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Abstract. Human Cytochrome P450 enzymes (CYP450s) are responsi-
ble for metabolizing 70%-80% of clinically used drugs. The development
of computational tools to accurately predict CYP450 enzyme-substrate
interactions is crucial for drug discovery and chemical toxicology studies.
In this work, we introduce CypEGAT, a deep learning framework de-
signed to enhance prediction performance by integrating protein embed-
dings of CYP450s (extracted using the pre-trained ESM-2 Transformer
model) with molecular embeddings generated by our fine-tuned Graph
Attention Network (GAT). The CypEGAT model was trained end-to-
end on two large-scale experimental enzyme-substrate datasets and our
CYP450s dataset, which comprises 51,753 CYP450 enzyme-substrate
pairs and 27,857 enzyme-nonsubstrate pairs. Focusing on five major hu-
man CYP450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and
CYP3A4), CypEGAT achieves an overall predictive accuracy of 0.882
and an AUROC of 0.928. The model demonstrates robust generalizabil-
ity to novel chemical compounds across different CYP450 isoforms, un-
derscoring its potential as a powerful tool for drug metabolism studies.

Keywords: Enzyme-substrate prediction - Deep learning - Drug discov-
ery

1 Introduction

Cytochrome P450s (CYP450s), a highly diverse superfamily of heme-thiolate
proteins, are indispensable components of the oxidative metabolic machinery
found across various life forms. In humans, 57 distinct CYP450 isoforms have
been identified, collectively responsible for metabolizing 70-80% of clinically used
drugs [4]. Computational approaches to predict interactions between chemical
compounds and CYP450s offer significant advantages, such as reducing eco-
nomic and labor costs, alleviating environmental pollution, and facilitating the
preselection of hit compounds for drug discovery and toxicology studies, thus
accelerating research progress.
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Machine learning algorithms are central to the development of such predictive
models. These include support vector machines (SVMs), random forest (RF)
[17], [9], deep neural networks (DNNs) [8], and others. However, the performance
of these predictive models is often constrained by the quality and quantity of
training data, as well as the comprehensiveness of the chemical descriptors used.
Addressing these limitations is essential for improving the accuracy and reliabil-
ity of computational predictions [19].

To overcome these challenges, we have developed a novel deep learning-based
model that effectively predicts substrates for five major human CYP450 isoforms
(CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). Our main contribu-
tions to the existing prediction models are as follows:

— enhanced deep learning framework: we propose an improved deep learn-
ing approach for CYP450 substrate prediction by fine-tuning a molecular
GAT that dynamically updates and aggregates features based on molecu-
lar graph structures. Additionally, a feature fusion strategy is employed to
integrate protein embeddings;

— robust pre-training strategy: by pre-training on three diverse enzyme-
substrate datasets, our model demonstrates robust performance across mul-
tiple CYP450 isoforms, providing a unified approach to CYP450 substrate
prediction.

2 Related Work

Traditional machine learning models to predict CYP450 substrates rely primarily
on molecular information, often necessitating separate models for each CYP450
isoform. Recently, there has been a growing interest in enzyme-substrate predic-
tion models that integrate both protein and molecular representations through
deep learning techniques. This integration has been facilitated by advances in
protein language models (PLMs), such as the ESM Transformer and its variants,
for protein representations, and by graph neural networks (GNNs) for molecular
representations.

A notable example is ESP [14], which was trained on an extensive experimen-
tal dataset of enzyme-substrate pairs from the UniProt-Gene Ontology Anno-
tation (GOA) database. The ESP model utilized a slightly modified ESM-1b
Transformer to encode protein embeddings and used a GNN for molecular rep-
resentations. To train the model, datasets of enzyme-substrate and enzyme-
nonsubstrate pairs were generated, and a gradient boosting model was used,
achieving high accuracy in predicting novel enzyme-substrate pairs.

Building upon this work, Du et al. introduced FusionESP [6], an enhanced
enzyme-substrate predictive model. FusionESP employs a contrastive multi-
modal fusion strategy that combines protein embeddings encoded by the ESM-
2 Transformer with molecular representations generated by MolFormer [20].
These advancements highlight the potential of deep learning models to enhance
enzyme-substrate prediction tasks by leveraging both protein and molecular rep-
resentations, thereby significantly improving predictive performance.
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3 Methodology

3.1 Model Architecture

In this study, we present an enhanced deep learning framework, designed to pre-
dict substrates for five key human CYP450 isoforms. The model architecture is
illustrated in Figure 1.
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Fig. 1. Overview of CypEGAT Model Architecture. The ESM-2 Transformer encodes
CYP450 protein representations, while a modified GAT generates molecular graph
representations. These representations are then fused, and a XGBoost classifier is em-
ployed to predict CYP450s substrate and non-substrate.

The model incorporates the pre-trained ESM-2 Transformer [15] to encode CYP450s
protein representations and employs a fine-tuned GAT to generate molecular rep-
resentations. Protein embeddings derived from the ESM-2 model were dimen-
sionally reduced using Principal Component Analysis (PCA) and subsequently
fused with molecular graph representations. These fused features are passed
through two fully connected layers to create a unified enzyme-substrate repre-
sentation for classification.

In the classification module, we utilize an XGBoost classifier to determine whether
a given compound is a substrate or non-substrate for a specific CYP450 isoform.
The XGBoost model processes the enzyme-substrate pair representations and
outputs a binary classification for each isoform. To enhance performance, we
performed five-fold cross-validation to identify the optimal hyperparameters for
the XGBoost models.

3.2 Model Graph Attention Network

Graphs provide an intuitive way to represent molecular structures, where nodes
correspond to atoms and edges represent chemical bonds. Inspired by the ex-
cellent work of Veli¢kovic et al. [18], we have developed an enhanced molecular
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GAT model for generating molecular graph representations. The architecture of
our GAT is illustrated in Figure 2. It consists of two GAT layers: the first layer
learns combined features of atoms and bonds, which are then updated and aggre-
gated. These combined features are concatenated with atom-specific features and
passed to the second GAT layer. Finally, a feature fusion step constructs enzyme-
substrate pairs for classification tasks. Our molecular GAT employs multi-head
attention, adjacency masking, and dropout for robust learning and predicts final
outputs using fully connected layers.

Fig. 2. Diagram of our Molecular GAT.

Let the input node (atom) features be X € RN *Fatom the edge (combined atom-
bond) features be XE € RN*N*(Fatom+riona) Here, N represents the number
of nodes. Fuiom is the number of features that describe each atom, and Fyonq is
the number of features describing each bond. The adjacency matrix is denoted
as A € RVXN,

In the first GAT layer, a linear transformation is applied to the edge features:

HFE = XE - Weage (1)

Where, Hi*F € RN*Nx(D-H) ' 1) is the dimensionality of the feature space for
the attention mechanism, and H is the number of attention heads.
Subsequently, the attention coefficient scores for the neighboring edges are cal-

culated:
eXF = ReLU(eX¥ + efE) (2)
XE

Among them, e;* ™ represents the attention scores for atoms, and e;( E sums the
attention coefficients from neighboring edges.
The attention coefficient scores are then masked and normalized:

X = where(A > 0,eX¥, —00), a*¥ = softmax(e*F) (3)
Edge features aggregation is performed as follows:

Hin = o7 - Hy'® (4)
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In the second GAT layer, node and edge features are aggregated:

Xt = Z (Hagon + X5, X}y = HIE - W) (5)
JEN(4)

Node attention scores are computed as:
e;* = ReLU (attn;(h;*) + attn;(h})) (6)

Attention scores are masked and normalized, with dropout applied to prevent
overfitting:
af? = softrnax(efg) (7)

Node features are aggregated using attention scores:
X X 17X
Hy, = Zaij Hij (8)
J

The final read out for classification tasks is computed as:

h = Concat(MeanPool(Hfipa , ESM-2) 9)
h1l = ReLU (Linear(h) (10)
y = Sigmoid(Linear(hz)) (11)

3.3 Dataset

Our curated CYP450s dataset comprises 51,753 enzyme-substrate pairs and
27,857 enzyme-nonsubstrate pairs across five human CYP450 isoforms: CYP1A2,
CYP2C9, CYP2C19, CYP2D6, and CYP3A4. These data were collected from
studies conducted by Chang et al. [3], Fang et al. [7] and Ai et al. [1].

As illustrated in the scaffold diversity curve (Figure 3, left), the curve exhibits a

CypST Dataset Molecular Scaffold Diversity Curve
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Fig. 3. Left: CypEGAT Dataset Molecular Scaffold Diversity Curve. Right: CypE-
GAT Dataset Molecular Tanimoto Similarity Distribution.

gradual slope, indicating that the molecules in our dataset are chemically diverse
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and evenly distributed across various scaffolds. Additionally, Tanimoto similar-
ity analysis reveals that our dataset covers approximately 40% of small-molecule
drugs in the DrugBank database [13| and 30% of organic compounds used in
cosmetics from the COSMOS DB [21] (Figure 3, right). Each molecule is labeled
as either "1" (substrate) or "0" (nonsubstrate), based on its bioactivity data.

3.4 Featurization

To enhance the compatibility and effectiveness of our model, we employed dis-
tinct featurization strategies tailored for the CYP450s and molecules.

For the CYP450s, we utilized the pre-trained ESM-2 Transformer model (ESM-
2 t33_650M_URAH0D) to extract the protein embeddings. In particular, the
protein sequences were processed through the ESM-2 model, and the 1280-
dimensional embeddings were obtained from the final hidden layer. To reduce the
dimensionality of these embeddings and align them with the lower-dimensional
molecular representations, we applied Principal Component Analysis (PCA).
The dimensionality was determined by the cumulative explained variance [10].
Mathematically, the cumulative explained variance ratio for the first k principal
components is defined as:

kN
%—1n/\_ (12)
=1 T

where \; are the eigenvalue of the covariance matrix ) derived from the data.
k represents the number of principal components considered, and n is the total
number of principal components (or features). Our analysis (Figure 4) demon-
strated that retaining the top 50 principal components captures 99% of the
cumulative explained variance, effectively preserving the essential protein fea-
tures. Thus, we retained these 50 components for subsequent integration with
the molecular embeddings.

For the molecular data, we used our fine-tuned GAT model to generate the rep-
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Fig. 4. Cumulative Explained Variances of the CYP450s Protein Representations Prin-
cipal Components
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resentations. In addition, we incorporated customized molecular features that
describe key physical and chemical properties, including atom type, bond type,
conjugation, aromaticity, ring structures, hydrogen bonding, hybridization, chi-
rality, stereochemistry, and charge. These features were systematically encoded
and normalized, as required, to ensure consistency and compatibility across the
different input datasets.

3.5 Model Training

Our model was trained to minimize the mean squared error (MSE) loss between
the predicted and true representations of the enzyme-substrate pairs. We used
MSE loss because it effectively captures the continuous and regression-like nature
of our prediction targets, allowing the model to optimize smoothly across a range
of prediction values. For future work, we may explore other loss functions (such
as binary cross entropy loss) to assess its potential benefits for this task.

The training process utilized the Adam optimizer [12] with a learning rate of 0.1
and a dropout rate of 0.2 to mitigate overfitting. The training was conducted
in three stages to progressively enhance the model’s performance through pre-
training and fine-tuning.

— Stage 1: pre-training on KEGG Drug Dataset. The model was ini-
tially pre-trained on the KEGG drug dataset [11|, which comprises 8,392
enzyme-drug pairs. This stage aimed to provide the model with a funda-
mental understanding of enzyme-drug interactions, leveraging the large and
diverse dataset to initialize robust model weights.

— Stage 2: training on ESP Experiment Dataset. Following the first
pre-training, the model was trained on the ESP experimental dataset, which
contains 18,351 enzyme-substrate pairs sourced from the GOA database [5].
This step further refined the model understanding by exposing it to a broader
range of enzyme-substrate interactions, reinforcing generalization across bi-
ologically relevant patterns.

— Stage 3: fine-tuning on our CYP450s Dataset. Finally, the pre-trained
model was fine-tuned on our CYP450s dataset. Fine-tuning on the target-
specific dataset allowed the model to specialize its predictions for the CYP450
enzyme family, which is the main focus of our study.

For each stage, the datasets were split into training and test sets in an 80:20 ra-
tio. Each set was normalized and divided into mini-batches of size 64. The model
was trained for a total of 20 epochs across the three datasets, with training and
validation losses computed after each mini-batch to monitor performance and
select the best model weights.

The progressive training strategy was designed to maximize the benefits of trans-
fer learning. Pre-training on larger and more general datasets (KEGG and ESP)
optimized the model weights to capture broad interaction patterns, enabling
better performance during fine-tuning on the smaller target-specific CYP450s
dataset.
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The results demonstrated the effectiveness of this approach. At the end of the
training, the training and validation losses for the KEGG dataset reached 0.9122,
while for the ESP dataset, they reached 0.2076. For our CYP450s dataset, the
training and validation losses were 0.1912. These outcomes indicate that the
model was well-trained, with no evidence of overfitting, and benefited from the
multi-stage training pipeline.

4 Results

4.1 Comparison of Different Methods for Model Performance

In this study, we evaluated the impact of different methods on the performance
of the CypEGAT model. We utilized several ESM Transformers (ESM-1b [2],
ESM-1b-ts, ESM-2) to generate CYP450s protein representations. For molecu-
lar representations, we compared Molecular Extended Connectivity Fingerprints
(ECFPs), Graph Neural Network (GNN), and our Graph Attention Network
(GAT). Additionally, we also assessed the performance of two machine learning
classifiers: XGBoost and Multi-Layer Perceptron (MLP). Among these meth-
ods, ESM-1b-ts and GNN refer to the ESP model’s methodology. The results
are shown in Table 1.

Among the different combinations, the best-performing model was ESM-2 +

Table 1. Accuracy, AUROC and 95% Confidence Interval of Accuracy values for dif-
ferent protein and molecular representations, classifiers trained on the CyEGAT model
using the CYP450s dataset

Protein |[Molecule|Classifier| ACC|AUROC| 95% CI for ACC
ESM-1b |ECFP MLP 0.818 |0.882 88.59, 89.18)
ESM-1b |ECFP XGBoost 0.805 [0.899 89.44, 90.78

ESM-1b |GNN MLP 0.825(0.843 85.04, 86.37))
ESM-1b |GNN XGBoost [0.840 |0.895 89.98, 91.23
ESM-1b |GAT MLP 0.831|0.847 84.52, 85.19
ESM-1b |GAT XGBoost |0.842(0.887 90.04, 91.68

(

( )
( )
( )
( )
( )
ESM-1b-ts ECFP  |MLP 0.819 |0.887  |(85.11, 86.44)
ESM-1b-ts| ECFP  |XGBoost 0.810(0.895  [(89.23, 90.51)
ESM-1b-ts|GNN MLP 0.840 [0.845  ((85.90, 87.28)
ESM-1b-ts|GNN XGBoost [0.855(0.910  ((89.57, 90.91)
ESM-1b-ts| GAT MLP 0.851 |0.849  |(86.20, 87.55)
ESM-1b-ts| GAT XGBoost [0.869[0.921  {(89.02, 90.13)
ESM-2 |ECFP  |MLP 0.816 [0.898  |(84.37, 85.43)
ESM-2 |ECFP  |XGBoost |0.822(0.886  [(90.62, 91.78)
ESM-2  |GNN MLP 0.839 0.851  |(85.46, 86.74)
ESM-2 |GNN XGBoost [0.870[0.910  ((90.14, 91.52)
ESM-2  |GAT MLP 0.843 |0.870  |(86.62, 87.81)
ESM-2  |GAT XGBoost [0.882[0.928  ((90.70, 91.83)
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GAT + XGBoost, which outperformed other configurations. ESM-2 showed par-
ticularly high accuracy when used with GNN and GAT molecular representa-
tions. Among the molecular encodings, GNN and GAT yielded competitive re-
sults, especially when combined with XGBoost and ESM-2.

Beyond molecular representations, the choice of protein representations and clas-
sifiers significantly impacted on the performance. Unlike ESM-1b, which uses
absolute sinusoidal positional encoding, ESM-2 integrates Rotary Position Em-
bedding (RoPE). RoPE enables the model to extrapolate beyond its training
context by applying relative position encoding. This is achieved by multiplying
query and key vectors with sinusoidal embeddings in the self-attention mech-
anism [16]. The ability to capture relative positional information likely makes
ESM-2 protein representations more compatible with GAT molecular represen-
tations.

4.2 Prediction Ability on Individual CYP450 Isoform

We evaluated the performance of the CypEGAT model to predict substrates of
individual CYP450 isoforms. For comparison, we also assessed the performance
of three other CYP450 substrate prediction models: CypReat[17], CYPstrate [9],
and MTL [7], which only consider molecular information. The source codes of
CypReach and CYPstrate have not been published, so - for a fair comparison - we
trained our model on the same datasets used by these models and compared the
AUROC results with those reported in their original publications. Additionally,
for MTL, we compared the performance of our model to that of the MTL-GAT
model, and based the dataset’s random partitioning strategy.

The results of our comparative analysis are summarized in Table 2. A summary
of the dataset information used for each model is provided in Table 3. We

Table 2. Comparison of Predictive Model AUROC Results on Individual CYP450
isoform

Model 1A2 2C9 2C19 2D6 3A4
CypReact [0.86 0.83 0.83 0.87 0.92
CypEGAT |0.921 0.907 0.907 0.925 0.934
CYPstrate [0.88 0.87 0.86 0.92 0.92
CypEGAT |0.915 0.920 0.910 0.927 0.929
MTL-GAT |0.929 0.880 0.932 0.912 0.872
CypEGAT |0.937 0.934 0.929 0.937 0.930

also evaluated the performance of the ESP model on our dataset to compare its
performance results with those of CypEGAT. The AUROC results are shown in
Table 4.

In comparison to the CYP450s substrate prediction models, that rely solely on
molecular representations, CypEGAT demonstrated competitive performance in
predicting substrates for various CYP450 isoforms. Moreover, when compared
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Table 3. CYP450s Substrate Prediction Models Dataset Information (Training/Test)

Model 1A2 2C9 2C19 2D6 3A4

CypReact [1632/124 |1632/128 [1632/120 |1632/121 |1632/132
CYPstrate [1380/346 |1378/346 |1379/346 |1384/347 |1408/353
MTL 1364/226 |1769/248 |1296/182 |1982/257 |3007/379

Table 4. Comparison of ESP Model AUROC Results on CypEGAT Dataset

Model 1A2 2C9 2C19 2D6 3A4
ESP 0.892 0.883 0.887 0.901 0.876
CypEGAT |0.919 0.922 0.913 0.932 0.931

to the general enzyme-substrate prediction model ESP, which incorporates both
protein and molecular information, CypEGAT outperformed ESP in predicting
CYP450 substrate interactions.

5 Conclusion

This paper introduces CypEGAT, an enhanced deep learning framework for
predicting CYP450 substrates. Our proposed GAT dynamically updates and
aggregates molecular features to generate robust representations. By combining
ESM-2 protein embeddings with molecular GAT representations through feature
fusion, CypEGAT extracts comprehensive enzyme-molecule information. Pre-
trained on two general enzyme-substrate datasets and fine-tuned on our CYP450
dataset, CypEGAT demonstrates superior performance in predicting CYP450
substrate interactions.
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