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Abstract

Machine learning models can often fail on subgroups that are underrepresented
during training. While dataset balancing can improve performance on underper-
forming groups, it requires access to training group annotations and can end up
removing large portions of the dataset. In this paper, we introduce Data Debiasing
with Datamodels (D3M), a debiasing approach which isolates and removes specific
training examples that drive the model’s failures on minority groups. Our approach
enables us to efficiently train debiased classifiers while removing only a small
number of examples, and does not require training group annotations or additional
hyperparameter tuning.

1 Introduction

The advent of large datasets such as OpenImages [23] and The Pile [13] has led to machine learning
models being trained on explicit [4] and illegal [48] content, or on data that encode negative societal
biases [6, 12, 2, 8] and other spurious correlations [32, 30]. On one hand, there is increasing evidence
that models reflect the biases in these datasets; on the other hand, the enormous scale of these datasets
makes it extremely expensive to manually curate them—and so removal of such “harmful data” is
challenging.

In this paper, we propose an approach that aims to remove data responsible for biased model
predictions. In particular, we focus on a specific way of quantifying model bias— worst-group error—
which captures the extent to which model performance degrades on pre-defined subpopulations of the
data. We aim to identify (and remove) the points in the training dataset that contribute most to this
metric to improve the model’s group robustness.

The challenge inherent in this approach is that it requires an understanding of how training data affect
machine learning model predictions. To overcome this challenge, we first approximate predictions as
simple, direct functions of the training dataset, using a framework called datamodeling [18, 33]. We
can then write our quantitative notion of model bias (which is a function of predictions) as a function
of the dataset. Finally, by studying this function, we identify the training data points that contribute
most to this measure of model bias. With the resulting method, which we call Data Debiasing with
Datamodels (D3M), we show that, across a variety of datasets, there are often a small number of
examples that disproportionately drive worst-group error. Removing these examples, in turn, greatly
improves models’ worst-group error while maintaining dataset size.

Roadmap & contributions. In the rest of this paper, we present and demonstrate the effectiveness
of our Data Debiasing with Datamodels (D3M). Concretely, we show that D3M enables us to:

• Pinpoint examples that harm worst-group accuracy. We show that there are often a
small number of examples that disproportionately drive models’ worst-group error on
validation data. For example, on CelebA-Age, our method improves worst group error over
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Figure 1: Our method (D3M) improves worst group accuracy by identifying and removing the
training samples which most negatively impact worst-group accuracy. Specifically, we use TRAK [33]
to identify examples that exacerbate the discrepancy in group performance. We then remove and
re-train a model on the remaining data.

a natural baseline (data balancing) while removing 2.4× fewer examples. Furthermore,
these offending examples often form coherent subpopulations within the data.

• Achieve competitive debiasing performance. Our approach outperforms standard ap-
proaches (both model-based and data-based) to improving worst-group accuracy [25, 21,
17], and is able to match the performance of methods which use ground-truth training group
annotations [40].

• Discover unlabeled biases. When validation group labels are unavailable, we show how to
extract hidden biases (i.e., unlabeled subgroups) directly from the data. As a result, we can
perform end-to-end debiasing without any group annotations.

We present our method in Section 4, and demonstrate these capabilities in Section 5. In Section 6, we
leverage our framework to discover and mitigate biases within the ImageNet dataset, where D3M
surfaces coherent color and co-occurrence biases. We then debias the model according to these
failures, and improve accuracy on the identified populations.

2 The group robustness problem

We consider an (unobserved) data distribution D over triplets (xi, yi, gi), each comprising an input
xi ∈ X , a label yi ∈ Y , and a subgroup label gi ∈ G, where G is the set of distinct subpopulations in
the data. As a running example, consider the CelebA age classification task—here, we take the inputs
xi to be images of faces, the labels yi to be either “old” or “young,” and the possible group labels to
be “old man”, “old woman”, “young man”, and “young woman” (see Figure 1).

Given a training dataset Strain and a (small) validation dataset Sval, the goal of the group robustness
problem is to produce a classifier f that minimizes the worst-case loss over groups, i.e.,

max
g′∈G

E(x,y,g)∼D
[
`(f(x), y)

∣∣g = g′
]
, (1)

where `(·, ·) is a loss function. When ` is the 0-1 loss, Equation (1) is (one minus) the worst-group
accuracy (WGA) of the classifier f , which we use to quantify success in the remainder of this work.
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Standard loss minimization can yield models that perform poorly with respect to (1). For instance, re-
turning to our example of CelebA age classification, suppose there was a spurious correlation between
age and gender in the training set Strain, such that old men and young women are overrepresented. A
predictor that minimizes loss on Strain might leverage this correlation, and thus perform poorly on the
underrepresented subgroups of old women or young men.

In practice, subgroup labels gi can be expensive to collect. Thus, approaches to the subgroup
robustness problem vary in terms of whether we observe the group label gi in the training set Strain
and in the validation set Sval. In particular, there are three settings of interest:

• Full-information (Train 3/ Val 3): We observe the group labels for both the training
dataset Strain and validation dataset set Sval.

• Partial-information (Train 7/ Val 3): We observe the group labels for the validation set
Sval, but not for the (much larger) training set Strain.

• No-information (Train 7/ Val 7): We do not have group information for either Strain or
Sval. Note that theoretically this setting is unsolvable, since for any non-perfect classifier
f , there exists an assignment of group labels so that the worst-group accuracy is zero.
Nevertheless, subgroups of relevant practical interest typically have structure that allows for
non-trivial results even with no information.

In this work, we focus on the partial-information and no-information settings, since acquiring group
labels for the entire training set is often prohibitively expensive. Still, in Section 5, we show that our
proposed methods (D3M for the partial-information setting, and AUTO-D3M for the no-information
setting) perform comparably to full-information approaches.

3 Related work

Before introducing our method, we discuss a few related lines of work.

Approaches to subgroup robustness. The group robustness problem (Section 2) has attracted a
wide variety of solutions (see, e.g., [3, 20, 40, 25, 21, 38]). Broadly, these solutions fall into one
of two categories—model interventions and data interventions. Model interventions target either
model weights [42, 45] or the training procedure [40, 21]. Data interventions, on the other hand, seek
to improve worst-group accuracy by modifying the training dataset. For example, data balancing
removes or subsamples examples so that all subgroups are equally represented. Idrissi et al. [17] find
that this simple approach can performs on par with much more intricate model intervention methods.

In this work, we focus on data interventions, for two reasons. First, it is often training data that
drives models’ disparate performance across groups [27], e.g., via spurious correlations [32] or
underrepresentation [6]. Second, data interventions do not require any control over the model training
procedure, which can make them a more practical solution (e.g., when using ML-as-a-service).
Indeed, since data intervention approaches only manipulate the dataset, they are also easy to combine
with model intervention techniques.

Compared to our work, the main drawback of existing data interventions is that they often (a) require
subgroup labels for the training data (which might not be available), and (b) hurt the models’ natural
accuracy on skewed datasets [7, 44]. In this work we circumvent these limitations, by proposing
a data-based approach to debiasing that can preserve natural accuracy without access to subgroup
information.

Bias discovery. Another related line of work identifies biases in machine learning datasets and
algorithms. For the former, previous works have shown that large, uncurated datasets used for training
machine learning models often contain problematic or biased data [4, 5, 48]. Raji et al. [39] show
that data bias can be a hurdle towards deploying functional machine learning models. Nadeem et al.
[29] curate a dataset to estimate bias in NLP models. Adebayo et al. [1] show that label errors can
disproportionately affect disparity metrics.

On the learning algorithm side, Shah et al. [47] and Puli et al. [37] show that the inductive bias of
neural networks may encourage reliance on spurious correlations. Pezeshki et al. [34] leverage two
networks trained on random splits of data while imitating confident held-out mistakes made by its
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sibling to identify the bias. Shah et al. [46] show that algorithmic design choices (e.g., the choice of
data augmentation) can significantly impact models’ reliance on spurious correlations. Finally, there
has been a variety of work on “slice discovery” [19, 10], where the goal is to discover systematic
errors made by machine learning models.

Data selection for machine learning. Our work uses data selection to improve subgroup robustness
of machine learning models. A recent line of work has explored data selection for improving various
measures of model performance. For example, Engstrom et al. [9] leverage datamodeling [18, 33] to
select pretraining data for LLMs. Similarly, Xia et al. [52] and Nguyen and Wong [31] select data for
finetuning, and in-context learning, respectively. In another related work, Wang et al. [49] propose a
method to reweight training data in order to improve models’ fairness.

Many of these works leverage contributive data attribution methods to select data that improves
model performance [51]. Koh and Liang [22], Feldman and Zhang [11], Schioppa et al. [43], and
Hammoudeh and Lowd [15] propose using different variants of influence functions. Ghorbani and
Zou [14] leverage connections to Shapley values, a concept from game theory. Pruthi et al. [36] use a
heuristic to estimate the contribution of each data point to model performance. Ilyas et al. [18] and
Park et al. [33] use the datamodeling framework.

4 Debiasing datasets with datamodeling (D3M)

In this section, we present our data-based approach to training debiased classifiers. The main idea
behind our approach is to identify (and remove) the training samples that negatively contribute to the
model’s worst-group accuracy, by writing model predictions as a function of the training data.

Preliminaries. Let S = {(x1, y1), . . . , (xn, yn)} be a dataset of input-label pairs. For any subset
of the dataset—as represented by indices D ⊂ [n]—let θ(D) ∈ Rp be the parameters of a classifier
trained on D. Given an example z = (x, y), let f(z; θ) be the correct-class margin on z of a classifier
with parameters θ (defined as log( p

1−p ), where p is the confidence assigned to class y for input x).

A datamodel for the example z is a simple function that predicts f(z; θ(D)) directly as a function of
D, i.e., a function f̂z : 2[n] → [0, 1] such that

f̂z(D) ≈ f(z; θ(D)) for D ⊂ [n].
Recent works (e.g., [18, 24, 33]) demonstrate the existence of accurate linear datamodels—functions
p̂ that decompose additively in terms of their inputs D. In other words, these works show that one
can compute example-specific vectors τ(z) ∈ Rn such that

f̂z(D) :=
∑
i∈D

τ(z)i ≈ f(z; θ(D)). (2)

The coefficients τ(z)i have a convenient interpretation as quantifying the “importance” of the i-th
training sample to performance on example z (i.e., as a data attribution score [15]). In what follows,
we will assume access to coefficients τ(z) for any example z—at the end of this section, we will
show how to actually estimate the coefficient vectors τ(z) efficiently.

Debiasing approach. How can we leverage datamodeling to debias a dataset? Recall that our goal
is to remove the samples in S that lead to high worst-group error. Stated differently, given a dataset S
of size n, we want to maximize the worst-group performance of a classifier θ(D) with respect to the
indices D ⊂ [n] that we train on.

Our main idea will be to approximate the predictions of θ(D) using the corresponding datamodels
f̂z(D). To illustrate this idea, suppose that our goal was to maximize performance on a single test
example z, i.e., arg maxD f(z; θ(D)). We can approximate this goal as finding arg maxD f̂z(θ(D)):
then, due to the linearity of the datamodel f̂z , the training samples that hurt performance on z are
simply the bottom indices of the vector τ(z).

Now, this analysis applies not only to a single example z, but to any linear combination of test
examples. In particular, if we wish to maximize performance on a linear combination of validation
examples, we simply take the linear combination of their coefficients, and remove the training
examples corresponding to the smallest coordinates of the averaged vector.
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Debiasing with group-annotated validation data. Given a set of validation samples for which
the group labels gi are observable, our last observation gives rise to the following simple procedure:

1. Compute group coefficients τ(G) for each G. Since we have group annotations for each
validation sample, we can define a vector τ(G) for each group G ∈ G as simply the average
τ(z) within each group.

2. Compute group alignment. Next, we compute a group alignment scoreAi for each training
sample i ∈ [n], which captures the the impact of the sample on worst-group performance.
Since there may be many low-performing groups, we use a “smooth maximum” function to
weight each group according to its average loss. Thus, for a training example i,

Ai =

∑
g∈G exp(β`g) · τ(g)i∑

g′∈G exp(β`g′)
, where we set hyperparameter β = 1. (3)

Here, `g is the loss of a base classifier θ(S) on group g (evaluated on the given validation
set).

3. Remove drivers of bias. Finally, we construct a new training set Snew by keeping only the
examples with the highest group alignment scores, i.e., removing the examples that most
degrade worst-group accuracy:

Snew = arg top-k({Ai : zi ∈ Strain}).

We make two brief observations about hyperparameters before continuing. When computing the
group alignment score in Step 2, the hyperparameter β controls the temperature of the soft maximum
function in (3). When β → 0, the group alignment Ai measures the impact of the i-th training
example on the “balanced” performance (treating all groups equally). As β →∞, Ai collapses to
the training example’s importance to only the worst group, which is suboptimal if models perform
poorly on more than one group. For simplicity, we take β = 1 and refrain from tuning it.

Another hyperparameter in the algorithm above is the number of examples to remove, k. We consider
two different ways of setting this hyperparameter. One approach is to search for the value of k that
maximizes worst-group accuracy on the validation set Sval. Alternatively, we find that the simple
(and much more efficient) heuristic of removing all examples with a negative group alignment score
(i.e., examples for which Ai < 0) tends to only slightly over-estimate the best number of examples to
remove (see, e.g., Figure 2). Thus, unless otherwise stated, we use this heuristic when reporting our
results.

Debiasing without group annotations. Our procedure above relies on group annotations for a
validation set Sval to compute the “per-group coefficients” τ(G). In many real-world settings,
however, models might exhibit disparate performance along unannotated subpopulations—in this
case, we might not have a validation set on which we can observe group annotations gi. Can we still
fix disparate model performance in this setting?

In general, of course, the answer to this question is no: one can imagine a case where each individual
example is its own subpopulation, in which case worst-group accuracy will be zero unless the classifier
is perfect. In practical settings, however, we typically care about the model’s disparate performance
on coherent groups of test examples. The question, then, becomes how to find such coherent groups.

We posit that a unifying feature of these subpopulations is that they are data-isolated, i.e., that
models’ predictions on these coherent groups rely on a different set of training examples than models’
predictions on the rest of the test data. Conveniently, prior works [18, 46] show that to find data-
isolated subpopulations, one can leverage the datamodel matrix—a matrix constructed by stacking
the datamodel vectors τ(z) for each test example. Intuitively, the top principal component of this
matrix encodes the direction of maximum variability among the vectors τ(z). Thus, by projecting
the datamodel vectors τ(z) of our validation examples onto this top principal component, we can
identify the examples that are, in a sense, “maximally different” from the rest of the test examples
in terms of how they rely on the training set. These maximally different examples correspond to an
isolated subpopulation, to which we can apply D3M directly.

This approach (which we call AUTO-D3M), enables us to perform end-to-end debiasing without any
group annotations. This method proceeds in four steps. For each class:
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1. Construct a matrix T of stacked attribution vectors, where Tij = τ(zi)j .

2. Let v be the top principal component of T.
3. Project the attribution vector τ(z) onto v and construct “group pseudo-labels”

gi = 1{τ(zi)
>v ≥ λ}.

where λ is a hyperparameter 2

4. Apply D3M with the group pseudo-labels to train a debiased classifier.

Estimating the coefficients τ(z). In order to operationalize D3M and AUTO-D3M, it remains to
show that we can actually estimate coefficients τ(z) satisfying (2). To accomplish this, we use a
method called TRAK [33]. Leveraging differentiability of the model output f(z; θ) with respect to the
model parameters θ, TRAK computes the coefficient vector τ(z) for an example z as follows:

(a) Train a model θ∗ := θ(S) on the entire training dataset S = {z1, . . . , zn}.
(b) Sample a random Gaussian matrix P ∈ Rp×k where p is the dimensionality of θ∗ (i.e., the

number of model parameters) and k is a hyperparameter;
(c) For an example z, define g(z) := P>∇θf(z; θ∗) as the randomly-projected model output

gradient (with respect to the model parameters) evaluated at z.
(d) Compute the coefficient vector

τ(z)i︸ ︷︷ ︸
i-th coefficient for example z

= g(z)>

∑
zj∈S

g(zj) · g(zj)
>

−1 g(zi) · (1− σ(f(z; θ∗)))

(e) Repeat steps (a)-(d) for T trials, and average the results to get a final coefficient vector τ(z).
The trials are identical save for the randomness involved in step (a).

We provide more intuition and details behind TRAK in Appendix A.

A note on scalability In terms of computational cost, TRAK involves taking a single backward pass
on each of the training and validation examples to compute the model’s gradient. The (projected)
gradients are then saved to compute TRAK scores. Typically, TRAK is computed over T trials:
following the original paper we use T = 100. However, our approach can be used with any
datamodeling technique.

5 Results

In Section 4, we presented D3M—an approach for debiasing a classifier by identifying examples
which contribute to a targeted bias. In this section, we validate this framework by assessing its
performance on tasks with known biases.

We consider four classification tasks where there is a spurious correlation between the target label
and a group label in the training dataset: CelebA-Age [26, 19], CelebA-Blond [26], Waterbirds
[41], and MultiNLI [50]. We provide more information about the datasets in Appendix B.1, and
other experimental details in Appendix B.2.

5.1 Quantitative results

We first evaluate D3M and AUTO-D3M quantitatively, by measuring the worst-group accuracy of
models trained on the selected subsets of the biased datasets above.

D3M: Debiasing the model in the presence of validation group labels. In Table 1, we compare
D3M against several baselines, each of which requires either only validation group labels (7/ 3) or
both training and validation group labels (3/ 3). We find that D3M outperforms all other methods that
use the same group information (i.e., only validation group labels) on all datasets except Waterbirds3.

2For our experiments we choose λ so that the lower performing group consists of 35% of the validation
examples of that class.

3Note that WaterBirds has more worst-group examples in the val split (133) than the train split (56). Since
DFR directly fine-tunes on the validation set, it has an advantage here over other methods.
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Group Info Method Worst Group Accuracy (%)
Train / Val CelebA-Age CelebA-Blond Waterbirds MultiNLI

7/ 7
ERM 56.7 45.9 57.9 67.2

AUTO-D3M (ours) 76.0 83.8 81.0 75.0

7/ 3
JTT [25] 61.0 81.6 63.6 72.6

DFR∗ [21] 70.4 88.4 89.0 74.7
D3M (ours) 75.6 90.0 87.2 76.0

3/ 3
RWG [17] 75.6 88.4 81.2 68.4
SUBG [17] 68.5 88.3 85.5 67.8

GroupDRO [40] 74.8 90.6 72.5 77.7

Table 1: Worst-group accuracies on four group robustness datasets. A ∗ denotes methods that use
validation group labels for both finetuning and hyperparameter tuning.
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Figure 2: Worst group accuracy on CelebA-Age as a function of the number of examples k removed
from the training set, using various removal methods. In green, D3M removes the k training examples
with the most negative alignment scores Ai. The green star marks the value of k selected by our
heuristic (Ai < 0). In blue is the performance of a random baseline that removes k examples at
random from the training set, and in orange is dataset balancing, which removes examples randomly
from the majority group. Compared to baselines, D3M efficiently improves worst group accuracy.

Moreover, D3M performs on par with methods that have full access to both training and validation
group labels.

AUTO-D3M: Discovering biases with TRAK. We now consider the case where validation group
labels are not accessible. Using AUTO-D3M, we debias our model using pseudo-annotations derived
from the top principal component of the TRAK matrix (AUTO-D3M in Table 1)4. Note that AUTO-
D3M is the only method other than ERM that does not require either train or validation group
labels. Despite this, AUTO-D3M achieves competitive worst-group accuracy in our experiments. We
emphasize that AUTO-D3M does not require group labels at all—in particular, we do not use group
labels to do hyperparameter selection or model selection when we retrain.

The effect of the number of removed examples k. How well does D3M isolate the training
examples that drive disparate performance? To answer this question, we iteratively remove training
examples from CelebA-Age starting with the most negative Ai and measure the worst-group and
balanced accuracy (See Figure 2). CelebA-Age has 40K “majority” examples and 10K “minority”
examples; thus, naive balancing requires removing 30K training examples. In contrast, by isolating
which specific majority examples contribute to the bias, our method is able to debias the classifier by
removing only 10K examples.

Our heuristic of removing examples with negative Ai (the star in Figure 2) slightly overestimates the
best number of examples to remove. Thus, while this heuristic gives a decent starting point for k,
actually searching for the best k might further improve performance.

4For MultiNLI , we chose the PCA component by inspection that captures examples with/without negation.
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Figure 3: Randomly sampled examples from the subpopulations with the most negative group
alignment scores. We find that many of these examples have labeling errors (e.g., platinum blond
instead of gray hair.)
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Figure 4: The average group alignment score of the training examples in each subpopulation of
CelebA-Age. Subpopulations such as “old” with “bushy eyebrows” or “young” with “gray hair”
have particularly negative scores.

5.2 Qualitative results

What type of data does our method flag? In particular, do the examples we identify as driving the
targeted bias share some common characteristics? To test this hypothesis, we inspect the data removed
by our method and identify subpopulations within the majority groups that are disproportionately
responsible for the bias. We then retrain the model after excluding all training examples from the
identified subpopulations and show that this is a viable strategy for mitigating the underlying bias.

Finding subpopulations responsible for model bias. Consider the running example from Figure 1
where we train a model on the CelebA-Age dataset to predict whether a person is “young” or “old”
when gender is a spurious feature (such that young women and old men are overrepresented).
CelebA-Age has a variety of annotations beyond age and gender, such as whether the person is
wearing eyeglasses. In this section, we use these extra annotations to identify coherent subpopulations
that are flagged by our methods.

In particular, we consider subpopulations formed by taking the Cartesian product of labels and
annotations, e.g., subpopulations of the form (“young”, “wearing eyeglasses”). For each of these
subpopulations, we calculate the average group alignment score Ai of the training examples within
that subpopulation (see Figure 4). We find that subpopulations such as “young” with “gray hair” or
“old” with either “5 o’clock shadow" or “busy eyebrows” have particularly negative group alignment
scores. In Figure 3, we show examples from the subpopulations with the most negative group
alignment scores, and observe that a large fraction of the examples in these subpopulations contain
labeling errors.

Retraining without identified subpopulations. Once we have identified subpopulations with
negative alignment scores, a natural strategy for mitigating the underlying bias is to exclude these
subpopulations from the training set. To explore this approach, we exclude the five subpopulations
with the most negative attribution scores on average from the CelebA-Age dataset: “Young” + “Gray
Hair”, “Old”+ “5 o’Clock Shadow”, “Old” + “Bushy Eyebrows”, “Young” + “Blond Hair”, and “Old”
+ “Sideburns.” After retraining the model on this modified training set, we get a worst-group accuracy
(WGA) of 68.4%—an improvement of ~12% over the WGA of the original model (56.7%).
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Figure 5: For four ImageNet classes, the most extreme (positive or negative) examples according to
the top PCA direction of the TRAK matrix. Our method identifies color and co-occurrence biases.

6 Case Study: Finding and Mitigating Model Failures on ImageNet

In Section 5 we evaluated D3M and AUTO-D3M on datasets where the bias was already known. We
now deploy AUTO-D3M to discover and mitigate biases within the ImageNet dataset, which does
not have a predefined bias or available group annotations.

Identifying ImageNet biases. We use TRAK to compute a coefficient matrix T (see Step 1 of
AUTO-D3M in Section 4) for a held out validation split (10% of the training set). Focusing on seven
ImageNet classes, we use the first principal component of the matrix T to identify potential biases. In
Figure 5, we display the most extreme training examples according to the top principal component for
four of these classes. PCA identifies semantically color and co-occurrence biases (e.g., tench fishes
with or without humans or yellow/white cauliflowers that are either cooked or uncooked.) In fact, our
identified biases match the challenging subpopulations in Jain et al. [19] and Moayeri et al. [28].
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Figure 6: Worst-group accuracy for the ImageNet classes studied in Section 6 after intervening with
either D3M or AUTO-D3M (error bars over 1 std).

Mitigating ImageNet biases with AUTO-D3M. For each of the four targeted ImageNet classes,
we seek to mitigate the identified failure modes with AUTO-D3M. We consider two settings based on
the level of human intervention. In the first, we manually assign each of the validation images to a
group according to a human description of identified bias (e.g., an image of a tench is in group 1 if a
human is present and group 2 otherwise), and then use those group labels with D3M. 5 In the second
setting, we debias in a purely automatic fashion, using AUTO-D3M to derive pseudo-group labels
from the top principal component. In Figure 6, we display worst group accuracy on the test images
of the targeted class (evaluated using manual group assignments of the 50 test examples). Both
D3M and AUTO-D3M improve worst group accuracy over ERM without significantly impacting the
overall ImageNet accuracy (see Appendix C.2).

7 Conclusion

We propose Data Debiasing with Datamodels (D3M), a simple method for debiasing classifiers by
isolating training data that disproportionately contributes to model performance on underperforming
groups. Unlike approaches such as balancing, our method only removes a small number of examples
and does not require training group annotations or additional hyperparameter tuning. More generally,
our work takes a first step towards data-centric model debiasing.

5Here, we only consider the target class when computing the loss weighting. As a result, the heuristic
overestimates the number of examples k to remove, and so we instead search for the optimal k using our held
out validation set.
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A Background on Data Attribution and TRAK

Let Z be the input space and S be a training set of interest. For a given training subset S′ ⊂ S and
target example z, data attribution techniques seek to estimate the attribution score of z — that is, the
change in the model’s prediction on z when the model is trained on the subset S′. More formally, let
f(z, θ(S)) be the model’s output function on example z. Then we can define τ(z)i as the attribution
score of the ith training example zi on target example z

τ(z)i = f(z, θ(S))− f(z, θ(S\zi)).

While τ(z) is relatively straightforward to compute for linear models [35], computing this influence
is far more challenging for neural networks. Thus, in order to approach this problem, TRAK first
approximates f(z; θ(S)) as a linear model on top of the gradients ∇θ(f ; θ∗) of the original neural
network after convergence. We can then plug this approximation into the estimate for linear classifiers
to approximate τ(z). After simplification, the TRAK estimate of the influence of z is

τ(z) = −φ(z)T (ΦTΦ)−1ΦQ

where φ(z) = ∇f(z; θ(S∗)) are the (randomly projected) gradients on example z, Φ are the stacked
training gradients Φ = [φ(z1), ..., φ(zn)], and Q is a normalization matrix.

B Details of Experiments

B.1 Experimental Setup

In this section, we describe the datasets, models and evaluation procedure that we use throughout the
paper.

Datasets. In order to cover a broad range of practical scenarios, we consider the following image
classification and text classification problems.

• Waterbirds [40] is a binary image classification problem, where the class corresponds to
the type of the bird (landbird or waterbird), and the background is spuriously correlated with
the class. Namely, most landbirds are shown on land, and most waterbirds are shown over
water.

• CelebA-Blond [26] is a binary image classification problem, where the goal is to predict
whether a person shown in the image is blond; the gender of the person serves as a spurious
feature, as 94% of the images with the “blond” label depict females.

• CelebA-Age [26, 19] is a binary image classification problem, where the goal is to predict
whether a person shown in the image is young; the gender of the person serves as a spurious
feature. For this task, we specifically subsample the training set such that the ratio of samples
in the majority vs. minority groups is 4:1.

• MultiNLI [50, 40] is a classification problem where given a pair of sentences, the task is
to classify whether the second sentence is entailed by, neural with, or contradicts the first
sentence. The spurious attribute from Sagawa et al. [40] describes the presence of negation
words, which appear more frequently in the examples from the negation class.

Methods. We benchmark our approach against the following methods:

• ERM is simple empirical risk minimization on the full training set.

• RWG [17] is ERM applied to random batches of the data where the groups are equally
represented with a combination of upsamping and downsampling such that the size of the
dataset does not change.

• SUBG [17] is ERM applied to a random subset of the data where we subsample all groups
such that they have the same number of examples.

• GroupDRO [40] trains that minimizes the worst-case performance over pre-defined groups
in the test dataset.
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• Just Train Twice (JTT) [25] trains an ERM model with upsamping initially misclassified
training examples by an initial ERM model.

• DFR [21] trains an ensemple of linear models on a balanced validation set, given ERM
features.

B.2 Training Details

In this section, we detail the model architectures and hyperparameters used by each approach. We
used the same model architecture across all approaches: Randomly initialized ResNet-18 [16] for
CelebA and ImageNet-pretrained ResNet-18s for Waterbirds. We use the GroupDRO implementation
by Sagawa et al. [40] and DFR implementation by Kirichenko et al. [21].

For all approaches, we tune hyperparameters for ERM-based methods (ERM, DFR, and D3M) and
re-weighting based methods (RWG, SUBG, GroupDRO and JTT) separately. For RWG, SUBG,
GroupDRO and JTT, we early stop based on highest worst-group accuracy on the validation set as
well. We optimize all approaches with Adam optimizer.

For the CelebA dataset, we all methods with learning rate 1e− 3, weight decay 1e− 4, and batch
size 512. We train RWG, SUBG, GroupDRO and JTT with learning rate 1e− 3, weight decay 1e− 4,
and batch size 512. We train all models for the CelebA-Age task to up to 5 epochs and all models
for CelebA-Blond task up to 10 epochs.

For the Waterbirds dataset, we train the approaches that use the ERM objective (including D3M)
with learning rate 1e− 4, weight decay 1e− 4, and batch size 32. We train RWG, SUBG, GroupDRO
and JTT with learning rate 1e− 5, weight decay 0.1, and batch size 32. We train all models to up to
20 epochs.

For all other hyperparameters, we use the same hyperparameters as Kirichenko et al. [21] for DFR
and the same hyperparameters as Liu et al. [25] for JTT.

We report the performance of the models via Worst-group Accuracy, or Balanced Accuracy in Table 2,
which is the average of accuracies of all groups. If all groups in the test set have the same number of
examples, balanced accuracy will be equivalent to average accuracy.

Our model was trained on a machine with 8 A100 GPUs.
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C Omitted Results

C.1 Balanced Accuracies

Below we include the balanced accuracies for the experiments in Table 2.

Group Info CelebA-Age CelebA-Blond Waterbirds MultiNLI

Method Train / Val Balanced
Accuracy

Worst Group
Accuracy

Balanced
Accuracy

Worst Group
Accuracy

Balanced
Accuracy

Worst Group
Accuracy

Balanced
Accuracy

Worst Group
Accuracy

ERM 7/ 7 77.96 56.65 82.59 45.86 83.40 57.85 80.92 67.19
Auto-TRAK (ours) 7/ 7 80.05 75.97 91.01 83.77 90.36 81.04

RWG [17] 3/ 3 80.66 75.64 90.42 88.40 86.51 81.21 78.61 68.41
SUBG [17] 3/ 3 77.57 68.49 91.30 88.26 86.97 85.46 73.64 67.76
GroupDRO [40] 3/ 3 80.88 74.80 91.83 90.61 86.51 72.47 81.4 77.7

JTT [25] 7/ 3 68.06 60.95 92.01 81.61 85.24 63.61 78.6 72.6
DFR [21] 7/ 33 80.69 70.37 91.93 88.40 90.89 88.96 82.1 74.7
TRAK (ours) 7/ 3 81.05 75.55 91.08 90.03 91.46 87.15 81.54 75.46

Table 2: Balanced accuracy and worst-group accuracy on CelebA-Age, CelebA-Blond , and
Waterbirds . A double checkmark (33) indicates that the method uses validation group labels for
model finetuning, in addition to hyperparameter tuning.
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C.2 ImageNet Accuracies

Below we included the detailed accuracies for the ImageNet experiment.

Class-Level ImageNet-Level
Class
(bias) Method Balanced

Accuracy
Worst Group

Accuracy
Overall

Accuracy

Red Wolf
(Red Coat)

ERM 46.87 22.62 63.97
TRAK 65.63 52.38 63.71

Auto-TRAK 59.94 39.29 63.87

Tench
(Presence of human)

ERM 85.10 78.12 63.97
TRAK 90.73 86.88 63.84

Auto-TRAK 86.67 80.00 63.97

Cauliflower
(Not Cooked)

ERM 77.81 63.64 63.97
TRAK 85.77 79.55 63.70

Auto-TRAK 86.73 79.40 63.75

Strawberry
(Not on a plate)

ERM 58.93 35.58 63.97
TRAK 70.49 51.92 63.88

Auto-TRAK 68.99 50.48 63.79

Table 3: Auto-TRAK identifies and mitigates biases in ImageNet. For four ImageNet classes, a bias
was identified from inspecting the TRAK PCA directions. Then Auto-TRAK is applied in order to
mitigate the bias for that class. Auto-TRAK is able to improve the worst group accuracy for the
targeted class without significantly changing the overall ImageNet accuracy.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract/introduction clearly states the method that is presented and the
results and case study of our experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our work talks about the group annotations needed for the method, which
informs our discussion of D3M vs Auto-D3M.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we disclose all hyperparameters and also release our code in the supplement.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code is in the supplement.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss the hyperparameters in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Figure 2 contains confidence intervals over 10 runs
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix B.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Group robustness is a problem that often appears in fairness issues for Machine
Learning (see introduction for more context).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable (datasets are open source)

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers for our datasets and TRAK.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not create new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: we do not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: we do not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22


	Introduction
	The group robustness problem
	Related work
	Debiasing datasets with datamodeling (D3M)
	Results
	Quantitative results
	Qualitative results

	Case Study: Finding and Mitigating Model Failures on ImageNet
	Conclusion
	Background on Data Attribution and trak
	Details of Experiments
	Experimental Setup
	Training Details

	Omitted Results
	Balanced Accuracies
	ImageNet Accuracies


