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ABSTRACT

Recent advances in reinforcement learning (RL) have enabled large language
models (LLMs) to perform multi-turn chain-of-thought (CoT) reasoning with tool
use, where web search serves as the most critical tool for answering complex
questions. However, most existing methods apply RL directly to off-the-shelf
models without a supervised fine-tuning (SFT) cold start, resulting in unstable
training and limited tool invocations. This difficulty is exacerbated by the high
cost of curating long reasoning trajectories, which are expensive to annotate and
prone to factual drift. We propose MSEARCHER, a two-stage trained search agent
that combines reflective thinking with robust tool use for complex reasoning. A
central contribution is an efficient data construction framework based on Monte
Carlo Tree Search (MCTS), which produces self-reflective reasoning trajectories
for the SFT cold start. This framework leverages both correct and flawed rollouts
to generate natural and diverse reasoning data. We adopt a two-stage pipeline, first
applying SFT with our constructed data and then further training the model with
RL, achieving substantial improvements on multi-hop question answering: 67.6%
on HotpotQA and 52.0% on Frames. These results highlight the importance of
high-quality SFT in stabilizing RL and equipping LLMs with robust long-horizon
reasoning capabilities.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable progress across a wide spectrum
of reasoning tasks (Hendrycks et al., 2021; Rein et al., 2023). , but they often suffer from hallu-
cination—confidently producing factually incorrect answers due to outdated, incomplete, or erro-
neous parametric knowledge (Huang et al., 2025; Sardana, 2025). To mitigate this issue, Retrieval-
Augmented Generation (RAG, Lewis et al., 2020) has become a standard practice, grounding model
outputs in external evidence and substantially improving factual reliability (Gao et al., 2023; Cao
et al., 2023; Xin et al., 2024).

Recent studies have begun to regard retrieval as an external tool (Li et al., 2025b), which can be
deliberately triggered by the model whenever needed. This perspective extends the RAG paradigm
into the broader framework of tool-augmented reasoning, where LLMs are trained not only to
consume retrieved evidence but also to decide when and how to call external resources. To strengthen
this ability, reinforcement learning (RL) has been introduced as a key training paradigm (Jin et al.,
2025; Song et al., 2025; Zheng et al., 2025; Gao et al., 2025). By optimizing against task-specific
rewards, RL enables models to improve their decision-making across multi-turn tool-use trajectories.

However, previous works often suffer from several drawbacks: (1) insufficient tool invocation, where
the reasoning agent tends to halt after only one or two search calls, leading to inadequate context
for problem solving; and (2) unstable training dynamics, as models without fine-tuning frequently
produce outputs with invalid formats, leading to collapse in the early stages (Jin et al., 2025).

Inspired by recent advances in post-training (Chu et al., 2025; Ye et al., 2025), we posit that a
moderate fine-tuning phase can serve as an effective cold start, equipping the model with fundamental
tool-use capabilities and a stable reasoning scaffold. In this paper, we propose MSEARCHER, a
two-stage trained search agent that combines reflective thinking with robust tool use for complex
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reasoning, highlighted by an efficient data construction framework based on Monte Carlo Tree Search
(MCTS) to produces self-reflective reasoning trajectories for SFT cold start. In contrast to prior
works (Lee et al., 2025; Li et al., 2025a) that depends on expert large reasoning models (LRMs) to
directly produce full trajectories, our framework decomposes the question into smaller sub-problems
and solves them step by step. Our key intuition is to take advantage of the structure of MCTS. Rather
than discarding low-quality outputs through rejection sampling, the data constructor leverages both
correct and incorrect rollouts as complementary training signals. By contrasting flawed reasoning
paths with more accurate trajectories, the framework induces natural self-reflection behavior and
strengthens long-horizon reasoning. This property makes the data construction framework not only
resource-efficient but also robust to noise.

To be more specific, the MCTS-based framework takes a multi-hop task as input, and we design the
search tree at the granularity of task decomposition plans. Each node represents a complete plan
containing multiple sub-tasks, and expansion corresponds to refining the plan by further decomposing
one currently divisible sub-task. This unique design reduces the required search depth, while still
enabling exponential growth in the breadth of candidate decompositions. Additionally, when the
simulation ends, we identify and synthesize multiple forms of self-reflection across different branches
and rollouts, focusing on retrieval, planning, and reasoning errors. As a result, our framework
explores the reasoning space more efficiently without sacrificing coverage.

In our experiments, we adopt a two-stage training strategy. We first perform SFT on the our
constructed data, and then apply RL to further enhance performance in real-world environments.
Extensive results show that this two-stage training significantly outperforms previous one-stage
methods, demonstrating the effectiveness of our constructed data. In summary, our contributions
are three-fold: (1) we propose a novel data construction framework that generates self-reflective
long CoT reasoning data; (2) we introduce a two-stage tool-augmented reasoning agent for complex
tasks, equipped with a real-world search environment; and (3) we demonstrate the effectiveness of
cold-start SFT through extensive experiments, achieving 67.6% on HotpotQA and 52.0% on Frames,
while observing explicit self-verification behaviors.

2 PRELIMINARY

In this section, we first outline the task definition and then present the basic idea of Monte Carlo Tree
Search that serves as the foundation of our framework.

2.1 TASK DEFINITION

In this work, we focus on the open-domain multi-hop question answering task, which requires
performing multiple reasoning steps across different documents. A multi-hop question q can be
decomposed into a sequence of sub-questions, q = {q1, q2, · · · , qn}, arranged in topological order. In
the first stage of SFT, our goal is to construct valid reasoning chains augmented with tool invocations
for a given question as training data. Specifically, we adopt ReAct (Yao et al., 2023) as the underlying
reasoning framework. At iteration i of the reasoning chain, the LLM generates a thought τi, executes
an action (e.g., a tool call) ai, and then receives an environmental observation oi. The iteration ends
when the LLM outputs “final answer” as the action. A complete trajectory RT with T iterations can
be represented as:

RT = (τ0, a0, o0, · · · , τi, ai, oi, · · · , τT , aT ) (1)

In the RL stage, the thought τi and action ai are sampled from the policy model based on previous
context, i.e., π(τi, ai|Ri−1).

2.2 MONTE CARLO TREE SEARCH(MCTS)

A typical MCTS algorithm builds a search tree T based on a policy model πθ, which is usually
the reasoning backbone LLM for data construction. Each node in T is nt = [st, at, N(nt), V (nt)],
where st stands for the current state, at is the possible next action, N is the number of visits, and V
is the value function - the accuracy. In our case, the state st corresponds to the current complete plan
consisting of multiple sub-questions, while the action at represents performing a single decomposition
step to further refine this plan. For the t-th simulation, our MCTS runs the four standard operations:
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Figure 1: Illustration of MSearcher’s data construction framework. Crosses and numbers denote error
types, corresponding to retrieval error, reasoning error and decomposition error, respectively.

(1) Selection means to select a node with the highest value in the tree. In this paper, we adopt the
UCT(Upper Confidence bounds applied to Trees) score (Kocsis & Szepesvári, 2006) as follows:

UCT (nt) = V (nt) + ω

√
2 logN(p)

N(nt)
(2)

where ω is the factor that controls exploration and exploitation and p is the parent node of st.

(2) Expansion involves generating new states by taking plausible actions. In our setting, the model
performs a decomposition on one of the sub-questions within st to produce refined plans.

(3) Simulation means to perform a rollout for the current decomposition plan by querying a rollout
model, with the help of the tools needed to get an answer and compute the reward r.

(4) Backpropagation collect the simulation reward r and update the value V (s) for all nodes along
the path from the current node to the root.

Nnew(s) = Nold(s) + 1,

Vnew(s) =
Vold(s)Nold(s) + r

Nnew(s)

(3)

3 MSEARCHER

In this section, we introduce the main components of our data construction framework and training
method. To be specific, in section 3.1, we introduce the detailed definition of our monte carlo search
tree, how to do rollout and simulation, and synthesize reasoning trajectories from the search tree, as
demonstrated in Figure 1; in section 3.2, we give details of building the reasoning agent.

3.1 SELF-REFLECTIVE DATA CONSTRUCTION

3.1.1 NODE DEFINITION AND EXPANSION

In our search tree, each node represents a partial decomposition of a multi-hop question into sub-
questions. Let a multi-hop question be q, and let the set of its current sub-questions at step t be
Qt = {q1, q2, . . . , qK}. Then, a node st in the search tree is defined as:

st = (Qt, Pt), (4)

3
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where Qt is the current set of sub-questions and Pt is the decomposition history that led to this state.

An action at at node st corresponds to performing a decomposition on one sub-question qi ∈ Qt,
splitting it into exactly two smaller sub-questions:

at : qi 7→ {q1i , q2i }. (5)

The resulting next state st+1 is:

st+1 = (Qt \ {qi}) ∪ {q1i , q2i }, Pt+1 = Pt ∪ {at}. (6)

A node is considered as leaf if no sub-question in Qt can be further decomposed, i.e., all remaining
sub-questions are atomic, judging by the policy model. By restricting each decomposition to split a
sub-question into exactly two smaller tasks, we keep the expansion task simple enough for the policy
model to handle, avoiding reliance on a powerful LRM to do this job.

In practice, we define an expansion width coefficient w and distribute it evenly across the decom-
posable sub-questions qi in Qt, such that w =

∑
i wi. We then prompt the policy model to generate

wi distinct decompositions for each qi in a single response, preventing the model from producing
identical decomposition plans across different branches. This design means that in our framework we
actually perform multiple expansions and rollouts within a single simulation round.

3.1.2 TREE POLICY

Following the standard MCTS framework, our tree policy iteratively selects the most promising child
node at each level. Formally, given a current node st, we select the child node st+1 that maximizes
the selection value:

st+1 = arg max
s′∈Children(st)

UCT(s′) (7)

where UCT(s′) is computed as in Eq. 2, where the coefficient ω is set to 0.6 in practice. This selection
continues recursively until a leaf node (a node without children) is reached.

If the leaf node is expandable according to our decomposition rules, it undergoes expansion; otherwise,
we skip expansion and proceed directly to the simulation phase. We keep a record of each sub-
questions in Qt of node st on whether it is decomposable by prompting the policy model. This
ensures that only nodes with potential for further task decomposition are explored, while fully
expanded or terminal nodes are directly evaluated in rollouts.

3.1.3 ROLLOUT

In the simulation rollout step, the model executes reasoning for a given node in the search tree to
produce the results of its sub-questions. Specifically, for the current node state st, we maintain
its corresponding set of sub-questions Qt = {q1, q2, . . . , qK}.Each sub-question may depend on
the results of other sub-questions, indicated by references such as #i, denoting a dependency on
the i-th sub-question. These dependencies form a directed acyclic graph (DAG) over Qt, which is
traversed using topological sorting to obtain a valid execution order {q1, q2, . . . , qK} that satisfies all
dependencies.

For each sub-question qj in this order, the rollout proceeds in two steps. First, a retrieval operation is
performed to collect relevant context or evidence from external sources, such as a web search. Let
cj = Retrieve(qj) denote the retrieved context. Second, the rollout model generates a response τj
conditioned on both the retrieved context cj and the answers of any dependent sub-questions:

τj = RolloutModel
(
qj

∣∣ cj , {τi | qi ∈ Dep(qj)}
)
, (8)

where Dep(qj) denotes the set of sub-questions that qj depends on. Iterating over all sub-questions
produces the complete rollout trajectory for the node st:

R(st) = {(q1, c1, τ1), (q2, c2, τ2), · · · , (qK , cK , τK)}. (9)

This iterative approach ensures that each sub-question is answered in a contextually grounded manner
while respecting the dependencies among sub-questions. By combining retrieval and reasoning at
each step, the model produces a coherent, multi-step solution for the node.
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3.1.4 SELF-REFLECTIVE REASONING TRAJECTORY

When the simulation ends, we collect all rollout trajectories from the leaf nodes of the search tree and
analyze them to construct self-reflective reasoning data.

First, we identify trajectories that yield correct final answers, marking them as correct trajectories,
which can be directly textualized into supervised training data and used for comparison with other
trajectories. For trajectories that yield incorrect final answers, we perform structured error detection to
extract self-reflection signals. Specifically, we categorize errors into three categories. When we detect
these error, we pair incorrect trajectories with correct ones and ensemble them into self-reflective
trajectories. The three categories are as follows:

Retrieval Error. This error arises when two rollouts correspond to the same leaf node (i.e., identical
decomposition and sub-question set). Formally, let R+(st) denote a correct rollout trajectory and
R−(st) a wrong one. Suppose they are aligned in the first j − 1 step and the difference first occurs at
step j, where the retrieved context cj of R+(st) differs from that of R−(st), leading to downstream
reasoning failure. In this case, we construct the reflective trajectory Rref(st) as follows:

Rref(st) = R−(st)[: j] ∥ (qj , c+j , τ
+
j ) ∥R+(st)[j + 1 :],

where c+j and τ+j are the corresponding context and answer in the correct trajectory R+.

Reasoning Error. This occurs when two rollouts of the same leaf node share the same decomposition
and retrieval contexts up to step j, but the rollout model produces different answers for τj . Such
divergence indicates a reasoning error. Formally, let R+(st) and R−(st) denote the correct and
wrong trajectory, respectively, then we define the reflective trajectory as:

Rref(st) = R−(st)[: j] ∥ (qj , cj , τ+j ) ∥R+(st)[j + 1 :],

where τ+j denotes the reasoning outcome for step j of the correct trajectory R+.

Decomposition Error. This error type arises across different branches of the search tree, where one
branch produces correct rollouts while another fails. Since both branches have undergone multiple
rollouts, we attribute the discrepancy to different task decompositions. Let R+(sm) and R−(sn)
denote the correct and wrong rollout trajectory, respectively. Suppose that sm and sn share the same
decomposition plan up to step j, then we can define the reflective trajectory as:

Rref(st) = R−(st)[: j] ∥R+(st)[j :],

where j is the first step after which the decompositions differ.

In this way, the reflective trajectory explicitly encodes both the erroneous reasoning context from
R− and the corrective signal from R+. Finally, all trajectories—both correct and reflective—are
textualized into natural language supervision. We achieve this by joining the steps with a diverse
set of pre-defined and paraphrased connective sentences, thereby generating coherent reasoning
chains that capture explicit self-reflection and error correction. The detailed synthesized reasoning
trajectories can be found in Appendix A.

3.2 AGENT TRAINING

In this section, we present our two-stage training pipeline for building a tool-augmented reasoning
agent, consisting of (1) a cold-start supervised fine-tuning stage on the constructed data, followed by
(2) reinforcement learning to align the agent with real-world search environments.

3.2.1 COLD-START SUPERVISED FINE-TUNING

In the cold-start supervised fine-tuning (SFT) stage, we initialize the policy model with a reliable
reasoning and retrieval strategy derived from our reflective trajectories. This step equips the model
with stable tool-use patterns and self-correction signals, which are crucial for mitigating unstable
exploration and avoiding collapse in the early stages of RL training.

Consistent with recent empirical studies (Zhang et al., 2025), we exclude the loss contributions
from these external observations . Given an input reasoning trajectory RT as in Eq. 1, the model

5
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parameters θ are optimized by a masked auto-regressive negative log-likelihood:

L = −
∑T

t=1 I[τt, at /∈ O] · log pθ(τt, at|τ, a, o<t)

I[τt, at /∈ O]
(10)

where I[τt, at /∈ O] is an indicator function that masks the loss of content in the environment
observations O = {oi|i = 0, · · · , T}. This masking ensures that the model is optimized only on the
supervised signals generated by the agent itself, without being penalized for content from external
tools. In practice, we also split the dialogue into smaller segments, allowing the model to learn
reasoning step by step rather than attempting to solve the entire problem in a single generation.

3.2.2 REINFORCEMENT LEARNING WITH DAPO

After the cold-start stage, we further enhance the model’s capabilities using reinforcement learning
(RL). We adopt the Dynamic sAmpling Policy Optimization (DAPO) algorithm (Yu et al., 2025),
which builds upon Group Relative Policy Optimization (GRPO) (Shao et al., 2024) by incorporating
a few modifications: clip-higher, removal of the KL loss, switching to token-level loss, dynamic
sampling, and reward shaping. Considering training efficiency and effectiveness, we apply all
modifications except dynamic sampling. Given a batch of examples (q, a) ∼ D and a group of
sampled responses {oi}Gi=1 from the old policy πold, the optimizing object of DAPO is:

JDAPO =E(q,a)∼D,{oi}G
i=1∼πold(·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min(ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵlow, 1 + ϵhigh)Âi,t)]
(11)

where the ri,t(θ) is the importance sampling ratio between the new policy and the old policy at time
t, and Âi,t denotes the estimated advantage. The parameter ϵhigh and ϵlow controls the upper and
lower clip bound, and in practice they are set to 0.28 and 0.2, respectively.

3.2.3 REWARD DESIGN

In this work, we consider the sum of three major parts as our reward. First, the primary reward is the
answer correctness Rcorrect, evaluated by F1-score. The Second, following by DAPO, is the length
penalty Rlength. And finally, we also considered the format penalty Rformat:

Rformat = min(| − 1− (Rcorrect +Rlength)|,−0.2) (12)

4 EXPERIMENT

4.1 DATASET

In this work, a lot of different datasets and benchmarks are used for different purpose. First, in the
SFT data construction, we use Musique (Trivedi et al., 2022) as the seed dataset, mainly because it
offers oracle question decomposition, which can serve as golden reference when policy model fails.
It also provides a limited context to retrieve from, which greatly reduced the computational cost.

With respect to the RL, we adopt the same training corpus with DeepResearcher (Zheng et al., 2025),
which includes NaturalQuestion (NQ) (Kwiatkowski et al., 2019), TriviaQA (TQ) (Joshi et al., 2017),
HotpotQA (Yang et al., 2018) and 2WikiMultiHopQA (2Wiki) (Ho et al., 2020).

Finally, for the evaluation, we also follow DeepResearcher to evaluate the model in both in-domain
(ID) and out-of-domain (OOD) settings. We include NQ, TQ, HotpotQA, and 2Wiki for the ID
setting, and Bamboogle (Press et al., 2023) and PopQA (Mallen et al., 2022) for the OOD evaluation.
Furthermore, we also include FanoutQA (Zhu et al., 2024), Frames (Krishna et al., 2025) and
GAIA (Mialon et al., 2024) as three more challenging benchmarks. For GAIA, we use the 103
text-only examples as validation set (Gao et al., 2025).

4.2 BASELINES

In this work, we adopt two categories of baselines with different paradigms. For the Prompt-Based
baselines, we have: (1) CoT, where the model employs basic Chain-of-Thought (Wei et al., 2022)
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reasoning; (2) RAG, which combines the CoT with retrieved context from local resources. (3)
Search-o1 (Li et al., 2025b) is a prompt-based multi-step reasoning agent that can generate search
queries and retrieve external information to assistant question answering. We implement this baseline
with the web search as tested in DeepResearcher.

For the Training-Based baselines, we includes: (4) Search-r1 (Jin et al., 2025) introduces a
reinforcement learning approach for question answering, where both training and inference rely on a
local retriever to search for relevant information. (5) R1-Searcher (Song et al., 2025) proposes a
similar approach with Search-r1, but differs in search strategy. It search the wikipedia via Bing and
summaries the top three pages. (6) DeepResearcher (Zheng et al., 2025) proposes to improve the
agent’s search ability by training with a real-world search engine and browser. (7) ASearcher (Gao
et al., 2025) introduce a search agent trained by large-scale RL with autonomously synthesized
high-quality and challenging QAs.

4.3 METRICS

We adopt two complementary of metrics in this work:

Rule-based Metrics Given the scale and computational cost of training, we primarily adopt the
rule-based F1 score for reward computation and evaluation during RL training. Both the predicted
answer and the ground truth are normalized—by removing punctuation and standardizing letter
case—before calculating the F1 score.

Model-based Evaluation Rule-based metric is not accurate in some cases such as long answer.
Therefore, we adopt a LLM-as-Judge score by prompting a strong LLM to ask whether the answer is
correct. Specifically, we follow DeepResearcher, leveraging GPT-4o-mini as the judge model.

4.4 IMPLEMENTATION

For all the models in SFT and RL training, we use Qwen2.5-7B-Instruct or Qwen2.5-14B-
Instruct (Yang et al., 2024) as the training backbones. The SFT training is completed using the
OpenRLHF (Hu et al., 2024) framework and the RL training is conducted with the Slime (Zhu et al.,
2025) framework. In the SFT, we use a total batch size of 32 and train for 5 epochs with learning rate
of 5e-6, warmup ratio of 0.05, and a sequence length of 16k. In the RL, we sample 128 examples in
rollout step, sample 8 responses for each prompt, and then update the policy model with a mini-batch
size of 256. Each rollout response is limited to up to 10 tool calls and a total length of 16k.

For the data construction framework, we use QwQ-32B (Team, 2025) as both the policy model and
rollout model. Since the the dataset Musique provides contexts, we embed the context with Zhipu
Embedding-3 (big, 2025b) and use faiss algorithm (Douze et al., 2024) for retrieval.

With respect to the search tool, for the local RAG in the data construction and for some baseline such
Search-r1, we adopt the retrieval strategy as stated above; for the online web search, we adopt the
Zhipu search tool (big, 2025a) as the primary search engine interface for searching and page reading.

5 RESULT

5.1 MAIN RESULTS

Table 1 demonstrates the performance of MSEARCHER and other baselines on both ID and OOD
benchmarks. It can be seen from the result that, MSEARCHER outperforms other baselines on
most benchmarks, and achieves the best average results in both ID and OOD settings. This suggest
that, MSEARCHER not only not only learns to leverage search tools effectively within the training
domain, but also generalizes well to unseen data. Specifically, compared with DeepResearcher, which
shares the same training data and web environment, our method achieves an average improvement of
4.2% in the ID setting and 1.4% in the OOD setting, highlighting the benefits of our self-reflective
reasoning data and SFT cold start. With respect to ASearcher, it outperforms ours on multi-hop
datasets such as HotpotQA and 2Wiki. However, its performance drops significantly on NQ, likely
because their model is trained on self-curated complex reasoning data, constructed primarily from
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Method Inference In Domain Out of Domain
Environment NQ TQ Hotpot 2Wiki Avg Bamb PopQA Avg

CoT - 32.0 48.2 27.9 27.3 33.9 21.6 15.0 18.3
CoT+RAG Local RAG 59.6 75.8 43.8 24.8 51.0 27.2 48.8 38.0
Search-o1 Web Search 55.1 69.5 42.4 37.7 51.2 53.6 43.4 48.5

7B Models
Search-r1 Local RAG 49.6 49.2 52.5 48.8 50.0 47.2 44.5 45.9
R1-Searcher Web Search 52.3 79.1 53.1 65.8 62.6 65.6 43.4 54.5
DeepResearcher Web Search 61.9 85.0 64.3 66.6 69.5 72.8 52.7 62.8
ASearcher* Web Search 55.4 85.7 67.2 73.3 70.4 72.0 48.9 60.5

14B Models
Search-r1 Local RAG 62.9 82.6 65.8 56.4 66.9 64.3 53.8 59.1
DeepResearcher Web Search 63.5 86.9 66.9 69.3 71.6 72.8 54.5 63.7
ASearcher* Web Search 55.5 87.6 68.5 80.7 73.1 75.2 50.0 62.6
MSearcher Web Search 68.7 87.9 67.6 77.4 75.3 74.5 56.8 65.6

Table 1: Main results on six multi-hop question answering benchmarks. Most baseline results are
from Zheng et al. (2025) and Gao et al. (2025). The ASearcher is labelled with * because it is trained
with its own curated RL data.

multi-hop sources (HotpotQA and 2Wiki), leading to poor generalization to other datasets such as
NQ and PopQA.

Model FanoutQA FRAMES GAIA Avg.

DeepResearcher-14B 45.2 48.6 38.7 44.2
Search-r1-14B 13.3 22.4 11.8 15.8
MSearcher 47.6 52.0 40.5 46.8

Table 2: Evaluation on three more challenging
benchmarks, MSEARCHER and DeepResearch use web
search, while Search-r1 uses local retrieval system.

Table 2 presents the performance of Deep-
Research, Search-r1, and MSEARCHER,
all using a 14B backbone and trained on
the same data as in Table 1, evaluated on
three challenging datasets that require ex-
tensive searches or more sophisticated rea-
soning. As shown, Search-r1 with its lo-
cal retrieval system performs worse than
the others. While DeepResearch and our
method both achieve stable and competitive
results, MSEARCHER consistently demon-
strates a clear advantage.

5.2 ABLATION STUDY

HotpotQA Frames

Method Acc Tool Call Acc Tool Call

MSearcher 67.6 5.6 52.0 5.7
- w/o ref 65.7 4.7 50.4 4.5
- w/o sft 63.3 2.7 48.7 2.9

Table 3: Ablation results of MSearcher on SFT: with-
out reflective data in SFT and without SFT.

This section presents ablation results that
examine how different components impact
the overall performance of our framework.

Effectiveness of Self-Reflective Signal. In
this experiment, we remove all examples
containing self-reflective behaviors during
the SFT stage, using only correct MCTS
rollouts for data construction. As shown
in Table 3, excluding self-correction data
reduces the number of tool calls, since the
average tool usage in the SFT training set
becomes lower. Consequently, the final performance after RL training also declines.

Model Performance without RL. In this experiment, we evaluate the model’s performance after
SFT but before RL, compared to the vanilla instruction model. As shown in Table 4, the model’s
performance on HotpotQA drops by 4.86%, accompanied by an increase in the number of tool calls.
This decline can be attributed to domain shift and a stronger bias toward tool usage introduced by the
SFT data. Notably, this phenomenon disappears with the larger 14B backbone and in the in-domain
evaluation on the Musique dataset.
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5.3 TRAINING DYNAMICS

Model HotpotQA Musique

Acc Tool Call Acc Tool Call

Qwen2.5-7B
Instruct 51.9 1.3 21.6 1.1
SFT 47.1 (-4.8) 3.9 26.5 (+4.9) 4.1

Qwen2.5-14B
Instruct 62.9 1.5 25.8 1.5
SFT 65.4 (+2.5) 4.8 31.3 (+5.5) 4.9

Table 4: Evaluation of vanilla Qwen2.5-7B/14B
instruction models before and after SFT.

Figure 2 compares training rewards and tool
calls of our method with and without SFT us-
ing qwen2.5-7B. Tool calls increase steadily in
both cases, but SFT gives a higher initial tool
usage, leading to better performance.

6 RELATED WORK

6.1 SEARCH AGENTS

Recent works have explored building agent
workflows that allow large language models
(LLMs) to interact with external tools for com-
plex task solving. Representative prompt-
based agent systems such as Search-o1 (Li
et al., 2025b) and ReAgent (Zhao et al., 2025),
while effective for rapid development, are con-
strained by the inherent capacity of the under-
lying LLM and are not easily improved through environment feedback. To address this, several
studies have attempted to construct supervised fine-tuning (SFT) trajectories. For example, some
works (Lee et al., 2025; Asai et al., 2024; Yu et al., 2024) employ large LLMs to synthesize retrieval
and reasoning traces, which are then used to fine-tune smaller models. Most recently, reinforcement
learning (RL) methods have been investigated to enhance LLM-based agents, and most prior works
focus on multi-hop QA settings (Jin et al., 2025; Song et al., 2025; Zheng et al., 2025). Moreover,
Tan et al. (2025) propose to use direct prompting to generate reasoning data and combines SFT with
RL to improve search strategies.

6.2 SYNTHETIC TRAJECTORIES FOR SEARCH AGENTS
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Figure 2: Training dynamics of Reward and Number of tool
calls of MSearcher with/witout SFT.

Large-scale manual annotation is of-
ten costly and inflexible, motivating
the use of synthetic data generation
as a scalable alternative for training
search agents. Previous works like
ReaRAG (Lee et al., 2025) and RAG-
R1 (Tan et al., 2025) adopt the prompt-
based method to instruct the large rea-
soning model (LRM) to produce rea-
soning data in predefined format. Re-
cent methods create realistic QA tra-
jectories for SFT by simulating in-
teractions with real-world web pages,
with LRMs assisting in curating the
collected data (Wu et al., 2025; Li
et al., 2025a). However, these meth-
ods often rely on powerful LRMs and
large number of generations for reject
sampling.

7 CONCLUSION

In this work, we present MSEARCHER, a two-stage trained search agent that can perform robust
and reflective multi-step reasoning. A core contribution is a MCTS–based framework that generates
self-reflective reasoning trajectories for supervised fine-tuning, enabling stable RL training without
large reasoning models. Experiments on multi-hop QA benchmarks show MSEARCHER outperforms
strong baselines, demonstrating the value of high-quality SFT data and reflective reasoning.
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This section shows prompts used in data construction and model training.

13

https://doi.org/10.48550/arXiv.2412.15115
https://doi.org/10.18653/v1/d18-1259
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.48550/arXiv.2502.03387
https://doi.org/10.48550/arXiv.2503.14476
https://doi.org/10.48550/arXiv.2411.19443
https://doi.org/10.48550/arXiv.2505.22501
https://doi.org/10.48550/arXiv.2505.22501
https://doi.org/10.48550/arXiv.2503.06951
https://doi.org/10.48550/arXiv.2503.06951
https://doi.org/10.48550/arXiv.2504.03160
https://doi.org/10.48550/arXiv.2504.03160
https://doi.org/10.18653/v1/2024.acl-short.2
https://github.com/THUDM/slime


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Data Construction: Question Decomposition

Decompose the following question into TWO sub-questions, such that the original question
can be broken down into two sequential sub-questions. You should use [E] to represent the
answer entity of one sub-question that appears in another. For the two sub-questions you
generate, one shouldn’t contain [E] and the other one should contain [E]. By answering the
one without [E] first and then the one with [E] (which will be replaced by the answer entity
of the first sub-question), one should be able to get the answer to the original question. Some
questions in the input might contain #1, #2, etc. to represent the answer of the previous
question. You should ignore them and keep them as is in the sub-questions. Give exactly
different decompositions. Follow the format below:
Input: If my future wife has the same first name as the 15th first lady of the United States’
mother and her surname is the same as the second assassinated president’s mother’s maiden
name, what is my future wife’s name?
Output: Decomposition 1:
Q1: What’s the first name of the 15th first lady of the United States’ mother?
Q2: If my future wife’s surname is the same as the second assassinated president’s mother’s
maiden name, and her first name is [E], what is my future wife’s name?
Decomposition 2:
Q1: Who’s the second assassinated president of the United States?
Q2: If my future wife’s surname is the same as [E]’s mother’s maiden name, and her first
name is the same as the 15th first lady of the United States’ mother’s first name, what is my
future wife’s name?
And so on...
Question to decompose:
Input: {}
Output:

Data Construction: Rollout

Answer the following quesiton with only a short and concise answer(entity). The given
context might include some information about the answer, if not, use your own knowledge.
The result should be exactly in the following format and nothing else, do not provide any
other information, explanation or thinking:
Input: Question: Who is the president of the United States? Context: 1. The current 47th
president of U.S. is Donald J. Trump.
Output: Donald Trump
Now answer the question:
Question: {}
Context: {}
Answer:

Data Construction: Determine If Decomposable

Given a natural language question, determine whether it is a atomic question that not be
decomposed in a meaningful and straightforward way. Some questions in the input might
contain #1, #2, etc. You should view them as some known and fixed entities.
Examples: 1. Input: How many Germans live in Paris in 2024?
Output: Yes. Rationale: The question cannot be meaningfully decomposed.
2. Input: When was Yimou Zhang’s first movie as a director released?
Output: No. Rationale: The question can be meaningfully decomposed into two sub-
questions; for example, ”What is Yimou Zhang’s first movie as a director?” and ”When was
it released?”
3. Input: Who founded the CS department of #1?
Output: Yes. Rationale: This question cannot be meaningfully decomposed. It’s asking the
name of a person that is fully specified.
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You should just output ”Yes” or ”No” and nothing else. Don’t give any explanation or
reasoning.
Input: {}
Output:

Model Training: SFT Data Example

{”role”: ”system”, ”content”: ”You are a helpful assistant. Answer the following question
step by step with the help of web search tools. You must conduct reasoning inside <think>
and </think> first in every turn. After reasoning, if you find you lack some knowledge, you
can call a search engine by <search> query </search> and it will return the top searched
results between <tool response> and </tool response>. You can call the search function
once in every turn. When you arrive at the final answer, output the final answer between
<answer> and </answer> to finish the task. Do not rush to output the final answer so you
could check it again midway. ”}
{”role”: ”user”, ”content”: ”What followed the last person to live in versaille in the country
that became allies with america after the battle of saratoga?Put the final answer within
<answer></answer>. ”}
{”role”: ”assistant”, ”content”: ”<think>To solve this, I will divide it into smaller questions:
[1. Which country became allies with America? 2. What significant event led to #1 becoming
allies with America? 3. What followed the last person to live in Versailles in the country
that became allies with America after #2?]. As a first step, I need to answer the subquestion
1: Which country became allies with America?. Let us find supporting evidence with a
search:</think> <search>Which country became allies with America?</search>”}
{”role”: ”tool”, ”content”: ”1. Southern Europe: The outbreak of World War I in 1914 was
precipitated by the rise of nationalism in Southeastern Europe as the Great Powers took up
sides. The Allies defeated the Central Powers in 1918. During the Paris Peace Conference
the Big Four imposed their terms in a series of treaties, especially the Treaty of Versailles.”}
{”role”: ”assistant”, ”content”: ”<think>Based on what I found and already know, the an-
swer is United Kingdom. Next, to address the subquestion 2: What significant event led to #1
becoming allies with America?, based on previous sub-questions, which turns to: What signif-
icant event led to United Kingdom becoming allies with America?.</think> <search>What
significant event led to United Kingdom becoming allies with America?</search>”}
{”role”: ”tool”, ”content”: ”1. France in the American Revolutionary War: The British had
taken Philadelphia in 1777, but American victory at the Battle of Saratoga brought back hope
to the Patriots and enthusiasm in France. The army of Burgoyne surrendered to American
forces after Saratoga and France realized that the United States could be victorious. The king
directed Vergennes to negotiate an alliance with the Americans.”}
{”role”: ”assistant”, ”content”: ”<think>The information points to the answer being Battle
of Saratoga. At the end, I’ll think through this next part: 3: What followed the last person to
live in Versailles in the country that became allies with America after #2?, based on previous
sub-questions, which turns to: What followed the last person to live in Versailles in the
country that became allies with America after Battle of Saratoga?. To continue, I will look
for relevant content:</think><search>What followed the last person to live in Versailles in
the country that became allies with America after Battle of Saratoga?</search>”}
{”role”: ”tool”, ”content”: ”Michael Manning (murderer): Michael Manning was an Irish
murderer who became the twenty - ninth and last person to be executed in the Republic of
Ireland.”}
{”role”: ”assistant”, ”content”: ”<think>From the evidence gathered, it seems the answer
is Michael Manning (murderer). Wait, maybe I need to reconsider this more carefully. The
supporting content might not be useful here. I should revise my search approach. Rephrase
the search query.</think><search>Who succeeded the final inhabitant of Versailles in the
nation that allied with the United States following the Battle of Saratoga?</search>”}
{”role”: ”tool”, ”content”: ”1. Battles of Saratoga: Once news of Burgoyne’s surrender
reached France, King Louis XVI decided to enter into negotiations with the Americans that
resulted in a formal Franco - American alliance and French entry into the war. This moved
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the conflict onto a global stage. As a consequence, Britain was forced to divert resources used
to fight the war in North America to theaters in the West Indies and Europe, and rely on what
turned out to be the chimera of Loyalist support in its North American operations. Being
defeated by the British in the French and Indian War more than a decade earlier, France found
an opportunity of revenge by aiding the colonists throughout the Revolutionary War. Prior to
the Battle of Saratoga, France did n’t fully aid the colonists. However, after the Battles of
Saratoga were conclusively won by the colonists, France realized that the Americans had the
hope of winning the war, and began fully aiding the colonists by sending soldiers, donations,
loans, military arms, and supplies.”}
{”role”: ”assistant”, ”content”: ”<think>Based on the search results and my prior knowl-
edge, now I can answer the question, and the answer in French Republic. </think> <an-
swer>French Republic</answer>”}

Model Training: RL Prompt

System:
You are a helpful assistant. Answer the following question step by step with the help
of web search tools. You must conduct reasoning inside <think> and </think> first in
every turn. After reasoning, if you find you lack some knowledge, you can call a search
engine by <search> query </search> and it will return the top searched results between
<tool response> and </tool response>. You can call the search function once in every
turn. When you arrive at the final answer, output the final answer between <answer> and
</answer> to finish the task. Do not rush to output the final answer so you could check it
again midway.

User:
Question: {Question}

B CASE STUDY

As shown in the case below, MSEARCHER behaves in an expected ReAct pattern. We can observe
that the agent sometimes tends to over-decompose a question, such as the second sub-question: Who
is #1, making the reasoning chain deviate from the correct path. But fortunately, we can observe
that MSEARCHER is able to realize its mistakes in decomposition and run it again to get the correct
answer.

Case Study

System:
You are a helpful assistant. Answer the following question step by step with the help
of web search tools. You must conduct reasoning inside <think> and </think> first in
every turn. After reasoning, if you find you lack some knowledge, you can call a search
engine by <search> query </search> and it will return the top searched results between
<tool response> and </tool response>. You can call the search function once in every
turn. When you arrive at the final answer, output the final answer between <answer> and
</answer> to finish the task. Do not rush to output the final answer so you could check it
again midway.

User:
What Japanese unit was commanded by the admiral targeted by Operation Vengeance?

Assistant:
<think> To solve this, I will divide it into smaller questions:
1. Who was the target of Operation Vengeance?
2. Who is #1?
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3. What Japanese unit was commanded by the admiral who targeted #2?
Let us start by, I will address subquestion 1, which is: Who was the target of Operation
Vengeance?.
</think>
<search> Who was the target of Operation Vengeance? </search>

Tool Response (Search and Read):
<tool response>
1. Operation Vengeance was the American military operation to kill Admiral Isoroku Ya-
mamoto of the Imperial Japanese Navy on 18 April 1943
2. The man perhaps most associated with the “Day of Infamy,” Pearl Harbor attack master-
mind Admiral Isoroku Yamamoto, was killed fighting a war.
3. Capt. Thomas G. Lanphier Jr. claimed to have shot down Yamamotoś plane, killing him in
the process, but the evidence indicates it was not Lanphier.
...
</tool response>

Assistant:
<think> Based on the search results and my prior knowledge, the answer is Admiral Isoroku
Yamamoto.
Moving on, To begin with, I need to answer the subquestion 2: Who is #1?, based on previous
sub-questions, which turns to: Who is Admiral Isoroku Yamamoto?.
</think>
<search> Who is Admiral Isoroku Yamamoto? </search>

Tool Response (Search and Read):
<tool response>
1. Isoroku Yamamoto was a Marshal Admiral of the Imperial Japanese Navy (IJN) and the
commander-in-chief of the Japanese Combined Fleet during World War II.
2. Yamamoto Isoroku was a Japanese naval officer who conceived of the surprise attack on
the U.S. naval base at Pearl Harbor on Dec. 7, 1941.
3. Isoroku Yamamoto was a brilliant mind and a respected leader, compelled by loyalty to his
country to enter a war he knew they could not win.
4. This essay will explore Yamamotoś military career in the context of Imperial Japanś
aggressive expansion into Asia beginning in the 1890s.
...
</tool response>

Assistant:
<think> From the evidence gathered, it seems the answer is Isoroku Yamamoto.
Hmm, this might need a second look before I proceed. I may have broken down the question
incorrectly—time to rethink the subquestions.
Plan again:
1. Who was the target of Operation Vengeance? 2. What Japanese unit was commanded by
the admiral #2 who was targeted?.
The first question is answer in previous turns, I will start by address subquestion 2, which is:
What Japanese unit was commanded by the admiral Yamamoto Isoroku who was targeted?.
To continue, I will look for relevant content:
</think>
<search> What Japanese unit was commanded by the admiral Yamamoto Isoroku who was
targeted? </search>

Tool Response (Search and Read):
<tool response>
1. Isoroku Yamamoto was a Marshal Admiral of the Imperial Japanese Navy (IJN) and the
commander-in-chief of the Japanese Combined Fleet during World War II.
2. Operation Vengeance was the American military operation to kill Admiral Isoroku
Yamamoto of the Imperial Japanese Navy on 18 April 1943.
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3. Commanding the Japanese Combined Fleet was Admiral Isoroku Yamamoto who viewed
Midway as a way to draw out and destroy the US Pacific Fleetś aircraft carrier.
...
</tool response>

Assistant:
<think> Based on the search results and my prior knowledge, now I can answer the question,
and the answer in Japanese Combined Fleet.
</think>
<answer> Japanese Combined Fleet </answer>
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