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Abstract
Protein surface fingerprint encodes chemical and
geometric features that govern protein–protein
interactions and can be used to predict changes
in binding affinity between two protein com-
plexes. Current state-of-the-art models for pre-
dicting binding affinity change, such as GearBind,
are all-atom based geometric models derived from
protein structures. Although surface properties
can be implicitly learned from the protein struc-
ture, we hypothesize that explicit knowledge of
protein surfaces can improve a structure based
model’s ability to predict changes in binding affin-
ity. To this end, we introduce Pi-SAGE, a novel
Permutation-Invariant Surface-Aware Graph En-
coder. We first train Pi-SAGE to create a protein
surface codebook directly from the structure and
assign a token for each surface exposed residue.
Next, we augmented the node features of the
GearBind model with surface features from do-
main adapted Pi-SAGE to predict binding affinity
change on the SKEMPI dataset. We show that ex-
plicitly incorporating local, context-aware chemi-
cal properties of residues enhances the predictive
power of all-atom graph neural networks in mod-
eling binding affinity changes between wild-type
and mutant proteins.

1. Introduction
A protein’s surface encodes critical chemical and geometric
fingerprints such as charge, shape, and hydrogen bond in-
teractions that enables tasks like identifying active binding
sites, designing proteins with specific properties, predicting
ligand–protein binding affinity Gainza et al. (2020); Song
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et al. (2024); Lee & Kim (2023); Somnath et al. (2021)
and so on. The seminal MaSIF paper Gainza et al. (2020)
demonstrated that these fingerprints can be extracted from
protein structures and used efficiently in downstream tasks
such as binding site prediction, protein–ligand interaction
modeling, and binding site search in protein complexes.
Subsequently studies have reinforced the importance of
explicitly modeling surface-level chemical and geometric
features to perform tasks such as protein function prediction
Somnath et al. (2021) and surface property guided protein
design Lee & Kim (2023); Song et al. (2024).

In parallel, recent studies have proposed structure-aware pro-
tein language models (PLMs) by incorporating 3D structural
information and showed that explicit structure information
combined with sequence information improves performance
across various predictive tasks. Su et al. (2023); Li et al.
(2024). Most notably, GearBind Cai et al. (2024), an all-
atom geometric neural network model outperformed SOTA
models on the binding affinity prediction problem.

Motivated by these advances, we hypothesize that while
protein surface information may be implicitly learned from
structural models, explicitly modeling the surface provides
additional inductive bias—especially for tasks such as pre-
dicting binding affinity changes at the protein–protein in-
terface. To test our hypothesis, we propose Pi-SAGE: a
Permutation-invariant Surface-Aware Graph Encoder that
explicitly creates a vocabulary of protein surface from local
geometric and chemical features of residues. Pi-SAGE is
pre-trained in two stages: first on the 200k RCSB PDB
database Burley et al. (2023) to capture general surface rep-
resentations, and then on the SKEMPI dataset Jankauskaitė
et al. (2019), which contains 6k binding affinity data for
wild-type and mutated protein complexes. The model learns
from residue graphs, where each node encodes a local sur-
face “snippet” constructed from neighboring atoms’ geo-
metric and chemical properties. We train GearBind Cai et al.
(2024), all-atom model by augmenting the one-hot residue
features with these surface-aware features and demonstrate
improved accuracy in predicting ∆∆G (binding affinity
changes). Pi-SAGE outperforms both large-scale sequence-
based models that attempt to learn structure implicitly as
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well as existing structure-aware models. In summary, our
main contributions are as follows.

• We introduce a novel surface-aware vocabulary that
builds a protein surface codebook from local geometric
and chemical residue-level features.

• We pre-train Pi-SAGE in two stages—on the RCSB
PDB and SKEMPI databases—to capture both general
and task-specific surface information.

• We empirically demonstrate that augmenting the
GearBind model with explicit surface features im-
proves its ability to predict binding affinity changes
(∆∆G), outperforming both sequence-only and exist-
ing structure-based approaches.

2. Related Work
In recent years, general protein models trained on millions
of sequences have rapidly advanced, with most adopting the
transformer architecture (Vaswani et al., 2017; Rao et al.,
2020; Elnaggar et al., 2021; Madani et al., 2020). These
models, trained on masked language modeling (MLM), have
shown that protein structure can be implicitly learned and
applied to downstream tasks like contact map and secondary
structure prediction, as well as solubility and cellular lo-
calization (Rao et al., 2020; Elnaggar et al., 2021). Model
capacity and pretraining strategies have expanded, including
span masking in ProtT5 (3B/11B) (Elnaggar et al., 2021),
blank-filling in xTrimoPGLM (100B) (Chen et al., 2024),
and multi-task learning in AminoBERT (Bouatta, 2022).

The release of 200M predicted structures by AlphaFold DB
(Varadi et al., 2022) spurred development of structure-aware
models such as ProtT5-XL-UniRef50-Structure (Heinzinger
et al., 2023) and SaProt (Su et al., 2023), which combine
sequence and structure inputs and outperform sequence-only
models on tasks like contact prediction, thermostability, and
protein–protein interaction (PPI) prediction (Meier et al.,
2021; Xu et al., 2022).

In parallel, surface-based representations have gained trac-
tion due to their ability to capture functionally relevant
chemical and geometric fingerprints. MaSIF (Gainza et al.,
2020) pioneered extracting five such features from protein
surfaces and used geometric CNNs for binding site and
ligand pocket prediction. Follow-up work proposed contin-
uous surface representations (SurfPro) (Song et al., 2024),
multi-view integration of sequence, structure, and surface
properties (HoloProt) (Somnath et al., 2021), and surface-
based masked autoencoders (Surface-VQMAE) (Wu & Li,
2024).

Building on these insights, we propose learning a quan-
tized surface-aware vocabulary that encodes local chemical

and geometric fingerprints of surface residues—analogous
to the structure-aware vocabulary in SaProt. We integrate
these surface features into the GearBind framework (Cai
et al., 2024) and show that explicit surface context improves
performance on tasks such as binding affinity prediction.

3. Methods
3.1. Featurization based on local context for surface

residues

Given a protein structure, our approach represents each
residue based on its local neighborhood in structural space,
explicitly computing its chemical and geometric properties.
We created local, context-aware surface features for each
residue, which are then used to encode the residue graph and
train a model to learn a codebook for protein surface. Ini-
tially, we processed each protein structure using the MaSIF
Gainza et al. (2020). MaSIF decomposes a surface into
overlapping radial patches (which consists of three vertices)
with a fixed geodesic radius, where each vertex is assigned
five features: electrostatic potential (charge), hydrophobic-
ity, hydrogen bond interaction propensity, shape index, and
distance-dependent curvature. To enhance this represen-
tation, we introduced two additional geometric features:
(1) the distance from the patch centroid to the residue’s
Cα atom Cα− > centroid and (2) the angle between the
vectors from the patch centroid to the Cα atom and from
the Cα atom to the Cβ atom Cα− > Cβ . For residues
lacking a side chain, we generated a virtual Cβ atom fol-
lowing the method described in FoldSeek van Kempen et al.
(2022). These two new measurements constitute the geomet-
ric features in our model. Finally, we averaged the chemical
features across three vertices within a patch, resulting in a
5-dimensional chemical feature vector. Combined with the
two geometric features, this yields a 7-dimensional feature
vector per patch.

We modified the MaSIF processing code to output a vertex-
to-residue mapping, enabling accurate feature computation
for each surface-exposed residue. For a given residue A,
we first selected all patches that are within 3Å from any
of its atoms. As not all of the patches will be mapped
to the residue (as per MaSIF calculation) we then catego-
rized the patches into three groups: (1) Core — patches
where all three vertices map to atoms from residue A, (2)
Border — patches where at least one vertex maps to an
atom from another residue, and (3) Borrowed — patches
where no vertices map to atoms from residue A. Borrowed
patches are filtered out for residue A. We assigned a la-
bel to each patch: (1) High — if its closest atoms include
{C,O,N, S} or all heavy atoms from its assigned residue,
(2) Medium — if its closest atoms include {C,O,N, S} or
all heavy atoms from neighboring residue , and (3) Low —
for patches whose closest atoms are all hydrogen atoms. We
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Figure 1. Pi-SAGE is trained in two stages, 1) on the RSCB database with 200K protein structures (top left), 2) on SKEMPI database
with 6k wild type and mutated complexes from 340 unique protein complexes (top right). Each residue is represented by a graph of high,
medium and low patches that are first fed to the encoder, followed by the quantizer that creates a codebook for the residue (bottom).

represented each residue as a graph G = (V,E), where the
nodes V = {ni}i=1:N correspond to N randomly sampled
patches following 70% from high, 20% from medium and
10% from low patches. We chose N as 32 following MaSIF
Gainza et al. (2020) in their tasks and chose majority of the
patches that are most closely tied to the residue, followed
by those that contain side-chain atoms of the neighboring
residues and finally the last fraction consisting of only hydro-
gen atoms from its own or neighboring residue. When recon-
structing the node features we weighed the nodes according
to this classification. The above-mentioned 7-dimensional
features are used as node features. The patch types are
illustrated in Figure 4.

The edges E = {eij |j ∈ Ni}i=1:N are defined where
Ni = {j|dist(ni, nj) < 3Å} is a set of neighbors of a
node ni and dist(., .) is defined as the distance between the
patch centroids of nodes ni and nj . In addition, a virtual
node has been added to the graph that is connected to every
other node in the graph through its special virtual edge. This
virtual node will serve a similar purpose as the [CLS] token
in transformers. Since the [CLS] token has been commonly
utilized to provide sentence embedding, we used the virtual
node to calculate the final graph embedding and its tok-
enized representation. Edges are featurized according to the
centroid distances: (1) Short — where their distance is less
than 1Å , (2) Medium — where their distance is between
1Å and 2Å , (3) Long — where their distance is between 2Å
and 3Å (4) Virtual — edge between virtual node and any
other node, (5) Self — edge connecting each node to itself,
and (6) No — nodes that are not connected to each other.
Therefore, there are six categories of edges. Inspired by
(Park et al., 2022), we have used the topological relationship
ψ(i, j) between nodes ni and nj based on their shortest
path distance with the maximum cutoff max-hop. Formally
ψ(i, j) is featurized as following: (1) Unreachable — No
connection between two nodes, (2) shortest path distance

s — Shortest path distance value s ∈ {0, · · · ,max-hop}
between nodes ni and nj , (3) Far distance — If the shortest
path distance is greater than max-hop, and (4) Virtual —
edge between virtual node and any other node. Therefore,
there are max-hop + 4 categories of topological relation.

3.2. Surface Aware Graph Encoding

We developed two approaches for surface-aware graph en-
coding (1) naive approach named SAGE (Surface Aware
Graph Encoding) where we only reconstructed node fea-
tures provided by the adjacency matrix at both encoder and
decoder modules, (2) Pi-SAGE where we reconstructed
both nodes and edges simultaneously. We introduced
permutation-invariance property in our modeling in order
to properly align reconstructed node features and adjacency
matrix. Both models have similar (1) graph encoder genc, (2)
finite scale quantized protein surface tokenizer (FSQ) while
their decoder gdec is different. In addition, Pi-SAGE has an
additional module named permuter pperm to learn the align-
ment between the input graph and the reconstructed one.
We described each of these components in the following
subsections.

3.2.1. GRAPH ENCODER

We used the graph transformer with learnable relative po-
sitional encoding developed by (Park et al., 2022) that use
(1) dot-product attention commonly used in transformers,
(2) learnable topological relationship Pψ(i,j) ∈ Rdz be-
tween nodes ni and nj , and (3) learnable edge relationship
E(i,j) ∈ Rdz between nodes ni and nj . Let us assume
xi ∈ Rdx denotes the input feature of the node ni with dx as
its dimension, and zi ∈ Rdz denotes the final output feature
of transformer’s layer with dz . First, self-attention module
computes query qi, key ki, and value vi with independent
linear transformations W query ∈ Rdx×dz , W key ∈ Rdx×dz
and W value ∈ Rdx×dz .

3



Pi-SAGE: Permutation-invariant surface-aware graph encoder for binding affinity prediction

qi =W queryxi, ki =W keyxi vi =W valuexi (1)

Second, topological relationship between nodes ni and nj
is calculated as:

atopology(i,j) = qiPquery
ψ(i,j) + kiPkey

ψ(i,j) (2)

Next, edge relationship between nodes ni and nj is calcu-
lated as:

aedge(i,j) = qiEquery
(i,j) + kiEkey

(i,j) (3)

Finally, the overall attention map is computed summing
these three terms. Attention here denotes full pairwise atten-
tion between the nodes adjusted by the graph features from
the two additional matrices.

a(i,j) =
qi.kj + atopology(i,j) + aedge(i,j)√

dz
,

â(i,j) =
exp(a(i,j))∑N
k=1 exp(a(i,k))

(4)

The overall attention module outputs the next hidden feature
by applying weighted summation on the values

zi =

N∑
j=1

â(i,j)vj (5)

The utilized learnable relative positional encoding can be
seen as an alterative to linearizing graphs, thus enabling
richer node-topology and node-edge interactions since it
preserves structural graph information.

3.2.2. SURFACE TOKENIZER

We adopted Finite Scale Quantization Mentzer et al. (2023)
to create protein surface codebook. FSQ creates a sim-
ple, fixed grid partition in a lower-dimensional space. Let
us assume the FSQ’s internal dimension is represented as
dFSQ and the ith dimension can have Li different inte-
gers or levels. Therefore, overall implicit codebook size
for FSQ with {L1, · · · ,LdFSQ

} can be |C| =
∏dFSQ

i=1 Li.
FSQ module takes in the virtual node of a residue graph
from the encoder zgraph ∈ Rdz , down-project the graph
representation down to dFSQ dimension through zlatent =
MLP(zgraph) ∈ RdFSQ . Then, non-differentiable online
quantization step occurs for each dimension i through
zFSQ,i = round(⌊Li/2⌋tanh(zlatent,i)). The quantization
step will bound the encoder output to L values, which
is the number of dimensions of the quantizer, and then

rounding to integers, leading to quantized codebook. Since
round(.) function is a non-differential operation, straight-
through estimator (STE) (Bengio et al., 2013) can be
used to propagate gradient through round ste(x) = x +
stop gradient(round(x)− x).

3.2.3. PERMUTATION INVARIANCE

The nodes in the original residue graph do not have any
positional encoding and their order is arbitrary but fixed
during training. Inferring this order during training allows
the decoder to align the nodes which would help in the
feature loss calculation. Inspired by Winter et al. (2021), we
added a permuter module to reconstruct the residue graph
with node features and adjacency matrix in Pi-SAGE. The
permuter module learns to align input and output graph
through soft alignment. Note that in Pi-SAGE, patches
from residues form un-directed graphs with the adjacency
matrix Aπ ∈ {0, 1}n×n for n ∈ N in the node order π ∈ Π
with Π is the set of all permutations over V . We defined a
permutation matrix P ∈ RN×N that reorders nodes from
order π to order π′ as Pπ→π′ = (pij) ∈ {0, 1}n×n with
pij = 1 if πi = π′

j and pij = 0 otherwise.

Input to the permuter are the node encodings N × Rdz
obtained from the output the encoder module. We discard
the virtual node at this step and do not try to reconstruct
it. The permuter module has to learn how the ordering of
nodes in the graph generated by the decoder model will
differ from a specific node order present in the input graph.
During the learning process, the decoder will learn its own
canonical ordering so that, given a latent code zlatent, it
will always reconstruct a graph in that order. The permuter
learns to transform/permute this canonical order to a given
input node order. For each node i of the input graph, the
permuter predicts a score si corresponding to its probability
of having a low node index in the decoded graph. By sorting
the input nodes indices by their assigned scores, we inferred
the output node order and constructed the corresponding
permutation matrix Pπ→π′ = (pij) ∈ {0, 1}n×n with

pij =

{
1, if j = argsort(s)i

0, else
(6)

to align input and output node order. The argsort operation
being non-differentiable, the continuous relaxation of the
argsort operator proposed in Prillo & Eisenschlos (2020);
Grover et al. (2019) has been used as follows

P ≈ P̂ = softmax(
−d(sort(s)1⊤,1s⊤)

τ
) (7)

where the softmax operator is applied row-wise, d(x, y) is
the L1-norm and τ ∈ R+ a temperature parameter.

4



Pi-SAGE: Permutation-invariant surface-aware graph encoder for binding affinity prediction

3.2.4. GRAPH DECODER

Since the quantized graph encoding from the FSQ module
is in dFSQ, we used a simple linear layer to project it back to
the dz embedding that serves the purpose of node features
for the decoder denoted zdec. Inspired by Winter et al.
(2021), we defined sinusoidal positional embedding PE ∈
RN×dz with the i-th node’s embedding for k-th dimension
as follows:

PE(i)k =

{
sin(i/100002k/dz ), if k is even
cos(i/100002k/dz ), k is odd

(8)

Then we used the learned permutation matrix P̂ to reorder
the positional embedding by multiplication PEupdate =

P̂× PE. Finally, we concatenated the node features of the
decoder with the updated positional encoding and passed
them to the graph decoder. The graph decoder exactly fol-
lows the graph encoder with minor differences at the final
project layers:

zo = gdec([zdec||(PE)update])

m̂node =Wnodezo + bnode

m̂edge =Wedgezo + bedge

(9)

where m̂node is used to reconstruct the initial node features
mnode and m̂edge is used to reconstruct the un-directed
adjacency matrix Aπ .

3.2.5. LOSSES

Following (Yang et al., 2024) we defined node and edge
reconstruction as

Lrec =
1

N

N∑
i=1

(1− mT
nodem̂node

||mnode||.||m̂node||

+ ||Aπ − σ(m̂edge.m̂
T
edge)||2)

(10)

where σ(.) is the sigmoid function. In order to push the
soft permutation matrix towards a real permutation matrix
(i.e. contains one 1 in every row and column), an addi-
tional penalty term was introduced to minimize the Shannon
entropy both row-wise and column-wise:

C(P̂) =
∑
i

H(p̄i) +
∑
j

H(p̄j) (11)

with Shannon entropy H(x) = −
∑
i xilog(xi) and normal-

ized probabilities p̄i,= p̂i∑
j p̂i,j

.

The final loss would be:

L = Lrec + λC(P̂) (12)

where λ hyper-parameter would balance between main re-
construction loss and the additional penalty.

3.3. Graph-based binding affinity prediction

We tested the hypothesis that chemical and geometric fin-
gerprints obtained from protein surface contain information
complementary to structure to improve protein binding affin-
ity prediction. To test it, we adopted the GearBind Cai et al.
(2024) architecture based on multi-level geometric message
passing network, augmented the one-hot residue features
from the residue graph (obtained by pooling the atom level
features of the graph after the attention step in GearBind)
with the residue graph embeddings zgraph from the fine-
tuned surface tokenizer and trained the augmented feature
GearBind model on the SKEMPI dataset Jankauskaitė et al.
(2019). Since the SKEMPI dataset contains both single
and multiple mutations to the wild type protein complexes,
we domain adapted the pre-trained surface tokenizer on
these 6k proteins. This step ensured that the surface tok-
enizer model had seen the distribution of the mutational
dataset with the protein complexes. In addition to surface
tokenizer we trained 3 ESM2 Verkuil et al. (2022) mod-
els: ESM2-150M, ESM2-650M, ESM2-3B, th 3B ProstT5
model Elnaggar et al. (2021), the 3B ProstT5 Heinzinger
et al. (2024) model and the SaProt model Su et al. (2023).

4. Experiments
We performed three stage training to predict binding affinity
change on SKEMPI dataset using four different sizes of sur-
face tokenizer models with five different vocabulary sizes.
In the pre-training stage, we trained on the 200K experi-
mentally validated protein structures in Mentzer et al. (2023)
RSCB dataset. We removed the SKEMPI protein complexes
from the database and randomly split the proteins into 90%
train and 10% validation splits. We used a learning rate of
2e−04, Adam optimizer with a per GPU batch size of 32 on
a single P5 NVIDIA H200 Tensor Core GPU instances with
a global batch size of 256 for 20 epochs. We adopted the
implementation of the graph encoder module (SAGE and Pi-
SAGE) from the GRPE GitHub Park et al. (2022), the FSQ
quantizer part from Lucidrains GitHub Wang (2024) and the
permutation invariant part (permuter module and the graph
decoder for Pi-SAGE) from Winter et al. (2021) GitHub.
For SAGE the decoder module has the same architecture as
the encoder module. We followed the seminal FSQ paper
Mentzer et al. (2023) to select different vocabulary sizes and
hidden dimensions. For collating graphs in batches we used
the DGL library Wang et al. (2019) and followed the exam-
ples from their GitHub. We trained SAGE and Pi-SAGE
separately using the same batch size, learning rate and the
number of epochs.

In the second stage, we domain adapted the pre-trained
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Figure 2. Training flowchart of GearBind model with domain adapted Pi-SAGE. Once the all-atom graph is constructed and reduced to
the residue level graph, the one-hot residue features are augmented with surface residue embeddings to predict ∆∆G.

models by further pre-training the tokenizers on the 6k wild
type and mutated SKEMPI protein complexes from 340
unique protein complexes. Finally, we performed supervised
fine tuning on the SKEMPI dataset with the GearBind model
to predict binding affinity change or ∆∆G between wild
type and mutated protein complexes. We trained GearBind
using the same architecture as mentioned in the GitHub
repository with 4 geometric graph convolution layers with
128 hidden dimension and using residual attention at the
final layer. We used Rosetta Rohl et al. (2004) to generate
the mutated protein structures from the wild-type protein
complexes. We obtained 3-fold cross-validation splits from
the RDE paper Luo et al. (2023). The dataset is split into
three folds by structure, each containing unique protein
complexes that do not appear in other folds.

We reported the average metrics across three splits. We
employed five metrics to assess the accuracy of binding
affinity change predictions: Pearson and Spearman corre-
lation coefficients, root mean square error (RMSE), mean
absolute error (MAE), and area Under the receiver operating
characteristic curve (AUROC). For per-structure metrics, we
followed the approach of Luo et al. (2023) by organizing mu-
tations according to their associated structures. Groups with
fewer than ten mutation data points are excluded from this
analysis. Correlation calculations are done independently
for each structure, with two additional metrics: the average
per-structure Pearson and Spearman correlation coefficients.
Calculating AUROC involves classifying mutations accord-
ing to the direction of their ∆∆G values. For each of the
baselines (ESM, ProstT5), we augmented the node features
with residue embeddings after down projection.

5. Results
5.1. Pre-training

We pre-trained four different model sizes on five vocabulary
sizes for both SAGE and Pi-SAGE (see Table 1. We per-

Table 1. Different model sizes of Pi-SAGE
Model #layers #heads hdim #params

Small 2 2 512 13M
Medium 4 4 768 44M

Large 8 8 1024 134M
XLarge 16 16 1280 378M

formed hyper-parameter optimization experiments on the
CATH 4.3 dataset Sillitoe et al. (2015) and used the learning
rate, learning scheduler and weight decay from these experi-
ments in pre-training on the RSCB database. As illustrated
in Figure 6c and 6d, the total loss for Pi-SAGE begins higher
than that of SAGE in the early stages of training but drops
below SAGE’s loss as training progresses. This is because
the permuter loss in training mode is quite high at the begin-
ning and then becomes 10−4 (Figure 6e and 6f) leading to
the lower loss for Pi-SAGE version. We hypothesize that
by requiring Pi-SAGE to figure out the whole residue graph
(by reconstructing both node features and the adjacency ma-
trix), it learns to better reconstruct the node features that is
demonstrated with lower feature reconstruction loss (See
figure 6a and 6b). The feature reconstruction loss also de-
creases with increases in both model and vocabulary sizes
(See Figure 3 left panel). This suggests that, for a fixed
model size, increasing the vocabulary yields finer-grained
surface representations, while scaling both the encoder and
decoder enhances the model’s overall capacity.

5.2. Binding affinity prediction

The residue graph in GearBind is formed by pooling the
atom features per-residue which contains protein structure
information. We show in Table 2 that augmenting the one-
hot node features of the residue graph with residue em-
beddings from large sequence, structure or surface aware
models improves its ability to predict change in binding
affinity. This suggests that each model contains comple-
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Figure 3. Effect of model and vocab sizes on pre-training and downstream task. Left: Loss curves for different model sizes and vocab sizes
from pre-training the SAGE and Pi-SAGE on the RSCB database shows that with increase in model and vocab size total loss decreases.
Right: Average pearson-R across three folds for different model and vocab sizes of Pi-SAGE

mentary information that improves the already powerful
GearBind model’s ability to predict ∆∆G. For example,
the large protein models like the ESM 3B model Rives et al.
(2019) ) that learn about protein structures implicitly im-
proved the overall pearson R from 0.525 to 0.567 (Table 2
row 4). Structure aware models trained explicitly on protein
structures like ProstT5 Heinzinger et al. (2023)) improved
the overall pearson R from 0.525 to 0.545 (Table 2 row
7). Even within the same multi-modal protein model, one
modality might outperform the other. For example, ProstT5
structure embeddings outperform ProstT5 sequence embed-
dings (Table 2 rows 6 and 7). Finally, as most mutations
occur at the interface of two proteins for binding affinity
changes, a smaller model like Pi-SAGE, trained to explicitly
encode context-aware surface features of residues, consis-
tently outperforms the larger sequence-only and sequence-
structure models by improving the GearBind’s prediction
0.525 to 0.6 on average across the test splits. We expect that
Pi-SAGE performance would improve with increase in both
data and model sizes.

6. Ablation studies
6.1. Effect of permutation-invariance

The difference between SAGE and Pi-SAGE is that in the
former both the encoder and decoder modules are provided
the shortest path distance matrix and the edge type matrix
along with the node features for the encoder. While the de-
coder module reconstructs the node features of the residue
graph, it does not need to explicitly learn the residue graph
with the node connections. On the other hand, in Pi-SAGE
the encoder receives the same three matrices but the decoder
needs to reconstruct both the node features in a specific
order (learned by the permuter module) and the adjacency
matrix containing the node connections. We hypothesize
that by explicitly learning the node connections through the
adjacency matrix the feature reconstruction ability of the
decoder in Pi-SAGE increases. This approach allows the
tokenizer to capture complex spatial relationships and bio-
chemical properties that are crucial to understanding protein

function, while ensuring that the encoded representation
remains consistent regardless of arbitrary node orderings in
the input graph. As we show in Table 2 both overall average
metrics and per structure metrics for Pi-SAGE is better than
SAGE for the same model and vocab size.

6.2. Effect of scaling model and vocabulary sizes

Similar to our observation in pre-training, we noticed that
increasing the model size improves performance on ∆∆Ge
prediction task (Figure 3, right panel). However, we no-
ticed that the model with 1K tokens in its vocabulary had a
higher average Pearson r than both 240 and 4K tokens. We
hypothesize that due to the small size of SKEMPI dataset,
which has only 340 unique protein complexes (and 6K
wild type and mutated complexes), larger vocabulary might
not be adding more information for the model to improve
the binding affinity change (the XLarge with 1k vocab size
has the higest average pearson R of 0.6 shown in Figure 3,
right panel compared to the XLarge model with 4k vocab
size with an average pearson R of 0.58). But increasing the
model size might still help capture the nuances of the sur-
face properties of the interface and improve the prediction
power.

6.3. Effect of further pre-training on in-distribution
data

Pre-training the surface tokenizer on the RSCB database en-
ables it to encode residue graphs of experimentally validated
single chain and multi-chain proteins but it does not learn
about single or multiple mutations for a protein complex.
We tested whether further domain adapting the surface tok-
enizer on the mutated protein complexes improves the down-
stream task of predicting the binding affinity change. We
trained GearBind with surface features from a pre-trained
Pi-SAGE on RSCB dataset and showed that domain adapta-
tion helps the model understand mutated protein complexes
better than only pre-training with closed complexes (Table
3 row 1).
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Table 2. Performance on SKEMPI dataset
Model Per structure Overall

Pearson ↑ Spear. ↑ Pearson ↑ Spear. ↑ RMSE ↓ MAE ↓ AUROC ↑
Gearbind 0.365 +/- 0.082 0.299 +/- 0.053 0.525 +/- 0.106 0.372 +/- 0.035 1.921 +/- 0.277 1.403 +/- 0.208 0.650 +/- 0.006

+ ESM150M 0.378 +/- 0.050 0.326 +/- 0.047 0.563 +/- 0.088 0.400 +/- 0.014 1.866 +/- 0.259 1.359 +/- 0.209 0.655 +/- 0.028
+ ESM650M 0.381 +/- 0.063 0.316 +/- 0.052 0.539 +/- 0.096 0.377 +/- 0.047 1.852 +/- 0.226 1.349 +/- 0.170 0.652 +/- 0.032
+ ESM3B 0.418 +/- 0.088 0.338 +/- 0.067 0.567 +/- 0.057 0.425 +/- 0.039 1.834 +/- 0.144 1.331 +/- 0.114 0.671 +/- 0.026
+ ProtT5 0.376 +/-0.112 0.325 +/- 0.080 0.551 +/- 0.088 0.400 +/- 0.056 1.873 +/- 0.179 1.375 +/- 0.135 0.665 +/- 0.019
+ ProstT5 (seq) 0.372 +/- 0.094 0.316 +/- 0.087 0.540 +/- 0.085 0.390 +/- 0.070 1.90 +/- 0.173 1.401 +/- 0.146 0.660 +/- 0.046
+ ProstT5 (struct) 0.400 +/- 0.076 0.347 +/- 0.049 0.545 +/- 0.092 0.408 +/- 0.032 1.953 +/- 0.190 1.436 +/- 0.137 0.662 +/- 0.020
+ SaProt 0.332 +/- 0.092 0.268 +/- 0.071 0.527 +/- 0.065 0.362 +/- 0.014 1.948 +/- 0.234 1.439 +/- 0.183 0.659 +/- 0.009

+ SAGE 0.386 +/- 0.082 0.314 +/- 0.068 0.546 +/- 0.114 0.383 +/- 0.039 1.864 +/- 0.246 1.350 +/- 0.176 0.660 +/- 0.013
+ Pi-SAGE 0.423 +/- 0.091 0.345 +/- 0.077 0.600 +/- 0.084 0.428 +/- 0.038 1.817 +/- 0.241 1.306 +/- 0.200 0.691 +/- 0.026

Table 3. Pi-SAGE ablation on SKEMPI dataset
Pi-SAGE Per structure Overall

Pearson ↑ Spear. ↑ Pearson ↑ Spear. ↑ RMSE ↓ MAE ↓ AUCROC ↑
- Finetune 0.386 +/- 0.071 0.321 +/- 0.052 0.549 +/- 0.101 0.400 +/- 0.048 1.883 +/- 0.191 1.355 +/- 0.134 0.67 +/- 0.025

+ Finetune 0.423 +/- 0.091 0.345 +/- 0.077 0.600 +/- 0.084 0.428 +/- 0.038 1.817 +/- 0.241 1.306 +/- 0.200 0.691 +/- 0.026

+ VQ 0.359 +/- 0.078 0.281 +/- 0.053 0.512 +/- 0.105 0.353 +/- 0.013 1.998 +/- 0.277 1.477 +/- 0.232 0.634 +/- 0.007

6.4. Effect of VQ vs. FSQ

For a given model size, the training time for FSQ remains
the same whereas for VQ it increases with increase in vocab
size. For example, with VQ, time to train a 44M model for
one epoch increased from 9hrs for 4k vocab to 1 day for
16k vocab on a P5 instance with 8 GPUs. Consequently,
we did not train any surface tokenizer with VQ beyond a
vocabulary of 4K tokens (Table 3 row 3).

Conclusion
Current state-of-the-art models such as GearBind is an all-
atom based geometric neural network for predicting binding
affinity changes between wild type and mutated protein
structures. We hypothesized that explicit knowledge of sur-
face features will improve a structure based model’s ability
to predict binding affinity change. We proposed Pi-SAGE, a
novel approach of creating a codebook for surface exposed
residues from protein structure. At its core Pi-SAGE has
a graph based encoder module to encode residue graphs,
a Finite Scale Quantizer to create codebook, a permuter
module to learn node order of the residue graph and a de-
coder module to reconstruct node features and adjacency
matrix. We evaluated Pi-SAGE by augmenting the residue
features of GearBind to predict ∆∆G on SKEMPI dataset
and showed that explicit knowledge of surface features im-
proved GearBind’s prediction from 0.525 to 0.6 on average
on the test set. These results prove our hypothesis that the
surface residue features from Pi-SAGE contain information

above and beyond what structure can provide and boost the
affinity change prediction.

Impact Statement
We propose Pi-SAGE, a novel surface-aware, permutation-
invariant graph encoder that explicitly captures protein sur-
face features to enhance protein binding affinity prediction.
By integrating Pi-SAGE into the state-of-the-art GearBind
model, we demonstrate improved accuracy in predicting
∆∆G between wild-type and mutant proteins. This work
highlights the value of incorporating explicit surface repre-
sentations in geometric deep learning models, with implica-
tions for advancing protein design, and the broader field of
computational biology. We acknowledge the complexity of
the method and the need for further sensitivity analysis. We
plan to perform ablation studies to test the robustness of the
model.
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Figure 4. Creating local geometric and chemical features per residue: Given a protein structure, we first run MaSIF and get 5 features
mapped to each surface exposed residue: charge, hydrophobicity, shape index, distance dependent curvature, hydrogen bond interaction.
We compute 2 more features: patch centroid to C-α atom of residue and angle between C-α to patch centroid and C-α to C-β. The
patches are classified as high medium or low depending on the type of core or border or borrowed atoms

Figure 5. Pearson-R of ∆∆G on three folds by different methods
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Figure 6. Pre-training loss curves for 44M 4k vocab size of SAGE and Pi-SAGE
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