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ABSTRACT

The real-world traffic networks undergo expansion through the installation of new
sensors, implying that the traffic patterns continually evolve over time. Incremen-
tally training a model on the newly added sensors would make the model forget
the past knowledge, i.e., catastrophic forgetting, while retraining the model on the
entire network to capture these changes is highly inefficient. To address these chal-
lenges, we propose a novel Traffic Forecasting Mixture of Experts (TFMoE) for
traffic forecasting under evolving networks. The main idea is to segment the traffic
flow into multiple homogeneous groups, and assign an expert model responsible
for a specific group. This allows each expert model to concentrate on learning and
adapting to a specific set of patterns, while minimizing interference between the
experts during training, thereby preventing the dilution or replacement of prior
knowledge, which is a major cause of catastrophic forgetting. Through exten-
sive experiments on a real-world long-term streaming network dataset, PEMSD3-
Stream, we demonstrate the effectiveness and efficiency of TFMoE. Our results
showcase superior performance and resilience in the face of catastrophic forget-
ting, underscoring the effectiveness of our approach in dealing with continual
learning for traffic flow forecasting in long-term streaming networks.

1 INTRODUCTION

Recently, numerous studies have been proposed with the goal of enhancing the accuracy of traffic
forecasting. However, while various models have been proposed to tackle this problem (Li et al.,
2017; Chen et al., 2021b; Zhang et al., 2018a; Yu et al., 2017; Wu et al., 2019; Fang et al., 2021;
Park et al., 2020; Zheng et al., 2020; Guo et al., 2019; Shang et al., 2021; Cao et al., 2020; Bai et al.,
2020; Li & Zhu, 2021; Lu et al., 2020; Lan et al., 2022), most of them focus on improving accuracy
in static traffic networks.

In this work, we focus on the real-world traffic forecasting scenarios, where the traffic networks
undergo expansion through the installation of new sensors in the surrounding areas (i.e., evolving
traffic network). While these newly added sensors may exhibit traffic patterns similar to pre-existing
ones, they also introduce previously unobserved patterns. Moreover, even pre-existing sensors may
display new patterns over long-term periods (e.g., several years) due to various factors such as ur-
ban development, infrastructural projects, or alterations in traffic demand stemming from population
migration and urban population growth. Consequently, if a model that is trained on the past traf-
fic network is further incrementally trained on the newly added sensors in the expanded network,
the model would forget the past knowledge, resulting in a severe performance degradation on the
pre-existing sensors in the past network, which is called catastrophic forgetting. A straightforward
solution would be to re-train the model on the entire dataset containing not only the newly added
sensors but also the pre-existing sensors. However, the process of retraining the model is computa-
tionally demanding and time-consuming, highlighting the necessity for a more suitable and efficient
learning methodology.

TrafficStream (Chen et al., 2021a) is a pioneering work that focuses on traffic forecasting under
evolving traffic networks. Its main idea is to adopt continual learning strategies to continuously
learn and adapt from ongoing data streams, integrating new information while preserving the past
knowledge (i.e., avoid catastrophic forgetting). By utilizing popular methods in continual learning
such as Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) and Replay (Robins, 1995;
Rebuffi et al., 2017), TrafficStream manages the expansion and evolution of traffic networks. How-
ever, despite its effectiveness, the dynamic nature of traffic networks continues to pose significant
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challenges, highlighting the necessity for a more adaptive approach to accommodate these diverse
and evolving traffic patterns. Specifically, TrafficStream adopts a “one-model-fits-all” approach,
which uses a single model to capture all the evolving traffic patterns, being susceptible to catas-
trophic forgetting.

New sensor

Pre-existing 
sensor

PEMSD3-Stream dataset

Figure 1: The top-left plot depicts the
t-SNE visualization of one week’s traf-
fic patterns gathered from each sen-
sor in the traffic network, with newly
added sensors of the next year marked
by stars. The top-right image shows the
geographical location of a new sensor
and its closest counterpart in the latent
space. The bottom plot indicates the no-
table similarity between the traffic pat-
terns obtained from these two sensors.

To this end, we propose Traffic Forecasting Mixture of
Experts (TFMoE) for traffic forecasting under evolving
networks. The main idea of TFMoE is to segment the traf-
fic data into multiple homogeneous groups, and assign an
expert traffic forecasting model to each group. By doing
so, we allow each model to be responsible for predicting
the traffic flow of its assigned group, minimizing inter-
ference with each other during training, which in turn al-
leviates catastrophic forgetting. This is possible because
each model can concentrate on learning and adapting to a
specific set of patterns, thereby preventing the dilution or
replacement of prior knowledge, which is a major cause
of catastrophic forgetting. Figure 1 demonstrates the mo-
tivation of our work. We observe that the sensors can be
segmented into multiple homogeneous groups based on
their traffic patterns, and moreover the newly added sen-
sors tend to belong to one of the existing clusters. That is,
even if the traffic network is expanded, the newly added
sensors exhibit similar traffic patterns as those of pre-
existing sensors. This implies that having an expert solely
dedicated to each homogeneous group would be more ef-
fective than the “one-model-fits-all” approach in terms of
alleviating catastrophic forgetting. This is because each
expert only needs to concentrate on learning and adapt-
ing to a specific set of patterns, while the “one-model-
fits-all” approach needs to adapt to the global dynamics
even though local changes mainly occur.

Each expert model in TFMoE contains two components: 1) a reconstructor that utilizes a Variational
Autoencoder (VAE) structure to reconstruct the traffic flow, and 2) a predictor that makes future
predictions based on the past traffic flow. We first cluster the traffic flow based on the representation
extracted by a pre-trained feature extractor, and train an expert model (i.e., a reconstructor and a
predictor) on each cluster. Then, when a new traffic flow is introduced, we assign it to an expert
model whose reconstruction loss is the smallest. Finally, we make the final prediction by combining
the individual predictions from each expert model using a reconstruction-based gating mechanism.

At the core of our approach are three pivotal strategies. 1) ‘Reconstructor-Based Knowledge Con-
solidation Loss,’ inspired by the learning without forgetting technique, ensures that the model learns
new traffic patterns while also preserving knowledge from previous tasks based on the concept
of the localized group within the VAE. 2) ‘Forgetting-Resilient Sampling’ addresses catastrophic
forgetting by generating synthetic data through decoders of earlier-trained reconstructors. Within
the VAE framework, this synthetic data, being both similar in nature but rich in diversity, is used
alongside current task nodes for training. While the generated data might not inherently repre-
sent geographical graph structures, our graph learning technique ensures seamless integration. 3)
‘Reconstruction-Based Replay’ employs a reconstructor to detect sensors that exhibit patterns not
familiar to any expert. These nodes, determined by their reconstruction probability spanning all
experts, are merged with the current task nodes, creating a dataset that captures patterns previously
elusive to our expert models.

Through extensive experiments on a real-world long-term streaming network dataset, PEMSD3-
Stream, we highlight the advantages of TFMoE. Our results demonstrate that TFMoE outperforms
existing models, demonstrating significantly better performance and resilience against catastrophic
forgetting. These findings validate the superiority of our proposed approach in addressing the chal-
lenges associated with continual learning in long-term streaming network scenarios, providing a
robust and effective solution for traffic forecasting. The source code of TFMoE can be found
https://anonymous.4open.science/r/None3-28FA.
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2 RELATED WORK

Traffic Flow Forecasting. In traffic forecasting, traditional methods like ARIMA and SVR are
popular but often miss intricate spatio-temporal patterns in road networks due to their reliance on
historical data. Deep learning, specifically the combination of RNNs and CNNs as in (Zhang et al.,
2018b; Yao et al., 2018a;b), has emerged to address these complexities. However, CNNs, being
optimized for grid data, are not ideal for road networks. Thus, the focus has shifted to GCNs(Kipf
& Welling, 2016; Defferrard et al., 2016; Bruna et al., 2013; Veličković et al., 2017) for capturing
spatial relationships. For instance, DCRNN (Li et al., 2017) leverages a diffusion process on graphs
for spatial dependencies and a sequence-to-sequence model for time. Similarly, STSGCN (Song
et al., 2020) uses localized spatio-temporal subgraphs. Despite progress, most research remains on
static traffic networks, overlooking the evolving nature of real-world traffic.

Continual Learning. Continual learning, or lifelong learning, targets systems that adapt
to changing environments and accumulate knowledge, aiming primarily to prevent catastrophic
forgetting—losing old knowledge while learning new. This domain has three main strategies:
regularization-based, rehearsal-based, and architecture-based. Regularization methods (Kirkpatrick
et al., 2017; Zenke et al., 2017) add terms to the loss function, limiting model parameter changes.
Rehearsal methods (Robins, 1995; Rebuffi et al., 2017; Shin et al., 2017; Wu et al., 2018) utilize
replay buffers or generative models to retain past data or tasks. Architecture strategies (Rusu et al.,
2016; Mallya & Lazebnik, 2018) dynamically alter the model structure for new tasks. While contin-
ual learning has been recently explored in the graph domain (Zhou & Cao, 2021; Wang et al., 2020;
2022), a majority of studies focus on classification rather than regression, making direct application
to streaming traffic networks challenging (Chen et al., 2021a; Wang et al., 2023a;b).

3 PROBLEM DEFINITION
In the context of long-term streaming traffic networks, we define τ ∈ (1, 2, . . . , T ) as an extended
time interval, or a ‘Task,’ where the traffic network remains unchanged. These dynamic networks
are sequenced as G =

(
G1, G2, . . . , GT ), with each Gτ evolving from its predecessor Gτ−1 via

Gτ = Gτ−1 + ∆Gτ . For a task τ , its road network is defined as Gτ = (V τ , Aτ ), where V τ is
the set with Nτ traffic sensors and Aτ ∈ RNτ×Nτ

is its adjacency matrix. Network variations are
captured by ∆Gτ = (∆V τ ,∆Aτ ), with ∆V τ denoting new nodes. While the graph structure G
can rely on geographical-distance-based graphs, learning (or inferring) the structure from data is
better suited for continual learning, as detailed in Section 4.2.1.

For a specific task denoted as τ , the observed traffic flow data across the node setNτ during the time
span (t− T ′ + 1) : t is represented by Xτ

t = {xτ1,t, xτ2,t, ..., xτNτ ,t} ∈ RNτ×T ′
. In this context, each

element xτi,t ∈ RT ′
represents the data for the ith node, spanning the preceding T ′ time steps starting

from time t. Likewise, data covering the subsequent time interval (t+1) : (t+ T ) is represented as
Yτ

t = {yτ1,t, yτ2,t, ..., yτNτ ,t} ∈ RNτ×T , where each yτi,t ∈ RT represents the upcoming T time steps
from t+1 for the ith node. Additionally, we introduce Xτ

w = {xτ1,w, xτ2,w, ..., xτNτ ,w} ∈ RNτ×week,
where week refers to the total time steps obtained by segmenting an entire week into time intervals.
Consequently, each xτi,w ∈ Rweek denotes the initial one-week traffic data for the ith node. We
select the first full week of data from Monday to Sunday in the training dataset.

Our primary objective is to develop a probabilistic regression model, parameterized by θ, that
can predict Yτ

t using both Xτ
t and Xτ

w. This can be formally represented as p (Dτ | θ) =∏
t

∏Nτ

i=1 p
(
yτi,t | xτi,t, xτi,w; θ

)
, where Dτ = {(Yτ

t ,X
τ
t ,X

τ
w)}t denotes the dataset correspond-

ing to task τ . Based on the above notations, we now describe our main approach—the Mixture
of Experts (Jacobs et al., 1991) (MoE) framework. For a system with K experts, the probability
distribution p (yτt | xτt , xτw; θ), based on a gating mechanism, can be described as follows:

p (yτ
t | xτ

t , x
τ
w; θ) =

K∑
k=1

p (yτ
t | xτ

t , η = k; θ)︸ ︷︷ ︸
predictor

p (η = k | xτ
w; θ)︸ ︷︷ ︸

gating term

, (1)

where η denotes the expert indicator, and p (η = k | xτw; θ) denotes the probability assigned by
the gating mechanism to expert k for the given input xτw . The central challenge emerges when
modeling the gating term p (η = k | xτw; θ). Rather than employing a single classifier model for
modeling the gating term, our approach, inspired by (Lee et al., 2020), adopt the generative model-
ing: p (yτt | xτt , xτw; θ) =

∑K
k=1 p (y

τ
t | xτt ;ψk)

p(xτ
w;ϕk)p(η=k)∑

k′ p(xτ
w;ϕk′ )p(η=k′) . Here, the function p (xτw;ϕk)
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represents the generative model, which is a reconstructor in our context. For clarity, we split the
parameter θ into task-specific parameters, i.e., θ = ∪Kk=1θk, where θk = {ψk, ϕk}. Additionally,
we assume that for p (η = k), the probability remains uniform. In the setting of long-term stream-
ing traffic networks, the objective is to learn the sequence

(
θ1, θ2, . . . , θT

)
. Given the context of

our continual learning scenario, it is important to note that during the learning of task τ , we use
parameters initialized with θτ−1 and conduct the learning process based on ∆Nτ = |∆V τ |.

4 PROPOSED METHOD: TFMOE
4.1 PRE-TRAINING STAGE

4.1.1 RECONSTRUCTION-BASED CLUSTERING
Pre-training Stage

Figure 2: Architecture of Pre-training Stage.

In the initial phase of our training pipeline, we aim
to group the N1 = |V 1| sensors from the first task
(i.e., τ = 1) into K homogeneous clusters. We ap-
ply Deep Embedded Clustering (Xie et al., 2016),
which enables dual learning of features and cluster
assignments via deep networks. First, we pre-train
an autoencoder feature extractor using a week’s traf-
fic data from each sensor. The reconstructed output
for sensor i is x̂1i,w = Rpre(x

1
i,w), where Rpre is

the autoencoder and x1i,w is the week-long data from
sensor i. For optimization, we employ the MAE loss
Lrecon = 1

N1

∑N1

i=1

∥∥x1i,w − x̂1i,w∥∥1 . After training
the feature extractor Rpre, we encode the week-long
traffic data from sensor i, x1i,w, to a latent repre-
sentation κi = Rpre;enc(x

1
i,w), where κi ∈ RdZ .

Rpre;enc is the encoder part of autoencoder Rpre. Using these representations, we perform balanced
k-means clustering to get K cluster centroids [µ1; . . . ;µK ] ∈ RK×dZ , which serve as initial learn-
able parameters. We measure the soft cluster assignment probability between κi and centroid µk

using the Student’s t-distribution (Van der Maaten & Hinton, 2008): qik =
(1+∥κi−µk∥2)

−1∑
k′(1+∥κi−µk′∥2)

−1 ,

where qik denotes the probability of assigning sensor i to cluster k. We further refine clustering
via an auxiliary target distribution pi as follows (Xie et al., 2016): pik =

q2ik/
∑

i′ qi′k∑
k′(q2ik′/

∑
i′ qi′k′)

.

The distribution pik is strategically designed to augment the homogeneity within clusters, while
giving precedence to data points associated with high confidence levels. For the purpose of
achieving high-confidence assignments, we define the KL divergence loss between qi and pi as
Lcluster = DKL(P∥Q) =

∑
i

∑
k pik log

pik

qik
. Optimizing both the reconstruction loss Lrecon and

the clustering loss Lcluster aids in extracting meaningful patterns from data and clustering sensors
with similar characteristics. The overall loss is: Lp = Lrecon + αLcluster.

4.1.2 CONSTRUCTING EXPERTS

Utilizing the cluster assignment probability qi, we established a hard assignment ci =
argmaxk (qik) for each sensor i. Then, the group of sensors assigned to the k-th cluster is defined
as SGk = {i | ci = k}, and sensors that belong to the same cluster shares homogeneous semantics.
Accordingly, we assign an expert, i.e., Expertk = (Rk, Pk) comprising of a reconstructor Rk and a
predictor Pk, to each cluster k.

4.1.3 TRAINING RECONSTRUCTOR OF EXPERT

Under the continual learning framework, we aim to train the reconstructor with two objectives:

Sensor-Expert Matching. In the ever-evolving traffic network landscape, the integration of a new
sensor mandates the identification of an expert that is semantically compatible. To this end, we train
the reconstructor Rk to proficiently reconstruct the feature representations of its designated sensor
group, denoted as SGk. This strategic training ensures that, upon the introduction of new sensors,
we can seamlessly identify the most appropriate expert that aligns with its semantic content.

Forgetting-Resilient Sampling. One of the primary concerns as we transition to subsequent tasks
is to minimize catastrophic forgetting. Instead of directly storing the current data in memory, we
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utilize a latent variable zk for each Expertk to generate data via p (xw | zk;ϕk). However, as the pos-
terior distribution p (zk | xw;ϕk) is intractable, an approximation through the variational posterior
q (zk | xw; ξk), which is parameterized by ξk, becomes essential.

To address the aforementioned objectives, we model each expert’s reconstructor as a Varia-
tional Autoencoder (VAE) (Kingma & Welling, 2013). For the k-th expert, the marginal like-
lihood for all data in SGk is given by log p

(
x(SGk[1],w), x(SGk[2],w), . . . , x(SGk[|SGk|],w);ϕk

)
=∑

i∈SGk
log p (xi,w;ϕk). For each data point i, it unfolds as:

log p (xi,w;ϕk) = DKL (q (zk | xi,w; ξk) ∥p (zk | xi,w;ϕk))

+Eq(zk|xi,w ;ξk) [− log q (zk | xi,w; ξk) + log p(xi,w, zk;ϕk)]
(2)

The Evidence Lower Bound (ELBO) for expert k is then given by: Lk
ELBO (ϕk, ξk) =∑

i∈SGk
Eq(zk|xi,w;ξk)

[
log

p(xi,w|zk;ϕk)p(zk;ϕk)
q(zk|xi,w;ξk)

]
. Training follows a similar approach to conven-

tional VAEs, where the objective is to maximize Lk
ELBO for each cluster. Consequently, the overall

objective for all clusters becomes LSG
ELBO =

∑K
k=1 Lk

ELBO (ϕk, ξk). We set the prior using learn-
able parameters µk and Σk as p(zk;ϕk) = N (zk | µk,Σk) to enhance the expressiveness of the
latent space for the data assigned to each expert, where Σk is a diagonal matrix. The method for
sampling is described in detail in Section 4.2.3.

4.2 LOCALIZED ADAPTATION STAGE

4.2.1 TRAINING PREDICTOR OF EXPERT

Localized Adaptation Stage

Figure 3: Architecture of Localized Adaptation Stage.

We use the Mixture of Ex-
perts (Jacobs et al., 1991) frame-
work to train each expert’s pre-
dictor. This predictor takes the
past T ′ time steps of data xτi,t
from the ith sensor to fore-
cast the next T time steps yτi,t.
We employ Graph Neural Net-
work (GNN) layers to capture
spatial sensor dependencies and
1D-Convolutional layers for the
temporal dynamics of traffic.
However, we argue that using
predefined geographical-distance-based graphs for GNNs presents the following two issues:

1. Handling Newly Added Nodes. When learning from newly added nodes within predefined graph
structures rooted in actual geographical distances, Graph Neural Networks (GNNs) require the
formation of ‘subgraphs’ centered around these newly added nodes. Consequently, these newly
added nodes inevitably establish many connections with pre-existing nodes from previous tasks.
For this reason, when learning the current task using a GNN, it needs to access many pre-existing
nodes. Although accessing as much data of pre-existing nodes as possible is indeed beneficial, it
violates the goal of continual learning, whose main goal is to achieve optimal performance with
minimal access to previous tasks.

2. Lack of Graph Structure in Sampled Data. Recall that to consolidate prior knowledge, we
will sample data from a VAE decoder, Rk, previously trained on an earlier task (i.e., Forgetting-
Resilient Sampling, which will be described in Section 4.2.3). However, as they are synthetically
generated, they inherently lack the graph structural information, implying that the generated nodes
would be isolated in a predefined geographical-distance-based graph. As a result, GNNs are hin-
dered from maximizing their inherent strength of information propagation across nodes and edges.

Solution: Graph Structure Learning. We address these issues by adopting the graph structure
learning mechanism (Zhu et al., 2021), leveraging the Gumbel softmax trick (Maddison et al., 2016;
Jang et al., 2016), instead of using predefined geographical-distance-based graphs. For a given node
i, its hidden embedding can be represented as: ei = Le(x

τ
i,t), where Le(·) is a linear transformation.

Subsequently, the weight connecting nodes i and j is modeled as: wij = Lw([ei; ej ])−ln(− ln(U)),
where Lw(·) is also a linear transformation. In this equation, U is drawn from a uniform distribu-
tion, U ∼ Uniform(0, 1), which serves to introduce Gumbel noise into the model. In essence, the
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adjacency matrix of the graph that links nodes i and j can be represented as Aij =
exp(wij)∑
j′ exp(wij′ )

.
The learned adjacency matrix inherently exhibits non-symmetry. To address this characteristic ef-
fectively, we adopt the Diffusion Convolution Layer (Li et al., 2017); a Graph Neural Network
(GNN) layer designed to model spatial dependencies via a diffusion process. Given an input graph
signal X ∈ RN×D and an adjacency matrix Aij , the diffusion convolution operation can be defined

as: X:,p ⋆A fζ =
∑M−1

m=0

(
ζm,1

(
D−1

O A
)m

+ ζm,2

(
D−1

I A⊤)m)
X:,p for p ∈ {1, · · · , D}, where

ζ ∈ RM×2 denotes a trainable matrix, and M signifies the number of diffusion steps. The matri-
ces D−1

O A and D−1
I A⊤ function as state transition matrices. Specifically, DO = diag(A1) and

DI = diag(A⊤1) are the out-degree and in-degree diagonal matrices, respectively. Here, 1 ∈ RN

is a column vector with all elements set to one. Building upon the convolution operation, the Diffu-
sion Convolutional Layer is defined as: H:,q =

∑D
p=1 X:,p ⋆A fΛq,p,:,:

for q ∈ {1, · · · , D′}, where
H ∈ RN×D′

represents our desired output and Λ ∈ RD′×D×M×2 = [ζ]q,p denotes the parameter
tensor.

Predictor: For predictor, we utilized a single Diffusion Convolutional Layer for capturing spatial
dependencies among sensors. This was followed by two 1D-Conv layers to capture traffic’s temporal
dynamics. Though our predictor is simplified to validate the effectiveness of our proposed frame-
work, more advanced prediction models can be integrated. Within each expert, Expertk = (Rk, Pk),
the predictor Pk takes the past T ′ time steps of data xτi,t to produce its output Pk

(
xτi,t

)
.

Reconstruction-based Gating: Having defined the predictors {P1, P2, ..., PK}, we now describe
the reconstruction-based gating mechanism that leverages the reconstructors {R1, R2, ..., RK},
trained in the previous section, to assign weights to the the predictions of each predictor. The

gating weights assigned to each predictor are defined as follows: gk(xτi,w) =
p(xτ

i,w;ϕk)∑
k′ p(xτ

i,w;ϕk′)
, Here,

xτi,w denotes the one-week traffic data of the sensor i in task τ from the first Monday to Sunday.
Moreover, gk(xτi,w) represents the weight given to sensor i in task τ for the predictor Pk. A large
value of gk(xτi,w) implies that the prediction from Pk is particularly important for the final predic-
tion of sensor i. Utilizing these gating weights, the final prediction, which integrates the outputs
from all predictors {P1, P2, ..., PK}, is defined as follows: O

(
xτi,t

)
=

∑K
k=1 gk

(
xτi,w

)
Pk

(
xτi,t

)
.

In other words, the final prediction on xτi,t is generated by the weighted sum of the predictions
made by the predictors Pk, and the weight is determined by how well the first week traffic data of
the sensor i is reconstructed by the reconstructor Rk, which is denoted by gk(xτi,w). Correspond-
ingly, the loss function employed to train the entire set of experts can be formulated as follows:
LO =

∑Nτ

i=1

∥∥O (
xτi,t

)
− yτi,t

∥∥
1
.

Discussion: Learning on the Expanding Traffic Network. Real-world traffic networks expand
as new sensors emerge in surrounding areas. While these sensors can reflect known traffic patterns,
they often introduce new dynamics. In the first task (i.e., τ = 1), the entire graph G1 = (V 1, A1)
is known. But re-training the network for each subsequent task is impractical. Our goal is to
efficiently retain prior knowledge while accommodating new patterns via continual learning.

4.2.2 RECONSTRUCTION-BASED KNOWLEDGE CONSOLIDATION

Inspired by the Learning without Forgetting (LwF) approach (Li & Hoiem, 2017), we pro-
pose a novel strategy termed the “reconstruction-based consolidation loss” to retain previ-
ously acquired knowledge while adapting to new tasks. We use LGτ

k to denote the local-
ized group associated with the k-th reconstructor for the training of task τ , i.e., LGτ

k ={
i |argmax

j
p
(
xτi,w;ϕ

(τ−1)
j

)
= k, i ∈ ∆V τ

}
, where ϕ(τ−1)

j indicates the parameters of the j-th

reconstructor that have been optimized upon completion of training up to the (τ − 1)-th task. A
localized group collects the newly added nodes ∆V τ in the current task based on the reconstruc-
tion probability determined by the reconstructor that was trained and optimized in the previous task
(τ − 1). The reconstruction-based consolidation loss using VAE, which incorporates the use of the
localized group, is developed in a manner similar to Section 4.1.3. For the k-th expert, the marginal
likelihood for all data in LGk is represented as: log p

(
x(LGk[1],w), . . . , x(LGk[|LGk|],w);ϕk

)
=∑

i∈LGk
log p (xi,w;ϕk). The Evidence Lower Bound (ELBO) for all experts using the variational

distribution q is as: LLG
ELBO =

∑K
k=1

∑
i∈LGk

Eq(zk|xi,w;ξk)

[
log

p(xi,w|zk;ϕk)p(zk;ϕk)
q(zk|xi,w;ξk)

]
.
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The role of the consolidation loss is as follows: The reconstructor classifies newly added nodes
∆V τ of the current task into localized groups LGτ

k, based on the optimized parameters ϕ(τ−1)
k from

the previous task. Then, during the learning process of reconstructor parameters ϕτk in the current
task τ , consolidation loss strives to maintain the nodes belonging to these localized groups as much
as possible. In essence, this helps preserve knowledge from the previous task while learning new
information in the current task. The optimization objective for training the entire model is given by
the loss function L = LO − βLLG

ELBO. Here, where β is the weight of the consolidation loss. For
the first task, since training is conducted on nodes partitioned into SGk, the final loss is represented
as L = LO − βLSG

ELBO.

4.2.3 FORGETTING-RESILIENT SAMPLING

Next, we introduce ‘forgetting-resilient sampling,’ which is an additional methodology that mitigates
catastrophic forgetting. The core idea is to utilize the decoders of reconstructors that were trained on
earlier tasks to generate synthetic data samples. Within the context of our VAE-based reconstructor,
for each Expertk, we can sample ns/k instances of the latent variable {zk,1, zk,2, . . . , zk,ns/k} ∼
p
(
zk;ϕ

(τ−1)
k

)
. From each zk,i, data samples are generated according to xwk,i

∼ p (xw | zk,i;ϕk).
Thus, the dataset sampled for Expertk can be defined as Xs

k =
{
xwk,1

, xwk,2
, . . . , xwk,ns/k

}
. By

aggregating over all experts, the entire sampled dataset is given by Xs =
⋃K

k=1X
s
k , where |Xs| =

ns. Note that we set ns as a hyperparameter in our model. As we train our model, we integrate
this generated data with the new nodes ∆V τ from the current task τ . Since our generated data
encapsulates a week’s worth of information, we have ensured synchronization of its temporal aspects
when feeding it into the predictor, implementing appropriate data slicing for temporal alignment.

An important point to stress is that, being synthetic, our generated data do not inherently have a
graph structure determined by the actual geographical distances. Yet, by adopting the graph learning
methodology detailed in Section 4.2.1, we can adeptly address this limitation. Moreover, when
updating embeddings using a GNN, it is essential to possess data that are both similar in nature and
rich in diversity. The sampling approach facilitated by our VAE guarantees efficient production of
such diverse samples for each expert, which is corroborated by our experiments in Section F.

4.2.4 RECONSTRUCTION-BASED REPLAY

In the context of continual learning, one characteristic of streaming traffic networks is that even
pre-existing sensors display new patterns over long-term periods (e.g., several years) due to various
factors such as urban development. While we strive to minimally access information from previous
tasks, these sensors inherently offer indispensable information for our model training. Our main
focus is on the pre-existing sensors that exhibit patterns distinct enough that they are universally
unfamiliar to all experts, posing significant challenges in handling. To systematically identify these
sensors, we deploy a reconstructor described as follows:

VR = {v[1], v[2], ..., v[nr]}, where∑
k

log p
(
xv[1];ϕ

(τ−1)
k

)
≤

∑
k

log p
(
xv[2];ϕ

(τ−1)
k

)
≤ · · · ≤

∑
k

log p
(
xv[N(τ−1)];ϕ

(τ−1)
k

)
and ∀j ∈ {1, 2, ..., N (τ−1)}; v[j] ∈ V (τ−1),

(3)

where nr is a hyperparameter dictating the number of elements in set VR. The set VR comprises
nodes, sorted in ascending order based on their reconstruction probability across all experts’ re-
constructors, and it is truncated to retain only the first nr entries. For training, nodes from VR are
combined with the nodes of the current task, represented as ∆V τ , along with the nodes sampled as
discussed in Section 4.2.3. Consequently, the total number of nodes employed for training is given
by ∆Nτ + ns + nr.

5 EXPERIMENTS

Dataset. Please refer to Appendix A for details regarding dataset.

Baselines. Please refer to Appendix B for details regarding baselines.

Evaluation Protocol. Please refer to Appendix C for details regarding evaluation protocol.

Implementation Details. Please refer to Appendix D for details regarding implementation details.
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Table 1: Performance of traffic flow forecasting on PEMSD3-Stream dataset. The model names are
appended with their corresponding pre-existing sensor access ratios, e.g., TFMoE (1%) indicates the
TFMoE model with a 1% access ratio. Importantly, γ represents the ratio of pre-existing sensors
accessed due to the subgraph structure. Please note that, in line with standard practice in traffic
forecasting research, we use the exact prediction values corresponding to their exact time frames:
15-minute, 30-minute, and 60-minute, for their respective evaluation metrics1.

PEMSD3-Stream 15 min 30 min 60 min Training Time
(sec)

Model MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Retrained

GRU 13.51 21.83 18.19 15.80 25.89 21.05 23.47 35.53 28.50 1824
DCRNN 12.38 18.98 16.64 13.78 21.20 18.26 16.88 26.76 21.13 50K+
STSGCN 12.95 19.84 17.20 13.53 21.05 18.15 16.05 25.89 21.10 50K+

Retrained-TFMoE 12.37 20.32 16.38 13.80 22.75 17.95 17.02 27.91 21.88 846

Online

Static-TFMoE 14.43 23.50 21.22 16.19 26.72 23.05 20.78 34.29 29.46 209
Expansible-TFMoE 14.68 23.84 21.38 16.74 27.43 23.93 21.77 35.69 31.08 239

TrafficStream (10+γ%) 13.94 22.69 20.02 15.91 26.03 22.52 21.12 34.04 30.16 206

TFMoE (1%) 12.58 20.63 16.63 14.12 23.27 18.40 17.65 28.95 22.62 255

Figure 4: The MAE of traffic flow fore-
casting over consecutive years.

Model MAE RMSE MAPE Use
Subgraphs?

Store
Features?

Retrained-TFMoE 14.06 23.29 18.30 ✗ ✗

Static-TFMoE 16.63 27.68 23.70 ✗ ✗
Expansible-TFMoE 17.24 28.56 24.76 ✗ ✗

TrafficStream (10+γ%) 16.35 26.60 24.23 ✓ ✓
PECMP (10+γ%) 16.02* 26.51* 22.30* ✓ ✓

TFMoE(1%) 14.42 23.90 18.78 ✗ ✗

Table 2: 60-minute average prediction performance using
the TrafficStream predictor structure across various mod-
els. * indicates values reported from the PECMP paper.

5.1 EXPERIMENTAL RESULTS
Table 1 demonstrates the forecasting capabilities of each model at different time horizons (15-, 30-,
and 60-minutes ahead), captured by average MAE, RMSE, and MAPE over 7 years. Figure 4 visu-
alizes these metrics from 2011 to 2017. The 60-minute average outcomes using the TrafficStream
predictor structure across various models are detailed in Table 2. As the official source code of
PECMP is not available, we include only comparable reported values.

We have the following observations: 1) Static-TFMoE underperforms because it uses only 2011
data for predictions up to 2017. This highlights the necessity of integrating new data for accu-
rate forecasting. 2) Results from Expansible-TFMoE reveal that depending solely on newly added
sensor data each year, without referencing historical knowledge, degrades performance due to catas-
trophic forgetting. 3) Existing models (i.e., TrafficStream and PECMP) connect newly added nodes
with pre-existing nodes by constructing subgraphs around them, while TFMoE does not require
an access to any pre-existing nodes thanks to the graph structure learning. Besides, existing mod-
els also construct subgraphs around replayed nodes, which further adds the number of accessed
pre-exisitng nodes (denoted by γ2), while TFMoE merely accesses the replayed nodes without con-
struction of subgraphs. Note that existing models use 10% of the number of pre-existing sensors
for replay, while TFMoE only uses 1%. In short, TFMoE outperforms existing models even with a
significantly limited access to pre-existing nodes. 4) To detect and replay sensors with patterns that
are either similar or different between the current and the previous year, existing models typically
require storing features from all sensors of the previous year in a separate memory. However, as
elaborated in Section 4.2.4, our approach uses a VAE-based reconstructor, allowing us to analyze
and compare with past patterns using only the data from the current task. This eliminates the need
for dedicated memory storage for historical data. From the perspective of continual learning, which
aims to minimize memory usage for past tasks, this presents a significant advantage. 5) While other

1In previous studies, authors report the average metrics considering the interval of 5-minute. For instance,
in the case of the 15-minute, they computed an average of predictions of 5-minute, 10-minute and 15-minute.
In this work, we follow the standard practice in traffic forecasting research, for example, we compute the metric
based on only the predictions made at 15-minute. This difference in calculation method may account for any
discrepancies in numeric values when compared to the results of previous studies.

2Our empirical observations indicate that for models employing subgraphs, the average access rate to pre-
existing sensors exceeds 20%, implying γ% > 20%. This is because replayed nodes also possess subgraphs.
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Table 3: Component analysis of TFMoE.

Method 15 min 30 min 60 min Training Time
(sec)MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

w/o Consol 13.60 22.02 18.44 15.31 24.88 20.46 19.52 31.52 25.70 224
w/o Sampling 12.90 21.07 17.04 14.55 23.89 18.96 18.43 30.03 23.60 245

w/o Replay 14.90 24.17 22.33 16.99 27.77 25.25 22.11 36.16 33.04 249
TFMoE 12.58 20.63 16.63 14.12 23.27 18.40 17.65 28.95 22.62 255

methods employ various strategies against catastrophic forgetting, TFMoE stands superior, access-
ing only 1% of the pre-existing nodes corresponding to past tasks. This signifies its robustness and
suitability for real-world traffic forecasting.

5.2 MODEL ANALYSIS

Component Analysis: We delve deeply into the individual components of TFMoE. To systemat-
ically evaluate the contribution of each component to the overall performance, we introduce four
model variations: (i) TFMoE which integrates all the components, (ii) w/o Consol which excludes
the Consolidation Loss (detailed in Section 4.2.2), (iii) w/o Sampling which operates without the
Sampling mechanism (as discussed in Section 4.2.3), and (iv) w/o Replay that does not employ the
Replay strategy (outlined in Section 4.2.4). The comparative performances of these models are pre-
sented in Table 3. We observe that each component plays a pivotal role in enhancing the model’s
efficacy, as elucidated in the respective sections. Notably, TFMoE, with its full suite of components,
stands out as the top-performing model, validating the efficacy of our proposed methodologies.

(a) (b)

Figure 5: Comparison of sensor allocation to experts over
the years (2011-2017) (a) With consolidation loss and (b)
Without consolidation loss.

Effect of Consolidation Loss on Ex-
pert Utilization: In this section, we
evaluate the impact of the consolida-
tion loss described in Section 4.2.2
on expert utilization within TFMoE,
emphasizing its role in addressing
catastrophic forgetting. Our ablation
study, depicted in Figure 5, employs
two heatmaps. The x-axis spans the
years 2011-2017, and the y-axis rep-
resents our four experts. Each cell in
the heatmap indicates the number of
sensors allocated to an expert during
training, based on the lowest recon-
struction error. Figure 5 (a) and (b) contrast scenarios with and without the consolidation loss,
respectively. We observe that incorporating the consolidation loss results in a balanced sensor dis-
tribution across experts throughout the years, which helps address catastrophic forgetting by main-
taining each expert’s unique contributions. Without the consolidation loss, sensors predominantly
cluster around one expert after the first year, indicating a failure in diverse expert utilization and
the onset of catastrophic forgetting. In essence, the consolidation loss is pivotal for balanced expert
engagement in TFMoE, preventing dominance by any single expert and fostering effective continual
learning.

6 CONCLUSION

In this paper, we introduced the Traffic Forecasting Mixture of Experts (TFMoE), a novel contin-
ual learning approach designed specifically for long-term streaming networks. Informed by real-
world traffic patterns, TFMoE generates a specialized expert model for each homogeneous group,
effectively adapting to evolving traffic networks and their inherent complexities. To overcome the
significant obstacle of catastrophic forgetting in continual learning scenarios, we introduce three
complementary mechanisms: ‘Reconstruction-Based Knowledge Consolidation Loss’, ‘Forgetting-
Resilient Sampling’, and ‘Reconstruction-Based Replay mechanisms’, which allow TFMoE to retain
essential prior knowledge effectively while seamlessly assimilating new information. The merit of
our approach is validated through extensive experiments on a real-world long-term streaming net-
work dataset, PEMSD3-Stream. Not only did TFMoE demonstrate superior performance in traffic
flow forecasting, but it also showcased resilience against catastrophic forgetting, a key factor in the
continual learning of traffic flow forecasting in long-term streaming networks. As such, our model
offers a potent and efficient approach to tackling the evolving challenges of traffic flow forecasting.
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Ethics Statement In alignment with ICLR’s principles, our research endeavors to offer positive
contributions to society. We uphold rigorous scientific standards, ensuring accurate, transparent,
and reproducible outcomes. Every effort was made to minimize potential harm. Throughout our
research, we emphasized fairness and meticulously adhered to privacy and confidentiality standards
in data collection and usage.

Reproducibility Statement To ensure reproducibility, we detailed the datasets used in our experi-
ments and the evaluation protocol in Appendices A and C , respectively. Further, the implementa-
tion details of our model are provided in Appendix D . The source code for our TFMoE is available
at https://anonymous.4open.science/r/None3-28FA.

REFERENCES

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting. NeurIPS, 2020.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bix-
iong Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-
series forecasting. NeurIPS, 2020.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng Jia. Freeway perfor-
mance measurement system: mining loop detector data. Transportation Research Record, 2001.

Xu Chen, Junshan Wang, and Kunqing Xie. Trafficstream: A streaming traffic flow fore-
casting framework based on graph neural networks and continual learning. arXiv preprint
arXiv:2106.06273, 2021a.

Yuzhou Chen, Ignacio Segovia, and Yulia R Gel. Z-gcnets: Time zigzags at graph convolutional
networks for time series forecasting. In ICML. PMLR, 2021b.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. NeurIPS, 29, 2016.

Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. Spatial-temporal graph ode networks
for traffic flow forecasting. In KDD, 2021.

Kan Guo, Yongli Hu, Yanfeng Sun, Sean Qian, Junbin Gao, and Baocai Yin. Hierarchical graph
convolution network for traffic forecasting. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pp. 151–159, 2021.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. In AAAI, 2019.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

10

https://anonymous.4open.science/r/None3-28FA


Under review as a conference paper at ICLR 2024

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Shiyong Lan, Yitong Ma, Weikang Huang, Wenwu Wang, Hongyu Yang, and Pyang Li. Dstagnn:
Dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In Interna-
tional Conference on Machine Learning, pp. 11906–11917. PMLR, 2022.

Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture
model for task-free continual learning. arXiv preprint arXiv:2001.00689, 2020.

Mengzhang Li and Zhanxing Zhu. Spatial-temporal fusion graph neural networks for traffic flow
forecasting. In AAAI, 2021.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926, 2017.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Bin Lu, Xiaoying Gan, Haiming Jin, Luoyi Fu, and Haisong Zhang. Spatiotemporal adaptive gated
graph convolution network for urban traffic flow forecasting. In CIKM, 2020.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 7765–7773, 2018.

Cheonbok Park, Chunggi Lee, Hyojin Bahng, Yunwon Tae, Seungmin Jin, Kihwan Kim, Sungahn
Ko, and Jaegul Choo. St-grat: A novel spatio-temporal graph attention networks for accurately
forecasting dynamically changing road speed. In CIKM, 2020.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):
123–146, 1995.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Unsok Ryu, Jian Wang, Unjin Pak, Sonil Kwak, Kwangchol Ri, Junhyok Jang, and Kyongjin Sok. A
clustering based traffic flow prediction method with dynamic spatiotemporal correlation analysis.
Transportation, pp. 1–38, 2022.

Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple time
series. arXiv preprint arXiv:2101.06861, 2021.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. Spatial-temporal synchronous graph
convolutional networks: A new framework for spatial-temporal network data forecasting. In
AAAI, 2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

11



Under review as a conference paper at ICLR 2024
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APPENDIX

A DATASET

In order to evaluate the performance of TFMoE, we conduct experiments on the PEMSD3-Stream
dataset, which is a real-world highway traffic dataset collected by the Caltrans Performance Mea-
surement System (PeMS) in real time every 30 seconds (Chen et al., 2001). The traffic data are
aggregated into 5-minute intervals, resulting in 12 time steps per hour. PEMSD3-Stream dataset
consists of traffic flow information in the North Central Area from 2011 to 2017. Consistent with
previous studies, we select data from July 10th to August 9th annually. The input data is rescaled
using Z-score normalization.

Table 4: Dataset statistics of pre-defined graph structure.

Year 2011 2012 2013 2014 2015 2016 2017

# Nodes 655 715 786 822 834 850 871

# Edges 3926 4390 4918 5218 5294 5404 5572

Predefined Graph Structures.

(a) Predefined graph structure provided by TrafficStream

(b) Our modified predefined graph structure

Figure 6: Comparison between the predefined
graph structure provided by TrafficStream and our
modified predefined graph structure.

The PEMSD3-Stream traffic network is con-
tinually expanding, meaning that sensors in-
stalled in the τ -th year continue to exist in the
following years. Previous study utilized adja-
cency matrices grounded in geographical dis-
tances to represent the predefined graph struc-
tures. However, our analysis reveals that these
matrices contain a high number of connected
components. To reduce this number and cre-
ate a more realistic network, we adopt a strat-
egy where each individual sensor is connected
to its k nearest sensors based on geographi-
cal proximity, each connection (edge) having
a weight of 1. In other words, if we denote
the adjacency matrix in the τ -th year as Aτ ,
it is structured as follows: Aτ

ij = 1 if j ∈
Nearest k(i) else 0, where Nearestk(i) repre-

sents the set of k-nearest nodes of node i. Sub-
sequently, to ensure the symmetry of the ad-
jacency matrix, we carried out the operation
A = A ∪ AT . We tune the value of k by in-
vestigating the real-world connectivity patterns
on the map, and we set k to 5 for our experi-
ments. Figure 6 provides a visual comparison
between our predefined graph construction and
the one from TrafficStream. For fair compar-
isons, when conducting experiments that utilize predefined graph structures, we employ our newly
defined graph structure for all models to ensure accurate performance. A detailed summary of the
datasets and the predefined graph structure can be found in Table 4.

B BASELINES

We compare TFMoE with the following baselines:

• GRU (Chung et al., 2014): GRU operates by leveraging gated recurrent units, which enable it to
effectively manage sequential data by adapting the information flow through its internal memory
mechanism. For the training of this GRU, we utilize data from every node each year.
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• DCRNN (Li et al., 2017): DCRNN integrates both spatial and temporal dependency by using
diffusion convolution and encoder-decoder architecture. For the training of this DCRNN, we
utilize data from every node each year.

• STSGCN (Song et al., 2020): STSGCN employs a localized spatial-temporal graph convolu-
tional module, which allows the model to directly and concurrently capture intricate localized
spatial-temporal correlations. For the training of this STSGCN, we utilize data from every node
each year.

• TrafficStream (Chen et al., 2021a): The first work that applies continual learning techniques
to a streaming traffic dataset. In order to mitigate catastrophic forgetting, TrafficStream pro-
poses the use of Elastic Weight Consolidation (EWC) and a replay mechanism utilizing Jensen-
Shannon divergence.

• PECPM (Wang et al., 2023b): PECPM utilizes a bank module and Elastic Weight Consol-
idation (EWC) for pattern storage in evolving traffic networks, allowing the model to adapt
seamlessly with pattern expansion and consolidation.

• Retrained-TFMoE: We retrain TFMoE every year with all nodes given in each year. We ini-
tialize each year’s model with the parameters learned from the previous year’s model.

• Static-TFMoE: We train TFMoE solely on data from the first year (2011) and then directly use
the trained model, without further training, to predict the traffic flow of all subsequent years.

• Expansible-TFMoE: We train TFMoE in an online manner each year, utilizing only data from
the newly added sensors, while initializing each year’s model with the parameters learned from
the previous year’s model. This model is equivalent to TFMoE without sampling and replay, as
described in Sections 4.2.3 and 4.2.4, respectively.

C EVALUATION PROTOCOL

We leverage three standard performance metrics for model evaluation: mean absolute error (MAE),
root mean squared error (RMSE), and mean absolute percentage error (MAPE). The datasets are
divided into training, validation, and test sets with a distribution ratio of 6:2:2. Utilizing datasets
aggregated into 5-minute intervals, our model uses one hour of historical data (12 time steps) to
make predictions for the subsequent hour (12 time steps). Experiments are conducted on 13th Gen
Intel(R) Core(TM) i9-13900K and NVIDIA GeForce RTX 4090. We conducted each experiment
five times and report the mean performance.

D IMPLEMENTATION DETAILS

In our proposed framework, the number of clusters (i.e., Experts) is set to K = 4. In the
‘Reconstruction-Based Clustering’ (Section 4.1.1), an AutoEncoder structure is adopted for the pre-
training reconstructor, where both the encoder and decoder are designed with three MLPs each. In
the ‘Training Reconstructor’ (Section 4.1.3), the reconstructor is based on a Variational AutoEn-
coder (VAE) architecture, with both the encoder and decoder again made up of three MLPs. For
both the AutoEncoder and VAE, the encoded latent hidden dimension is set to 32. The coefficient
for the cluster loss, α, is set to 0.0001. In the ‘Training Predictor of Expert’ (Section 4.2.1), the
predictor comprises one GNN layer and two 1-D convolution layers, with a consistent hidden di-
mension of 32 throughout. The diffusion convolution operation’s diffusion step is set to M = 2.
The consolidation loss, β, for the ‘Reconstruction-Based Knowledge Consolidation’ (Section 4.2.2)
is fixed to 10. In the ‘Forgetting-Resilient Sampling’ (Section 4.2.3), the number of samples, ns, is
set to 9% of the current task graph size, while in the ‘Reconstruction-Based Replay’ (Section 4.2.4),
the number of replays, nr, is set to 1% of the current task graph size.

Training was executed with 80 epochs for the first task and 10 epochs for the following tasks. We
employed a batch size of 128 and utilized the Adam (Kingma & Ba, 2014) optimizer, setting learn-
ing rates of 0.001, 0.0001, and 0.01 for the pre-training reconstructor, reconstructor, and predictor,
respectively.

E ANALYSIS OF RECONSTRUCTOR AND PREDICTOR OUTPUTS

We perform a detailed analysis of the performance of TFMoE with a specific emphasis on the indi-
vidual outputs generated by the experts. We have the following observations in Figure 7: 1) Upon
close inspection of the one-week traffic flow data from sensor 126 (i.e. Figure 7 (a)), it becomes ev-
ident that expert 2 has managed to achieve the most accurate reconstruction. 2) Moreover, a detailed
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Figure 7: (a) Actual one-week traffic flow data measured from sensor 126 in the year 2012. (b)
One-week traffic flow reconstructed by each expert’s Reconstructor. (c) Traffic flow forecasted by
each expert’s Predictor. (d) Actual traffic flow data measured from sensor 126.

examination of the traffic flows predicted by each expert’s Predictor (i.e., Figure 7 (c)) demonstrates
that expert 2’s predictor closely mirrors the true traffic flow (i.e., Figure 7 (d)). 3) While the pre-
dicted traffic flow from predictor 2 and 3 may seem similar, a closer observation of the scale on the
y-axis reveals that the output from expert 2’s predictor aligns more precisely with the true traffic
data. Through the above comprehensive analyses, we visually underscore the notion that the experts
proficient in reconstruction also tend to provide more accurate predictions. This in-depth evaluation
helps elucidate the functioning of the components of TFMoE and their individual contributions to
the overall performance.

F VISUALIZATION OF SYNTHETIC DATA GENERATED THROUGH DECODERS
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Figure 8: Visualization of synthetic data generated through decoders. Above the dashed line, we
present plots of synthetic samples drawn using xw ∼ p (xw | zk;ϕk), where zk ∼ p (zk;ϕk) for each
Expert. Below the dashed line, the plots showcase the actual traffic data assigned to the respective
Expert.
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To assess how well the synthetic data mirrors the characteristics of real traffic data assigned to each
Expert, we leveraged the decoders of individual Experts. Specifically, synthetic samples were drawn
using xw ∼ p (xw | zk;ϕk), where zk ∼ p (zk;ϕk). By examining Figure 8, we can observe that
the synthesized data reflects the attributes of the real traffic data for each Expert. This is evident both
from the y-axis scale and the overall shape of the graphs. Building on our discussions in Section
4.2.3, our objective is to generate data that is both similar in nature but rich in diversity. The synthetic
data showcased in the figure aligns well with this objective, suggesting that our approach is adept at
preserving past memories in a continual learning framework.

G OPTIMIZING EXPERT SELECTION

Table 5: Performance metrics (MAE, RMSE, MAPE) and training time over different numbers of
experts.

# of Expert 15 min 30 min 60 min Training Time
(sec)MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

K = 1 13.16 21.67 17.29 15.02 24.93 19.59 19.58 32.28 24.97 76
K = 2 12.83 21.07 16.82 14.54 24.02 18.84 18.44 30.24 23.67 140
K = 3 12.73 20.93 16.79 14.32 23.65 18.73 18.01 29.54 23.14 209
K = 4 12.58 20.63 16.63 14.12 23.27 18.40 17.65 28.95 22.62 255
K = 5 12.49 20.51 16.57 14.02 23.16 18.28 17.41 28.59 22.46 338
K = 6 12.46 20.42 16.48 13.94 22.97 18.18 17.25 28.32 22.19 391

In our exploration of the impact of expert count in TFMoE, a notable trend emerges. Table 5 reveals
that as we increase the number of experts, prediction accuracy indicators, such as MAE, RMSE, and
MAPE, generally decrease. This enhanced performance can be attributed to each expert’s ability to
specialize in distinct clusters of data, thus improving the overall accuracy. However, this increased
granularity comes at a cost: heightened training times in direct proportion to the number of experts.

Interestingly, the benefits begin to plateau between the inclusion of the fourth and fifth expert. De-
spite the added computational cost, there is no significant difference in error metrics. Consequently,
it appears that utilizing four experts strikes the ideal balance between accuracy and computational
overhead. This observation underscores the importance of expert selection, balancing predictive
accuracy against model complexity.

A potential reason behind the diminishing returns in performance, as the expert count grows, is re-
dundancy. Ideally, we aim for experts to be distinctly trained to handle varying traffic patterns. But,
as the number of experts becomes excessive, overlapping features among experts become unavoid-
able. Such redundant experts contribute minimally to overall performance, explaining the gradual
deceleration in gains.

Several strategies can be adopted for optimal expert selection. While an empirical approach involves
incrementally adding experts and observing the performance, a visual inspection using tools like t-
SNE, as illustrated in Figure 1, can provide insights. A more advanced method leverages our
generator model. Experts that generate similar samples, as determined by our generator, are deemed
to have overlapping characteristics. In such cases, one of the redundant experts can be pruned from
the model.

Building on our discussion, we put forth a dynamic expert adjustment strategy. Employing the LG,
described in Section 4.2.2, we can discern experts with low utilization rates. Such underutilized
experts may not significantly bolster performance and, therefore, might be considered for removal.
On the other hand, when an expert’s scope extends over a diverse dataset, there’s an opportunity for
refinement. By performing clustering on the latent vectors of the data associated with this expert,
we can effectively divide the data into more distinct subsets. This allows us to allocate dedicated
experts to each clustered data group, ensuring more focused and specialized learning.

H REPLAY METHOD ANALYSIS: RECONSTRUCTION-BASED REPLAY VS
RANDOM SAMPLING

In the realm of continual learning, the efficiency of the random sampling method has been validated
through numerous studies(Chaudhry et al., 2019; Vitter, 1985). In this section, we delve into an
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Table 6: Comparison of performance metrics (MAE, RMSE, MAPE) between our Reconstruction-
Based Replay and the random sampling strategy for replay methods.

Replay Method Replay Ratio 15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Random
1% 14.29 23.19 20.78 16.11 26.43 22.97 20.66 33.92 29.22
5% 14.07 22.89 20.46 15.88 26.15 22.63 20.42 33.56 29.40
10% 13.54 22.05 19.42 15.25 25.08 21.45 19.42 31.84 27.57

Ours
1% 12.58 20.63 16.63 14.12 23.27 18.40 17.65 28.95 22.62
5% 12.59 20.61 16.62 14.14 23.27 18.41 17.74 28.99 22.77
10% 12.61 20.64 16.63 14.17 23.29 18.57 17.82 29.02 23.01

analysis contrasting our Reconstruction-Based Replay methodology, as detailed in Section 4.2.4,
with the random sampling. The experimental comparison is presented in Table 6. The ‘Replay Ratio’
in the table determines the amount of data to be replayed in proportion to the current task’s graph
size. Notably, our method surpasses the performance of random sampling employing over 10%
replay, even when utilizing merely 1% replay. In the context of continual learning, infrequent access
to pre-existing nodes from prior tasks implies a heightened efficiency, corroborating the effectiveness
of our proposal. Interestingly, in our methodology, increasing the replay ratio doesn’t substantially
amplify performance. This suggests that our approach adeptly selects pivotal samples for the current
task with minimal replay. Conversely, the performance of random sampling demonstrates a direct
correlation with increased replay ratios. This can be attributed to its inherent mechanism, wherein
it randomly selects samples, thereby necessitating a higher replay ratio to bolster the current task’s
performance.

I EVALUATING THE IMPACT OF SAMPLING RATIO ON MODEL
PERFORMANCE

Table 7: Comparison of performance metrics (MAE, RMSE, MAPE) across varying sampling ratios.

Sampling Ratio 15 min 30 min 60 min Training Time
(sec)MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

0% 12.90 21.07 17.04 14.55 23.89 18.96 18.43 30.03 23.60 242
5% 12.63 20.69 16.65 14.16 23.33 18.43 17.75 29.04 22.66 250

10% 12.58 20.64 16.62 14.11 23.26 18.39 17.66 28.95 22.63 259
20% 12.54 20.62 16.64 14.06 23.23 18.44 17.55 28.86 22.57 277
30% 12.53 20.57 16.70 14.04 23.19 18.47 17.52 28.82 22.59 285

In this section, building upon the Forgetting-Resilient Sampling method we introduced in Sec-
tion 4.2.3, we further investigate the influence of the sampling ratio on model performance. We
tabulate our results in Table 7, where the ‘Sampling Ratio’ designates the proportion of data sam-
pled relative to the current task’s graph size. Throughout our experimentation, the replay ratio
consistently fixed at 1%. Our empirical results underscore the significance of the sampling method.
Specifically, abstaining from sampling altogether resulted in the poorest performance, whereas an
optimal increase in the sampling ratio to around 10% exhibited noticeable improvements. Imple-
menting sampling proves instrumental, as it furnishes each Expert with representative data that an-
chors their foundational knowledge, thereby mitigating the effects of catastrophic forgetting. The
rationale behind favoring a heightened ratio for sampling over replay is twofold: unlike replay,
sampled data inherently embodies and represents each Expert, and there’s an inherent necessity for
individualized sampling for each Expert. Additionally, our findings suggest that even with a mod-
est sampling ratio, it’s sufficient to retain the memories of each Expert, obviating the need for an
excessive number of samples.
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J EXPLORING CLUSTERING IN TRAFFIC FORECASTING AND REVISITING
THE CONTRIBUTIONS OF OUR PROPOSED MODEL

In this section, we discuss the use of clustering in the general field of traffic forecasting, exam-
ining the similarities and differences with our model, and recapitulating the distinctive features or
contributions of our model.

Although clustering is not a commonly used method in the field of traffic forecasting, several papers
adopting it can be found. For instance, Xie et al. (2020) uses clustering to reduce computational
complexity. Instead of learning from all nodes, it clusters nodes and then calculates a Pair-wise
Flow Similarity Matrix for each cluster to identify the Anomalous Degree of traffic flow. Another
study Guo et al. (2021) uses a method akin to Differentiable Pooling to perform Hierarchical Graph
Convolution on given graphs through spectral clustering. This approach pools nodes with similar
characteristics into one node to facilitate graph convolution. Ryu et al. (2022) proposes spatiotem-
poral correlation matrices and uses them for clustering. Following the clustering, it trains distinct
prediction models for each cluster, with predictor selection being guided by mutual information. Al-
though these methodologies share some common ground with ours in terms of employing clustering,
they differ significantly in their modeling approaches, clustering strategies, prediction techniques,
and fundamental concepts. Many models employ clustering for various purposes, but each does
so with different objectives. Our model, in particular, has been designed to suit continual learn-
ing traffic forecasting methodologies, making it fundamentally different in both implementation and
concept from existing clustering traffic forecasting models.

After exploring the broader landscape of clustering in traffic forecasting, we now turn to revisit
the key contributions of our model. In the pre-training stage, we utilize k-means clustering on
hidden representations derived from an AutoEncoder to form sensor groups, assigning a specialized
Expert, composed of a predictor and reconstructor, to each. This concept of segmenting traffic data
into multiple homogeneous groups and assigning an Expert to each minimizes interference during
training and alleviates catastrophic forgetting. For making predictions, a Mixture of Experts (MOE)
structure is employed, featuring a VAE-based Reconstructor to determine the appropriate Expert
selection. This particular architecture, using clustering to create sensor groups and then assigning
a VAE-based Reconstructor, is strategically designed to resonate with the objectives of continual
traffic forecasting. Our contributions, emphasized by this strategic architecture, are highlighted by
the following key aspects:

1. Our proposed ‘Reconstructor-Based Knowledge Consolidation Loss’ utilizes a methodology in-
spired by Learning Without Forgetting (LWF) Li & Hoiem (2017) to efficiently preserve knowl-
edge gained from previous tasks while adapting to new task. This is achieved by leveraging the
Reconstructor to calculate the reconstruction probabilities for sensors of the current task. These
probabilities are then used to form localized groups for each Expert. This approach not only fa-
cilitates the retention of previously learned information but also aids in the smooth transition and
integration of new task data.

2. Our ‘Forgetting-Resilient Sampling’ strategy, introduced as a supplementary approach to combat
catastrophic forgetting, leverages decoders from reconstructors trained on earlier tasks to generate
synthetic data samples. These synthetically produced samples effectively capture the essence of
the knowledge embedded in Experts from previous tasks. By integrating these samples into the
training regimen for current tasks, we enable each Expert to maintain the knowledge acquired
from previous task. This methodology facilitates the generation of representative samples for
each Expert, obviating the necessity of storing data from previous tasks in external memory, a
significant stride in efficient memory management in continual learning frameworks.

3. A characteristic of streaming traffic networks is that even pre-existing sensors exhibit new patterns
over long-term periods due to various factors like urban development. Our goal is to identify sen-
sors unfamiliar to all Experts. Our ‘Reconstruction-Based Replay’ proposes an efficient method
to find such nodes, i.e., universally unfamiliar to all experts, based on reconstruction probabil-
ity. While existing methodologies use 10% replay to prevent catastrophic forgetting, our approach
only requires 1%, showing significant performance improvements. Existing models typically need
to store features from all previous year sensors in a separate memory to detect and replay sensors
with similar or differing patterns between the current and previous years. In contrast, as detailed in
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Section 4.2.4, our approach uses a VAE-based reconstructor, enabling us to analyze and compare
with past patterns using only current task data. From a continual learning perspective, which aims
to minimize past task memory usage, this presents a significant advantage.

4. Existing methodologies inevitably access pre-existing nodes’ data due to the use of a subgraph
structure when learning current task nodes using GNN. In contrast, the graph learning methodol-
ogy we use does not employ subgraphs, thereby minimizing access to pre-existing task nodes.
Furthermore, in ‘Forgetting-Resilient Sampling,’ synthetically generated data inherently lacks
graph structural information, suggesting that generated nodes would be isolated in a predefined
geographical-distance-based graph. However, the graph learning methodology we have adopted
does not rely on distance-based graphs, effectively resolving this issue.

K ANALYSIS OF THE EFFECTS OF CLUSTERING IN THE PRE-TRAINING
STAGE

Table 8: Comparison of performance between the Random-Cluster model and the TFMoE model.

Method 15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Random-Cluster 12.84 21.18 17.00 14.57 24.21 19.05 18.68 30.94 23.88
TFMoE 12.58 20.63 16.63 14.12 23.27 18.40 17.65 28.95 22.62

In this section, we explore into how clustering during the pre-training stage impacts model perfor-
mance. We compare our proposed method with ‘Random-Cluster’ model, where nodes are randomly
assigned to clusters. As shown in Table 8, our proposed model outperforms the Random-cluster
model significantly. Interestingly, the Random-cluster model does not exhibit very poor perfor-
mance, which leads us to discuss why our method excels and why the Random-Cluster model is
somewhat effective.

First, let’s delve into the Random-Cluster model. In this model, since nodes within clusters are
assigned randomly, each Expert deals with a random subset of data representing the entire node
distribution. Ideally, this random selection mirrors the overall node distribution. When K clusters
are formed using the Random-Cluster method, integrating their outcomes can be seen as a type of
ensemble learning, with models trained on similar distributions that mimic the overall node distribu-
tion. As discussed in Section 1, our proposed concept involves segmenting traffic data into multiple
homogeneous groups and assigning an Expert to each. Unlike the Random-Cluster model, which
considers the entire data distribution, in our approach, each Expert performs predictions using spe-
cialized knowledge. When a new node is added, it is managed by the most relevant and suitable
Expert, ensuring minimal impact on other unrelated Experts, which contributes to our model’s ef-
fectiveness in preventing catastrophic forgetting. Furthermore, each Expert’s VAE reconstructor can
better generate and reconstruct the data distribution of its assigned group, and also, the predictor
performs better in forecasting for the data distribution of its assigned group. This strategic design is
key to why our model outperforms the Random-Cluster model.

The next interesting point is that the Random-Cluster model does not perform poorly, sug-
gesting it also mitigates catastrophic forgetting. This raises the question: Are our proposed
techniques—‘Reconstruction-Based Knowledge Consolidation’, ‘Forgetting-Resilient Sampling’,
and ‘Reconstruction-Based Replay’—applicable to the Random-Cluster model? The answer is
‘yes’. Since the Random-Cluster model can be interpreted as an ensemble of models trained on
data approximating the overall distribution, we can treat the Random-Cluster model as a single
model trained on the entire data distribution for convenience. Ideally, an Expert within the Random-
Cluster model should be trained to reconstruct the entire dataset, and the predictor should be trained
to predict the entire dataset.

Now, let’s consider whether ‘Reconstruction-Based Knowledge Consolidation’ can be applied to a
model trained on the entire dataset. If the reconstructor is trained to reconstruct the entire dataset,
applying LWF-based methods to this single model would be analogous. What about ‘Forgetting-
Resilient Sampling’ for a model trained on the entire dataset? Using a VAE’s decoder for sampling
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would generate samples representing the entire data distribution of the previous task. Including these
generated samples in the current task’s training should evidently prevent catastrophic forgetting. Fi-
nally, can ‘Reconstruction-Based Replay’ be applied to a model trained on the entire dataset? Since
the reconstructor is trained on the entire dataset, calculating reconstruction probability can help de-
termine whether the single Expert can effectively handle it. Thus, the techniques we propose can be
similarly employed in single models to prevent catastrophic forgetting. However, as mentioned in
Section 1, we have argued that instead of using a model encompassing the entire dataset, segmenting
it into multiple homogeneous groups and assigning an Expert to each is more effective. Reflecting
this, the model we propose can be seen as an advanced version of this concept.

L COMPLEXITY ANALYSIS

Table 9: Comparison of performance between K-Means Clustering and Balanced K-Means Cluster-
ing.

Method 15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

K-Means 12.59 20.65 16.59 14.14 23.31 18.51 17.69 29.13 22.82
Blanced K-Means 12.58 20.63 16.63 14.12 23.27 18.40 17.65 28.95 22.62

Time Complexity: The time complexity of our model is primarily dominated by the balanced k-
means clustering in the Pre-Training Stage, which is O

((
N3K +N2K2 +NK3

)
log(N +K)

)
,

and by the computational requirements of the predictor’s Graph Neural Network operations in the
Localized Adaptation Stage, which are O(N2MK). Here, N represents the number of nodes, K is
the number of clusters, and M denotes the diffusion step. The issue here is the substantial compu-
tational load of the balanced k-means clustering. The reason for adopting such an algorithm is the
possibility of extremely skewed distributions with very few data points in the case of small datasets.
Based on our experience, a minimum of about 50 nodes is required for the Expert’s predictor to be
trained effectively. Clusters that do not meet this criterion may not undergo proper training. How-
ever, with sufficiently large datasets where k-means clustering assigns enough data to each cluster,
using conventional k-means clustering with a complexity of O(NK) poses no issues. In our ex-
periments, the performance difference between using balanced k-means clustering and conventional
k-means clustering was negligible, falling within the margin of error (refer to Table 9). Therefore,
the conclusion can be summarized in two scenarios:

1. In the case of small datasets. Employing balanced k-means clustering is beneficial for prevent-
ing the formation of clusters with a small number of data points. However, the time complexity
O
((
N3K +N2K2 +NK3

)
log(N +K)

)
does not lead to a significant computational over-

head, as N is relatively small.
2. In the case of large datasets. The outcomes of balanced k-means clustering and k-means cluster-

ing are similar within the margin of error. Therefore, it is sufficient to use k-means clustering with
O(NK) complexity, and thus the time complexity is dominated by the Graph Neural Network
operations, which are O(N2MK).

If, despite using k-means clustering on large datasets, an Expert with a small number of nodes is
formed, what should be done? In such a case, after completing the pre-training phase, if a cluster
comprising a very small number of members is identified, this issue can be resolved by examining
each cluster centroid and merging smaller clusters into the nearest sufficiently large cluster to form
a sensor group.

Space Complexity: The space complexity of our model is predominantly governed by theO(N2K)
complexity arising from the graph learning process of the predictor. The space complexity utilized
by other modules apart from the predictor is O(NK).

It is important to note that the calculated time complexity of O(N2MK) and space complexity of
O(N2K) mainly impose a burden only on the initial task, as they utilize the entire given dataset.As
we mentioned in our introduction, the reason we adopt continual learning is to prevent the forgetting
of existing knowledge while training only on newly added data, rather than retraining on the entire
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dataset. It is typically seen that the number of newly added nodes each year is significantly less than
the number of existing nodes. After the first year, training is conducted using a number of nodes
proportional to the newly added nodes, ∆N = |∆V |. Additionally, as described in Section D, we
set the diffusion step M = 2. Consequently, both the time complexity and space complexity after
the first year become O(∆N2K).

M LIMITATION AND FUTURE WORK

The primary limitation in our study is the scarcity of datasets in the field of continual traffic forecast-
ing, a relatively new and not yet extensively researched area. This lack of diverse datasets makes
it challenging to fully assess the generalizability of our model. Despite this limitation, we have
carried out extensive visualization and experimentation to validate that our model is well-suited and
effectively designed for continual traffic forecasting, and it has demonstrated significantly improved
performance compared to existing models. We are optimistic that as continual traffic forecasting
becomes more renowned and research in this area intensifies, there will be an introduction of a more
diverse range of datasets and baselines. Such developments will not only invigorate the field but
also expand opportunities for more comprehensive future studies and comparative analyses.

Our model’s second limitation arises during the initial task, especially when dealing with a very
large dataset. Although our approach emphasizes continual learning to avoid retraining on the entire
dataset, focusing instead on new data, the initial task still requires training on the full dataset. As
detailed in Section I, this leads to a complexity of O(N2K), presenting challenges when the initial
task involves a large number of nodes. In situations where similar data forms densely packed,
extensive sensor groups, one feasible solution might involve sampling a suitable number of nodes
within each cluster for training. In another scenario, if clustering results in numerous sensor groups,
each containing a moderate amount of data, a viable approach could be to divide the initial task into
several smaller subtasks. Each subtask would consist of fewer nodes, and we could apply continual
learning techniques within these subtasks. The methodologies considered for applying to large
datasets could potentially become new research topics within the ‘Large-Scale Dataset Learning’
or ‘Distributed Computing’ research areas. However, these extend beyond the scope of our current
research, which is focused on continual learning methodologies. Therefore, we will leave these
considerations as future work.
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N ALGORITHM DESCRIPTION

Algorithm 1 Traffic Forecasting Mixture of Experts (TFMOE)

Require: Training data for every task Dτ = {Dτ
i }i = {yτi,t, xτi,t, xτi,w}(i,t) , nodes for every task

V τ , weight of clustering loss α and consolidation loss β, hyperparameters ns and nr
1: function TRAIN TFMOE
2: Pre-training reconstructor Rk of each Expert using PRE-TRAININGSTAGE(X1

w = {x1i,w}i)
3: for every task τ do
4: if τ = 1 then
5: Train Experts (Rk, Pk) on first task data D1 with loss L = LO − βLSG

ELBO
6: else
7: Synthetic data samples Ds ← FORGETTINGRESILIENTSAMPLING(ϕ(τ−1), ns)
8: Important nodes VR ← RECONSTRUCTIONBASEDREPLAY(V (τ−1), ϕ(τ−1), nr)
9: Aggregate data for current task: D∗ ← Ds ∪ {Dτ

i | i ∈ ∆V τ ∪ VR}
10: Construct LGk on D∗

11: Train Experts (Rk, Pk) on aggregated data D∗ with loss L = LO − βLLG
ELBO

12: end if
13: end for
14: end function

Algorithm 2 PRE-TRAINING STAGE

Require: First task data X1
w

1: Train autoencoder Rpre with loss Lrecon

2: Get K cluster centroids [µ1; . . . ;µK ] using latent vectors κi = Rpre;enc(x
1
i,w)

3: Train autoencoder Rpre with loss Lp = Lrecon + αLcluster

4: Construct SGk utilizing cluster assignment probability
5: Train each reconstructor Rk with loss LSG

ELBO based on cluster SGk

6: return pre-trained reconstructor Rk

Algorithm 3 FORGETTING-RESILIENT SAMPLING

Require: ϕ(τ−1), ns
1: for each Expert k do
2: Sample latent variables: zk,i ∼ p(zk;ϕ(τ−1)

k ) for i = 1 to ns/k
3: Generate data samples: xwk,i

∼ p(xw|zk,i;ϕk)
4: Aggregate samples: Xs

k ← {xwk,1
, xwk,2

, . . . , xwk,ns/k
}

5: end for
6: Aggregated dataset: Xs ←

⋃K
k=1X

s
k

7: Synchronize aggregated dataset: Ds ← Sync(Xs)
8: return Ds

Algorithm 4 RECONSTRUCTION-BASED REPLAY

Require: V (τ−1), ϕ(τ−1), nr
1: Rank nodes by reconstruction probability Σk log p(xi,w;ϕ

(τ−1)
k ) in ascending order

2: Select the first nr nodes to form VR from node set V (τ−1)

3: return VR
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Figure 9: The MAE, RMSE, and MAPE of traffic flow forecasting over consecutive years.
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