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Abstract

Backchannels, which refer to short and of-001
ten affirmative or empathetic responses from002
a listener during a conversation, play a crucial003
role in effective communication. In this paper,004
we introduce CABP(Context-Aware Backchan-005
nel Prediction), a sequential and attentive con-006
text approach aimed at enhancing backchannel007
prediction performance. Additionally, CABP008
leverages the pretrained wav2vec model for en-009
coding audio signal. Experimental results show010
that CABP performs better than context-free011
models, with performance improvements of012
1.3% and 1.8% in Korean and English datasets,013
respectively. Furthermore, when utilizing the014
pretrained wav2vec model, CABP consistently015
demonstrates the best performance, achieving016
performance improvements of 4.4% and 3.1%017
in Korean and English datasets.018

1 Introduction019

Backchanneling is a conversational technique that020

involves providing short responses, such as "Wow"021

or "Uh-huh," to display attention and engagement022

with the speaker’s utterances (Ruede et al., 2019).023

Poppe et al. (2010) has shown that timely backchan-024

neling can enhance the speaker’s storytelling ability025

and prolong their speaking time. Therefore, it is026

crucial to understand the speaker’s intentions and027

emotions and use appropriate backchannels.028

Backchannel prediction is the task of predict-029

ing which backchannel category a competent lis-030

tener will use during the current speaker’s utter-031

ance. Backchannels can be categorized into two032

main types: generic and specific (Goodwin, 1986).033

Generic backchannels, including phrases such as034

"Mm-hm" or "Uh-Huh," do not carry a specific035

meaning and instead encourage the speaker to con-036

tinue their utterance. Hence, generic backchannels037

can be employed irrespective of the conversational038

context. In contrast, specific backchannels encom-039

pass reactions that express empathy or agreement040

with the speaker’s utterance, as seen in phrases like 041

"Really?" or "I see." Therefore, an accurate under- 042

standing of the speaker’s utterance is necessary to 043

engage in specific backchanneling. Since a conver- 044

sation is a continuous interactive process, grasping 045

the context of the entire conversation is crucial. 046

Backchannel prediction models usually use both 047

text and audio data. However, when dealing with 048

textual information, past models relied solely on 049

fixed-length text inputs, which posed limitations in 050

understanding possible contextual implications. To 051

enhance the understanding of the current utterance, 052

we aim to incorporate information from previous 053

utterances. Moreover, while Mel Frequency Cep- 054

stral Coefficients (MFCC) have established them- 055

selves as a near default form of audio embedding 056

in the domain of backchannel prediction, they have 057

long been superseded by more powerful approaches 058

in other audio processing tasks. Thus, we intend 059

to leverage one such approach, namely wav2vec 060

(Baevski et al., 2020), to enhance the audio infor- 061

mation extraction capabilities of our model. 062

Our contributions can be summarized as follows: 063

(1) We introduce Context-Aware Backchannel Pre- 064

diction (CABP), a model that considers both se- 065

quential context embeddings and attentive context 066

embeddings to improve backchannel prediction. (2) 067

We use the pre-trained wav2vec (Baevski et al., 068

2020) model to encode audio information. (3) We 069

conduct experiments on both Korean and English 070

backchannel datasets, demonstrating performance 071

improvements across both datasets. 072

2 Related Works 073

Audio has played a crucial role since the early days 074

of backchannel prediction. It has been modeled 075

using various methods from simple characteris- 076

tics like pitch, power and pause length (Ruede 077

et al., 2017) to more complex spectrogram en- 078

codings like Mel Frequency Cepstral Coefficients 079
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(MFCC) (Adiba et al., 2021; Jang et al., 2021). Re-080

cently, even pre-trained deep convolutional neural081

networks have been applied (Ishii et al., 2021).082

Ruede et al. (2017) found audio features to be083

superior to text features while also showing that ad-084

ditional gains were possible when combining both.085

Subsequently, studies have used word embeddings086

to encode text (Ortega et al., 2020). Later, with087

the appearance of pre-trained models, Jang et al.088

(2021) adopted BERT for this task.089

The text input length encoded using those meth-090

ods varies across publications. While a few authors091

tie text and audio, extracting word transcriptions092

and acoustic features from the same time window093

(Ruede et al., 2017), e.g. 1500ms, most extract text094

from a (much) larger window. Employed units of095

text input include whole Inter Pausal Units (Adiba096

et al., 2021) or a fixed number of words ranging097

from 5 to 20 (Ortega et al., 2020; Jang et al., 2021).098

However, existing research has limited their def-099

inition of context to the most recent speaker utter-100

ance, i.e. the current utterance.101

3 Models102

The proposed model architecture for Context-103

Aware Backchannel Prediction (CABP) is illus-104

trated in Figure 1. CABP leverages not only the105

audio and current utterance but also previous utter-106

ances. It has four modules to produce the current ut-107

terance embedding (UT ), sequential context embed-108

ding (CSEQ), attentive context embedding (CATT ),109

and acoustic embedding (AE). These embeddings110

are concatenated and passed to a classifier.111

3.1 Text Embedding112

In a conversation with two or more individuals113

exchanging speaking opportunities, it is impor-114

tant to first distinguish who produced which ut-115

terance. To achieve this, learnable speaker embed-116

dings ([Speaker]) are integrated into the text input.117

To extract the text embedding, this input is pushed118

through a BERT model (Devlin et al., 2019) with an119

additional fully connected layer on top of the class120

token embedding. In this way, CABP embeds the121

current speaker’s utterance (UT ). Additionally, to122

incorporate the dialogue context, the embeddings123

of the last k utterances (U[T−k:T−1]), excluding124

backchannels, are saved in memory.125

3.2 Sequential Context Embedding126

Multi-turn dialogues naturally follow a sequential127

structure where participants ask and answer each128

Figure 1: Context-Aware Backchannel Prediction
(CABP) model architectures. ⊕ represents a concatena-
tion

other’s questions. In the process, they establish a 129

common ground and mutual understanding. There- 130

fore, to understand not only the literal sense but 131

also the contextual nuances of an utterance, the 132

entire dialogue context has to be considered (Sun 133

et al., 2022). To sequentially summarize previous 134

dialogues, we employ GRUs and sequentially in- 135

put the embeddings of k previous utterance from 136

memory. We then use the last hidden embedding 137

as a sequential context embedding (CSEQ). 138

3.3 Attentive Context Embedding 139

In multi-turn conversations, it is common for con- 140

cepts or entities mentioned in previous utterances 141

to be omitted or replaced with pronouns (Su et al., 142

2019). Therefore, to comprehend the whole mean- 143

ing of an utterance, missing information needs to 144

be reconstructed from past utterances. However, 145

not everything said before is always relevant to 146

the current utterance. Only a tiny fraction is. It is 147

essential to identify precisely this fraction. 148

For this purpose, CABP employs a multi-head 149

attention mechanism (Vaswani et al., 2017). The 150

query is an embedding of the current utterance, 151

while the key and value components utilize embed- 152

dings from k previous utterances stored in memory. 153

The extracted embedding serves as an attentive 154
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context embedding (CATT ), holding mainly infor-155

mation relevant to complete the current utterance.156

3.4 Acoustic Embedding157

We also leverage audio information for backchan-158

nel prediction. To extract audio features, we159

employ a large-scale pre-trained model called160

wav2vec (Baevski et al., 2020). We input the audio161

signal from 1.5 seconds before the occurrence of162

a backchannel into wav2vec and extract a single163

audio embedding using average pooling (AE).164

4 Experiments165

4.1 Dataset166

To verify the relevance of our results across differ-167

ent conversation domains and languages, we apply168

all experiments to a small private dataset of Ko-169

rean counseling sessions collected by ETRI1 and170

also to a many quantities larger publicly available171

dataset of casual English phone conversations. The172

datasets are composed of audio recordings and tran-173

scripts, with each data instance being a pair of type174

label and timestamp.175

The Korean data contains 40 dialogues (around176

32 hours) between counselors and counselees. It177

distinguishes three types of backchannels: Con-178

tinuer, Understanding, and Empathetic. Contin-179

uers are generic backchannels that signal a lis-180

tener’s undivided attention, ultimately encourag-181

ing the speaker to continue speaking. Understand-182

ing and Empathetic are both specific backchan-183

nels. While the former signals that the speaker184

has been understood, the latter actively expresses185

the listener’s emotions and thoughts related to the186

speaker’s utterance. To generate additional neg-187

ative instances, we applied a method similar to188

Ruede et al. (2017), where the timestamp two sec-189

onds before a backchannel instance was labeled as190

NoBC. However, we excluded instances that over-191

lapped with existing backchannels. As a result, we192

gathered a total of 20,322 data instances.193

Furthermore, we conducted comparisons using194

the Switchboard corpus (Godfrey et al., 1992),195

which is commonly used for backchannel predic-196

tion in English. Data preprocessing was configured197

like Ortega et al. (2020), resulting in a total of198

121,833 data instances.199

Table 1 provides the statistics for both the Ko-200

rean counseling data and the English Switchboard201

data used in our experiments.202

1Electronics and Telecommunications Research Institute

Dataset Category # of Data

Korean Counseling

Continuer 9,676 (47.6%)
Understanding 1,328 (6.5%)

Empathetic 805 (4%)
NoBC 8,513 (41.9%)

SwitchBoard
Continuer 27,545 (22.6%)

Assessment 33,372 (27.4%)
NoBC 60,916 (50%)

Table 1: Backchannel Data Statistics

4.2 Experimental Setup 203

To encode audio signals and text, we use pre- 204

trained models: wav2vec 2.02 and BERT. In Ko- 205

rean experiments, the BERT used is KorBERT3, 206

while in English, bert-base-uncased4 is utilized. 207

We down-projected the BERT output from size 768 208

to 256. The classifier was constructed with four lay- 209

ers, having hidden dimensions 1024-256-64. We 210

set the batch size and the number of epochs to 24 211

and 20, respectively. The memory size (k) was 212

set to 7. The model was trained using AdamW as 213

the optimizer, with a learning rate of 0.00001 for 214

pre-trained components and 0.0003 for everything 215

else. The training scheduler employed a cosine 216

annealing schedule, with a warm-up ratio of 0.3 for 217

pre-trained modules and 0.1 for other modules. 218

Due to the small size of the Korean Counseling 219

dataset, we conducted experiments using 5-fold 220

cross-validation, splitting the data at the dialogue 221

level. The evaluation results are reported based on 222

the average performance across the five folds. Be- 223

cause of the data imbalance, we chose to report the 224

Macro-F1 (M-F1) on top of the F1 scores for each 225

label. In contrast, we evaluate the performance on 226

the Switchboard dataset using the same metrics as 227

previous studies, which includes F1 scores for each 228

label as well as their Weighted-F1 (W-F1). 229

We compare our results to two baseline models: 230

Ortega - Ortega et al. (2020) employed MFCC, 231

word embeddings for a context of five words, and 232

listener embeddings as inputs to a CNN. 233

BPM_ST - Jang et al. (2021) used MFCC in 234

tandem with an LSTM to encode audio informa- 235

tion. For text input, they fed 20 words into BERT 236

and extracted the CLS token embedding. Addi- 237

tionally, they improved prediction performance 238

through multitask learning (MT), introducing senti- 239

ment analysis as a subtask (BPM_MT). 240

2https://huggingface.co/facebook/wav2vec2-base
3https://aiopen.etri.re.kr/
4https://huggingface.co/bert-base-uncased
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Model Acoustic
Korean Counseling SwitchBoard

M-F1
Con-
tinuer

Under-
standing

Empa-
thetic

NoBC W-F1
Con-
tinuer

Assess-
ment

NoBC

Ortega(29K)

MFCC

30.4 59.1 1.1 2.0 59.6 58.4∗ 41.6∗ 47.0∗ 72.4∗

BPM_ST(109M) 33.8 59.6 9.4 3.8 62.3 62.9 41.1 50.8 79.3
BPM_MT(109M) 34.3 59.0 13.2 3.8 61.1 63.1 41.5 50.4 79.8

CABP(111M) 35.1 60.6 11.3 6.0 62.6 64.7 47.1 52.1 79.6
CABP(205M) wav2vec 39.5 65.1 17.2 5.5 70.1 67.8 49.0 54.9 83.4

Table 2: Backchannel Prediction Results. "*" denotes results quoted from Ortega et al. (2020). Bold represents the
highest score, while underlined indicates the second-highest score. The numbers in parentheses state the model size.

UT AE CSEQ CATT M-F1 Continuer Understanding Empathetic NoBC
1 + - - - 33.6 59.2 10.8 5.6 58.6
2 - + - - 36.4 63.7 7.9 6.0 68.2
3 + + - - 38.2 65.0 13.0 4.9 69.8
4 + + + - 38.1 63.6 13.1 5.7 69.9
5 + + - + 39.0 64.6 15.5 6.3 69.6
6 + + + + 39.5 65.1 17.2 5.5 70.1

Table 3: Ablation study results on the Korean Counseling dataset. (UT ) Current text embedding. (AE) Acoustic
embedding. (CSEQ) Sequential context embedding. (CATT ) Attentive context embedding.

5 Results241

5.1 Main Results242

Table 2 shows the performance results of compar-243

ing our proposed model with existing approaches.244

To ensure a comprehensive and fair comparison,245

we included a version of our model that processes246

audio signals using MFCC in tandem with an247

LSTM instead of the more powerful wav2vec. This248

model outperformed baselines from previous re-249

search across both datasets. In particular, com-250

pared to BPM_ST, it achieved performance im-251

provements of as much as 1.3% for the Korean252

Counseling dataset and 1.8% for the SwitchBoard253

dataset. Major improvements were observable for254

specific backchannel categories like Understand-255

ing, Empathetic, and Assessment. Compared to256

BPM_MT, CABP with MFCC improved perfor-257

mance in all categories with the exception of Un-258

derstanding in Korean Counseling and NoBC in259

SwitchBoard. CABP, using wav2vec, achieved by260

far the highest performance, with an F1 score of261

39.5 for Korean Counseling and 67.8 for Switch-262

Board. This illustrates the advantages of using263

pre-trained models to encode audio information.264

5.2 Ablation Study265

The results of the ablation study for CABP are266

shown in Table 3. When the current utterance and267

acoustic embeddings were used separately (row 1 268

vs. row 2), we observed macro-F1 scores of 33.6 269

and 36.4, respectively. While audio information 270

had a substantial impact on overall performance, 271

text data exhibited greater advantages for certain 272

specific backchannels, i.e., ’Understanding.’ The 273

overall performance improved from 38.2 to 39.5 274

when context information was introduced (row 3 vs. 275

row 6). That is, incorporating information from pre- 276

vious utterances and considering the conversation 277

context benefited the performance of backchannel 278

prediction. When comparing methods of incorpo- 279

rating context (row 4 vs. row 5), attentive context 280

(39.0) outperformed sequential context (38.1). 281

6 Conclusion 282

In this paper, we proposed Context-Aware 283

Backchannel Prediction (CABP). CABP employs 284

sequential context, summarized using a GRU, and 285

attentive context, summarized selectively using at- 286

tention. Experimental results show that CABP out- 287

performs a context-unaware baseline by margins 288

of 1.3% and 1.8% in Korean and English, respec- 289

tively. Notably, significant performance enhance- 290

ments are observed in specific backchannel cate- 291

gories, where the model must accurately compre- 292

hend the speaker’s utterances. Even greater mar- 293

gins could be observed when introducing the pre- 294

trained wave2vec model for audio encoding. 295
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7 Limitations296

This paper has two limitations. First, it requires297

additional memory since it stores the previous k298

utterances in memory to account for context. Sec-299

ondly, the model does not take into account the300

frequency of previous backchannel use. Individ-301

uals who frequently use backchannels will most302

likely continue doing so, but those who seldom use303

them are less inclined to use them after a recent304

event. However, memory saves utterances without305

backchannels, rendering it incapable of providing306

data on recent backchannel usage. In future re-307

search, we will integrate backchannel into memory308

to contemplate recent instances of backchannel us-309

age.310
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