
Triangle Search: An Anytime Beam Search

Sofia Lemons,1, 2 Wheeler Ruml,1 Robert C. Holte,3 Carlos Linares López,4
1 University of New Hampshire

2 Earlham College
3 University of Alberta, Alberta Machine Intelligence Institute (Amii)

4 Computer Science and Engineering Department, Universidad Carlos III de Madrid
sofia.lemons@earlham.edu, ruml@cs.unh.edu, rholte@ualberta.ca, carlos.linares@uc3m.es

Abstract
Anytime heuristic search algorithms try to find a (potentially
suboptimal) solution as quickly as possible and then work to
find better and better solutions until an optimal solution is ob-
tained or time is exhausted. The most widely-known anytime
search algorithms are based on best-first search. In this paper,
we propose a new algorithm, triangle search, that is based
on beam search. Experimental results on a suite of popular
search benchmarks suggest that it is competitive with fixed-
width beam search and often performs better than the previ-
ous best anytime search algorithms.

Introduction
In many applications of planning, it is convenient to have
a heuristic search algorithm that can flexibly make use of
however much time is available. The search can be termi-
nated whenever desired and returns the best plan found so
far. Dean and Boddy (1988) termed these anytime algo-
rithms. Russell and Zilberstein (1991) further differentiated
between interruptible algorithms, which quickly find a solu-
tion and then find better solutions as time passes, eventually
finding an optimal plan if given sufficient time, and contract
algorithms, which are informed of the termination time in
advance and thus need only find a single solution before that
time. Anytime algorithms have been proposed as a useful
tool for building intelligent systems (Zilberstein 1996; Zil-
berstein and Russell 1996). While only a few contract search
algorithms have been proposed (Dionne, Thayer, and Ruml
2011), interruptible algorithms have been widely investi-
gated and applied. They have proven particularly useful in
robotics applications, including self-driving cars (Likhachev
and Ferguson 2009).

As we review below, the most well-known interruptible
anytime heuristic search algorithms are based on best-first
search. Best-first search is attractive as it is the basis for
the optimally-efficient optimal search algorithm A* (Hart,
Nilsson, and Raphael 1968) and it is well understood. How-
ever, because anytime algorithms are intended for use cases
in which the solutions found do not need to be proven op-
timal, and are not even expected to be optimal, it is not ob-
vious that best-first search is the most appropriate choice of
algorithmic architecture.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we propose an interruptible algorithm called
triangle search that is inspired by beam search, which is
based on breadth-first search. Triangle search is based on
an incrementally widening beam search and is simple to
implement. We study triangle’s performance experimentally
on several popular heuristic search benchmarks. We find
that triangle search outperforms previously-proposed any-
time search algorithms in the majority of cases tested. Fur-
thermore, it tends to find solutions of comparable cost at
similar times when compared to fixed-width beam search,
implying that it can also serve as a convenient substitute for
conventional beam search that just happens to be anytime.

Background
Before presenting triangle search, we first review relevant
prior work in anytime search and beam search.

Anytime Search
Most previous anytime heuristic searches are based on
weighted A* (Pohl 1973). For example, anytime weighted
A* (AWA*) (Hansen and Zhou 2007) uses f ′(n) = g(n) +
w × h(n). It retains a current incumbent solution and con-
tinues searching for better solutions until there are no open
nodes with f(n) = g(n) + h(n) < g(incumbent), thus
proving that the incumbent is optimal.

Anytime Repairing A* (ARA*) (Likhachev, Gordon, and
Thrun 2004) also uses a weighted heuristic, but applies a
schedule of decreasing weights ending with a weight of 1.
When a solution is found, it decreases the weight according
to the schedule and reorders the open list. It terminates after
finding a solution with w = 1 or after exhausting all nodes
with f(n) < g(incumbent).

Thayer, Benton, and Helmert (2012) present the Anytime
EES (AEES) algorithm which requires no weighting param-
eter and explicitly works to minimize the time between find-
ing new solutions by using distance-to-go estimates d(n).
d(n) estimates the distance to a goal state in terms of the
number of state transitions, without regard for cost. Often
this can simply be a unit cost heuristic. AEES maintains an
open list ordered on an error-adjusted evalutation function
f̂(n), a focal list ordered on an error-adjusted distance-to-
go measurement d̂(n), and a cleanup list ordered on f(n). It
compares the current incumbent solution’s cost to the lowest



Figure 1: The exploration of triangle search (left). The over-
head of triangle search compared to monobead (right).

f -value among open nodes to determine a bound for solution
quality, w. The focal list maintains only nodes which have
f̂(n) < w· f̂(b) where b is the lowest f̂ -valued node, be-
cause these are predicted to lead to a solution that is better
than the current incumbent.

Beam Search
Beam search (Bisiani 1987) is an incomplete and suboptimal
variant of breadth-first search. It expands only a fixed num-
ber of nodes at each depth level of the search, referred to as
the beam width b. All nodes from the beam at the current
level are expanded and then best b among those descendants
are selected to be expanded. It continues to search until ei-
ther a solution is found or until no new states are reachable
from the current depth. Typically node selection for beam
search is based on f(n) or h(n), but a variant of beam search
using d(n) called bead outperforms beam search in non-unit
cost domains (Lemons et al. 2022).

One issue with beam search is that when the beam width b
is increased, sometimes a lower quality solution is returned.
Lemons et al. (2022) proposed the algorithms monobeam
(using f(n)) and monobead (using l(n) = depth(n)+d(n))
which address this issue. These algorithms regard the beam
as an ordered sequence of numbered slots. To fill beam slot
i for the next depth level, the node at slot i of the current
depth level’s beam is expanded, its children are added to that
depth level’s priority queue, and the best available child is
selected. This iterates for values of i from 1 to b, with the
priority queue retaining any children that were not selected
to fill previous slots. The node selected for slot i at depth d
is thus restricted to be a child of a node in slots 1 through i at
depth d−1. This careful selection order prevents children of
nodes at later slots from supplanting children of earlier slots
and preserves any solutions that would have been found by
searches with a narrower beam.

Triangle Search
Triangle search can be seen as an iteratively widening and
deepening monobead search, conceptually resulting in a tri-
angular shape (see Figure 1). At each iteration, it is allowed
to expand one additional node from each previously used
depth level, and one node from a new depth level. In the left
panel of Figure 1, the node in position A is the only node
expanded in the first iteration. The second iteration consists
of expanding nodes in positions B and D. And the third iter-
ation entails expanding nodes in positions C, E, and F. Open
lists are maintained for each active depth level and when a
node is expanded, its children are added to the open list of

Algorithm 1: Pseudocode for Triangle.
1 begin
2 open← ∅
3 openlists← [open]
4 closed← ∅
5 incumbent← node with g =∞
6 create start node and add to open
7 while non-empty lists exist in openlists do
8 extend openlists with ∅ slope times
9 for i = 1 . . . (length(openlists)− 1) do

10 n← remove first node from openlists[i]
11 while f(n) ≥ g(incumbent) do
12 n← remove first node from open
13 add n to closed
14 children← expand(n)
15 for each child in children do
16 if f(child) < g(incumbent) then
17 if child is a goal then
18 incumbent← child
19 report new incumbent
20 else
21 dup← child’s entry in closed
22 if child not in closed or

g(child) < g(dup) then
23 add child to

openlists[i+ 1]
24 trim empty lists from openlists
25 return incumbent

the depth level below. This also limits which nodes have in-
fluence on the selection for a given position. For example,
at the time a node is selected for position D open2 would
contain only children of the nodes in positions A and B. The
node selected for position E, however, could be a child of
nodes from positions A, B, or C. The node selected for po-
sition F must be a child of nodes from D or E, which poten-
tially include descendants from positions A, B, and C.

In its implementation (Algorithm 1), triangle search needs
only to maintain a collection of open lists (one per depth
explored) ordered by distance-to-go estimates and a single
closed list. So long as there are nodes left to explore, the
algorithm loops over depth levels from shallowest up to (but
not including) deepest (line 9), selecting a node to expand
from that level’s open list (line 10), re-selecting if the node
has f(n) ≥ the incumbent solution’s cost (line 12). Once the
node is expanded, its children are evaluated for whether they
are goals (line 17), worse quality duplicates to be discarded
(line 22), or insertion into the next level’s open list (line 23).
When a goal state is generated which has better cost than the
incumbent, it is stored as a new incumbent and reported to
the user. Empty open lists are added at the beginning of the
main loop (line 8), to ensure that the depth of the search can
increase each time. The search terminates when there are
no open nodes across all open lists, returning the incumbent
solution.

In the course of searching, some of the open lists can be-



come empty. These open lists can only be filled by children
of nodes in the open list for the depth above. Therefore,
when the shallowest depth open lists become empty, they
will never be filled again and no longer need to be iterated
over for the search to proceed. Likewise, if a sequence of
depths’ open lists become empty at the deepest levels, none
of these need to be iterated over until the open list above
them has nodes in it again. Therefore, openlists can be
made to track the highest and lowest occupied depth-levels
at a given time and iterate only these active open lists (line
24).

While our discussion so far has assumed only one new
depth level explored per iteration, the slope parameter (line
8) makes it possible for triangle search to explore more than
one new depth level per iteration. This adjusts the algo-
rithm’s balance between deeper versus wider exploration.

The Behavior of Triangle Search
Triangle search is complete and optimal when given an ad-
missible heuristic. It only prunes nodes whose f -value is
greater than or equal to the f -value of the incumbent, so
given infinite time and memory it will search the entire
reachable portion of the state space, returning a solution if
one exists. By the same argument, it will eventually return
an optimal solution if one exists.

Triangle search is related to monobead, in the sense that
both algorithms select nodes for expansion at a given level
one at a time, preventing nodes from later slots of the beam
from affecting the search order in earlier slots. One dif-
ference between the search order of triangle search versus
monobead is that in triangle search the children of the node
expanded at the previous level can be selected at the next
level, allowing the node expanded from slot i + 1 to influ-
ence slot i at the next level. This should tend to be benefi-
cial to triangle search because it can make a more informed
selection at each level, but violates the monotonicity prin-
ciples of monobead and possibly leads to a different search
order. Because we do not care about monotonicity across
beam widths and because bead search tends to outperform
monobead (Lemons et al. 2022), we use the algorithm as
presented in Algorithm 1 in the experiments below. How-
ever, for ease of theoretical analysis, we introduce a more
constrained version of the triangle search algorithm that we
call StrictTriangle.

The primary difference between triangle search and
StrictTriangle is that a node to be expanded from the next
level is selected before any children from the current level
are added to the open list (moving lines 10–12 after line 14
and pre-selecting a value for n before the loop at 9). This
limits the selection of nodes for expansion to only nodes
which came from the same slot or earlier. The slope of Strict-
Triangle is limited to a value of 1 (removing the loop around
line 8). It also tracks the width at which a node was ex-
panded in order to only prune duplicate nodes when they
were previously encountered at the same width or less (only
counting a node as duplicate at line 22 if widthseen(dup) ≤
widthseen(child)).

StrictTriangle’s overhead relative to monobead is
bounded. The right panel of Figure 1 illustrates. The

rectangle represents the work done by a monobead search
with beam width b that finds a goal as the child of a node
at depth d, i.e. after expanding db nodes (or slightly fewer
if not enough nodes exist at the top of the tree). Strict-
Triangle search will find that goal by expanding at most
db+ (d2 − d)/2+ (b2 − b)/2 nodes, where the second term
is the ‘righthand triangle’ due to unnecessary broadening
at the top of the search tree and the third term is the ‘lower
triangle’ due to unnecessary deepening at the bottom of the
tree. It is possible that StrictTriangle may perform fewer
expansions than this if it finds a solution that monobead
would not and uses that solution’s cost for pruning.

Theorem 1. If monobead would discover a goal as a child
of a node at depth d in a particular beam slot b, then Strict-
Triangle will perform at most (d2− d)/2+ (b2− b)/2 more
expansions to find that goal or a better one.

Proof. With each increase in depth, StrictTriangle expands
one more node at each previous level, if enough nodes exist
at those levels. In order for there to have been b nodes ex-
panded at depth d, the algorithm must have explored b − 1
more depth levels and the current maximum depth must be
d + b − 1. To have reached depth d + b − 1, the maximum
allowed expansions at the top level must be d+b−1. There-
fore, to reach depth d, StrictTriangle will expand a number
of nodes no greater than

d+b−1∑
n=1

n = d · b+ d2 − d

2
+

b2 − b

2

Monobead will discover the given goal after d ·b expansions.
Therefore, StrictTriangle will perform at most (d2− d)/2+
(b2 − b)/2 more expansions than monobead to find it.

The ratio between the depth of a solution, d, and the beam
width at which it would be found, b, determines how much
additional work will be required by StrictTriangle, as op-
posed to monobead.

As we will see in our experimental evaluation, triangle
search with slope=1 is not well-suited for domains in which
the heuristic is very accurate and solutions are very deep
(e.g., d ≫ b). Triangle search must do O(d2) work to reach
depth d, whereas a best-first search might only need to do
O(d) if the heuristic is accurate. In this sense, triangle search
with slope=1 errs too much on the side of exploration in
such domains. Using a larger slope may help to reach deeper
regions of the search space earlier, but will still require some
extraneous exploration at higher levels.

On the other hand, triangle search is not obliged to ex-
pand nodes in order of their heuristic evaluation value (be
it f , h, or d), meaning that it does not need to expand all
nodes in a heuristic ‘local minimum’ or ‘depression’ before
expanding a node with a higher value. We conjecture that
triangle’s similarity to monotonic beam search may aid in
retaining diverse nodes during the search, preventing a large
local minimum from displacing all other nodes in the beam
and dominating the search.



10 3 10 2 10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e 
qu

al
ity

10 3 10 2 10 1 100 101 102

Time (log seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 3 10 2 10 1 100 101 102

Time (log seconds)

60

80

100

120

140

So
lu

tio
n 

co
st

15 puzzle (unit)
aees
arastar(w={5,3,2,1.5,1})
arastar(w=2.5, =0.02)
arastar(w=10, =0.02)
triangle

10 4 10 3 10 2 10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

qu
al

ity

10 4 10 3 10 2 10 1 100 101 102

Time (log seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 4 10 3 10 2 10 1 100 101 102

Time (log seconds)

400

500

600

700

800

900

1000

So
lu

tio
n 

co
st 15 puzzle (heavy)

aees
arastar(w={5,3,2,1.5,1})
arastar(w=2.5, =0.02)
arastar(w=10, =0.02)
triangle

10 4 10 3 10 2 10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

qu
al

ity

10 4 10 3 10 2 10 1 100 101 102

Time (log seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 4 10 3 10 2 10 1 100 101 102

Time (log seconds)

10

15

20

25

30

35

40

45

So
lu

tio
n 

co
st

15 puzzle (inverse)
arastar(w=10, =0.02)
arastar(w={5,3,2,1.5,1})
arastar(w=2.5, =0.02)
aees
triangle

Figure 2: Quality, coverage, and solution cost for the 15 sliding tile puzzle.

Experimental Results
We implemented triangle search and several other anytime
algorithms in C++ 1 and tested their behavior on several clas-
sic search benchmarks. All algorithms were given a memory
limit of 7.5GB and a time limit of 5 minutes on a 2.60 GHz
Intel Xeon E5-2630v3. ARA* was tested with several con-
figurations used in previous evaluations: initial weights of 10
and 2.5 with a decrement of 0.02 (Likhachev, Gordon, and
Thrun 2004) and a weight schedule of 5, 3, 2, 1.5, 1 (Thayer,
Benton, and Helmert 2012). We use a default slope of 1 for
triangle unless otherwise specified.

We summarize results for these algorithms in three differ-
ent ways. First, we provide quality for each algorithm aver-
aged across all instances, where quality is defined to be the
cost of the best known solution (optimal where known, oth-
erwise the best solution ever provided by any of the tested
algorithms) divided by the cost of the current incumbent so-
lution (∞ if none, giving quality 0). This allows us to av-
erage information from all instances even if an algorithm
has not solved that instance yet. In the quality plots, a dot
marks when a given algorithm has reached full coverage (at

1Code available at https://github.com/snlemons/search.

least one solution has been found for all instances). Next, we
provide coverage, which is simply the number of instances
solved by a given algorithm at a particular time. Finally, we
provide actual solution costs provided by each algorithm,
averaged across all instances that have been solved by all
displayed algorithms at that specific time.

Sliding Tile Puzzle
Six different cost models of sliding tiles were used in our
experiments: unit cost; heavy cost, where moving tile num-
ber t costs t; sqrt cost, moving t costs

√
t; inverse cost,

1/t; reverse cost, #tiles − t, and reverse inverse cost,
1/(#tiles−t). We tested these cost models on the 15-puzzle
(4x4) and the 24-puzzle (5x5), using a cost-weighted Man-
hattan distance heuristic. Results for unit, heavy, and inverse
costs are shown in Figures 2 and 3, while other cost models
were similar to one of these and are summarized below.

In the 15 puzzle, we see that for unit and sqrt cost all al-
gorithms are roughly comparable in terms of coverage, and
in other cost models AEES and triangle search provide the
best coverage with minor differences between them. Trian-
gle search consistently provides the best solution costs in all



10 2 10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e 

qu
al

ity

10 2 10 1 100 101 102

Time (log seconds)

0

10

20

30

40

50

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1 100 101 102

Time (log seconds)

100

150

200

250

300

350

400

So
lu

tio
n 

co
st

24 puzzle (unit)
arastar(w={5,3,2,1.5,1})
arastar(w=10, =0.02)
aees
arastar(w=2.5, =0.02)
triangle

10 2 10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

qu
al

ity

10 2 10 1 100 101 102

Time (log seconds)

0

10

20

30

40

50

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1 100 101 102

Time (log seconds)

1500

2000

2500

3000

3500

So
lu

tio
n 

co
st

24 puzzle (heavy)
aees
triangle

10 2 10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

qu
al

ity

10 2 10 1 100 101 102

Time (log seconds)

0

10

20

30

40

50

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1 100 101 102

Time (log seconds)

20

30

40

50

60

70

So
lu

tio
n 

co
st

24 puzzle (inverse)
aees
triangle

Figure 3: Quality, coverage, and solution cost for the 24 sliding tile puzzle.

cost models from 0.1 seconds onward, and the best quality
at nearly all times.

In the 24 puzzle we see triangle search again providing
the best quality at nearly all times. Triangle search also con-
sistently provides the best solution costs: in unit cost triangle
search dominates from around 1 second onward, and in all
non unit cost models it gives the best cost at all times. In unit
cost, all algorithms again provide competitive coverage at
some points in time, but triangle spends a significant portion
of the time with higher coverage and reaches full coverage
well before any other algorithm. Triangle search also pro-
vides the best coverage for a longer period and reaches full
coverage first in heavy, sqrt, and reverse inverse cost, while
AEES provides better coverage in inverse and reverse cost.

Blocks World
We tested on 100 random blocks world instances with 20
blocks. We included two different action models: ‘blocks
world’, where blocks are directly moved to a stack as an ac-
tion and ‘deep blocks world’, where picking up and putting
down blocks each use an action, leading to longer solutions.
The heuristic used was the number of blocks out of place

(any block which is not in a sequence of blocks from the ta-
ble up which matches the goal state). This heuristic value is
doubled for deep blocks.

For both action models, triangle search fully dominates in
terms of coverage and quality at all times. In terms of solu-
tion cost, triangle search provides the best results for stan-
dard blocks world from about 0.05 seconds onward, and the
best costs at nearly all times in deep blocks world.

Pancake Problem
In the pancake puzzle, two cost models are used: unit cost,
and heavy cost (Hatem and Ruml 2014), in which each pan-
cake is given an ID number from 1 through N (the number
of pancakes), and the cost of a flip is the ID of the pan-
cake above the spatula. The gap heuristic (Helmert 2010)
was used, with modifications to include cost per pancake in
the heavy cost model.

Triangle search with a slope of 1 takes longer than its
peers to achieve coverage in the pancake problem. With 50
pancakes unit and heavy cost and 100 pancakes unit cost,
at least one configuration of ARA* achieves full coverage
before triangle search has solved any problems. While trian-



10 3 10 2 10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e 
qu

al
ity

10 3 10 2 10 1 100 101 102

Time (log seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 3 10 2 10 1 100 101 102

Time (log seconds)

24

25

26

27

28

29

So
lu

tio
n 

co
st

20 blocks
aees
triangle

10 3 10 2 10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

qu
al

ity

10 3 10 2 10 1 100 101 102

Time (log seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 3 10 2 10 1 100 101 102

Time (log seconds)

50

52

54

56

58

60

So
lu

tio
n 

co
st

20 blocks (deep)
aees
triangle

Figure 4: Quality, coverage, and solution cost for blocks world problems.

gle search does provide the best costs on instances it solves,
the delay in finding a first solution is a significant downside
for a user of an anytime algorithm. Only in heavy cost 100
pancake does triangle search come out best, but here it dom-
inates in terms of quality, coverage, and cost.

We hypothesize that the poor performance of triangle
search in this setting is due to the depth of solutions and
the high accuracy of the heuristic. Algorithms like ARA*
can focus on nodes with low f -values and quickly proceed
to deep solutions, while triangle search must perform many
expansions at higher depth levels in order to proceed deeper
into the search space. This is confirmed by the success of tri-
angle search in this setting when given a slope of 500. With
a slope of 500, triangle search clearly provides the best re-
sults in both sizes and cost models of the pancake problem.
It solves more instances than AEES or any configuration of
ARA* at almost all times. The costs of solutions it provides
are also the lowest at nearly all times.

Vacuum World
We also tested on the vacuum world domain (Russell and
Norvig 2010), where a robot must vacuum up dirt in a grid
world. In this domain we tested both the unit cost model and
the heavy cost model, where the cost of movement is equal
to the number of dirts which the robot has already vacu-
umed. The heuristic sums the number of remaining dirts, the
edges of the minimum spanning tree (MST) of the Manhat-
tan distances among the dirts, and the minimum Manhattan
distance from the agent to one of the dirts. For the heavy
cost model, the distance components were multiplied by the
number of dirts cleaned so far. We present results for two
sizes of vacuum problems: 200×200 grid with 10 dirts, and
500×500 grid with 60 dirts.

In the unit cost vacuum problems, triangle search lags dra-

matically in terms of coverage. It solves very few instances
early on and reaches full coverage last out of all algorithms
tested. Triangle search tends to provide the best cost once it
finds solutions. Triangle search is not competitive in terms of
quality until around 0.1 seconds for 200×200 problems and
1 second in 500×500 problems. Multiple configurations of
ARA* give the best quality and coverage early on, as does
AEES.

In the heavy cost vacuum problems, triangle search and
AEES are clearly dominant. Triangle again gives the best
costs among instances solved by all competitive algorithms.
AEES is superior to triangle search in terms of coverage,
reaching full coverage before triangle search does. As with
the unit cost, triangle search does not outperform AEES in
terms of quality until relatively late, but triangle ends with
significantly better quality of solutions than AEES.

In both size of problems, increasing the slope seems to
benefit triangle only a small amount. With slope 500, trian-
gle search gave slight improvement in coverage and quality,
but not enough to outperform the other algorithms consis-
tently.

Of the four domains tested, the performance of triangle
search is poorest in vacuum world, finding solutions later
than other algorithms and only sometimes providing better
solution quality. Furthermore, this is the only domain tested
where solution cost tended not to decrease over time, indi-
cating that even once solutions are found it is difficult to
significantly improve upon them. We conjecture that this
domain may have large plateaus in d-values. AEES is per-
haps able to expand enough nodes to extend beyond these
plateaus, but triangle search may re-encounter the plateaus
or encounter new ones by its expansions of nodes at the shal-
lower depth levels.



10 3 10 2 10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e 
qu

al
ity

10 3 10 2 10 1 100 101 102

Time (log seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 3 10 2 10 1 100 101 102

Time (log seconds)

50

52

54

56

58

60

So
lu

tio
n 

co
st 50pancake (unit)

arastar(w={5,3,2,1.5,1})
aees
arastar(w=10, =0.02)
arastar(w=2.5, =0.02)
triangle
triangle(500)

10 3 10 2 10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

qu
al

ity

10 3 10 2 10 1 100 101 102

Time (log seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 3 10 2 10 1 100 101 102

Time (log seconds)

1200

1300

1400

1500

1600

So
lu

tio
n 

co
st 50pancake (heavy)

arastar(w=10, =0.02)
aees
triangle
triangle(500)

10 2 10 1 100 101

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

qu
al

ity

10 2 10 1 100 101

Time (log seconds)

0

10

20

30

40

50

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1 100 101

Time (log seconds)

100

105

110

115

120

125

So
lu

tio
n 

co
st 100pancake (unit)

arastar(w=10, =0.02)
aees
arastar(w={5,3,2,1.5,1})
arastar(w=2.5, =0.02)
triangle
triangle(500)

10 2 10 1 100 101

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

qu
al

ity

10 2 10 1 100 101

Time (log seconds)

0

10

20

30

40

50

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1 100 101

Time (log seconds)

5000

5200

5400

5600

5800

6000

So
lu

tio
n 

co
st

100pancake (heavy)
aees
triangle(500)
triangle

Figure 5: Quality, coverage, and solution cost for 50 and 100 pancake problem.

Triangle Search vs Fixed-width Bead
We also performed a comparison of triangle search with
fixed-width bead search (Lemons et al. 2022) to understand
how the additional overhead of triangle search compares to
the results obtainable by a well-selected beam width. These
results can be seen in Figure 7. Because both algorithms use
distance-to-go, the non-unit cost results are similar to the
unit cost results in each domain, so we show only unit cost
results.

In tiles and blocks world, triangle search provides com-
petitive quality to bead at its various widths, and is able to

continue improving its solution quality where bead cannot.
This demonstrates that in these domains triangle search with
a slope of 1 can serve as a substitute to selecting a fixed beam
width.

In the 50 and 100 pancake problems, certain widths for
bead outperform triangle search with slope 1 early on and
triangle’s improvement does not extend far above bead’s.
Triangle search with slope 500, however, provides superior
quality than all fixed width bead searches at almost all times.

In vacuum world problems, we see that both bead and tri-
angle struggle to find solutions overall. Few solutions are



10 4 10 3 10 2 10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e 
qu

al
ity

10 4 10 3 10 2 10 1 100 101 102

Time (log seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 4 10 3 10 2 10 1 100 101 102

Time (log seconds)

0

200

400

600

800

1000

So
lu

tio
n 

co
st

vacuum 200x200 10 (unit)
aees
arastar(w=10, =0.02)
arastar(w=2.5, =0.02)
arastar(w={5,3,2,1.5,1})
triangle
triangle(500)

10 4 10 3 10 2 10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

qu
al

ity

10 4 10 3 10 2 10 1 100 101 102

Time (log seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 4 10 3 10 2 10 1 100 101 102

Time (log seconds)

0

1000

2000

3000

4000

5000

6000

So
lu

tio
n 

co
st

vacuum 200x200 10 (heavy)
arastar(w=10, =0.02)
aees
arastar(w=2.5, =0.02)
arastar(w={5,3,2,1.5,1})
triangle
triangle(500)

10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

qu
al

ity

10 1 100 101 102

Time (log seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 1 100 101 102

Time (log seconds)

5000

5500

6000

6500

7000

7500

So
lu

tio
n 

co
st

vacuum 500x500 60 (unit)
aees
arastar(w={5,3,2,1.5,1})
arastar(w=10, =0.02)
arastar(w=2.5, =0.02)
triangle(500)
triangle

10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

qu
al

ity

10 1 100 101 102

Time (log seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 1 100 101 102

Time (log seconds)

160000

180000

200000

220000

240000

So
lu

tio
n 

co
st

vacuum 500x500 60 (heavy)
aees
triangle(500)
triangle

Figure 6: Quality, coverage, and solution cost for vacuum world.

found early in the time given. It appears that little improve-
ment is gained by bead after a width of 1,000. Neither a slope
of 1 or 500 give triangle search better results than most of the
fixed beam widths.

Discussion
Triangle search can be effective in settings where a wide
range of beam searches are successful. If a practitioner
wishes to determine whether triangle search will be useful in
their problem domain, they could run beam search at several
widths on a few instances. Furthermore, if low beam widths

find solutions comparable to wider beam widths, this would
give indication that a larger slope may be more effective for
triangle.

One algorithm that is related to beam search but not eval-
uated here is complete anytime beam search (Zhang 1998).
However, this algorithm is really an extension of depth-first
search, as it only explores in a fashion similar to beam search
with beam width 1 and uses backtracking in order to be com-
plete.

BULB (Furcy and Koenig 2005) behaves like regular
beam search until a given depth limit is reached, at which



10 2 10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e 

qu
al

ity
24 puzzle (unit)

triangle
bead-3000
bead-1000
bead-300
bead-100
bead-30

10 2 10 1 100 101

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

qu
al

ity 100pancake (unit)
bead-3000
triangle(500)
triangle
bead-1000
bead-300
bead-100
bead-30

10 1 100 101 102

Time (log seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

qu
al

ity

vacuum 500x500 60 (unit)
triangle
triangle(500)
bead-3000
bead-1000
bead-300
bead-100
bead-30

Figure 7: Quality for triangle search (anytime) versus bead (fixed-width).

point it uses backtracking to continue the search. In contrast,
triangle search represents a new alternative to conventional
beam search and does not require a depth limit. For huge
problems where memory capacity is an issue, it would be
interesting to integrate BULB-like backtracking with trian-
gle search.

We have investigated triangle’s performance with a slope
of 1 and with large slopes such as 500. Additional research
will be necessary to understand how to tune this parame-
ter. Nonlinear shapes of the hypotenuse are also a possibil-
ity. This geometric investigation is superficially reminiscent
of the geometric work of Chen and Sturtevant (2021) on
duplicate-avoiding suboptimal search. We leave exploration
of these variants to future work.

Conclusions
Triangle search is an effective anytime algorithm with a
simple design. Unlike previous anytime algorithms, which
are based on best-first search, triangle is instead based on
breadth-first search and it enforces exploration at a variety
of depths in the search tree. In sliding tile and blocks world,
it was successful with no adjustment of parameters, and in
pancakes its performance was easy to improve by increas-
ing its slope. It performed better than ARA* but was bested
by AEES in vacuums, a phenomenon that deserves fur-
ther study. Triangle search is often an effective replacement
for fixed-width beam searches. Overall, triangle’s promising
performance suggests that suboptimal non-best-first heuris-
tic search deserves further exploration.

Acknolwedgements
We are grateful to the NSF-BSF program for support via
NSF grant 2008594.

References
Bisiani, R. 1987. Beam search. In Shapiro, S. C., ed., Ency-
clopedia of Artificial Intelligence, 56–58. Wiley.
Chen, J.; and Sturtevant, N. R. 2021. Necessary and Suffi-
cient Conditions for Avoiding Reopenings in Best First Sub-
optimal Search with General Bounding Functions. In Pro-
ceedings of AAAI-21, 3688–3696.
Dean, T. L.; and Boddy, M. S. 1988. An Analysis of Time-
Dependent Planning. In Proceedings of AAAI, 49–54.

Dionne, A. J.; Thayer, J. T.; and Ruml, W. 2011. Deadline-
Aware Search Using On-line Measures of Behavior. In Pro-
ceedings of SoCS.
Furcy, D.; and Koenig, S. 2005. Limited Discrepancy Beam
Search. In Proceedings of IJCAI.
Hansen, E. A.; and Zhou, R. 2007. Anytime Heuristic
Search. JAIR, 28: 267–297.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions of Systems Science and Cybernet-
ics, SSC-4(2): 100–107.
Hatem, M.; and Ruml, W. 2014. Bounded suboptimal search
in linear space: New results. In Proceedings of SoCS.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In Proceedings of SoCS.
Lemons, S.; Linares López, C.; Holte, R. C.; and Ruml, W.
2022. Beam Search: Faster and Monotonic. In Proceedings
of ICAPS.
Likhachev, M.; Gordon, G.; and Thrun, S. 2004. ARA*:
Anytime A* with Provable Bounds on Sub-Optimality. In
Proceedings of NIPS 16.
Likhachev, M.; and Ferguson, D. 2009. Planning long dy-
namically feasible maneuvers for autonomous vehicles. The
International Journal of Robotics Research, 28(8): 933–945.
Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and com-
putational issues in heuristic problem solving. In Proceed-
ings IJCAI, 20–23.
Russell, S. J.; and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach. Pearson.
Russell, S. J.; and Zilberstein, S. 1991. Composing Real-
Time Systems. In Proceedings of IJCAI-91, 212–217.
Thayer, J.; Benton, J.; and Helmert, M. 2012. Better
parameter-free anytime search by minimizing time between
solutions. In Proceedings of SoCS, 120–128.
Zhang, W. 1998. Complete Anytime Beam Search. In Pro-
ceedings of AAAI-98, 425–430.
Zilberstein, S. 1996. Using Anytime Algorithms in Intelli-
gent Systems. AI Magazine, 17(3): 73.
Zilberstein, S.; and Russell, S. 1996. Optimal composition
of real-time systems. Artificial Intelligence, 82(1): 181–213.


