Pseudo-Rehearsal for Continual Learning with Normalizing Flows

Jary Pomponi !

Abstract

Catastrophic forgetting (CF) happens whenever a
neural network overwrites past knowledge while
being trained on new tasks. Common techniques
to handle CF include regularization of the weights
(using, e.g., their importance on past tasks), and
rehearsal strategies, where the network is con-
stantly re-trained on past data. Generative models
have also been applied for the latter, in order to
have endless sources of data. In this paper, we pro-
pose a novel method that combines the strengths
of regularization and generative-based rehearsal
approaches. Our generative model consists of
a normalizing flow (NF), a probabilistic and in-
vertible neural network, trained on the internal
embeddings of the network. By keeping a sin-
gle NF conditioned on the task, we show that our
memory overhead remains constant. In addition,
exploiting the invertibility of the NF, we propose
a simple approach to regularize the network’s em-
beddings with respect to past tasks. We show that
our method performs favorably with respect to
state-of-the-art approaches in the literature, with
bounded computational power and memory over-
heads.

1. Introduction

One of the major open problems in deep learning is the so-
called catastrophic forgetting (CF) (McCloskey & Cohen,
1989; Roger, 1990; French, 1999). It is the tendency of
a NN to forget past learned information when training on
new tasks. This problem is intrinsically connected with
the continual learning (CL) property of a NN, which is the
ability of a NN to learn consecutive information without
forgetting previously stored knowledge.

“Equal contribution !'Department of Information Engineer-
ing, Electronics and Telecommunications (DIET), Sapienza Uni-
versity of Rome, Italy. Correspondence to: Jary Pomponi
<jary.pomponi@uniromal.it>.

Proceedings of the 37" International Conference on Machine
Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by
the author(s).

Simone Scardapane *

1 1

Aurelio Uncini

Gen. loss | | Rec. loss | | Class. loss |
(a) Training step
> I I —
. / Decoder \
| Distance Loss |
Encoder [I []
wm N0 1) L'_/

(b) Regularization step

Figure 1. Proposed algorithm for continual learning. (a) Training
step, in which both the classifier network (encoder with the current
head) and the generative model (NF with the decoder) are trained:
the first one to solve the task, and the second one to replicate the
samples from all the past tasks. (b) Regularization step, in which
the encoder is regularized so that the new extracted embeddings
are as close as possible to the past ones.

Overcoming, or mitigating, CF is a key step in order to
achieve a more general artificial intelligence; a system
should be able to learn a sequence of tasks and remem-
ber them, following the lifelong learning paradigm (Thrun
& Mitchell, 1995). This is a key problem because real world
tasks continually evolve and, often, it is not possible to train
a NN from scratch. Without efficient methods to overcome
CF, online training in a lifelong learning scenario is not
possible. Recently, there has been a resurgence of interest
in this area due to its importance.

One of the first attempts to mitigate CF consisted in stor-
ing past examples and replaying them into the model while
learning new information (Robins, 1995). These rehearsal
methods have been improved over the years, with more
complex memory systems and hybrid approaches emerging.
In particular, many pseudo-rehearsal methods have been

Pseudo-Rehearsal for Continual Learning with Normalizing Flows

proposed, in which the external memory is replaced with
a generative model, capable of generating endless samples
from the past. Pseudo-rehearsal algorithms, however, re-
quire generative models that are both easy to train (in order
to provide high-quality data) and simple to condition on the
task (in order to avoid having one generative model for each
task). Both of these conditions are extremely challenging in
practice.

To overcome (or complement) these limitations, many regu-
larization methods have been studied over the last years, in
which additional loss terms are used to mitigate CF. In elas-
tic weight consolidation (EWC, (Kirkpatrick et al., 2017)),
for example, past weights are used to regularize the train-
ing process, by slowing down the modification of important
weights, where the importance is quantifed based on a Fisher
information criterion. Alternative regularization strategies
are achieved by acting on the previous outputs (Li & Hoiem,
2017) or gradients (Lopez-Paz & Ranzato, 2017). Recently,
it was also shown that state-of-the-art performance can be
achieved by acting on the internal embeddings (i.e., the
activations before the classification layer) (Pomponi et al.,
2020). A more complete overview of CL methods is pro-
vided later on in Section 2, or in (Parisi et al., 2019).

In this paper, we propose a novel CL method aiming to
combine the benefits of pseudo-rehearsal and regularization
strategies. Our algorithm is shown in Fig. 1a, and can be
summarized in three steps:

1. Similarly to pseudo-rehearsal strategies, we store infor-
mation on past tasks by training an auxiliary generative
model. Instead of training it on the input space, how-
ever, we train it to generate samples from the internal
embeddings of the network (the output of the last con-
volution layer), simultaneously with the main classifier.

2. We use a normalizing flow (NF, (Papamakarios et al.,
2019)) as generative model. NFs are invertible neural
networks that can perform sampling and density esti-
mation in both directions. In this way, the NF can be
trained efficiently, with no need for additional compo-
nents such as in generative adversarial networks.

3. Finally, we use the sampled embeddings from the
trained NF to perform regularization with respect to
the past tasks, as shown in Fig. 1b.

We claim that (i) training the generative model in the em-
beddings’ space is significantly easier (both in its design
and in its optimization) compared to the input space, and
(ii) that regularization makes better use of past information
stored in the generative model, compared to simply augment-
ing the mini-batch with new data (similarly to (Pomponi
et al., 2020)). In our experimental evaluation, we validate
these two claims, and we show that our method performs

favorably (or better) than several state-of-the-art approaches,
while requiring significantly less memory and computational
overhead.

2. Related Works

The methods for overcoming CF can be categorized, in line
with (Parisi et al., 2019) and (Maltoni & Lomonaco, 2019),
in three broad groups. We underline that the boundaries
are not always defined, with many methods, including ours,
exploiting two or more of these strategies.

o Architectural Strategies: methods that use specific ar-
chitectures, layers, activation functions and/or weights
freezing/pruning, and eventually grow the architecture
when needed (e.g., (Rusu et al., 2016)). For example,
Hard Attention on Task (HAT, (Serra et al., 2018)) uses
an attention mechanism in order to route the informa-
tion/gradient flow in the NN and preserve the weights
associated to past tasks.

e Rehearsal strategies: in this case, past examples are
stored and later replayed in the current mini-batches to
consolidate the network. In order to avoid having to ex-
plicitly store past examples, which requires a growing
memory, pseudo-rehearsal algorithms (Robins, 1995)
craft them on-the-fly, most notably exploiting genera-
tive models (Shin et al., 2017).

e Regularization techniques: in this case, popularized
by elastic weight consolidation (EWC, (Kirkpatrick
et al., 2017)), the loss function on the current task is
extended with a regularization penalty to selectively
consolidate past information or slow the training on
new tasks. Broadly speaking, regularization methods
are easy to implement, but they require to carefully
select what information is being regularized, and how.

The method we propose in this paper is at the boundary
of pseudo-rehearsal and regularization strategies, so we
focus on these two classes below. In fact, our method use
a generative model in the embedding space and then use
the generated embeddings to regularize the network while
training on new tasks.

Learning Without Forgetting (LWF, (Li & Hoiem, 2017))
is one of the first regularization methods. It attempts to
alleviate CF by stabilizing the output layer using knowledge
distillation. Others well-known regularization methods are
EWC, which applies a soft structural regularization com-
puted between the weights’ importance relative to the past
tasks and the current weights, and Synaptic Intelligence
(SI, (Zenke et al., 2017)), a modification of EWC, which
uses the difference between the current weights and their
trajectory calculated during the training. Other methods

Pseudo-Rehearsal for Continual Learning with Normalizing Flows

include Gradient Episodic Memory (GEM, (Lopez-Paz &
Ranzato, 2017)), Averaged-GEM (Chaudhry et al., 2019),
and the recently proposed Embedding Regularization (ER,
(Pomponi et al., 2020)).

In GEM, the external memory is populated with past exam-
ples that are used to regularize the direction of the current
gradients, in order to move the weights in a region of the
space in which all the tasks are satisfied. This method is
capable of improving past scores, but it requires to solve a
complex minimization problem at every step, which does
not scale well with the number of tasks. ER is a regular-
ization technique in which the external memory contains
past examples and their associated embeddings, extracted at
the end of the training process on the associated task. The
memory is used to impose a penalty to constrain the current
embeddings to lie in the vicinity of the past ones. This
method is extremely fast and requires little memory. The
approach we propose in this paper follows the philosophy
of ER to act at the level of the embeddings, instead of single
weights or outputs. Another novel and interesting approach
is proposed in (Ebrahimi et al., 2020), in which the authors
use an Adversarial Continual Learning (ACL) approach:
it aims to alleviate CF by learning a disjoint latent space
representation composed of a task-specific latent space for
each task and a task-invariant feature space for all tasks.

A more challenging set of methods are pseudo-rehearsal
ones. In (Shin et al., 2017), the authors proposed a method
which consists of two modules: a deep generative model and
a task solver. In this way, samples from past tasks can be
generated using the generative model and interleaved with
information from the new tasks; the solver is used to predict
the label associated to the generated images and then regu-
larize the network. In (Kang et al., 2020) a similar approach,
but based on a Variational Autoencoder (VAE), is proposed:
it consists in a VAE and an external NN, which learns to
replicate the distribution of the embeddings associated to
a task; this external NN can be used to generate images
associated to past tasks and reduce CF. Right now, pseudo-
rehearsal methods were strictly evaluated on datasets of
relatively low complexity. The question on whether these
generative approaches can scale up to more complex do-
mains is still open.

The method we propose here can be considered a pseudo-
rehearsal one, but we focus on a more recent class of genera-
tive models (Kingma & Dhariwal, 2018), and we apply them
at the level of embeddings instead of in the input space. We
note that in the literature on generative models, a number
of authors have considered similar combinations of autoen-
coders with a generative model on their latent space. In
(Rezende & Mohamed, 2015), the authors applied a NF to
learn a VAE prior. This idea has been further studied in
(Kingma et al., 2016), where the authors proposed a new NF

which scales well for high-dimensional embedding spaces.
More similar to our proposal, in (Guo et al., 2019) the au-
thors proposed a model which uses an adversarial generative
model in the embedding space to generate high resolution
images.

A relatively new and emerging area of study researches
how to mitigate CF when the tasks’ boundaries are not
known. In this area we highlight (Aljundi et al., 2019), in
which the authors proposed a task free approach to continual
learning, using a regularization-based memory. In (Zeno
et al., 2018), a task agnostic Bayesian method was proposed,
demonstrating the ability of probabilistic models to handle
ambiguous task boundaries. Finally, (Rao et al., 2019) has
introduced the novel idea of unsupervised learning in a
lifelong scenario.

Many other methods exists; for a complete review of exist-
ing methods see (Parisi et al., 2019).

3. Proposed method
3.1. Motivation

In a sense, rehearsal methods are close to optimal, because
in the limit of a very large memory they recover a standard
multi-task setting. On the other hand, these methods require
a memory that, usually, grows linearly with the number
of tasks. Additionally, the computational requirements in-
crease with the number of tasks, since each past task needs
to be remembered (and rehearsed) separately.

Pseudo-rehearsal methods try to overcome these limitations
by substituting the memory with a generative model and
doing parameter sharing on the generative model, which
is incrementally trained on all the tasks and constrained to
remember the information about the tasks encountered so
far. However, this creates a new set of challenges: (i) the CF
problem is removed from the NN, but the generative model
itself potentially suffers CF; (ii) doing parameter sharing on
real-world images can be difficult.

The aim of this paper is to propose a generative approach
which does not work directly on the input, and that can be
used to regularize the model instead of simply augmenting
the dataset. The key idea of the proposed pseudo-rehearsal
embedding regularization (PRER) is to use a generative
model to sample new embeddings associated to past tasks.
To regularize the network, we (i) reconstruct the images
associated to the embeddings, (ii) calculate the embeddings
given by the current network; (iii) force the old and the
new embeddings to be as close as possible (by moving the
current one in the direction of the past ones).

Pseudo-Rehearsal for Continual Learning with Normalizing Flows

3.2. Problem formulation

The following formulation of the CL scenario is similar to
the one proposed in (Lopez-Paz & Ranzato, 2017). We re-
ceive a sequence of tasks ¢ = 1, ..., M, each one composed
by a set of triples {(x;,t,y;)}5, € X x N* x), where
X; is a sample, ¢ is an integer identifying the current task,
and y; is the corresponding label of x;. Within this formu-
lation, the tasks never intersect, and a new task is collected
only when the current one is over. The input and the labels
can belong to any domain, although most benchmarks in
the CL literature have considered the image domain in a
classification setting (Parisi et al., 2019).

In this paper we focus on a CL scenario in which each task
has its own classifier, meaning that only a portion of the NN,
that we call the encoder, is shared (top violet part in Fig. 1a).
There is no class overlap among different tasks, and accu-
racy is computed separately for each task. This is done by
creating a leaf branch for each task, called head, which clas-
sifies only images associated to that task (right part in Fig.
la). Mathematically, we have a model f(x,t) = S;(E(x)),
where F(-) is the encoder and S;(-) a task-specific classi-
fier. In a naive setting, every time we receive a new task ¢,
we minimize a task-specific loss starting from the current
encoder F and the new randomly-initialized S;:

S

L= L(f(xi1)9:),)

i=1

where L is a suitable loss (e.g., cross-entropy). CF appears
whenever training on the current task ¢ degrades the perfor-
mances on previous tasks 1,...,¢ — 1.

Such models cannot be used to classify unknown samples,
since the belonging task needs to be known a priori. These
experiments are suitable for studying the feasibility of train-
ing disjoints tasks without forgetting how to solve the pre-
vious ones. We leave explorations of alternative scenarios,
such as the so-called Single Incremental Task (SIT) (Maltoni
& Lomonaco, 2019), for future work.

3.3. Pseudo-rehearsal in the embedding space

As shown in Fig. 1a, we augment the classifier described in
Section 3.2 with two additional networks:

1. Firstly, we add a decoder network X = D(z) to ap-
proximately invert the encoder network. Both of the
networks are trained jointly as an autoencoder network.

2. Secondly, we train a generative model to generate sam-
ples from p(z | t,y), i.e., embeddings of a specific task
and class. This model is implemented with a NF, de-
scribed in Section 3.4.

Given the data for the new task, the training process is
divided in three phases:

1) Autoencoder training: In the first stage we train the
encoder and decoder networks on the current task, by mini-
mizing a reconstruction loss:

S
Lae =Y _lxi = D(E(x:))|* -)
i=1

To avoid to use all the capacity of the autoecnoder we imple-
ment it as a sparse autoencoder (Arpit et al., 2016). In this
way, by regularizing the layers of our network, not only the
reconstruction improves but also the classification scores,
due to the sparsity of the produced embeddings.

1.1) Pseudo-rehearsal embedding regularization

If the task is not the first one, we further overwrite a per-
centage of each mini-batch with samples drawn from the
generative model. We sample from the generative model
using the same proportions of labels observed in the training
sets. In addition to using the generative model to augment
the dataset, we also apply a regularization technique similar
to the ER method proposed in (Pomponi et al., 2020). This
step is applied only while we train the autoencoder and only
its weights are updated; this step is is depicted in Fig. 1b.

Consider a generic sample z ~ p(z|t,y) from the gener-
ative model. We first project the embedding to the input
space using the trained decoder X = D(z). Then, we reg-
ularize the autoencoder by penalizing deviations from the
currently generated embeddings:

R(z) = d(z, E(D(2))) , 3)

where d is a distance function. Practically, when training the
autoencoder, we augment the reconstruction loss in (2) by
computing (3) on all the data we use to augment the dataset.

2) Generative model training: In the second stage, we
train the generative model to accurately sample embeddings
from the new task ¢. This procedure is described in Section
3.4. We underline that we use a single generative model con-
ditioned on the task, in order to keep the memory overhead
of our method constant. As in the autoencoder training, if
the task is not the first one, we overwrite a percentage of
each mini-batch with samples associated from the past tasks,
drawn from the generative model. In this phase, regularize
the embeddings is not needed, since the NF is will be trained
on new and past embeddings jointly; the training itself acts
like a consolidation of past information.

3) Classifier training: In the third stage, the current task-
specific head S; is trained to solve the current task ¢ by
minimizing (1).

We found that splitting the training into three separate pro-
cesses helps the stability and improves the results, since each

Pseudo-Rehearsal for Continual Learning with Normalizing Flows

block works with the others already optimized. The com-
putational overhead is also small, since each step updates a
small part of the overall architecture (we provide memory
and time comparisons in our experimental evaluation).

3.4. Normalizing Flows

To complete the specification of our PRER method, we
need to describe a specific generative model to estimate
samples from the embedding space. While most generative
methods could be used here, we have found normalizing
flows (NFs) to be particularly effective for the task. Intro-
duced in (Tabak & Vanden-Eijnden, 2010) and (Tabak &
Turner, 2012), and popularized by (Rezende & Mohamed,
2015) and (Dinh et al., 2014), NFs are probabilistic models
describing the transformation of a probability distribution
into a more complex one using a sequence of differentiable,
invertible mapping functions. Depending on the type, a
NF is capable of efficiently performing sampling or density
estimation in either direction (Papamakarios et al., 2019).

Ignoring for a moment the conditioning on a given task, let
u ~ py,(u) be a real d-dimensional distribution which is
easy to sample from, and 7" a transformation 7" : R? — R,
The key requirements for 7" to be a NF are: 1) 7" must be
invertible, with an inverse denoted by T-! and 2) both T
and T~! must be differentiable. We can obtain samples
from p, (z) by drawing samples from the easier p, (u) and
then computing 7'(u) (forward mapping). Alternatively, we
can ‘normalize’ a known sample z ~ p,(z) by applying the
inverse transformation 7'~ (z) (inverse mapping)." Addi-
tionally, we can evaluate the likelihood of a known sample
Z as:

pa() = puwdet ST)|, @)

where Jp-1 € R?*? is the Jacobian matrix of all partial
derivatives of 7~1. The prior distribution p, (u) is gener-
ally chosen as an Isotropic Normal distribution. 7" is instead
obtained by composing multiple simpler, invertible transfor-
mations 74, ..., Ty, resultingin 7' =T o1 0---01Tj.
The arbitrarily complex density z can be constructed from
a prior distribution by composing several simple maps and
then applying Eq. 4.

As stated before, a NF can perform both sampling and den-
sity estimation in both directions. Depending on the specific
NF, not all of these operations are necessarily easy to com-
pute (Papamakarios et al., 2019). This is due to the fact
that to achieve them simultaneously, the model needs both
a simple forward mapping, a simple inverse mapping, and
the Jacobians have to be easy to compute. In general, this
is not always possible, mostly due to a computational trade-

! As mentioned in (Papamakarios et al., 2019), the terms “for-
ward” and “inverse” are simply a convention.

off. Hence, a NF model needs to be built depending on the
application.

In our case, we need efficient density estimation and sam-
pling in the inverse mapping (for training), but only efficient
sampling in the forward direction (see Fig. 1b). We use
a setup similar to (Dinh et al., 2016; Kingma & Dhariwal,
2018), whose layers we briefly summarize below. Denote
by uj;1 = Tj(u) the generic jth block of the NF. We
build the overall NF by interleaving three types of invertible
transformations.

1) Coupling Layer and Affine transformation: Proposed
in (Dinh et al., 2014; 2016), a coupling layer consists in a
powerful reversible transformation, where the forward and
the inverse mappings are computationally efficient. Here,
we use the version presented in (Kingma & Dhariwal, 2018).

Consider a generic split of the input vector u; = [E] A

coupling layer is defined as:

logs,t = fo(a)
cp, =exp(logs) @b+t

u;1 = concat(a, cp)

where fy(-) is a generic transformation implemented via a
NN, and © is the element-wise multiplication. The log det
of a coupling layer is simply >, log s;. The main advan-
tage of this layer is that the function fg(-) does not have to
be invertible. The main advantage is also a disadvantage,
since, due to the simplicity of the affine transformation, a
NF implemented with this technique needs multiple layers
and blocks in order to have enough expressive power to
transform any input into p,, (u).

2) Random Permutation: since only a portion of the input
is modified in each block, it is required to randomly permute
the output of a block in order to modify a new set of param-
eters in the following block, i.e., Tj(u) = Pu, where P is a
fixed permutation matrix. Clearly, ijl(ujﬂ) =PTu;q,
and the transformation has a unitary determinant.

3) Invertible Batch Norm: As in (Dinh et al., 2016), we
also apply batch normalization, but on the input of the cou-
pling layer instead of the output. It acts as a linear re-scaling
of each parameter, thus it can be easily inverted and in-
cluded in the Jacobian computation. The scaling is done in
the following way:

u-—p
U1 = —F/——s
(et

and the parameters are iteratively estimated as:

p=mp+ (1 —m)u
o=mo+ (1—m)oy

Pseudo-Rehearsal for Continual Learning with Normalizing Flows

where m € [0, 1] is the momentum, while g, and oy, are,
respectively, the mean and the standard deviation of the
current mini-batch. On the first batch, the parameters are
initialized as p = pp and o = oy, and they are updated
with each new batch during the training. The logdet is
computed as:

(Te*+0)

with € > 0 a parameter to avoid zero multiplication.

Note that, in our case, we need a NF that is conditioned
on the pair (¢, y). To implement this, we condition the first
coupling layer by passing the pair (¢,y) as an additional ar-
gument to fy, in order to be able to generate embeddings for
every possible class. The idea is similar to what is done in
(Winkler et al., 2019). Practically, the conditioning is done
by building a one-hot vector with respect to the maximum
number of separate classes we presume to observe. We have
found the NF to be very easy to train and condition in all our
experiments, with no need for specific techniques to avoid
CF. In Fig. 2 we show some examples of generated embed-
dings from the MNIST dataset, using several conditioning
vectors.

Furthermore, we implement a multi scale architecture as
explained in (Dinh et al., 2016; Kingma & Dhariwal,
2018). Each mapping T} is decomposed into multiple sub-
mappings. After each sub-level, the output is split in two,
with the first part being sent directly to the output of the
level, while the other part flows into the next sub-mapping
for further processing. This architecture improves the con-
vergence and the stability, and it results in a smaller number
of parameters.

Many others way of building a NF exists; for an in-depth
review of the NF literature we refer to (Papamakarios et al.,
2019) and (Kobyzev et al., 2020).

4. Experiments
4.1. Datasets and metrics

For evaluating the proposed method, we consider three dif-
ferent datasets: MNIST, KMNIST (Clanuwat et al., 2018),
SVHN (Netzer et al., 2011) and CIFAR10 (Krizhevsky,
2009). We evaluate the methods under the previously de-
scribed multi-head CL scenario; to do so, being C the
classes of a dataset, these are grouped in M sets, each one
making up a task containing c,,, € N classes, with ¢,,, > 1,
giving: M = CQ (with this formulation each task contains
the same number of classes, with the exception of the last
one if C' mod ¢,,, # 0). In particular, we split the labels by
grouping the original ones in an incremental way.

To evaluate the efficiency and to compare the methods two
metrics from (Diaz-Rodriguez et al., 2018) have been used.

Conditioner

Figure 2. Visualization of the conditional embeddings produced by
the trained NF on the MNIST dataset. We use PCA for visualiza-
tion.

All these metrics are calculated on a matrix R € RM*M
where M is the number of tasks, and each entry R;; is
the test accuracy on task j when the training on task ¢ is
completed. This matrix of scores can be used to calculate
different metrics, and we use the following:

Accuracy: it is the average accuracy on the trained tasks.
It considers the elements of the diagonal as well as the
elements below it, doing so also the evolution of the scores
is taken into consideration:

M
i>j Fij
Accuracy = ————.
sM(M +1)
This metric aims to show the average performance of the
model in every step of the training and for each task.

Backward Transfer (BWT): it measures how much infor-
mation from the old tasks is remembered during the training
on the new one. It is calculated as:

YL, ST (Ri — Ryj)

BWT =
IM(M-1)

This metric can be greater than zero, meaning that not only
the model is remembering everything about the past tasks,
but it also improves the score on these. In our scenario, this
phenomenon is rare, since heads associated to past tasks are
no longer trained.

We use these metrics because they embed all the important
aspects of the CL problem: the ability of an approach to
mitigate CF and to classify correctly the past tasks, but also
the ability to train the model on the current task. They are
both important because a model with high accuracy and
low BWT is a model not capable of alleviating CF; on the

Pseudo-Rehearsal for Continual Learning with Normalizing Flows

Table 1. Average percentage on 5 runs, and the associated standard deviation, for BTW and accuracy, obtained with each method and

evaluated dataset. All the results are calculated on the test sets. Best results within standard deviation are reported in bold.

MNIST KMNIST SVHN CIFAR10

BWT ACCURACY BWT ACCURACY BWT ACCURACY BWT ACCURACY

NAIVE | —10.09+2.46 92.9541 .62 —5.0941 46 95.954+1.04 —12.6141.12 84.8110.80 —24.3345.51 71.2813.66
LWF —T7171156 949441 .04 —4.30+3.64 94.44 41 g9 —12.1940.73 88.7410.48 —24.77+0.94 70.7110.30
EWC —7.89+1.44 94.8410.95 —3.60+3.45 95.53+236 | —10.77+1.10 | 89.3210.73 —23.95+4.12 | 71.6514.12
GEM —0.60+0.24 99.1040.16 —1.62+0.46 97.77+0.44 —2.4140.32 95.2210.63 —5.5040.51 82.6910.69
ER —0.36+0.47 | 99.3940.48 | —0.731030 | 98.684+0.20 | —1.6310.07 | 95.3240.06 | —4.73+1063 | 82.2240.73
PRER | —0.1440.01 | 99.4140.10 | —0.2640.00 | 98.70+0.20 | —0.4640.17 | 95.2340.06 | —3.634+0.64 | 82.674+0.04

other hand, low accuracy and high BWT tells us that the
constraints applied on the model are too restrictive, blocking
the training of the current task.

4.2. Experimental setting

We compare our method to the naive approach —training on
all the tasks sequentially without mitigating the CF problem—
and to the most popular or related rehearsal and regulariza-
tion approaches: LWF, EWC, GEM, and ER.

With regard to LWF, since the original method was designed
for a 2-task scenario and it is not competitive outside it, we
modified the approach by transforming it into a rehearsal
approach: we have an external memory which contains
past samples and the associated past predictions. When
regularizing, the current predictions on past tasks’ samples
are forced to match the past prediction; in this way, this
approach is competitive with the other baseline methods.

For MNIST and KMNIST we train the models using SGD
with a learning rate equal to 0.1, while for SVHN and CI-
FAR we use Adam (Kingma & Ba, 2014) with a learning
rate equal to 0.001. Regarding PRER, we train both the
autoencoders and the NF using Adam, with, respectively,
learning rate equal to le—3 and le—4. We use batch size
equal to 64 for all datasets with the exception of CIFAR10,
for which we used 128 as batch size. Each dataset have been
splitted in 5 tasks by setting ¢,,, = 2

We fine-tune all hyper-parameters based on a grid-search
and the results from the original papers. For PRER we use
2 levels, each one composed by 10 blocks (each block is
composed by: batch normalization, a coupling layer, and a
random permutation); each coupling layer is defined as a
fully connected network with 3 layers: 7" : R% — RY —
R%. We also find that setting the coupling layers scale as
§ = sigmoid(s + 2), so that the initial scale is near the
identity, helps in stabilizing the training phase.

The encoder is composed by three convolutional layers of
12, 24, and 48 filters for MNIST and KMNIST, and twice
these sizes for SVHN and CIFAR10. Each layer has 4 x 4
kernel sizes and stride 2 x 2. Then, the output of the last
convolutional layer is flattened and, using a fully-connected

Table 2. Approximate memory requirements, without taking into
account the base network, and training time to do a complete
training on MNIST and CIFARI10 are reported. The memory
column contains, for each method, the required space (counted as
number of floats to store); in order to calculate the required space
we define: NN is the dimension of the encoder, M is the number of
tasks, ¢, is the number of classes per task, /M is the dimension
of an image, F is the dimension of the embedding extracted by the
encoder, S is the number of samples saved in the external memory,
and NF is the dimension of the pair (NF, decoder) used in our
method.

MNIST CIFAR10
Memory Memory | Time (m) | Memory | Time (m)
Naive - - ~9 - ~ 20
LWF | M x S X (¢, + IM) | ~1960K ~ 20 ~ 7680 K ~ 30
EWC M x N ~ 310K ~ 12 ~ 2T42K ~ 25
GEM M xS xIM ~ 1960 K =~ 60 ~ 7680 K ~ 70
ER MxSx(E+IM) | ~84K ~ 15 ~ 8180K ~ 40
PRER NF +N ~ 148K ~ 20 ~ 1279K ~ 50

layer, the final embedding vector is produced: for MNIST
and KMNIST we use 50 as embedding size, while we use
100 for SVHN and 200 for CIFAR10. The head takes as in-
put the embedding vector, and predicts the class using three
fully-connected layers, each of which halves the dimension
of its input; we also use a dropout layer, with probability set
to 0.2, between consecutive layers. The activation function
used in all the models is the ReLU.

We repeat each experiment for 5 times, each time changing
the split of the dataset (balanced split based on labels, with
proportion 80% train and 20% test) as well as the initial
weights of the models.

4.3. Results

In Table 1 we summarize the results concerning accuracy
and BTW, while Table 2 shows the required time and mem-
ory space for each method. Results in Table 2 are shown
for brevity only on MNIST, but they are similar on the other
two datasets.

First, we look to the baseline methods. We can see that, in
this multi-head scenario, all methods perform better that the
Naive approach. LWF and EWC perform better than the
naive method but not by much, and they are also more sensi-

Pseudo-Rehearsal for Continual Learning with Normalizing Flows

tive to the starting weights (as can be seen by the variance)
and, in the case of LWF, also to the images stored in the
external memory; furthermore, LWF performance degrades
when the dataset becomes more complex, which leads us
to conclude that it is not a reliable method for alleviating
the CF problem. The others baseline methods, GEM and
ER, performs better than LWF and EWC, with ER being
slightly better in both BWT and accuracy. If we consider
also the required time and the memory requirements, which
are summarized in Table 2, we can conclude that ER is
the best baseline method, because it requires less memory
and less time than GEM (as advocated in (Pomponi et al.,
2020)).

The method we propose, PRER, achieves better BWT score
than all the others methods (by a significant margin), and
comparable accuracy to the best one; it is also more robust to
the weights’ initialization. Looking at the required memory
space, PRER achieves the best results w.r.t. the others base-
line methods, because, given a NF which is large enough,
the generative model is capable of generating all the classes
encountered during the training, requiring constant memory.
In terms of time, it depends mostly on the dimension of the
generative model, which needs to be trained separately: in
the MNIST example, shown in Table 2, the required time is
competitive to the other methods due to the small NF that
works directly on the embeddings.

5. Conclusion

In this paper we introduced PRER (Pseudo-Rehearsal Em-
bedding Regularization), a pseudo-rehearsal method that,
by working on the embedding space, is able to generate
past embeddings and use them to protect past information
while learning new tasks. This approach is a different point
of view on the pseudo-rehearsal methods, which usually
work on the input space. By working on a lower complexity
space, the required time is reduced as well as the dimension
of the generative model. Once combined with a decoder, the
generative model can be used to generate images associated
to past tasks, and to constrain the model by regularizing the
embeddings’ deviation. We believe that this set of methods
can be further investigated, leading to a different view of the
pseudo-rehearsal approaches, which, right now, are feasible
only for low complexity datasets. We leave an investigation
on how the PRER method scales to more complex datasets
to future work.

References

Aljundi, R., Kelchtermans, K., and Tuytelaars, T. Task-free
continual learning. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
11246-11255, 2019.

Arpit, D., Zhou, Y., Ngo, H., and Govindaraju, V. Why
regularized auto-encoders learn sparse representation?
In Balcan, M. F. and Weinberger, K. Q. (eds.), Proceed-
ings of The 33rd International Conference on Machine

Learning, volume 48 of Proceedings of Machine Learn-
ing Research, pp. 136-144. PMLR, 20-22 Jun 2016.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. Efficient lifelong learning with A-GEM. In Interna-
tional Conference on Learning Representations, 2019.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A.,
Yamamoto, K., and Ha, D. Deep learning for classical
japanese literature. arXiv preprint arXiv:1812.01718,
2018.

Diaz-Rodriguez, N., Lomonaco, V., Filliat, D., and Mal-
toni, D. Don’t forget, there is more than forgetting:

new metrics for continual learning. arXiv preprint
arXiv:1810.13166, 2018.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-linear
independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estima-
tion using Real NVP. arXiv preprint arXiv:1605.08803,
2016.

Ebrahimi, S., Meier, F., Calandra, R., Darrell, T., and
Rohrbach, M. Adversarial continual learning. arXiv
preprint arXiv:2003.09553, 2020.

French, R. M. Catastrophic forgetting in connectionist net-
works. Trends in Cognitive Sciences, 3(4):128-135, 1999.

Guo, Y., Chen, Q., Chen, J., Wu, Q., Shi, Q., and Tan,
M. Auto-embedding generative adversarial networks for
high resolution image synthesis. IEEE Transactions on
Multimedia, 21(11):2726-2737, 2019.

Kang, W., Cheol-Ho, H., and Byoung-Tak, Z. Discrimina-
tive variational autoencoder for continual learning with
generative replay, 2020.

Kingma, D. and Dhariwal, P. Glow: Generative flow with
invertible 1x1 convolutions. In Advances in Neural In-
formation Processing Systems, pp. 10215-10224. Curran
Associates, Inc., 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X.,
Sutskever, 1., and Welling, M. Improved variational in-
ference with inverse autoregressive flow. In Advances in
Neural Information Processing Systems, pp. 47434751,
2016.

Pseudo-Rehearsal for Continual Learning with Normalizing Flows

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A., Milan, K., Quan, J., Ramalho,
T., Grabska-Barwinska, A., Hassabis, D., Clopath, C.,
Kumaran, D., and Hadsell, R. Overcoming catastrophic
forgetting in neural networks. Proceedings of the Na-
tional Academy of Sciences, 114(13):3521-3526, 2017.

Kobyzev, L., Prince, S., and Brubaker, M. A. Normalizing
Flows: an introduction and review of current methods.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, pp. 1-1, 2020.

Krizhevsky, A. Learning multiple layers of features from
tiny images, 2009.

Li, Z. and Hoiem, D. Learning without forgetting. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 40(12):2935-2947, 2017.

Lopez-Paz, D. and Ranzato, M. Gradient episodic memory
for continual learning. In Advances in Neural Information
Processing Systems, pp. 6467-6476, 2017.

Maltoni, D. and Lomonaco, V. Continuous learning in
single-incremental-task scenarios. Neural Networks, 116:
56-73, 2019.

McCloskey, M. and Cohen, N. J. Catastrophic interference
in connectionist networks: The sequential learning prob-
lem. In Bower, G. H. (ed.), Psychology of Learning and
Motivation, volume 24, pp. 109 — 165. Academic Press,
1989.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. 2011.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
probabilistic modeling and inference. arXiv preprint
arXiv:1912.02762, 2019.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural Networks, 113:54 —71, 2019.

Pomponi, J., Scardapane, S., Lomonaco, V., and Uncini,
A. Efficient continual learning in neural networks with
embedding regularization. Neurocomputing, 397:139 —
148, 2020.

Rao, D., Visin, E., Rusu, A., Pascanu, R., Teh, Y., and Had-
sell, R. Continual unsupervised representation learning.
In Advances in Neural Information Processing Systems,
pp. 7645-7655. Curran Associates, Inc., 2019.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In Bach, F. and Blei, D. (eds.), Pro-
ceedings of the 32nd International Conference on Ma-
chine Learning, volume 37 of Proceedings of Machine
Learning Research, pp. 1530-1538. PMLR, 07-09 Jul
2015.

Robins, A. Catastrophic forgetting, rehearsal and pseudore-
hearsal. Connection Science, 7(2):123-146, 1995.

Roger, R. Connectionist models of recognition memory:
constraints imposed by learning and forgetting functions.
Psychological Review, 97 2:285-308, 1990.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. In Dy, J. and Krause, A. (eds.), Proceedings of
the 35th International Conference on Machine Learning,
volume 80, pp. 4548—4557. PMLR, 2018.

Shin, H., Lee, J., Kim, J., and Kim, J. Continual learning
with deep generative replay. In Advances in Neural In-
formation Processing Systems, pp. 2990-2999. Curran
Associates, Inc., 2017.

Tabak, E. G. and Turner, C. V. A family of nonparametric
density estimation algorithms. Communications on Pure
and Applied Mathematics, 66(2):145-164, 2012.

Tabak, E. G. and Vanden-Eijnden, E. Density estimation
by dual ascent of the log-likelihood. Communications in
Mathematical Sciences, 8(1):217-233, 2010.

Thrun, S. and Mitchell, T. Lifelong robot learning. Robotics
and Autonomous Systems, 15(1):25 — 46, 1995.

Winkler, C., Worrall, D., Hoogeboom, E., and Welling, M.
Learning likelihoods with conditional normalizing flows.
arXiv preprint arXiv:1912.00042, 2019.

Zenke, F.,, Poole, B., and Ganguli, S. Continual learn-
ing through synaptic intelligence. In Proceedings of the
34th International Conference on Machine Learning, vol-
ume 70, pp. 3987-3995. IMLR. org, 2017.

Zeno, C., Golan, 1., Hoffer, E., and Soudry, D. Task agnostic
continual learning using online variational Bayes. arXiv
preprint arXiv:1803.10123, 2018.

