 FIFA World Cup final,
after a goalless first half … #2: Brazil

How many #1 live in #2?

German_Brazilians. By 1905 the
German Navy Office listed .. #3: 5 million

𝜏$

𝜏%

𝜏&

𝑞"

𝑞#

𝑞$

𝑐"

𝑐%

𝑐&

ℛ 𝑠! = 𝑞", 𝑐", 𝜏" , 𝑞#, 𝑐#, 𝜏# , 𝑞$, 𝑐$, 𝜏$

Simulation
Rollout

Figure 1: Illustration of MSearcher’s data construction framework. Crosses and numbers denote error
types, corresponding to retrieval error, reasoning error and decomposition error, respectively.

(1) Selection means to select a node with the highest value in the tree. In this paper, we adopt the
UCT(Upper Confidence bounds applied to Trees) score (Kocsis & Szepesvári, 2006) as follows:

UCT (nt) = V (nt) + ω

√
2 logN(p)

N(nt)
(2)

where ω is the factor that controls exploration and exploitation and p is the parent node of st.

(2) Expansion involves generating new states by taking plausible actions. In our setting, the model
performs a decomposition on one of the sub-questions within st to produce refined plans.

(3) Simulation means to perform a rollout for the current decomposition plan by querying a rollout
model, with the help of the tools needed to get an answer and compute the reward r.

(4) Backpropagation collect the simulation reward r and update the value V (s) for all nodes along
the path from the current node to the root.

Nnew(s) = Nold(s) + 1,

Vnew(s) =
Vold(s)Nold(s) + r

Nnew(s)

(3)

3 MSEARCHER

In this section, we introduce the main components of our data construction framework and training
method. To be specific, in section 3.1, we introduce the detailed definition of our monte carlo search
tree, how to do rollout and simulation, and synthesize reasoning trajectories from the search tree, as
demonstrated in Figure 1; in section 3.2, we give details of building the reasoning agent.

3.1 SELF-REFLECTIVE DATA CONSTRUCTION

3.1.1 NODE DEFINITION AND EXPANSION

In our search tree, each node represents a partial decomposition of a multi-hop question into sub-
questions. Let a multi-hop question be q, and let the set of its current sub-questions at step t be
Qt = {q1, q2, . . . , qK}. Then, a node st in the search tree is defined as:

st = (Qt, Pt), (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where Qt is the current set of sub-questions and Pt is the decomposition history that led to this state.

An action at at node st corresponds to performing a decomposition on one sub-question qi ∈ Qt,
splitting it into exactly two smaller sub-questions:

at : qi 7→ {q1i , q2i }. (5)

The resulting next state st+1 is:

st+1 = (Qt \ {qi}) ∪ {q1i , q2i }, Pt+1 = Pt ∪ {at}. (6)

A node is considered as leaf if no sub-question in Qt can be further decomposed, i.e., all remaining
sub-questions are atomic, judging by the policy model. By restricting each decomposition to split a
sub-question into exactly two smaller tasks, we keep the expansion task simple enough for the policy
model to handle, avoiding reliance on a powerful LRM to do this job.

In practice, we define an expansion width coefficient w and distribute it evenly across the decom-
posable sub-questions qi in Qt, such that w =

∑
i wi. We then prompt the policy model to generate

wi distinct decompositions for each qi in a single response, preventing the model from producing
identical decomposition plans across different branches. This design means that in our framework we
actually perform multiple expansions and rollouts within a single simulation round.

3.1.2 TREE POLICY

Following the standard MCTS framework, our tree policy iteratively selects the most promising child
node at each level. Formally, given a current node st, we select the child node st+1 that maximizes
the selection value:

st+1 = arg max
s′∈Children(st)

UCT(s′) (7)

where UCT(s′) is computed as in Eq. 2, where the coefficient ω is set to 0.6 in practice. This selection
continues recursively until a leaf node (a node without children) is reached.

If the leaf node is expandable according to our decomposition rules, it undergoes expansion; otherwise,
we skip expansion and proceed directly to the simulation phase. We keep a record of each sub-
questions in Qt of node st on whether it is decomposable by prompting the policy model. This
ensures that only nodes with potential for further task decomposition are explored, while fully
expanded or terminal nodes are directly evaluated in rollouts.

3.1.3 ROLLOUT

In the simulation rollout step, the model executes reasoning for a given node in the search tree to
produce the results of its sub-questions. Specifically, for the current node state st, we maintain
its corresponding set of sub-questions Qt = {q1, q2, . . . , qK}.Each sub-question may depend on
the results of other sub-questions, indicated by references such as #i, denoting a dependency on
the i-th sub-question. These dependencies form a directed acyclic graph (DAG) over Qt, which is
traversed using topological sorting to obtain a valid execution order {q1, q2, . . . , qK} that satisfies all
dependencies.

For each sub-question qj in this order, the rollout proceeds in two steps. First, a retrieval operation is
performed to collect relevant context or evidence from external sources, such as a web search. Let
cj = Retrieve(qj) denote the retrieved context. Second, the rollout model generates a response τj
conditioned on both the retrieved context cj and the answers of any dependent sub-questions:

τj = RolloutModel
(
qj

∣∣ cj , {τi | qi ∈ Dep(qj)}
)
, (8)

where Dep(qj) denotes the set of sub-questions that qj depends on. Iterating over all sub-questions
produces the complete rollout trajectory for the node st:

R(st) = {(q1, c1, τ1), (q2, c2, τ2), · · · , (qK , cK , τK)}. (9)

This iterative approach ensures that each sub-question is answered in a contextually grounded manner
while respecting the dependencies among sub-questions. By combining retrieval and reasoning at
each step, the model produces a coherent, multi-step solution for the node.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1.4 SELF-REFLECTIVE REASONING TRAJECTORY

When the simulation ends, we collect all rollout trajectories from the leaf nodes of the search tree and
analyze them to construct self-reflective reasoning data.

First, we identify trajectories that yield correct final answers, marking them as correct trajectories,
which can be directly textualized into supervised training data and used for comparison with other
trajectories. For trajectories that yield incorrect final answers, we perform structured error detection to
extract self-reflection signals. Specifically, we categorize errors into three categories. When we detect
these error, we pair incorrect trajectories with correct ones and ensemble them into self-reflective
trajectories. The three categories are as follows:

Retrieval Error. This error arises when two rollouts correspond to the same leaf node (i.e., identical
decomposition and sub-question set). Formally, let R+(st) denote a correct rollout trajectory and
R−(st) a wrong one. Suppose they are aligned in the first j − 1 step and the difference first occurs at
step j, where the retrieved context cj of R+(st) differs from that of R−(st), leading to downstream
reasoning failure. In this case, we construct the reflective trajectory Rref(st) as follows:

Rref(st) = R−(st)[: j] ∥ (qj , c+j , τ
+
j) ∥R+(st)[j + 1 :],

where c+j and τ+j are the corresponding context and answer in the correct trajectory R+.

Reasoning Error. This occurs when two rollouts of the same leaf node share the same decomposition
and retrieval contexts up to step j, but the rollout model produces different answers for τj . Such
divergence indicates a reasoning error. Formally, let R+(st) and R−(st) denote the correct and
wrong trajectory, respectively, then we define the reflective trajectory as:

Rref(st) = R−(st)[: j] ∥ (qj , cj , τ+j) ∥R+(st)[j + 1 :],

where τ+j denotes the reasoning outcome for step j of the correct trajectory R+.

Decomposition Error. This error type arises across different branches of the search tree, where one
branch produces correct rollouts while another fails. Since both branches have undergone multiple
rollouts, we attribute the discrepancy to different task decompositions. Let R+(sm) and R−(sn)
denote the correct and wrong rollout trajectory, respectively. Suppose that sm and sn share the same
decomposition plan up to step j, then we can define the reflective trajectory as:

Rref(st) = R−(st)[: j] ∥R+(st)[j :],

where j is the first step after which the decompositions differ.

In this way, the reflective trajectory explicitly encodes both the erroneous reasoning context from
R− and the corrective signal from R+. Finally, all trajectories—both correct and reflective—are
textualized into natural language supervision. We achieve this by joining the steps with a diverse
set of pre-defined and paraphrased connective sentences, thereby generating coherent reasoning
chains that capture explicit self-reflection and error correction. The detailed synthesized reasoning
trajectories can be found in Appendix A.

3.2 AGENT TRAINING

In this section, we present our two-stage training pipeline for building a tool-augmented reasoning
agent, consisting of (1) a cold-start supervised fine-tuning stage on the constructed data, followed by
(2) reinforcement learning to align the agent with real-world search environments.

3.2.1 COLD-START SUPERVISED FINE-TUNING

In the cold-start supervised fine-tuning (SFT) stage, we initialize the policy model with a reliable
reasoning and retrieval strategy derived from our reflective trajectories. This step equips the model
with stable tool-use patterns and self-correction signals, which are crucial for mitigating unstable
exploration and avoiding collapse in the early stages of RL training.

Consistent with recent empirical studies (Zhang et al., 2025), we exclude the loss contributions
from these external observations . Given an input reasoning trajectory RT as in Eq. 1, the model

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

parameters θ are optimized by a masked auto-regressive negative log-likelihood:

L = −
∑T

t=1 I[τt, at /∈ O] · log pθ(τt, at|τ, a, o<t)

I[τt, at /∈ O]
(10)

where I[τt, at /∈ O] is an indicator function that masks the loss of content in the environment
observations O = {oi|i = 0, · · · , T}. This masking ensures that the model is optimized only on the
supervised signals generated by the agent itself, without being penalized for content from external
tools. In practice, we also split the dialogue into smaller segments, allowing the model to learn
reasoning step by step rather than attempting to solve the entire problem in a single generation.

3.2.2 REINFORCEMENT LEARNING WITH DAPO

After the cold-start stage, we further enhance the model’s capabilities using reinforcement learning
(RL). We adopt the Dynamic sAmpling Policy Optimization (DAPO) algorithm (Yu et al., 2025),
which builds upon Group Relative Policy Optimization (GRPO) (Shao et al., 2024) by incorporating
a few modifications: clip-higher, removal of the KL loss, switching to token-level loss, dynamic
sampling, and reward shaping. Considering training efficiency and effectiveness, we apply all
modifications except dynamic sampling. Given a batch of examples (q, a) ∼ D and a group of
sampled responses {oi}Gi=1 from the old policy πold, the optimizing object of DAPO is:

JDAPO =E(q,a)∼D,{oi}G
i=1∼πold(·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min(ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵlow, 1 + ϵhigh)Âi,t)]
(11)

where the ri,t(θ) is the importance sampling ratio between the new policy and the old policy at time
t, and Âi,t denotes the estimated advantage. The parameter ϵhigh and ϵlow controls the upper and
lower clip bound, and in practice they are set to 0.28 and 0.2, respectively.

3.2.3 REWARD DESIGN

In this work, we consider the sum of three major parts as our reward. First, the primary reward is the
answer correctness Rcorrect, evaluated by F1-score. The Second, following by DAPO, is the length
penalty Rlength. And finally, we also considered the format penalty Rformat:

Rformat = min(| − 1− (Rcorrect +Rlength)|,−0.2) (12)

4 EXPERIMENT

4.1 DATASET

In this work, a lot of different datasets and benchmarks are used for different purpose. First, in the
SFT data construction, we use Musique (Trivedi et al., 2022) as the seed dataset, mainly because it
offers oracle question decomposition, which can serve as golden reference when policy model fails.
It also provides a limited context to retrieve from, which greatly reduced the computational cost.

With respect to the RL, we adopt the same training corpus with DeepResearcher (Zheng et al., 2025),
which includes NaturalQuestion (NQ) (Kwiatkowski et al., 2019), TriviaQA (TQ) (Joshi et al., 2017),
HotpotQA (Yang et al., 2018) and 2WikiMultiHopQA (2Wiki) (Ho et al., 2020).

Finally, for the evaluation, we also follow DeepResearcher to evaluate the model in both in-domain
(ID) and out-of-domain (OOD) settings. We include NQ, TQ, HotpotQA, and 2Wiki for the ID
setting, and Bamboogle (Press et al., 2023) and PopQA (Mallen et al., 2022) for the OOD evaluation.
Furthermore, we also include FanoutQA (Zhu et al., 2024), Frames (Krishna et al., 2025) and
GAIA (Mialon et al., 2024) as three more challenging benchmarks. For GAIA, we use the 103
text-only examples as validation set (Gao et al., 2025).

4.2 BASELINES

In this work, we adopt two categories of baselines with different paradigms. For the Prompt-Based
baselines, we have: (1) CoT, where the model employs basic Chain-of-Thought (Wei et al., 2022)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

reasoning; (2) RAG, which combines the CoT with retrieved context from local resources. (3)
Search-o1 (Li et al., 2025b) is a prompt-based multi-step reasoning agent that can generate search
queries and retrieve external information to assistant question answering. We implement this baseline
with the web search as tested in DeepResearcher.

For the Training-Based baselines, we includes: (4) Search-r1 (Jin et al., 2025) introduces a
reinforcement learning approach for question answering, where both training and inference rely on a
local retriever to search for relevant information. (5) R1-Searcher (Song et al., 2025) proposes a
similar approach with Search-r1, but differs in search strategy. It search the wikipedia via Bing and
summaries the top three pages. (6) DeepResearcher (Zheng et al., 2025) proposes to improve the
agent’s search ability by training with a real-world search engine and browser. (7) ASearcher (Gao
et al., 2025) introduce a search agent trained by large-scale RL with autonomously synthesized
high-quality and challenging QAs.

4.3 METRICS

We adopt two complementary of metrics in this work:

Rule-based Metrics Given the scale and computational cost of training, we primarily adopt the
rule-based F1 score for reward computation and evaluation during RL training. Both the predicted
answer and the ground truth are normalized—by removing punctuation and standardizing letter
case—before calculating the F1 score.

Model-based Evaluation Rule-based metric is not accurate in some cases such as long answer.
Therefore, we adopt a LLM-as-Judge score by prompting a strong LLM to ask whether the answer is
correct. Specifically, we follow DeepResearcher, leveraging GPT-4o-mini as the judge model.

4.4 IMPLEMENTATION

For all the models in SFT and RL training, we use Qwen2.5-7B-Instruct or Qwen2.5-14B-
Instruct (Yang et al., 2024) as the training backbones. The SFT training is completed using the
OpenRLHF (Hu et al., 2024) framework and the RL training is conducted with the Slime (Zhu et al.,
2025) framework. In the SFT, we use a total batch size of 32 and train for 5 epochs with learning rate
of 5e-6, warmup ratio of 0.05, and a sequence length of 16k. In the RL, we sample 128 examples in
rollout step, sample 8 responses for each prompt, and then update the policy model with a mini-batch
size of 256. Each rollout response is limited to up to 10 tool calls and a total length of 16k.

For the data construction framework, we use QwQ-32B (Team, 2025) as both the policy model and
rollout model. Since the the dataset Musique provides contexts, we embed the context with Zhipu
Embedding-3 (big, 2025b) and use faiss algorithm (Douze et al., 2024) for retrieval.

With respect to the search tool, for the local RAG in the data construction and for some baseline such
Search-r1, we adopt the retrieval strategy as stated above; for the online web search, we adopt the
Zhipu search tool (big, 2025a) as the primary search engine interface for searching and page reading.

5 RESULT

5.1 MAIN RESULTS

Table 1 demonstrates the performance of MSEARCHER and other baselines on both ID and OOD
benchmarks. It can be seen from the result that, MSEARCHER outperforms other baselines on
most benchmarks, and achieves the best average results in both ID and OOD settings. This suggest
that, MSEARCHER not only not only learns to leverage search tools effectively within the training
domain, but also generalizes well to unseen data. Specifically, compared with DeepResearcher, which
shares the same training data and web environment, our method achieves an average improvement of
4.2% in the ID setting and 1.4% in the OOD setting, highlighting the benefits of our self-reflective
reasoning data and SFT cold start. With respect to ASearcher, it outperforms ours on multi-hop
datasets such as HotpotQA and 2Wiki. However, its performance drops significantly on NQ, likely
because their model is trained on self-curated complex reasoning data, constructed primarily from

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method Inference In Domain Out of Domain
Environment NQ TQ Hotpot 2Wiki Avg Bamb PopQA Avg

CoT - 32.0 48.2 27.9 27.3 33.9 21.6 15.0 18.3
CoT+RAG Local RAG 59.6 75.8 43.8 24.8 51.0 27.2 48.8 38.0
Search-o1 Web Search 55.1 69.5 42.4 37.7 51.2 53.6 43.4 48.5

7B Models
Search-r1 Local RAG 49.6 49.2 52.5 48.8 50.0 47.2 44.5 45.9
R1-Searcher Web Search 52.3 79.1 53.1 65.8 62.6 65.6 43.4 54.5
DeepResearcher Web Search 61.9 85.0 64.3 66.6 69.5 72.8 52.7 62.8
ASearcher* Web Search 55.4 85.7 67.2 73.3 70.4 72.0 48.9 60.5

14B Models
Search-r1 Local RAG 62.9 82.6 65.8 56.4 66.9 64.3 53.8 59.1
DeepResearcher Web Search 63.5 86.9 66.9 69.3 71.6 72.8 54.5 63.7
ASearcher* Web Search 55.5 87.6 68.5 80.7 73.1 75.2 50.0 62.6
MSearcher Web Search 68.7 87.9 67.6 77.4 75.3 74.5 56.8 65.6

Table 1: Main results on six multi-hop question answering benchmarks. Most baseline results are
from Zheng et al. (2025) and Gao et al. (2025). The ASearcher is labelled with * because it is trained
with its own curated RL data.

multi-hop sources (HotpotQA and 2Wiki), leading to poor generalization to other datasets such as
NQ and PopQA.

Model FanoutQA FRAMES GAIA Avg.

DeepResearcher-14B 45.2 48.6 38.7 44.2
Search-r1-14B 13.3 22.4 11.8 15.8
MSearcher 47.6 52.0 40.5 46.8

Table 2: Evaluation on three more challenging
benchmarks, MSEARCHER and DeepResearch use web
search, while Search-r1 uses local retrieval system.

Table 2 presents the performance of Deep-
Research, Search-r1, and MSEARCHER,
all using a 14B backbone and trained on
the same data as in Table 1, evaluated on
three challenging datasets that require ex-
tensive searches or more sophisticated rea-
soning. As shown, Search-r1 with its lo-
cal retrieval system performs worse than
the others. While DeepResearch and our
method both achieve stable and competitive
results, MSEARCHER consistently demon-
strates a clear advantage.

5.2 ABLATION STUDY

HotpotQA Frames

Method Acc Tool Call Acc Tool Call

MSearcher 67.6 5.6 52.0 5.7
- w/o ref 65.7 4.7 50.4 4.5
- w/o sft 63.3 2.7 48.7 2.9

Table 3: Ablation results of MSearcher on SFT: with-
out reflective data in SFT and without SFT.

This section presents ablation results that
examine how different components impact
the overall performance of our framework.

Effectiveness of Self-Reflective Signal. In
this experiment, we remove all examples
containing self-reflective behaviors during
the SFT stage, using only correct MCTS
rollouts for data construction. As shown
in Table 3, excluding self-correction data
reduces the number of tool calls, since the
average tool usage in the SFT training set
becomes lower. Consequently, the final performance after RL training also declines.

Model Performance without RL. In this experiment, we evaluate the model’s performance after
SFT but before RL, compared to the vanilla instruction model. As shown in Table 4, the model’s
performance on HotpotQA drops by 4.86%, accompanied by an increase in the number of tool calls.
This decline can be attributed to domain shift and a stronger bias toward tool usage introduced by the
SFT data. Notably, this phenomenon disappears with the larger 14B backbone and in the in-domain
evaluation on the Musique dataset.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 TRAINING DYNAMICS

Model HotpotQA Musique

Acc Tool Call Acc Tool Call

Qwen2.5-7B
Instruct 51.9 1.3 21.6 1.1
SFT 47.1 (-4.8) 3.9 26.5 (+4.9) 4.1

Qwen2.5-14B
Instruct 62.9 1.5 25.8 1.5
SFT 65.4 (+2.5) 4.8 31.3 (+5.5) 4.9

Table 4: Evaluation of vanilla Qwen2.5-7B/14B
instruction models before and after SFT.

Figure 2 compares training rewards and tool
calls of our method with and without SFT us-
ing qwen2.5-7B. Tool calls increase steadily in
both cases, but SFT gives a higher initial tool
usage, leading to better performance.

6 RELATED WORK

6.1 SEARCH AGENTS

Recent works have explored building agent
workflows that allow large language models
(LLMs) to interact with external tools for com-
plex task solving. Representative prompt-
based agent systems such as Search-o1 (Li
et al., 2025b) and ReAgent (Zhao et al., 2025),
while effective for rapid development, are con-
strained by the inherent capacity of the under-
lying LLM and are not easily improved through environment feedback. To address this, several
studies have attempted to construct supervised fine-tuning (SFT) trajectories. For example, some
works (Lee et al., 2025; Asai et al., 2024; Yu et al., 2024) employ large LLMs to synthesize retrieval
and reasoning traces, which are then used to fine-tune smaller models. Most recently, reinforcement
learning (RL) methods have been investigated to enhance LLM-based agents, and most prior works
focus on multi-hop QA settings (Jin et al., 2025; Song et al., 2025; Zheng et al., 2025). Moreover,
Tan et al. (2025) propose to use direct prompting to generate reasoning data and combines SFT with
RL to improve search strategies.

6.2 SYNTHETIC TRAJECTORIES FOR SEARCH AGENTS

0 100 200 300 400 500 600
Training Step

1

2

3

4

5

To
ol

 C
al

ls
Nu

m
be

r

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
wa

rd
/F

1

Tool Calls Number - MSearcher w/o sft
Tool Calls Number - MSearcher
Reward - MSearcher w/o sft
Reward - MSearcher

Figure 2: Training dynamics of Reward and Number of tool
calls of MSearcher with/witout SFT.

Large-scale manual annotation is of-
ten costly and inflexible, motivating
the use of synthetic data generation
as a scalable alternative for training
search agents. Previous works like
ReaRAG (Lee et al., 2025) and RAG-
R1 (Tan et al., 2025) adopt the prompt-
based method to instruct the large rea-
soning model (LRM) to produce rea-
soning data in predefined format. Re-
cent methods create realistic QA tra-
jectories for SFT by simulating in-
teractions with real-world web pages,
with LRMs assisting in curating the
collected data (Wu et al., 2025; Li
et al., 2025a). However, these meth-
ods often rely on powerful LRMs and
large number of generations for reject
sampling.

7 CONCLUSION

In this work, we present MSEARCHER, a two-stage trained search agent that can perform robust
and reflective multi-step reasoning. A core contribution is a MCTS–based framework that generates
self-reflective reasoning trajectories for supervised fine-tuning, enabling stable RL training without
large reasoning models. Experiments on multi-hop QA benchmarks show MSEARCHER outperforms
strong baselines, demonstrating the value of high-quality SFT data and reflective reasoning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Bigmodel open platform: Search tool api. Online, 2025a. URL https://open.bigmodel.cn/dev/
howuse/websearch. Accessed: 2025-09-25.

Bigmodel open platform: Vector embedding api. Online, 2025b. URL https://open.bigmodel.
cn/dev/api/vector/embedding. Accessed: 2025-09-25.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=hSyW5go0v8.

Shulin Cao, Jiajie Zhang, Jiaxin Shi, Xin Lv, Zijun Yao, Qi Tian, Lei Hou, and Juanzi Li. Probabilistic
tree-of-thought reasoning for answering knowledge-intensive complex questions. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pp. 12541–12560. Association
for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.835. URL
https://doi.org/10.18653/v1/2023.findings-emnlp.835.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of foundation
model post-training. CoRR, abs/2501.17161, 2025. doi: 10.48550/ARXIV.2501.17161. URL
https://doi.org/10.48550/arXiv.2501.17161.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and Yi Wu.
Beyond ten turns: Unlocking long-horizon agentic search with large-scale asynchronous RL.
CoRR, abs/2508.07976, 2025. doi: 10.48550/ARXIV.2508.07976. URL https://doi.org/10.
48550/arXiv.2508.07976.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun,
Qianyu Guo, Meng Wang, and Haofen Wang. Retrieval-augmented generation for large language
models: A survey. CoRR, abs/2312.10997, 2023. doi: 10.48550/ARXIV.2312.10997. URL
https://doi.org/10.48550/arXiv.2312.10997.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing A multi-
hop QA dataset for comprehensive evaluation of reasoning steps. In Donia Scott, Núria Bel,
and Chengqing Zong (eds.), Proceedings of the 28th International Conference on Computational
Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, pp. 6609–6625. Inter-
national Committee on Computational Linguistics, 2020. doi: 10.18653/V1/2020.COLING-MAIN.
580. URL https://doi.org/10.18653/v1/2020.coling-main.580.

Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
easy-to-use, scalable and high-performance rlhf framework. arXiv preprint arXiv:2405.11143,
2024.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions. ACM Trans. Inf. Syst., 43
(2):42:1–42:55, 2025. doi: 10.1145/3703155. URL https://doi.org/10.1145/3703155.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-
r1: Training llms to reason and leverage search engines with reinforcement learning. CoRR,
abs/2503.09516, 2025. doi: 10.48550/ARXIV.2503.09516. URL https://doi.org/10.48550/
arXiv.2503.09516.

10

https://open.bigmodel.cn/dev/howuse/websearch
https://open.bigmodel.cn/dev/howuse/websearch
https://open.bigmodel.cn/dev/api/vector/embedding
https://open.bigmodel.cn/dev/api/vector/embedding
https://openreview.net/forum?id=hSyW5go0v8
https://doi.org/10.18653/v1/2023.findings-emnlp.835
https://doi.org/10.48550/arXiv.2501.17161
https://doi.org/10.48550/arXiv.2508.07976
https://doi.org/10.48550/arXiv.2508.07976
https://doi.org/10.48550/arXiv.2312.10997
https://openreview.net/forum?id=d7KBjmI3GmQ
https://doi.org/10.18653/v1/2020.coling-main.580
https://doi.org/10.1145/3703155
https://doi.org/10.48550/arXiv.2503.09516
https://doi.org/10.48550/arXiv.2503.09516

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pp. 1601–1611.
Association for Computational Linguistics, 2017. doi: 10.18653/V1/P17-1147. URL https:
//doi.org/10.18653/v1/P17-1147.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Johannes Fürnkranz,
Tobias Scheffer, and Myra Spiliopoulou (eds.), Machine Learning: ECML 2006, 17th European
Conference on Machine Learning, Berlin, Germany, September 18-22, 2006, Proceedings, volume
4212 of Lecture Notes in Computer Science, pp. 282–293. Springer, 2006. doi: 10.1007/11871842\
29. URL https://doi.org/10.1007/11871842 29.

Satyapriya Krishna, Kalpesh Krishna, Anhad Mohananey, Steven Schwarcz, Adam Stambler,
Shyam Upadhyay, and Manaal Faruqui. Fact, fetch, and reason: A unified evaluation of
retrieval-augmented generation. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceed-
ings of the 2025 Conference of the Nations of the Americas Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL 2025 - Volume 1: Long
Papers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025, pp. 4745–4759. Associa-
tion for Computational Linguistics, 2025. doi: 10.18653/V1/2025.NAACL-LONG.243. URL
https://doi.org/10.18653/v1/2025.naacl-long.243.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur P. Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: a benchmark for question answering research. Trans. Assoc. Comput.
Linguistics, 7:452–466, 2019. doi: 10.1162/TACL\ A\ 00276. URL https://doi.org/10.
1162/tacl a 00276.

Zhicheng Lee, Shulin Cao, Jinxin Liu, Jiajie Zhang, Weichuan Liu, Xiaoyin Che, Lei Hou, and Juanzi
Li. Rearag: Knowledge-guided reasoning enhances factuality of large reasoning models with
iterative retrieval augmented generation. CoRR, abs/2503.21729, 2025. doi: 10.48550/ARXIV.
2503.21729. URL https://doi.org/10.48550/arXiv.2503.21729.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Na-
man Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian
Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP
tasks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
6b493230205f780e1bc26945df7481e5-Abstract.html.

Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan
Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu, Yong
Jiang, Ming Yan, Pengjun Xie, Fei Huang, and Jingren Zhou. Websailor: Navigating super-human
reasoning for web agent. CoRR, abs/2507.02592, 2025a. doi: 10.48550/ARXIV.2507.02592. URL
https://doi.org/10.48550/arXiv.2507.02592.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang,
and Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. CoRR,
abs/2501.05366, 2025b. doi: 10.48550/ARXIV.2501.05366. URL https://doi.org/10.48550/
arXiv.2501.05366.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Hannaneh Hajishirzi, and Daniel Khashabi.
When not to trust language models: Investigating effectiveness and limitations of parametric and
non-parametric memories. CoRR, abs/2212.10511, 2022. doi: 10.48550/ARXIV.2212.10511.
URL https://doi.org/10.48550/arXiv.2212.10511.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
a benchmark for general AI assistants. In The Twelfth International Conference on Learning

11

https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.1007/11871842_29
https://doi.org/10.18653/v1/2025.naacl-long.243
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.48550/arXiv.2503.21729
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.48550/arXiv.2507.02592
https://doi.org/10.48550/arXiv.2501.05366
https://doi.org/10.48550/arXiv.2501.05366
https://doi.org/10.48550/arXiv.2212.10511

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=fibxvahvs3.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023,
Singapore, December 6-10, 2023, pp. 5687–5711. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.378. URL https://doi.org/10.18653/v1/
2023.findings-emnlp.378.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-proof q&a
benchmark. CoRR, abs/2311.12022, 2023. doi: 10.48550/ARXIV.2311.12022. URL https:
//doi.org/10.48550/arXiv.2311.12022.

Ashish Sardana. Real-time evaluation models for RAG: who detects hallucinations best? CoRR,
abs/2503.21157, 2025. doi: 10.48550/ARXIV.2503.21157. URL https://doi.org/10.48550/
arXiv.2503.21157.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. CoRR, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
https://doi.org/10.48550/arXiv.2402.03300.

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and
Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement learning.
CoRR, abs/2503.05592, 2025. doi: 10.48550/ARXIV.2503.05592. URL https://doi.org/10.
48550/arXiv.2503.05592.

Zhiwen Tan, Jiaming Huang, Qintong Wu, Hongxuan Zhang, Chenyi Zhuang, and Jinjie Gu. RAG-R1
: Incentivize the search and reasoning capabilities of llms through multi-query parallelism. CoRR,
abs/2507.02962, 2025. doi: 10.48550/ARXIV.2507.02962. URL https://doi.org/10.48550/
arXiv.2507.02962.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Trans. Assoc. Comput. Linguistics, 10:539–554,
2022. doi: 10.1162/TACL\ A\ 00475. URL https://doi.org/10.1162/tacl a 00475.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022, 2022. URL http://papers.nips.cc/paper files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu
Zhang, Zekun Xi, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Webdancer: Towards
autonomous information seeking agency. CoRR, abs/2505.22648, 2025. doi: 10.48550/ARXIV.
2505.22648. URL https://doi.org/10.48550/arXiv.2505.22648.

Amy Xin, Jinxin Liu, Zijun Yao, Zhicheng Lee, Shulin Cao, Lei Hou, and Juanzi Li. Atomr: Atomic
operator-empowered large language models for heterogeneous knowledge reasoning. CoRR,
abs/2411.16495, 2024. doi: 10.48550/ARXIV.2411.16495. URL https://doi.org/10.48550/
arXiv.2411.16495.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,

12

https://openreview.net/forum?id=fibxvahvs3
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.18653/v1/2023.findings-emnlp.378
https://doi.org/10.48550/arXiv.2311.12022
https://doi.org/10.48550/arXiv.2311.12022
https://doi.org/10.48550/arXiv.2503.21157
https://doi.org/10.48550/arXiv.2503.21157
https://doi.org/10.48550/arXiv.2402.03300
https://doi.org/10.48550/arXiv.2503.05592
https://doi.org/10.48550/arXiv.2503.05592
https://doi.org/10.48550/arXiv.2507.02962
https://doi.org/10.48550/arXiv.2507.02962
https://qwenlm.github.io/blog/qwq-32b/
https://doi.org/10.1162/tacl_a_00475
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2505.22648
https://doi.org/10.48550/arXiv.2411.16495
https://doi.org/10.48550/arXiv.2411.16495

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR, abs/2412.15115, 2024. doi:
10.48550/ARXIV.2412.15115. URL https://doi.org/10.48550/arXiv.2412.15115.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question an-
swering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pp. 2369–2380. Association for Computational Linguistics, 2018.
doi: 10.18653/V1/D18-1259. URL https://doi.org/10.18653/v1/d18-1259.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/forum?id=WE vluYUL-X.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. LIMO: less is
more for reasoning. CoRR, abs/2502.03387, 2025. doi: 10.48550/ARXIV.2502.03387. URL
https://doi.org/10.48550/arXiv.2502.03387.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an
open-source LLM reinforcement learning system at scale. CoRR, abs/2503.14476, 2025. doi:
10.48550/ARXIV.2503.14476. URL https://doi.org/10.48550/arXiv.2503.14476.

Tian Yu, Shaolei Zhang, and Yang Feng. Auto-rag: Autonomous retrieval-augmented generation for
large language models. CoRR, abs/2411.19443, 2024. doi: 10.48550/ARXIV.2411.19443. URL
https://doi.org/10.48550/arXiv.2411.19443.

Dingchu Zhang, Yida Zhao, Jialong Wu, Baixuan Li, Wenbiao Yin, Liwen Zhang, Yong Jiang,
Yufeng Li, Kewei Tu, Pengjun Xie, and Fei Huang. Evolvesearch: An iterative self-evolving
search agent. CoRR, abs/2505.22501, 2025. doi: 10.48550/ARXIV.2505.22501. URL https:
//doi.org/10.48550/arXiv.2505.22501.

Xinjie Zhao, Fan Gao, Rui Yang, Yingjian Chen, Yuyang Wang, Ying Zhu, Jiacheng Tang, and Irene
Li. Reagent: Reversible multi-agent reasoning for knowledge-enhanced multi-hop QA. CoRR,
abs/2503.06951, 2025. doi: 10.48550/ARXIV.2503.06951. URL https://doi.org/10.48550/
arXiv.2503.06951.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environments.
CoRR, abs/2504.03160, 2025. doi: 10.48550/ARXIV.2504.03160. URL https://doi.org/10.
48550/arXiv.2504.03160.

Andrew Zhu, Alyssa Hwang, Liam Dugan, and Chris Callison-Burch. Fanoutqa: A multi-hop,
multi-document question answering benchmark for large language models. In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics, ACL 2024 - Short Papers, Bangkok, Thailand, August 11-16, 2024, pp.
18–37. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-SHORT.2.
URL https://doi.org/10.18653/v1/2024.acl-short.2.

Zilin Zhu, Chengxing Xie, Xin Lv, and slime Contributors. slime: An llm post-training framework for
rl scaling. https://github.com/THUDM/slime, 2025. GitHub repository. Corresponding author:
Xin Lv.

A PROMPTS AND DATA EXAMPLE

This section shows prompts used in data construction and model training.

13

https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.18653/v1/d18-1259
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.48550/arXiv.2502.03387
https://doi.org/10.48550/arXiv.2503.14476
https://doi.org/10.48550/arXiv.2411.19443
https://doi.org/10.48550/arXiv.2505.22501
https://doi.org/10.48550/arXiv.2505.22501
https://doi.org/10.48550/arXiv.2503.06951
https://doi.org/10.48550/arXiv.2503.06951
https://doi.org/10.48550/arXiv.2504.03160
https://doi.org/10.48550/arXiv.2504.03160
https://doi.org/10.18653/v1/2024.acl-short.2
https://github.com/THUDM/slime

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Data Construction: Question Decomposition

Decompose the following question into TWO sub-questions, such that the original question
can be broken down into two sequential sub-questions. You should use [E] to represent the
answer entity of one sub-question that appears in another. For the two sub-questions you
generate, one shouldn’t contain [E] and the other one should contain [E]. By answering the
one without [E] first and then the one with [E] (which will be replaced by the answer entity
of the first sub-question), one should be able to get the answer to the original question. Some
questions in the input might contain #1, #2, etc. to represent the answer of the previous
question. You should ignore them and keep them as is in the sub-questions. Give exactly
different decompositions. Follow the format below:
Input: If my future wife has the same first name as the 15th first lady of the United States’
mother and her surname is the same as the second assassinated president’s mother’s maiden
name, what is my future wife’s name?
Output: Decomposition 1:
Q1: What’s the first name of the 15th first lady of the United States’ mother?
Q2: If my future wife’s surname is the same as the second assassinated president’s mother’s
maiden name, and her first name is [E], what is my future wife’s name?
Decomposition 2:
Q1: Who’s the second assassinated president of the United States?
Q2: If my future wife’s surname is the same as [E]’s mother’s maiden name, and her first
name is the same as the 15th first lady of the United States’ mother’s first name, what is my
future wife’s name?
And so on...
Question to decompose:
Input: {}
Output:

Data Construction: Rollout

Answer the following quesiton with only a short and concise answer(entity). The given
context might include some information about the answer, if not, use your own knowledge.
The result should be exactly in the following format and nothing else, do not provide any
other information, explanation or thinking:
Input: Question: Who is the president of the United States? Context: 1. The current 47th
president of U.S. is Donald J. Trump.
Output: Donald Trump
Now answer the question:
Question: {}
Context: {}
Answer:

Data Construction: Determine If Decomposable

Given a natural language question, determine whether it is a atomic question that not be
decomposed in a meaningful and straightforward way. Some questions in the input might
contain #1, #2, etc. You should view them as some known and fixed entities.
Examples: 1. Input: How many Germans live in Paris in 2024?
Output: Yes. Rationale: The question cannot be meaningfully decomposed.
2. Input: When was Yimou Zhang’s first movie as a director released?
Output: No. Rationale: The question can be meaningfully decomposed into two sub-
questions; for example, ”What is Yimou Zhang’s first movie as a director?” and ”When was
it released?”
3. Input: Who founded the CS department of #1?
Output: Yes. Rationale: This question cannot be meaningfully decomposed. It’s asking the
name of a person that is fully specified.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

You should just output ”Yes” or ”No” and nothing else. Don’t give any explanation or
reasoning.
Input: {}
Output:

Model Training: SFT Data Example

{”role”: ”system”, ”content”: ”You are a helpful assistant. Answer the following question
step by step with the help of web search tools. You must conduct reasoning inside <think>
and </think> first in every turn. After reasoning, if you find you lack some knowledge, you
can call a search engine by <search> query </search> and it will return the top searched
results between <tool response> and </tool response>. You can call the search function
once in every turn. When you arrive at the final answer, output the final answer between
<answer> and </answer> to finish the task. Do not rush to output the final answer so you
could check it again midway. ”}
{”role”: ”user”, ”content”: ”What followed the last person to live in versaille in the country
that became allies with america after the battle of saratoga?Put the final answer within
<answer></answer>. ”}
{”role”: ”assistant”, ”content”: ”<think>To solve this, I will divide it into smaller questions:
[1. Which country became allies with America? 2. What significant event led to #1 becoming
allies with America? 3. What followed the last person to live in Versailles in the country
that became allies with America after #2?]. As a first step, I need to answer the subquestion
1: Which country became allies with America?. Let us find supporting evidence with a
search:</think> <search>Which country became allies with America?</search>”}
{”role”: ”tool”, ”content”: ”1. Southern Europe: The outbreak of World War I in 1914 was
precipitated by the rise of nationalism in Southeastern Europe as the Great Powers took up
sides. The Allies defeated the Central Powers in 1918. During the Paris Peace Conference
the Big Four imposed their terms in a series of treaties, especially the Treaty of Versailles.”}
{”role”: ”assistant”, ”content”: ”<think>Based on what I found and already know, the an-
swer is United Kingdom. Next, to address the subquestion 2: What significant event led to #1
becoming allies with America?, based on previous sub-questions, which turns to: What signif-
icant event led to United Kingdom becoming allies with America?.</think> <search>What
significant event led to United Kingdom becoming allies with America?</search>”}
{”role”: ”tool”, ”content”: ”1. France in the American Revolutionary War: The British had
taken Philadelphia in 1777, but American victory at the Battle of Saratoga brought back hope
to the Patriots and enthusiasm in France. The army of Burgoyne surrendered to American
forces after Saratoga and France realized that the United States could be victorious. The king
directed Vergennes to negotiate an alliance with the Americans.”}
{”role”: ”assistant”, ”content”: ”<think>The information points to the answer being Battle
of Saratoga. At the end, I’ll think through this next part: 3: What followed the last person to
live in Versailles in the country that became allies with America after #2?, based on previous
sub-questions, which turns to: What followed the last person to live in Versailles in the
country that became allies with America after Battle of Saratoga?. To continue, I will look
for relevant content:</think><search>What followed the last person to live in Versailles in
the country that became allies with America after Battle of Saratoga?</search>”}
{”role”: ”tool”, ”content”: ”Michael Manning (murderer): Michael Manning was an Irish
murderer who became the twenty - ninth and last person to be executed in the Republic of
Ireland.”}
{”role”: ”assistant”, ”content”: ”<think>From the evidence gathered, it seems the answer
is Michael Manning (murderer). Wait, maybe I need to reconsider this more carefully. The
supporting content might not be useful here. I should revise my search approach. Rephrase
the search query.</think><search>Who succeeded the final inhabitant of Versailles in the
nation that allied with the United States following the Battle of Saratoga?</search>”}
{”role”: ”tool”, ”content”: ”1. Battles of Saratoga: Once news of Burgoyne’s surrender
reached France, King Louis XVI decided to enter into negotiations with the Americans that
resulted in a formal Franco - American alliance and French entry into the war. This moved

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

the conflict onto a global stage. As a consequence, Britain was forced to divert resources used
to fight the war in North America to theaters in the West Indies and Europe, and rely on what
turned out to be the chimera of Loyalist support in its North American operations. Being
defeated by the British in the French and Indian War more than a decade earlier, France found
an opportunity of revenge by aiding the colonists throughout the Revolutionary War. Prior to
the Battle of Saratoga, France did n’t fully aid the colonists. However, after the Battles of
Saratoga were conclusively won by the colonists, France realized that the Americans had the
hope of winning the war, and began fully aiding the colonists by sending soldiers, donations,
loans, military arms, and supplies.”}
{”role”: ”assistant”, ”content”: ”<think>Based on the search results and my prior knowl-
edge, now I can answer the question, and the answer in French Republic. </think> <an-
swer>French Republic</answer>”}

Model Training: RL Prompt

System:
You are a helpful assistant. Answer the following question step by step with the help
of web search tools. You must conduct reasoning inside <think> and </think> first in
every turn. After reasoning, if you find you lack some knowledge, you can call a search
engine by <search> query </search> and it will return the top searched results between
<tool response> and </tool response>. You can call the search function once in every
turn. When you arrive at the final answer, output the final answer between <answer> and
</answer> to finish the task. Do not rush to output the final answer so you could check it
again midway.

User:
Question: {Question}

B CASE STUDY

As shown in the case below, MSEARCHER behaves in an expected ReAct pattern. We can observe
that the agent sometimes tends to over-decompose a question, such as the second sub-question: Who
is #1, making the reasoning chain deviate from the correct path. But fortunately, we can observe
that MSEARCHER is able to realize its mistakes in decomposition and run it again to get the correct
answer.

Case Study

System:
You are a helpful assistant. Answer the following question step by step with the help
of web search tools. You must conduct reasoning inside <think> and </think> first in
every turn. After reasoning, if you find you lack some knowledge, you can call a search
engine by <search> query </search> and it will return the top searched results between
<tool response> and </tool response>. You can call the search function once in every
turn. When you arrive at the final answer, output the final answer between <answer> and
</answer> to finish the task. Do not rush to output the final answer so you could check it
again midway.

User:
What Japanese unit was commanded by the admiral targeted by Operation Vengeance?

Assistant:
<think> To solve this, I will divide it into smaller questions:
1. Who was the target of Operation Vengeance?
2. Who is #1?

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

3. What Japanese unit was commanded by the admiral who targeted #2?
Let us start by, I will address subquestion 1, which is: Who was the target of Operation
Vengeance?.
</think>
<search> Who was the target of Operation Vengeance? </search>

Tool Response (Search and Read):
<tool response>
1. Operation Vengeance was the American military operation to kill Admiral Isoroku Ya-
mamoto of the Imperial Japanese Navy on 18 April 1943
2. The man perhaps most associated with the “Day of Infamy,” Pearl Harbor attack master-
mind Admiral Isoroku Yamamoto, was killed fighting a war.
3. Capt. Thomas G. Lanphier Jr. claimed to have shot down Yamamotoś plane, killing him in
the process, but the evidence indicates it was not Lanphier.
...
</tool response>

Assistant:
<think> Based on the search results and my prior knowledge, the answer is Admiral Isoroku
Yamamoto.
Moving on, To begin with, I need to answer the subquestion 2: Who is #1?, based on previous
sub-questions, which turns to: Who is Admiral Isoroku Yamamoto?.
</think>
<search> Who is Admiral Isoroku Yamamoto? </search>

Tool Response (Search and Read):
<tool response>
1. Isoroku Yamamoto was a Marshal Admiral of the Imperial Japanese Navy (IJN) and the
commander-in-chief of the Japanese Combined Fleet during World War II.
2. Yamamoto Isoroku was a Japanese naval officer who conceived of the surprise attack on
the U.S. naval base at Pearl Harbor on Dec. 7, 1941.
3. Isoroku Yamamoto was a brilliant mind and a respected leader, compelled by loyalty to his
country to enter a war he knew they could not win.
4. This essay will explore Yamamotoś military career in the context of Imperial Japanś
aggressive expansion into Asia beginning in the 1890s.
...
</tool response>

Assistant:
<think> From the evidence gathered, it seems the answer is Isoroku Yamamoto.
Hmm, this might need a second look before I proceed. I may have broken down the question
incorrectly—time to rethink the subquestions.
Plan again:
1. Who was the target of Operation Vengeance? 2. What Japanese unit was commanded by
the admiral #2 who was targeted?.
The first question is answer in previous turns, I will start by address subquestion 2, which is:
What Japanese unit was commanded by the admiral Yamamoto Isoroku who was targeted?.
To continue, I will look for relevant content:
</think>
<search> What Japanese unit was commanded by the admiral Yamamoto Isoroku who was
targeted? </search>

Tool Response (Search and Read):
<tool response>
1. Isoroku Yamamoto was a Marshal Admiral of the Imperial Japanese Navy (IJN) and the
commander-in-chief of the Japanese Combined Fleet during World War II.
2. Operation Vengeance was the American military operation to kill Admiral Isoroku
Yamamoto of the Imperial Japanese Navy on 18 April 1943.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

3. Commanding the Japanese Combined Fleet was Admiral Isoroku Yamamoto who viewed
Midway as a way to draw out and destroy the US Pacific Fleetś aircraft carrier.
...
</tool response>

Assistant:
<think> Based on the search results and my prior knowledge, now I can answer the question,
and the answer in Japanese Combined Fleet.
</think>
<answer> Japanese Combined Fleet </answer>

18

	Introduction
	Preliminary
	Task Definition
	Monte Carlo Tree Search(MCTS)

	MSearcher
	Self-Reflective Data Construction
	Node Definition and Expansion
	Tree Policy
	Rollout
	Self-Reflective Reasoning Trajectory

	Agent Training
	Cold-Start Supervised Fine-Tuning
	Reinforcement Learning with DAPO
	Reward Design

	Experiment
	Dataset
	Baselines
	Metrics
	Implementation

	Result
	Main Results
	Ablation study
	Training Dynamics

	Related Work
	Search Agents
	Synthetic Trajectories for Search Agents

	Conclusion
	Prompts and Data Example
	Case Study

